percpu.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176
  1. /*
  2. * linux/mm/percpu.c - percpu memory allocator
  3. *
  4. * Copyright (C) 2009 SUSE Linux Products GmbH
  5. * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
  6. *
  7. * This file is released under the GPLv2.
  8. *
  9. * This is percpu allocator which can handle both static and dynamic
  10. * areas. Percpu areas are allocated in chunks in vmalloc area. Each
  11. * chunk is consisted of boot-time determined number of units and the
  12. * first chunk is used for static percpu variables in the kernel image
  13. * (special boot time alloc/init handling necessary as these areas
  14. * need to be brought up before allocation services are running).
  15. * Unit grows as necessary and all units grow or shrink in unison.
  16. * When a chunk is filled up, another chunk is allocated. ie. in
  17. * vmalloc area
  18. *
  19. * c0 c1 c2
  20. * ------------------- ------------------- ------------
  21. * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
  22. * ------------------- ...... ------------------- .... ------------
  23. *
  24. * Allocation is done in offset-size areas of single unit space. Ie,
  25. * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
  26. * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
  27. * cpus. On NUMA, the mapping can be non-linear and even sparse.
  28. * Percpu access can be done by configuring percpu base registers
  29. * according to cpu to unit mapping and pcpu_unit_size.
  30. *
  31. * There are usually many small percpu allocations many of them being
  32. * as small as 4 bytes. The allocator organizes chunks into lists
  33. * according to free size and tries to allocate from the fullest one.
  34. * Each chunk keeps the maximum contiguous area size hint which is
  35. * guaranteed to be eqaul to or larger than the maximum contiguous
  36. * area in the chunk. This helps the allocator not to iterate the
  37. * chunk maps unnecessarily.
  38. *
  39. * Allocation state in each chunk is kept using an array of integers
  40. * on chunk->map. A positive value in the map represents a free
  41. * region and negative allocated. Allocation inside a chunk is done
  42. * by scanning this map sequentially and serving the first matching
  43. * entry. This is mostly copied from the percpu_modalloc() allocator.
  44. * Chunks can be determined from the address using the index field
  45. * in the page struct. The index field contains a pointer to the chunk.
  46. *
  47. * To use this allocator, arch code should do the followings.
  48. *
  49. * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  50. * regular address to percpu pointer and back if they need to be
  51. * different from the default
  52. *
  53. * - use pcpu_setup_first_chunk() during percpu area initialization to
  54. * setup the first chunk containing the kernel static percpu area
  55. */
  56. #include <linux/bitmap.h>
  57. #include <linux/bootmem.h>
  58. #include <linux/err.h>
  59. #include <linux/list.h>
  60. #include <linux/log2.h>
  61. #include <linux/mm.h>
  62. #include <linux/module.h>
  63. #include <linux/mutex.h>
  64. #include <linux/percpu.h>
  65. #include <linux/pfn.h>
  66. #include <linux/slab.h>
  67. #include <linux/spinlock.h>
  68. #include <linux/vmalloc.h>
  69. #include <linux/workqueue.h>
  70. #include <asm/cacheflush.h>
  71. #include <asm/sections.h>
  72. #include <asm/tlbflush.h>
  73. #include <asm/io.h>
  74. #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
  75. #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
  76. /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
  77. #ifndef __addr_to_pcpu_ptr
  78. #define __addr_to_pcpu_ptr(addr) \
  79. (void __percpu *)((unsigned long)(addr) - \
  80. (unsigned long)pcpu_base_addr + \
  81. (unsigned long)__per_cpu_start)
  82. #endif
  83. #ifndef __pcpu_ptr_to_addr
  84. #define __pcpu_ptr_to_addr(ptr) \
  85. (void __force *)((unsigned long)(ptr) + \
  86. (unsigned long)pcpu_base_addr - \
  87. (unsigned long)__per_cpu_start)
  88. #endif
  89. struct pcpu_chunk {
  90. struct list_head list; /* linked to pcpu_slot lists */
  91. int free_size; /* free bytes in the chunk */
  92. int contig_hint; /* max contiguous size hint */
  93. void *base_addr; /* base address of this chunk */
  94. int map_used; /* # of map entries used */
  95. int map_alloc; /* # of map entries allocated */
  96. int *map; /* allocation map */
  97. struct vm_struct **vms; /* mapped vmalloc regions */
  98. bool immutable; /* no [de]population allowed */
  99. unsigned long populated[]; /* populated bitmap */
  100. };
  101. static int pcpu_unit_pages __read_mostly;
  102. static int pcpu_unit_size __read_mostly;
  103. static int pcpu_nr_units __read_mostly;
  104. static int pcpu_atom_size __read_mostly;
  105. static int pcpu_nr_slots __read_mostly;
  106. static size_t pcpu_chunk_struct_size __read_mostly;
  107. /* cpus with the lowest and highest unit numbers */
  108. static unsigned int pcpu_first_unit_cpu __read_mostly;
  109. static unsigned int pcpu_last_unit_cpu __read_mostly;
  110. /* the address of the first chunk which starts with the kernel static area */
  111. void *pcpu_base_addr __read_mostly;
  112. EXPORT_SYMBOL_GPL(pcpu_base_addr);
  113. static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
  114. const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
  115. /* group information, used for vm allocation */
  116. static int pcpu_nr_groups __read_mostly;
  117. static const unsigned long *pcpu_group_offsets __read_mostly;
  118. static const size_t *pcpu_group_sizes __read_mostly;
  119. /*
  120. * The first chunk which always exists. Note that unlike other
  121. * chunks, this one can be allocated and mapped in several different
  122. * ways and thus often doesn't live in the vmalloc area.
  123. */
  124. static struct pcpu_chunk *pcpu_first_chunk;
  125. /*
  126. * Optional reserved chunk. This chunk reserves part of the first
  127. * chunk and serves it for reserved allocations. The amount of
  128. * reserved offset is in pcpu_reserved_chunk_limit. When reserved
  129. * area doesn't exist, the following variables contain NULL and 0
  130. * respectively.
  131. */
  132. static struct pcpu_chunk *pcpu_reserved_chunk;
  133. static int pcpu_reserved_chunk_limit;
  134. /*
  135. * Synchronization rules.
  136. *
  137. * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
  138. * protects allocation/reclaim paths, chunks, populated bitmap and
  139. * vmalloc mapping. The latter is a spinlock and protects the index
  140. * data structures - chunk slots, chunks and area maps in chunks.
  141. *
  142. * During allocation, pcpu_alloc_mutex is kept locked all the time and
  143. * pcpu_lock is grabbed and released as necessary. All actual memory
  144. * allocations are done using GFP_KERNEL with pcpu_lock released. In
  145. * general, percpu memory can't be allocated with irq off but
  146. * irqsave/restore are still used in alloc path so that it can be used
  147. * from early init path - sched_init() specifically.
  148. *
  149. * Free path accesses and alters only the index data structures, so it
  150. * can be safely called from atomic context. When memory needs to be
  151. * returned to the system, free path schedules reclaim_work which
  152. * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
  153. * reclaimed, release both locks and frees the chunks. Note that it's
  154. * necessary to grab both locks to remove a chunk from circulation as
  155. * allocation path might be referencing the chunk with only
  156. * pcpu_alloc_mutex locked.
