hugetlbpage.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424
  1. /*
  2. * IA-32 Huge TLB Page Support for Kernel.
  3. *
  4. * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  5. */
  6. #include <linux/config.h>
  7. #include <linux/init.h>
  8. #include <linux/fs.h>
  9. #include <linux/mm.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/smp_lock.h>
  13. #include <linux/slab.h>
  14. #include <linux/err.h>
  15. #include <linux/sysctl.h>
  16. #include <asm/mman.h>
  17. #include <asm/tlb.h>
  18. #include <asm/tlbflush.h>
  19. static pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
  20. {
  21. pgd_t *pgd;
  22. pud_t *pud;
  23. pmd_t *pmd = NULL;
  24. pgd = pgd_offset(mm, addr);
  25. pud = pud_alloc(mm, pgd, addr);
  26. pmd = pmd_alloc(mm, pud, addr);
  27. return (pte_t *) pmd;
  28. }
  29. static pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  30. {
  31. pgd_t *pgd;
  32. pud_t *pud;
  33. pmd_t *pmd = NULL;
  34. pgd = pgd_offset(mm, addr);
  35. pud = pud_offset(pgd, addr);
  36. pmd = pmd_offset(pud, addr);
  37. return (pte_t *) pmd;
  38. }
  39. static void set_huge_pte(struct mm_struct *mm, struct vm_area_struct *vma, struct page *page, pte_t * page_table, int write_access)
  40. {
  41. pte_t entry;
  42. add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE);
  43. if (write_access) {
  44. entry =
  45. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  46. } else
  47. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  48. entry = pte_mkyoung(entry);
  49. mk_pte_huge(entry);
  50. set_pte(page_table, entry);
  51. }
  52. /*
  53. * This function checks for proper alignment of input addr and len parameters.
  54. */
  55. int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
  56. {
  57. if (len & ~HPAGE_MASK)
  58. return -EINVAL;
  59. if (addr & ~HPAGE_MASK)
  60. return -EINVAL;
  61. return 0;
  62. }
  63. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  64. struct vm_area_struct *vma)
  65. {
  66. pte_t *src_pte, *dst_pte, entry;
  67. struct page *ptepage;
  68. unsigned long addr = vma->vm_start;
  69. unsigned long end = vma->vm_end;
  70. while (addr < end) {
  71. dst_pte = huge_pte_alloc(dst, addr);
  72. if (!dst_pte)
  73. goto nomem;
  74. src_pte = huge_pte_offset(src, addr);
  75. entry = *src_pte;
  76. ptepage = pte_page(entry);
  77. get_page(ptepage);
  78. set_pte(dst_pte, entry);
  79. add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE);
  80. addr += HPAGE_SIZE;
  81. }
  82. return 0;
  83. nomem:
  84. return -ENOMEM;
  85. }
  86. int
  87. follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  88. struct page **pages, struct vm_area_struct **vmas,
  89. unsigned long *position, int *length, int i)
  90. {
  91. unsigned long vpfn, vaddr = *position;
  92. int remainder = *length;
  93. WARN_ON(!is_vm_hugetlb_page(vma));
  94. vpfn = vaddr/PAGE_SIZE;
  95. while (vaddr < vma->vm_end && remainder) {
  96. if (pages) {
  97. pte_t *pte;
  98. struct page *page;
  99. pte = huge_pte_offset(mm, vaddr);
  100. /* hugetlb should be locked, and hence, prefaulted */
  101. WARN_ON(!pte || pte_none(*pte));
  102. page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
  103. WARN_ON(!PageCompound(page));
  104. get_page(page);
  105. pages[i] = page;
  106. }
  107. if (vmas)
  108. vmas[i] = vma;
  109. vaddr += PAGE_SIZE;
  110. ++vpfn;
  111. --remainder;
  112. ++i;
  113. }
  114. *length = remainder;
  115. *position = vaddr;
  116. return i;
  117. }
  118. #if 0 /* This is just for testing */
  119. struct page *
  120. follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
  121. {
  122. unsigned long start = address;
  123. int length = 1;
  124. int nr;
  125. struct page *page;
  126. struct vm_area_struct *vma;
  127. vma = find_vma(mm, addr);
  128. if (!vma || !is_vm_hugetlb_page(vma))
  129. return ERR_PTR(-EINVAL);