  157. */
  158. static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
  159. static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
  160. static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
  161. /* reclaim work to release fully free chunks, scheduled from free path */
  162. static void pcpu_reclaim(struct work_struct *work);
  163. static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
  164. static bool pcpu_addr_in_first_chunk(void *addr)
  165. {
  166. void *first_start = pcpu_first_chunk->base_addr;
  167. return addr >= first_start && addr < first_start + pcpu_unit_size;
  168. }
  169. static bool pcpu_addr_in_reserved_chunk(void *addr)
  170. {
  171. void *first_start = pcpu_first_chunk->base_addr;
  172. return addr >= first_start &&
  173. addr < first_start + pcpu_reserved_chunk_limit;
  174. }
  175. static int __pcpu_size_to_slot(int size)
  176. {
  177. int highbit = fls(size); /* size is in bytes */
  178. return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
  179. }
  180. static int pcpu_size_to_slot(int size)
  181. {
  182. if (size == pcpu_unit_size)
  183. return pcpu_nr_slots - 1;
  184. return __pcpu_size_to_slot(size);
  185. }
  186. static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
  187. {
  188. if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
  189. return 0;
  190. return pcpu_size_to_slot(chunk->free_size);
  191. }
  192. static int pcpu_page_idx(unsigned int cpu, int page_idx)
  193. {
  194. return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
  195. }
  196. static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
  197. unsigned int cpu, int page_idx)
  198. {
  199. return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
  200. (page_idx << PAGE_SHIFT);
  201. }
  202. static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
  203. unsigned int cpu, int page_idx)
  204. {
  205. /* must not be used on pre-mapped chunk */
  206. WARN_ON(chunk->immutable);
  207. return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
  208. }
  209. /* set the pointer to a chunk in a page struct */
  210. static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
  211. {
  212. page->index = (unsigned long)pcpu;
  213. }
  214. /* obtain pointer to a chunk from a page struct */
  215. static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
  216. {
  217. return (struct pcpu_chunk *)page->index;
  218. }
  219. static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
  220. {
  221. *rs = find_next_zero_bit(chunk->populated, end, *rs);
  222. *re = find_next_bit(chunk->populated, end, *rs + 1);
  223. }
  224. static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
  225. {
  226. *rs = find_next_bit(chunk->populated, end, *rs);
  227. *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
  228. }
  229. /*
  230. * (Un)populated page region iterators. Iterate over (un)populated
  231. * page regions betwen @start and @end in @chunk. @rs and @re should
  232. * be integer variables and will be set to start and end page index of
  233. * the current region.
  234. */
  235. #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
  236. for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
  237. (rs) < (re); \
  238. (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
  239. #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
  240. for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
  241. (rs) < (re); \
  242. (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
  243. /**
  244. * pcpu_mem_alloc - allocate memory
  245. * @size: bytes to allocate
  246. *
  247. * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
  248. * kzalloc() is used; otherwise, vmalloc() is used. The returned
  249. * memory is always zeroed.
  250. *
  251. * CONTEXT:
  252. * Does GFP_KERNEL allocation.
  253. *
  254. * RETURNS:
  255. * Pointer to the allocated area on success, NULL on failure.
  256. */
  257. static void *pcpu_mem_alloc(size_t size)
  258. {
  259. if (size <= PAGE_SIZE)
  260. return kzalloc(size, GFP_KERNEL);
  261. else {
  262. void *ptr = vmalloc(size);
  263. if (ptr)
  264. memset(ptr, 0, size);
  265. return ptr;
  266. }
  267. }
  268. /**
  269. * pcpu_mem_free - free memory
  270. * @ptr: memory to free
  271. * @size: size of the area
  272. *
  273. * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
  274. */
  275. static void pcpu_mem_free(void *ptr, size_t size)
  276. {
  277. if (size <= PAGE_SIZE)
  278. kfree(ptr);
  279. else
  280. vfree(ptr);
  281. }
  282. /**
  283. * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
  284. * @chunk: chunk of interest
  285. * @oslot: the previous slot it was on
  286. *
  287. * This function is called after an allocation or free changed @chunk.
  288. * New slot according to the changed state is determined and @chunk is
  289. * moved to the slot. Note that the reserved chunk is never put on
  290. * chunk slots.
  291. *
  292. * CONTEXT:
  293. * pcpu_lock.
  294. */
  295. static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
  296. {
  297. int nslot = pcpu_chunk_slot(chunk);
  298. if (chunk != pcpu_reserved_chunk && oslot != nslot) {
  299. if (oslot < nslot)
  300. list_move(&chunk->list, &pcpu_slot[nslot]);
  301. else
  302. list_move_tail(&chunk->list, &pcpu_slot[nslot]);
  303. }
  304. }
  305. /**
  306. * pcpu_chunk_addr_search - determine chunk containing specified address
  307. * @addr: address for which the chunk needs to be determined.
  308. *
  309. * RETURNS:
  310. * The address of the found chunk.
  311. */
  312. static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
  313. {
  314. /* is it in the first chunk? */
  315. if (pcpu_addr_in_first_chunk(addr)) {
  316. /* is it in the reserved area? */
  317. if (pcpu_addr_in_reserved_chunk(addr))
  318. return pcpu_reserved_chunk;
  319. return pcpu_first_chunk;
  320. }
  321. /*
  322. * The address is relative to unit0 which might be unused and
  323. * thus unmapped. Offset the address to the unit space of the
  324. * current processor before looking it up in the vmalloc
  325. * space. Note that any possible cpu id can be used here, so
  326. * there's no need to worry about preemption or cpu hotplug.
  327. */
  328. addr += pcpu_unit_offsets[raw_smp_processor_id()];
  329. return pcpu_get_page_chunk(vmalloc_to_page(addr));
  330. }
  331. /**
  332. * pcpu_need_to_extend - determine whether chunk area map needs to be extended
  333. * @chunk: chunk of interest
  334. *
  335. * Determine whether area map of @chunk needs to be extended to
  336. * accomodate a new allocation.
  337. *
  338. * CONTEXT:
  339. * pcpu_lock.
  340. *
  341. * RETURNS:
  342. * New target map allocation length if extension is necessary, 0
  343. * otherwise.
  344. */
  345. static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
  346. {
  347. int new_alloc;
  348. if (chunk->map_alloc >= chunk->map_used + 2)
  349. return 0;
  350. new_alloc = PCPU_DFL_MAP_ALLOC;
  351. while (new_alloc < chunk->map_used + 2)
  352. new_alloc *= 2;
  353. return new_alloc;
  354. }
  355. /**
  356. * pcpu_extend_area_map - extend area map of a chunk
  357. * @chunk: chunk of interest
  358. * @new_alloc: new target allocation length of the area map
  359. *
  360. * Extend area map of @chunk to have @new_alloc entries.
  361. *
  362. * CONTEXT:
  363. * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
  364. *
  365. * RETURNS:
  366. * 0 on success, -errno on failure.
  367. */
  368. static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
  369. {
  370. int *old = NULL, *new = NULL;
  371. size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
  372. unsigned long flags;
  373. new = pcpu_mem_alloc(new_size);
  374. if (!new)
  375. return -ENOMEM;
  376. /* acquire pcpu_lock and switch to new area map */
  377. spin_lock_irqsave(&pcpu_lock, flags);
  378. if (new_alloc <= chunk->map_alloc)
  379. goto out_unlock;
  380. old_size = chunk->map_alloc * sizeof(chunk->map[0]);
  381. memcpy(new, chunk->map, old_size);
  382. /*
  383. * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
  384. * one of the first chunks and still using static map.
  385. */
  386. if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
  387. old = chunk->map;
  388. chunk->map_alloc = new_alloc;
  389. chunk->map = new;
  390. new = NULL;
  391. out_unlock:
  392. spin_unlock_irqrestore(&pcpu_lock, flags);
  393. /*
  394. * pcpu_mem_free() might end up calling vfree() which uses
  395. * IRQ-unsafe lock and thus can't be called under pcpu_lock.
  396. */
  397. pcpu_mem_free(old, old_size);
  398. pcpu_mem_free(new, new_size);
  399. return 0;
  400. }
  401. /**
  402. * pcpu_split_block - split a map block
  403. * @chunk: chunk of interest
  404. * @i: index of map block to split
  405. * @head: head size in bytes (can be 0)
  406. * @tail: tail size in bytes (can be 0)
  407. *
  408. * Split the @i'th map block into two or three blocks. If @head is
  409. * non-zero, @head bytes block is inserted before block @i moving it
  410. * to @i+1 and reducing its size by @head bytes.
  411. *
  412. * If @tail is non-zero, the target block, which can be @i or @i+1
  413. * depending on @head, is reduced by @tail bytes and @tail byte block
  414. * is inserted after the target block.
  415. *
  416. * @chunk->map must have enough free slots to accomodate the split.
  417. *
  418. * CONTEXT:
  419. * pcpu_lock.
  420. */
  421. static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
  422. int head, int tail)
  423. {
  424. int nr_extra = !!head + !!tail;
  425. BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
  426. /* insert new subblocks */
  427. memmove(&chunk->map[i + nr_extra], &chunk->map[i],
  428. sizeof(chunk->map[0]) * (chunk->map_used - i));
  429. chunk->map_used += nr_extra;
  430. if (head) {
  431. chunk->map[i + 1] = chunk->map[i] - head;
  432. chunk->map[i++] = head;
  433. }
  434. if (tail) {
  435. chunk->map[i++] -= tail;
  436. chunk->map[i] = tail;
  437. }
  438. }
  439. /**
  440. * pcpu_alloc_area - allocate area from a pcpu_chunk
  441. * @chunk: chunk of interest
  442. * @size: wanted size in bytes
  443. * @align: wanted align
  444. *
  445. * Try to allocate @size bytes area aligned at @align from @chunk.
  446. * Note that this function only allocates the offset. It doesn't
  447. * populate or map the area.
  448. *
  449. * @chunk->map must have at least two free slots.
  450. *
  451. * CONTEXT:
  452. * pcpu_lock.
  453. *
  454. * RETURNS:
  455. * Allocated offset in @chunk on success, -1 if no matching area is
  456. * found.
  457. */
  458. static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
  459. {
  460. int oslot = pcpu_chunk_slot(chunk);
  461. int max_contig = 0;
  462. int i, off;
  463. for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
  464. bool is_last = i + 1 == chunk->map_used;
  465. int head, tail;
  466. /* extra for alignment requirement */
  467. head = ALIGN(off, align) - off;
  468. BUG_ON(i == 0 && head != 0);
  469. if (chunk->map[i] < 0)
  470. continue;
  471. if (chunk->map[i] < head + size) {
  472. max_contig = max(chunk->map[i], max_contig);
  473. continue;
  474. }
  475. /*
  476. * If head is small or the previous block is free,
  477. * merge'em. Note that 'small' is defined as smaller
  478. * than sizeof(int), which is very small but isn't too
  479. * uncommon for percpu allocations.
  480. */
  481. if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
  482. if (chunk->map[i - 1] > 0)
  483. chunk->map[i - 1] += head;
  484. else {
  485. chunk->map[i - 1] -= head;
  486. chunk->free_size -= head;
  487. }
  488. chunk->map[i] -= head;
  489. off += head;
  490. head = 0;
  491. }
  492. /* if tail is small, just keep it around */
  493. tail = chunk->map[i] - head - size;
  494. if (tail < sizeof(int))
  495. tail = 0;
  496. /* split if warranted */
  497. if (head || tail) {
  498. pcpu_split_block(chunk, i, head, tail);
  499. if (head) {
  500. i++;
  501. off += head;
  502. max_contig = max(chunk->map[i - 1], max_contig);
  503. }
  504. if (tail)
  505. max_contig = max(chunk->map[i + 1], max_contig);
  506. }
  507. /* update hint and mark allocated */
  508. if (is_last)
  509. chunk->contig_hint = max_contig; /* fully scanned */
  510. else
  511. chunk->contig_hint = max(chunk->contig_hint,
  512. max_contig);
  513. chunk->free_size -= chunk->map[i];
  514. chunk->map[i] = -chunk->map[i];
  515. pcpu_chunk_relocate(chunk, oslot);
  516. return off;
  517. }
  518. chunk->contig_hint = max_contig; /* fully scanned */
  519. pcpu_chunk_relocate(chunk, oslot);
  520. /* tell the upper layer that this chunk has no matching area */
  521. return -1;
  522. }
  523. /**
  524. * pcpu_free_area - free area to a pcpu_chunk
  525. * @chunk: chunk of interest
  526. * @freeme: offset of area to free
  527. *
  528. * Free area starting from @freeme to @chunk. Note that this function
  529. * only modifies the allocation map. It doesn't depopulate or unmap
  530. * the area.
  531. *
  532. * CONTEXT:
  533. * pcpu_lock.
  534. */
  535. static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
  536. {
  537. int oslot = pcpu_chunk_slot(chunk);
  538. int i, off;
  539. for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
  540. if (off == freeme)
  541. break;
  542. BUG_ON(off != freeme);
  543. BUG_ON(chunk->map[i] > 0);
  544. chunk->map[i] = -chunk->map[i];
  545. chunk->free_size += chunk->map[i];
  546. /* merge with previous? */
  547. if (i > 0 && chunk->map[i - 1] >= 0) {
  548. chunk->map[i - 1] += chunk->map[i];
  549. chunk->map_used--;
  550. memmove(&chunk->map[i], &chunk->map[i + 1],
  551. (chunk->map_used - i) * sizeof(chunk->map[0]));
  552. i--;
  553. }
  554. /* merge with next? */
  555. if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
  556. chunk->map[i] += chunk->map[i + 1];
  557. chunk->map_used--;
  558. memmove(&chunk->map[i + 1], &chunk->map[i + 2],
  559. (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
  560. }
  561. chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
  562. pcpu_chunk_relocate(chunk, oslot);
  563. }
  564. /**
  565. * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
  566. * @chunk: chunk of interest
  567. * @bitmapp: output parameter for bitmap
  568. * @may_alloc: may allocate the array
  569. *
  570. * Returns pointer to array of pointers to struct page and bitmap,
  571. * both of which can be indexed with pcpu_page_idx(). The returned
  572. * array is cleared to zero and *@bitmapp is copied from
  573. * @chunk->populated. Note that there is only one array and bitmap
  574. * and access exclusion is the caller's responsibility.
  575. *
  576. * CONTEXT:
  577. * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
  578. * Otherwise, don't care.
  579. *
  580. * RETURNS:
  581. * Pointer to temp pages array on success, NULL on failure.
  582. */
  583. static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
  584. unsigned long **bitmapp,
  585. bool may_alloc)
  586. {
  587. static struct page **pages;
  588. static unsigned long *bitmap;
  589. size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
  590. size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
  591. sizeof(unsigned long);
  592. if (!pages || !bitmap) {
  593. if (may_alloc && !pages)
  594. pages = pcpu_mem_alloc(pages_size);
  595. if (may_alloc && !bitmap)
  596. bitmap = pcpu_mem_alloc(bitmap_size);
  597. if (!pages || !bitmap)
  598. return NULL;
  599. }
  600. memset(pages, 0, pages_size);
  601. bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
  602. *bitmapp = bitmap;
  603. return pages;
  604. }
  605. /**
  606. * pcpu_free_pages - free pages which were allocated for @chunk
  607. * @chunk: chunk pages were allocated for
  608. * @pages: array of pages to be freed, indexed by pcpu_page_idx()
  609. * @populated: populated bitmap
  610. * @page_start: page index of the first page to be freed
  611. * @page_end: page index of the last page to be freed + 1
  612. *
  613. * Free pages [@page_start and @page_end) in @pages for all units.