  130. pte = huge_pte_offset(mm, address);
  131. /* hugetlb should be locked, and hence, prefaulted */
  132. WARN_ON(!pte || pte_none(*pte));
  133. page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
  134. WARN_ON(!PageCompound(page));
  135. return page;
  136. }
  137. int pmd_huge(pmd_t pmd)
  138. {
  139. return 0;
  140. }
  141. struct page *
  142. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  143. pmd_t *pmd, int write)
  144. {
  145. return NULL;
  146. }
  147. #else
  148. struct page *
  149. follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
  150. {
  151. return ERR_PTR(-EINVAL);
  152. }
  153. int pmd_huge(pmd_t pmd)
  154. {
  155. return !!(pmd_val(pmd) & _PAGE_PSE);
  156. }
  157. struct page *
  158. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  159. pmd_t *pmd, int write)
  160. {
  161. struct page *page;
  162. page = pte_page(*(pte_t *)pmd);
  163. if (page)
  164. page += ((address & ~HPAGE_MASK) >> PAGE_SHIFT);
  165. return page;
  166. }
  167. #endif
  168. void unmap_hugepage_range(struct vm_area_struct *vma,
  169. unsigned long start, unsigned long end)
  170. {
  171. struct mm_struct *mm = vma->vm_mm;
  172. unsigned long address;
  173. pte_t pte, *ptep;
  174. struct page *page;
  175. BUG_ON(start & (HPAGE_SIZE - 1));
  176. BUG_ON(end & (HPAGE_SIZE - 1));
  177. for (address = start; address < end; address += HPAGE_SIZE) {
  178. ptep = huge_pte_offset(mm, address);
  179. if (!ptep)
  180. continue;
  181. pte = ptep_get_and_clear(mm, address, ptep);
  182. if (pte_none(pte))
  183. continue;
  184. page = pte_page(pte);
  185. put_page(page);
  186. }
  187. add_mm_counter(mm ,rss, -((end - start) >> PAGE_SHIFT));
  188. flush_tlb_range(vma, start, end);
  189. }
  190. int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
  191. {
  192. struct mm_struct *mm = current->mm;
  193. unsigned long addr;
  194. int ret = 0;
  195. BUG_ON(vma->vm_start & ~HPAGE_MASK);
  196. BUG_ON(vma->vm_end & ~HPAGE_MASK);
  197. spin_lock(&mm->page_table_lock);
  198. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  199. unsigned long idx;
  200. pte_t *pte = huge_pte_alloc(mm, addr);
  201. struct page *page;
  202. if (!pte) {
  203. ret = -ENOMEM;
  204. goto out;
  205. }
  206. if (!pte_none(*pte))
  207. continue;
  208. idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
  209. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  210. page = find_get_page(mapping, idx);
  211. if (!page) {
  212. /* charge the fs quota first */
  213. if (hugetlb_get_quota(mapping)) {
  214. ret = -ENOMEM;
  215. goto out;
  216. }
  217. page = alloc_huge_page();
  218. if (!page) {
  219. hugetlb_put_quota(mapping);
  220. ret = -ENOMEM;
  221. goto out;
  222. }
  223. ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
  224. if (! ret) {
  225. unlock_page(page);
  226. } else {
  227. hugetlb_put_quota(mapping);
  228. free_huge_page(page);
  229. goto out;
  230. }
  231. }
  232. set_huge_pte(mm, vma, page, pte, vma->vm_flags & VM_WRITE);
  233. }
  234. out:
  235. spin_unlock(&mm->page_table_lock);
  236. return ret;
  237. }
  238. /* x86_64 also uses this file */
  239. #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
  240. static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
  241. unsigned long addr, unsigned long len,
  242. unsigned long pgoff, unsigned long flags)
  243. {
  244. struct mm_struct *mm = current->mm;
  245. struct vm_area_struct *vma;
  246. unsigned long start_addr;
  247. start_addr = mm->free_area_cache;
  248. full_search:
  249. addr = ALIGN(start_addr, HPAGE_SIZE);
  250. for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
  251. /* At this point: (!vma || addr < vma->vm_end). */
  252. if (TASK_SIZE - len < addr) {
  253. /*
  254. * Start a new search - just in case we missed
  255. * some holes.