  614. * The pages were allocated for @chunk.
  615. */
  616. static void pcpu_free_pages(struct pcpu_chunk *chunk,
  617. struct page **pages, unsigned long *populated,
  618. int page_start, int page_end)
  619. {
  620. unsigned int cpu;
  621. int i;
  622. for_each_possible_cpu(cpu) {
  623. for (i = page_start; i < page_end; i++) {
  624. struct page *page = pages[pcpu_page_idx(cpu, i)];
  625. if (page)
  626. __free_page(page);
  627. }
  628. }
  629. }
  630. /**
  631. * pcpu_alloc_pages - allocates pages for @chunk
  632. * @chunk: target chunk
  633. * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
  634. * @populated: populated bitmap
  635. * @page_start: page index of the first page to be allocated
  636. * @page_end: page index of the last page to be allocated + 1
  637. *
  638. * Allocate pages [@page_start,@page_end) into @pages for all units.
  639. * The allocation is for @chunk. Percpu core doesn't care about the
  640. * content of @pages and will pass it verbatim to pcpu_map_pages().
  641. */
  642. static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
  643. struct page **pages, unsigned long *populated,
  644. int page_start, int page_end)
  645. {
  646. const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
  647. unsigned int cpu;
  648. int i;
  649. for_each_possible_cpu(cpu) {
  650. for (i = page_start; i < page_end; i++) {
  651. struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
  652. *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
  653. if (!*pagep) {
  654. pcpu_free_pages(chunk, pages, populated,
  655. page_start, page_end);
  656. return -ENOMEM;
  657. }
  658. }
  659. }
  660. return 0;
  661. }
  662. /**
  663. * pcpu_pre_unmap_flush - flush cache prior to unmapping
  664. * @chunk: chunk the regions to be flushed belongs to
  665. * @page_start: page index of the first page to be flushed
  666. * @page_end: page index of the last page to be flushed + 1
  667. *
  668. * Pages in [@page_start,@page_end) of @chunk are about to be
  669. * unmapped. Flush cache. As each flushing trial can be very
  670. * expensive, issue flush on the whole region at once rather than
  671. * doing it for each cpu. This could be an overkill but is more
  672. * scalable.
  673. */
  674. static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
  675. int page_start, int page_end)
  676. {
  677. flush_cache_vunmap(
  678. pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
  679. pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
  680. }
  681. static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
  682. {
  683. unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
  684. }
  685. /**
  686. * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
  687. * @chunk: chunk of interest
  688. * @pages: pages array which can be used to pass information to free
  689. * @populated: populated bitmap
  690. * @page_start: page index of the first page to unmap
  691. * @page_end: page index of the last page to unmap + 1
  692. *
  693. * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
  694. * Corresponding elements in @pages were cleared by the caller and can
  695. * be used to carry information to pcpu_free_pages() which will be
  696. * called after all unmaps are finished. The caller should call
  697. * proper pre/post flush functions.
  698. */
  699. static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
  700. struct page **pages, unsigned long *populated,
  701. int page_start, int page_end)
  702. {
  703. unsigned int cpu;
  704. int i;
  705. for_each_possible_cpu(cpu) {
  706. for (i = page_start; i < page_end; i++) {
  707. struct page *page;
  708. page = pcpu_chunk_page(chunk, cpu, i);
  709. WARN_ON(!page);
  710. pages[pcpu_page_idx(cpu, i)] = page;
  711. }
  712. __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
  713. page_end - page_start);
  714. }
  715. for (i = page_start; i < page_end; i++)
  716. __clear_bit(i, populated);
  717. }
  718. /**
  719. * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
  720. * @chunk: pcpu_chunk the regions to be flushed belong to
  721. * @page_start: page index of the first page to be flushed
  722. * @page_end: page index of the last page to be flushed + 1
  723. *
  724. * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
  725. * TLB for the regions. This can be skipped if the area is to be
  726. * returned to vmalloc as vmalloc will handle TLB flushing lazily.
  727. *
  728. * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
  729. * for the whole region.
  730. */
  731. static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
  732. int page_start, int page_end)
  733. {
  734. flush_tlb_kernel_range(
  735. pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
  736. pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
  737. }
  738. static int __pcpu_map_pages(unsigned long addr, struct page **pages,
  739. int nr_pages)
  740. {
  741. return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
  742. PAGE_KERNEL, pages);
  743. }
  744. /**
  745. * pcpu_map_pages - map pages into a pcpu_chunk
  746. * @chunk: chunk of interest
  747. * @pages: pages array containing pages to be mapped
  748. * @populated: populated bitmap
  749. * @page_start: page index of the first page to map
  750. * @page_end: page index of the last page to map + 1
  751. *
  752. * For each cpu, map pages [@page_start,@page_end) into @chunk. The
  753. * caller is responsible for calling pcpu_post_map_flush() after all
  754. * mappings are complete.
  755. *
  756. * This function is responsible for setting corresponding bits in
  757. * @chunk->populated bitmap and whatever is necessary for reverse
  758. * lookup (addr -> chunk).
  759. */
  760. static int pcpu_map_pages(struct pcpu_chunk *chunk,
  761. struct page **pages, unsigned long *populated,
  762. int page_start, int page_end)
  763. {
  764. unsigned int cpu, tcpu;
  765. int i, err;
  766. for_each_possible_cpu(cpu) {
  767. err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
  768. &pages[pcpu_page_idx(cpu, page_start)],
  769. page_end - page_start);
  770. if (err < 0)
  771. goto err;
  772. }
  773. /* mapping successful, link chunk and mark populated */
  774. for (i = page_start; i < page_end; i++) {
  775. for_each_possible_cpu(cpu)
  776. pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
  777. chunk);
  778. __set_bit(i, populated);
  779. }
  780. return 0;
  781. err:
  782. for_each_possible_cpu(tcpu) {
  783. if (tcpu == cpu)
  784. break;
  785. __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
  786. page_end - page_start);
  787. }
  788. return err;
  789. }
  790. /**
  791. * pcpu_post_map_flush - flush cache after mapping
  792. * @chunk: pcpu_chunk the regions to be flushed belong to
  793. * @page_start: page index of the first page to be flushed
  794. * @page_end: page index of the last page to be flushed + 1
  795. *
  796. * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
  797. * cache.
  798. *
  799. * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
  800. * for the whole region.
  801. */
  802. static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
  803. int page_start, int page_end)
  804. {
  805. flush_cache_vmap(
  806. pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
  807. pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
  808. }
  809. /**
  810. * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
  811. * @chunk: chunk to depopulate
  812. * @off: offset to the area to depopulate
  813. * @size: size of the area to depopulate in bytes
  814. * @flush: whether to flush cache and tlb or not
  815. *
  816. * For each cpu, depopulate and unmap pages [@page_start,@page_end)
  817. * from @chunk. If @flush is true, vcache is flushed before unmapping
  818. * and tlb after.
  819. *
  820. * CONTEXT:
  821. * pcpu_alloc_mutex.
  822. */
  823. static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
  824. {
  825. int page_start = PFN_DOWN(off);
  826. int page_end = PFN_UP(off + size);
  827. struct page **pages;
  828. unsigned long *populated;
  829. int rs, re;
  830. /* quick path, check whether it's empty already */
  831. rs = page_start;
  832. pcpu_next_unpop(chunk, &rs, &re, page_end);
  833. if (rs == page_start && re == page_end)
  834. return;
  835. /* immutable chunks can't be depopulated */
  836. WARN_ON(chunk->immutable);
  837. /*
  838. * If control reaches here, there must have been at least one
  839. * successful population attempt so the temp pages array must
  840. * be available now.
  841. */
  842. pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
  843. BUG_ON(!pages);
  844. /* unmap and free */
  845. pcpu_pre_unmap_flush(chunk, page_start, page_end);
  846. pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
  847. pcpu_unmap_pages(chunk, pages, populated, rs, re);
  848. /* no need to flush tlb, vmalloc will handle it lazily */
  849. pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
  850. pcpu_free_pages(chunk, pages, populated, rs, re);
  851. /* commit new bitmap */
  852. bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
  853. }
  854. /**
  855. * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
  856. * @chunk: chunk of interest
  857. * @off: offset to the area to populate
  858. * @size: size of the area to populate in bytes
  859. *
  860. * For each cpu, populate and map pages [@page_start,@page_end) into
  861. * @chunk. The area is cleared on return.
  862. *
  863. * CONTEXT:
  864. * pcpu_alloc_mutex, does GFP_KERNEL allocation.
  865. */
  866. static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
  867. {
  868. int page_start = PFN_DOWN(off);
  869. int page_end = PFN_UP(off + size);
  870. int free_end = page_start, unmap_end = page_start;
  871. struct page **pages;
  872. unsigned long *populated;
  873. unsigned int cpu;
  874. int rs, re, rc;
  875. /* quick path, check whether all pages are already there */
  876. rs = page_start;
  877. pcpu_next_pop(chunk, &rs, &re, page_end);
  878. if (rs == page_start && re == page_end)
  879. goto clear;
  880. /* need to allocate and map pages, this chunk can't be immutable */
  881. WARN_ON(chunk->immutable);
  882. pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
  883. if (!pages)
  884. return -ENOMEM;
  885. /* alloc and map */
  886. pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
  887. rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
  888. if (rc)
  889. goto err_free;
  890. free_end = re;
  891. }
  892. pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
  893. rc = pcpu_map_pages(chunk, pages, populated, rs, re);
  894. if (rc)
  895. goto err_unmap;
  896. unmap_end = re;
  897. }
  898. pcpu_post_map_flush(chunk, page_start, page_end);
  899. /* commit new bitmap */
  900. bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
  901. clear:
  902. for_each_possible_cpu(cpu)
  903. memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
  904. return 0;
  905. err_unmap:
  906. pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
  907. pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
  908. pcpu_unmap_pages(chunk, pages, populated, rs, re);
  909. pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
  910. err_free:
  911. pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
  912. pcpu_free_pages(chunk, pages, populated, rs, re);
  913. return rc;
  914. }
  915. static void free_pcpu_chunk(struct pcpu_chunk *chunk)
  916. {
  917. if (!chunk)
  918. return;
  919. if (chunk->vms)
  920. pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
  921. pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
  922. kfree(chunk);
  923. }
  924. static struct pcpu_chunk *alloc_pcpu_chunk(void)
  925. {
  926. struct pcpu_chunk *chunk;
  927. chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
  928. if (!chunk)
  929. return NULL;
  930. chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
  931. chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
  932. chunk->map[chunk->map_used++] = pcpu_unit_size;
  933. chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
  934. pcpu_nr_groups, pcpu_atom_size,
  935. GFP_KERNEL);
  936. if (!chunk->vms) {
  937. free_pcpu_chunk(chunk);
  938. return NULL;
  939. }
  940. INIT_LIST_HEAD(&chunk->list);
  941. chunk->free_size = pcpu_unit_size;
  942. chunk->contig_hint = pcpu_unit_size;
  943. chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
  944. return chunk;
  945. }
  946. /**
  947. * pcpu_alloc - the percpu allocator
  948. * @size: size of area to allocate in bytes
  949. * @align: alignment of area (max PAGE_SIZE)
  950. * @reserved: allocate from the reserved chunk if available
  951. *
  952. * Allocate percpu area of @size bytes aligned at @align.
  953. *
  954. * CONTEXT:
  955. * Does GFP_KERNEL allocation.
  956. *
  957. * RETURNS:
  958. * Percpu pointer to the allocated area on success, NULL on failure.
  959. */
  960. static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
  961. {
  962. static int warn_limit = 10;
  963. struct pcpu_chunk *chunk;
  964. const char *err;
  965. int slot, off, new_alloc;
  966. unsigned long flags;
  967. if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
  968. WARN(true, "illegal size (%zu) or align (%zu) for "
  969. "percpu allocation\n", size, align);
  970. return NULL;
  971. }
  972. mutex_lock(&pcpu_alloc_mutex);
  973. spin_lock_irqsave(&pcpu_lock, flags);
  974. /* serve reserved allocations from the reserved chunk if available */
  975. if (reserved && pcpu_reserved_chunk) {
  976. chunk = pcpu_reserved_chunk;
  977. if (size > chunk->contig_hint) {
  978. err = "alloc from reserved chunk failed";
  979. goto fail_unlock;
  980. }
  981. while ((new_alloc = pcpu_need_to_extend(chunk))) {
  982. spin_unlock_irqrestore(&pcpu_lock, flags);
  983. if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
  984. err = "failed to extend area map of reserved chunk";
  985. goto fail_unlock_mutex;
  986. }
  987. spin_lock_irqsave(&pcpu_lock, flags);
  988. }
  989. off = pcpu_alloc_area(chunk, size, align);
  990. if (off >= 0)
  991. goto area_found;
  992. err = "alloc from reserved chunk failed";
  993. goto fail_unlock;
  994. }
  995. restart:
  996. /* search through normal chunks */
  997. for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
  998. list_for_each_entry(chunk, &pcpu_slot[slot], list) {
  999. if (size > chunk->contig_hint)
  1000. continue;
  1001. new_alloc = pcpu_need_to_extend(chunk);
  1002. if (new_alloc) {
  1003. spin_unlock_irqrestore(&pcpu_lock, flags);
  1004. if (pcpu_extend_area_map(chunk,
  1005. new_alloc) < 0) {
  1006. err = "failed to extend area map";
  1007. goto fail_unlock_mutex;
  1008. }
  1009. spin_lock_irqsave(&pcpu_lock, flags);
  1010. /*
  1011. * pcpu_lock has been dropped, need to
  1012. * restart cpu_slot list walking.