  256. */
  257. if (start_addr != TASK_UNMAPPED_BASE) {
  258. start_addr = TASK_UNMAPPED_BASE;
  259. goto full_search;
  260. }
  261. return -ENOMEM;
  262. }
  263. if (!vma || addr + len <= vma->vm_start) {
  264. mm->free_area_cache = addr + len;
  265. return addr;
  266. }
  267. addr = ALIGN(vma->vm_end, HPAGE_SIZE);
  268. }
  269. }
  270. static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
  271. unsigned long addr0, unsigned long len,
  272. unsigned long pgoff, unsigned long flags)
  273. {
  274. struct mm_struct *mm = current->mm;
  275. struct vm_area_struct *vma, *prev_vma;
  276. unsigned long base = mm->mmap_base, addr = addr0;
  277. int first_time = 1;
  278. /* don't allow allocations above current base */
  279. if (mm->free_area_cache > base)
  280. mm->free_area_cache = base;
  281. try_again:
  282. /* make sure it can fit in the remaining address space */
  283. if (mm->free_area_cache < len)
  284. goto fail;
  285. /* either no address requested or cant fit in requested address hole */
  286. addr = (mm->free_area_cache - len) & HPAGE_MASK;
  287. do {
  288. /*
  289. * Lookup failure means no vma is above this address,
  290. * i.e. return with success:
  291. */
  292. if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
  293. return addr;
  294. /*
  295. * new region fits between prev_vma->vm_end and
  296. * vma->vm_start, use it:
  297. */
  298. if (addr + len <= vma->vm_start &&
  299. (!prev_vma || (addr >= prev_vma->vm_end)))
  300. /* remember the address as a hint for next time */
  301. return (mm->free_area_cache = addr);
  302. else
  303. /* pull free_area_cache down to the first hole */
  304. if (mm->free_area_cache == vma->vm_end)
  305. mm->free_area_cache = vma->vm_start;
  306. /* try just below the current vma->vm_start */
  307. addr = (vma->vm_start - len) & HPAGE_MASK;
  308. } while (len <= vma->vm_start);
  309. fail:
  310. /*
  311. * if hint left us with no space for the requested
  312. * mapping then try again:
  313. */
  314. if (first_time) {
  315. mm->free_area_cache = base;
  316. first_time = 0;
  317. goto try_again;
  318. }
  319. /*
  320. * A failed mmap() very likely causes application failure,
  321. * so fall back to the bottom-up function here. This scenario
  322. * can happen with large stack limits and large mmap()
  323. * allocations.
  324. */
  325. mm->free_area_cache = TASK_UNMAPPED_BASE;
  326. addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
  327. len, pgoff, flags);
  328. /*
  329. * Restore the topdown base:
  330. */
  331. mm->free_area_cache = base;
  332. return addr;
  333. }
  334. unsigned long
  335. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  336. unsigned long len, unsigned long pgoff, unsigned long flags)
  337. {
  338. struct mm_struct *mm = current->mm;
  339. struct vm_area_struct *vma;
  340. if (len & ~HPAGE_MASK)
  341. return -EINVAL;
  342. if (len > TASK_SIZE)
  343. return -ENOMEM;
  344. if (addr) {
  345. addr = ALIGN(addr, HPAGE_SIZE);
  346. vma = find_vma(mm, addr);
  347. if (TASK_SIZE - len >= addr &&
  348. (!vma || addr + len <= vma->vm_start))
  349. return addr;
  350. }
  351. if (mm->get_unmapped_area == arch_get_unmapped_area)
  352. return hugetlb_get_unmapped_area_bottomup(file, addr, len,
  353. pgoff, flags);
  354. else
  355. return hugetlb_get_unmapped_area_topdown(file, addr, len,
  356. pgoff, flags);
  357. }
  358. #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/