  1013. */
  1014. goto restart;
  1015. }
  1016. off = pcpu_alloc_area(chunk, size, align);
  1017. if (off >= 0)
  1018. goto area_found;
  1019. }
  1020. }
  1021. /* hmmm... no space left, create a new chunk */
  1022. spin_unlock_irqrestore(&pcpu_lock, flags);
  1023. chunk = alloc_pcpu_chunk();
  1024. if (!chunk) {
  1025. err = "failed to allocate new chunk";
  1026. goto fail_unlock_mutex;
  1027. }
  1028. spin_lock_irqsave(&pcpu_lock, flags);
  1029. pcpu_chunk_relocate(chunk, -1);
  1030. goto restart;
  1031. area_found:
  1032. spin_unlock_irqrestore(&pcpu_lock, flags);
  1033. /* populate, map and clear the area */
  1034. if (pcpu_populate_chunk(chunk, off, size)) {
  1035. spin_lock_irqsave(&pcpu_lock, flags);
  1036. pcpu_free_area(chunk, off);
  1037. err = "failed to populate";
  1038. goto fail_unlock;
  1039. }
  1040. mutex_unlock(&pcpu_alloc_mutex);
  1041. /* return address relative to base address */
  1042. return __addr_to_pcpu_ptr(chunk->base_addr + off);
  1043. fail_unlock:
  1044. spin_unlock_irqrestore(&pcpu_lock, flags);
  1045. fail_unlock_mutex:
  1046. mutex_unlock(&pcpu_alloc_mutex);
  1047. if (warn_limit) {
  1048. pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
  1049. "%s\n", size, align, err);
  1050. dump_stack();
  1051. if (!--warn_limit)
  1052. pr_info("PERCPU: limit reached, disable warning\n");
  1053. }
  1054. return NULL;
  1055. }
  1056. /**
  1057. * __alloc_percpu - allocate dynamic percpu area
  1058. * @size: size of area to allocate in bytes
  1059. * @align: alignment of area (max PAGE_SIZE)
  1060. *
  1061. * Allocate percpu area of @size bytes aligned at @align. Might
  1062. * sleep. Might trigger writeouts.
  1063. *
  1064. * CONTEXT:
  1065. * Does GFP_KERNEL allocation.
  1066. *
  1067. * RETURNS:
  1068. * Percpu pointer to the allocated area on success, NULL on failure.
  1069. */
  1070. void __percpu *__alloc_percpu(size_t size, size_t align)
  1071. {
  1072. return pcpu_alloc(size, align, false);
  1073. }
  1074. EXPORT_SYMBOL_GPL(__alloc_percpu);
  1075. /**
  1076. * __alloc_reserved_percpu - allocate reserved percpu area
  1077. * @size: size of area to allocate in bytes
  1078. * @align: alignment of area (max PAGE_SIZE)
  1079. *
  1080. * Allocate percpu area of @size bytes aligned at @align from reserved
  1081. * percpu area if arch has set it up; otherwise, allocation is served
  1082. * from the same dynamic area. Might sleep. Might trigger writeouts.
  1083. *
  1084. * CONTEXT:
  1085. * Does GFP_KERNEL allocation.
  1086. *
  1087. * RETURNS:
  1088. * Percpu pointer to the allocated area on success, NULL on failure.
  1089. */
  1090. void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
  1091. {
  1092. return pcpu_alloc(size, align, true);
  1093. }
  1094. /**
  1095. * pcpu_reclaim - reclaim fully free chunks, workqueue function
  1096. * @work: unused
  1097. *
  1098. * Reclaim all fully free chunks except for the first one.
  1099. *
  1100. * CONTEXT:
  1101. * workqueue context.
  1102. */
  1103. static void pcpu_reclaim(struct work_struct *work)
  1104. {
  1105. LIST_HEAD(todo);
  1106. struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
  1107. struct pcpu_chunk *chunk, *next;
  1108. mutex_lock(&pcpu_alloc_mutex);
  1109. spin_lock_irq(&pcpu_lock);
  1110. list_for_each_entry_safe(chunk, next, head, list) {
  1111. WARN_ON(chunk->immutable);
  1112. /* spare the first one */
  1113. if (chunk == list_first_entry(head, struct pcpu_chunk, list))
  1114. continue;
  1115. list_move(&chunk->list, &todo);
  1116. }
  1117. spin_unlock_irq(&pcpu_lock);
  1118. list_for_each_entry_safe(chunk, next, &todo, list) {
  1119. pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
  1120. free_pcpu_chunk(chunk);
  1121. }
  1122. mutex_unlock(&pcpu_alloc_mutex);
  1123. }
  1124. /**
  1125. * free_percpu - free percpu area
  1126. * @ptr: pointer to area to free
  1127. *
  1128. * Free percpu area @ptr.
  1129. *
  1130. * CONTEXT:
  1131. * Can be called from atomic context.
  1132. */
  1133. void free_percpu(void __percpu *ptr)
  1134. {
  1135. void *addr;
  1136. struct pcpu_chunk *chunk;
  1137. unsigned long flags;
  1138. int off;
  1139. if (!ptr)
  1140. return;
  1141. addr = __pcpu_ptr_to_addr(ptr);
  1142. spin_lock_irqsave(&pcpu_lock, flags);
  1143. chunk = pcpu_chunk_addr_search(addr);
  1144. off = addr - chunk->base_addr;
  1145. pcpu_free_area(chunk, off);
  1146. /* if there are more than one fully free chunks, wake up grim reaper */
  1147. if (chunk->free_size == pcpu_unit_size) {
  1148. struct pcpu_chunk *pos;
  1149. list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
  1150. if (pos != chunk) {
  1151. schedule_work(&pcpu_reclaim_work);
  1152. break;
  1153. }
  1154. }
  1155. spin_unlock_irqrestore(&pcpu_lock, flags);
  1156. }
  1157. EXPORT_SYMBOL_GPL(free_percpu);
  1158. /**
  1159. * is_kernel_percpu_address - test whether address is from static percpu area
  1160. * @addr: address to test
  1161. *
  1162. * Test whether @addr belongs to in-kernel static percpu area. Module
  1163. * static percpu areas are not considered. For those, use
  1164. * is_module_percpu_address().
  1165. *
  1166. * RETURNS:
  1167. * %true if @addr is from in-kernel static percpu area, %false otherwise.
  1168. */
  1169. bool is_kernel_percpu_address(unsigned long addr)
  1170. {
  1171. const size_t static_size = __per_cpu_end - __per_cpu_start;
  1172. void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
  1173. unsigned int cpu;
  1174. for_each_possible_cpu(cpu) {
  1175. void *start = per_cpu_ptr(base, cpu);
  1176. if ((void *)addr >= start && (void *)addr < start + static_size)
  1177. return true;
  1178. }
  1179. return false;
  1180. }
  1181. /**
  1182. * per_cpu_ptr_to_phys - convert translated percpu address to physical address
  1183. * @addr: the address to be converted to physical address
  1184. *
  1185. * Given @addr which is dereferenceable address obtained via one of
  1186. * percpu access macros, this function translates it into its physical
  1187. * address. The caller is responsible for ensuring @addr stays valid
  1188. * until this function finishes.
  1189. *
  1190. * RETURNS:
  1191. * The physical address for @addr.
  1192. */
  1193. phys_addr_t per_cpu_ptr_to_phys(void *addr)
  1194. {
  1195. if (pcpu_addr_in_first_chunk(addr)) {
  1196. if ((unsigned long)addr < VMALLOC_START ||
  1197. (unsigned long)addr >= VMALLOC_END)
  1198. return __pa(addr);
  1199. else
  1200. return page_to_phys(vmalloc_to_page(addr));
  1201. } else
  1202. return page_to_phys(vmalloc_to_page(addr));
  1203. }
  1204. static inline size_t pcpu_calc_fc_sizes(size_t static_size,
  1205. size_t reserved_size,
  1206. ssize_t *dyn_sizep)
  1207. {
  1208. size_t size_sum;
  1209. size_sum = PFN_ALIGN(static_size + reserved_size +
  1210. (*dyn_sizep >= 0 ? *dyn_sizep : 0));
  1211. if (*dyn_sizep != 0)
  1212. *dyn_sizep = size_sum - static_size - reserved_size;
  1213. return size_sum;
  1214. }
  1215. /**
  1216. * pcpu_alloc_alloc_info - allocate percpu allocation info
  1217. * @nr_groups: the number of groups
  1218. * @nr_units: the number of units
  1219. *
  1220. * Allocate ai which is large enough for @nr_groups groups containing
  1221. * @nr_units units. The returned ai's groups[0].cpu_map points to the
  1222. * cpu_map array which is long enough for @nr_units and filled with
  1223. * NR_CPUS. It's the caller's responsibility to initialize cpu_map
  1224. * pointer of other groups.
  1225. *
  1226. * RETURNS:
  1227. * Pointer to the allocated pcpu_alloc_info on success, NULL on
  1228. * failure.
  1229. */
  1230. struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
  1231. int nr_units)
  1232. {
  1233. struct pcpu_alloc_info *ai;
  1234. size_t base_size, ai_size;
  1235. void *ptr;
  1236. int unit;
  1237. base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
  1238. __alignof__(ai->groups[0].cpu_map[0]));
  1239. ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
  1240. ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
  1241. if (!ptr)
  1242. return NULL;
  1243. ai = ptr;
  1244. ptr += base_size;
  1245. ai->groups[0].cpu_map = ptr;
  1246. for (unit = 0; unit < nr_units; unit++)
  1247. ai->groups[0].cpu_map[unit] = NR_CPUS;
  1248. ai->nr_groups = nr_groups;
  1249. ai->__ai_size = PFN_ALIGN(ai_size);
  1250. return ai;
  1251. }
  1252. /**
  1253. * pcpu_free_alloc_info - free percpu allocation info
  1254. * @ai: pcpu_alloc_info to free
  1255. *
  1256. * Free @ai which was allocated by pcpu_alloc_alloc_info().
  1257. */
  1258. void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
  1259. {
  1260. free_bootmem(__pa(ai), ai->__ai_size);
  1261. }
  1262. /**
  1263. * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
  1264. * @reserved_size: the size of reserved percpu area in bytes
  1265. * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
  1266. * @atom_size: allocation atom size
  1267. * @cpu_distance_fn: callback to determine distance between cpus, optional
  1268. *
  1269. * This function determines grouping of units, their mappings to cpus
  1270. * and other parameters considering needed percpu size, allocation
  1271. * atom size and distances between CPUs.
  1272. *
  1273. * Groups are always mutliples of atom size and CPUs which are of
  1274. * LOCAL_DISTANCE both ways are grouped together and share space for
  1275. * units in the same group. The returned configuration is guaranteed
  1276. * to have CPUs on different nodes on different groups and >=75% usage
  1277. * of allocated virtual address space.
  1278. *
  1279. * RETURNS:
  1280. * On success, pointer to the new allocation_info is returned. On
  1281. * failure, ERR_PTR value is returned.
  1282. */
  1283. struct pcpu_alloc_info * __init pcpu_build_alloc_info(
  1284. size_t reserved_size, ssize_t dyn_size,
  1285. size_t atom_size,
  1286. pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
  1287. {
  1288. static int group_map[NR_CPUS] __initdata;
  1289. static int group_cnt[NR_CPUS] __initdata;
  1290. const size_t static_size = __per_cpu_end - __per_cpu_start;
  1291. int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
  1292. size_t size_sum, min_unit_size, alloc_size;
  1293. int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
  1294. int last_allocs, group, unit;
  1295. unsigned int cpu, tcpu;
  1296. struct pcpu_alloc_info *ai;
  1297. unsigned int *cpu_map;
  1298. /* this function may be called multiple times */
  1299. memset(group_map, 0, sizeof(group_map));
  1300. memset(group_cnt, 0, sizeof(group_map));
  1301. /*
  1302. * Determine min_unit_size, alloc_size and max_upa such that
  1303. * alloc_size is multiple of atom_size and is the smallest
  1304. * which can accomodate 4k aligned segments which are equal to
  1305. * or larger than min_unit_size.
  1306. */
  1307. size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
  1308. min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
  1309. alloc_size = roundup(min_unit_size, atom_size);
  1310. upa = alloc_size / min_unit_size;
  1311. while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
  1312. upa--;
  1313. max_upa = upa;
  1314. /* group cpus according to their proximity */
  1315. for_each_possible_cpu(cpu) {
  1316. group = 0;
  1317. next_group:
  1318. for_each_possible_cpu(tcpu) {
  1319. if (cpu == tcpu)
  1320. break;
  1321. if (group_map[tcpu] == group && cpu_distance_fn &&
  1322. (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
  1323. cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
  1324. group++;
  1325. nr_groups = max(nr_groups, group + 1);
  1326. goto next_group;
  1327. }
  1328. }
  1329. group_map[cpu] = group;
  1330. group_cnt[group]++;
  1331. group_cnt_max = max(group_cnt_max, group_cnt[group]);
  1332. }
  1333. /*
  1334. * Expand unit size until address space usage goes over 75%
  1335. * and then as much as possible without using more address
  1336. * space.
  1337. */
  1338. last_allocs = INT_MAX;
  1339. for (upa = max_upa; upa; upa--) {
  1340. int allocs = 0, wasted = 0;
  1341. if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
  1342. continue;
  1343. for (group = 0; group < nr_groups; group++) {
  1344. int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
  1345. allocs += this_allocs;
  1346. wasted += this_allocs * upa - group_cnt[group];
  1347. }
  1348. /*
  1349. * Don't accept if wastage is over 25%. The
  1350. * greater-than comparison ensures upa==1 always
  1351. * passes the following check.
  1352. */
  1353. if (wasted > num_possible_cpus() / 3)
  1354. continue;
  1355. /* and then don't consume more memory */
  1356. if (allocs > last_allocs)
  1357. break;
  1358. last_allocs = allocs;
  1359. best_upa = upa;
  1360. }
  1361. upa = best_upa;
  1362. /* allocate and fill alloc_info */
  1363. for (group = 0; group < nr_groups; group++)
  1364. nr_units += roundup(group_cnt[group], upa);
  1365. ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
  1366. if (!ai)
  1367. return ERR_PTR(-ENOMEM);
  1368. cpu_map = ai->groups[0].cpu_map;
  1369. for (group = 0; group < nr_groups; group++) {
  1370. ai->groups[group].cpu_map = cpu_map;
  1371. cpu_map += roundup(group_cnt[group], upa);
  1372. }
  1373. ai->static_size = static_size;
  1374. ai->reserved_size = reserved_size;
  1375. ai->dyn_size = dyn_size;
  1376. ai->unit_size = alloc_size / upa;
  1377. ai->atom_size = atom_size;
  1378. ai->alloc_size = alloc_size;
  1379. for (group = 0, unit = 0; group_cnt[group]; group++) {
  1380. struct pcpu_group_info *gi = &ai->groups[group];
  1381. /*
  1382. * Initialize base_offset as if all groups are located
  1383. * back-to-back. The caller should update this to
  1384. * reflect actual allocation.
  1385. */
  1386. gi->base_offset = unit * ai->unit_size;
  1387. for_each_possible_cpu(cpu)
  1388. if (group_map[cpu] == group)
  1389. gi->cpu_map[gi->nr_units++] = cpu;
  1390. gi->nr_units = roundup(gi->nr_units, upa);
  1391. unit += gi->nr_units;
  1392. }
  1393. BUG_ON(unit != nr_units);
  1394. return ai;
  1395. }
  1396. /**
  1397. * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
  1398. * @lvl: loglevel
  1399. * @ai: allocation info to dump
  1400. *
  1401. * Print out information about @ai using loglevel @lvl.
  1402. */
  1403. static void pcpu_dump_alloc_info(const char *lvl,
  1404. const struct pcpu_alloc_info *ai)
  1405. {
  1406. int group_width = 1, cpu_width = 1, width;
  1407. char empty_str[] = "--------";
  1408. int alloc = 0, alloc_end = 0;
  1409. int group, v;
  1410. int upa, apl; /* units per alloc, allocs per line */
  1411. v = ai->nr_groups;
  1412. while (v /= 10)
  1413. group_width++;
  1414. v = num_possible_cpus();
  1415. while (v /= 10)
  1416. cpu_width++;
  1417. empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
  1418. upa = ai->alloc_size / ai->unit_size;
  1419. width = upa * (cpu_width + 1) + group_width + 3;
  1420. apl = rounddown_pow_of_two(max(60 / width, 1));
  1421. printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
  1422. lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
  1423. ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
  1424. for (group = 0; group < ai->nr_groups; group++) {
  1425. const struct pcpu_group_info *gi = &ai->groups[group];
  1426. int unit = 0, unit_end = 0;
  1427. BUG_ON(gi->nr_units % upa);
  1428. for (alloc_end += gi->nr_units / upa;
  1429. alloc < alloc_end; alloc++) {
  1430. if (!(alloc % apl)) {
  1431. printk("\n");
  1432. printk("%spcpu-alloc: ", lvl);
  1433. }
  1434. printk("[%0*d] ", group_width, group);
  1435. for (unit_end += upa; unit < unit_end; unit++)
  1436. if (gi->cpu_map[unit] != NR_CPUS)
  1437. printk("%0*d ", cpu_width,
  1438. gi->cpu_map[unit]);
  1439. else
  1440. printk("%s ", empty_str);
  1441. }
  1442. }
  1443. printk("\n");
  1444. }
  1445. /**
  1446. * pcpu_setup_first_chunk - initialize the first percpu chunk
  1447. * @ai: pcpu_alloc_info describing how to percpu area is shaped
  1448. * @base_addr: mapped address
  1449. *
  1450. * Initialize the first percpu chunk which contains the kernel static
  1451. * perpcu area. This function is to be called from arch percpu area
  1452. * setup path.
  1453. *
  1454. * @ai contains all information necessary to initialize the first
  1455. * chunk and prime the dynamic percpu allocator.
  1456. *
  1457. * @ai->static_size is the size of static percpu area.
  1458. *
  1459. * @ai->reserved_size, if non-zero, specifies the amount of bytes to
  1460. * reserve after the static area in the first chunk. This reserves
  1461. * the first chunk such that it's available only through reserved
  1462. * percpu allocation. This is primarily used to serve module percpu
  1463. * static areas on architectures where the addressing model has
  1464. * limited offset range for symbol relocations to guarantee module
  1465. * percpu symbols fall inside the relocatable range.
  1466. *
  1467. * @ai->dyn_size determines the number of bytes available for dynamic
  1468. * allocation in the first chunk. The area between @ai->static_size +
  1469. * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
  1470. *
  1471. * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
  1472. * and equal to or larger than @ai->static_size + @ai->reserved_size +
  1473. * @ai->dyn_size.
  1474. *
  1475. * @ai->atom_size is the allocation atom size and used as alignment
  1476. * for vm areas.
  1477. *
  1478. * @ai->alloc_size is the allocation size and always multiple of
  1479. * @ai->atom_size. This is larger than @ai->atom_size if
  1480. * @ai->unit_size is larger than @ai->atom_size.
  1481. *
  1482. * @ai->nr_groups and @ai->groups describe virtual memory layout of
  1483. * percpu areas. Units which should be colocated are put into the
  1484. * same group. Dynamic VM areas will be allocated according to these
  1485. * groupings. If @ai->nr_groups is zero, a single group containing
  1486. * all units is assumed.
  1487. *
  1488. * The caller should have mapped the first chunk at @base_addr and
  1489. * copied static data to each unit.
  1490. *
  1491. * If the first chunk ends up with both reserved and dynamic areas, it
  1492. * is served by two chunks - one to serve the core static and reserved
  1493. * areas and the other for the dynamic area. They share the same vm
  1494. * and page map but uses different area allocation map to stay away
  1495. * from each other. The latter chunk is circulated in the chunk slots
  1496. * and available for dynamic allocation like any other chunks.
  1497. *
  1498. * RETURNS:
  1499. * 0 on success, -errno on failure.
  1500. */
  1501. int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
  1502. void *base_addr)
  1503. {
  1504. static char cpus_buf[4096] __initdata;
  1505. static int smap[2], dmap[2];
  1506. size_t dyn_size = ai->dyn_size;
  1507. size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
  1508. struct pcpu_chunk *schunk, *dchunk = NULL;
  1509. unsigned long *group_offsets;
  1510. size_t *group_sizes;
  1511. unsigned long *unit_off;
  1512. unsigned int cpu;
  1513. int *unit_map;
  1514. int group, unit, i;
  1515. cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
  1516. #define PCPU_SETUP_BUG_ON(cond) do { \
  1517. if (unlikely(cond)) { \
  1518. pr_emerg("PERCPU: failed to initialize, %s", #cond); \
  1519. pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
  1520. pcpu_dump_alloc_info(KERN_EMERG, ai); \
  1521. BUG(); \
  1522. } \
  1523. } while (0)
  1524. /* sanity checks */
  1525. BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
  1526. ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
  1527. PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
  1528. PCPU_SETUP_BUG_ON(!ai->static_size);
  1529. PCPU_SETUP_BUG_ON(!base_addr);
  1530. PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
  1531. PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
  1532. PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
  1533. /* process group information and build config tables accordingly */
  1534. group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
  1535. group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
  1536. unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
  1537. unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
  1538. for (cpu = 0; cpu < nr_cpu_ids; cpu++)
  1539. unit_map[cpu] = UINT_MAX;
  1540. pcpu_first_unit_cpu = NR_CPUS;
  1541. for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
  1542. const struct pcpu_group_info *gi = &ai->groups[group];
  1543. group_offsets[group] = gi->base_offset;
  1544. group_sizes[group] = gi->nr_units * ai->unit_size;
  1545. for (i = 0; i < gi->nr_units; i++) {
  1546. cpu = gi->cpu_map[i];
  1547. if (cpu == NR_CPUS)
  1548. continue;
  1549. PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
  1550. PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
  1551. PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
  1552. unit_map[cpu] = unit + i;
  1553. unit_off[cpu] = gi->base_offset + i * ai->unit_size;
  1554. if (pcpu_first_unit_cpu == NR_CPUS)
  1555. pcpu_first_unit_cpu = cpu;
  1556. }
  1557. }
  1558. pcpu_last_unit_cpu = cpu;
  1559. pcpu_nr_units = unit;
  1560. for_each_possible_cpu(cpu)
  1561. PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
  1562. /* we're done parsing the input, undefine BUG macro and dump config */
  1563. #undef PCPU_SETUP_BUG_ON
  1564. pcpu_dump_alloc_info(KERN_INFO, ai);
  1565. pcpu_nr_groups = ai->nr_groups;
  1566. pcpu_group_offsets = group_offsets;
  1567. pcpu_group_sizes = group_sizes;
  1568. pcpu_unit_map = unit_map;
  1569. pcpu_unit_offsets = unit_off;
  1570. /* determine basic parameters */
  1571. pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
  1572. pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
  1573. pcpu_atom_size = ai->atom_size;
  1574. pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
  1575. BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
  1576. /*
  1577. * Allocate chunk slots. The additional last slot is for
  1578. * empty chunks.
  1579. */
  1580. pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
  1581. pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
  1582. for (i = 0; i < pcpu_nr_slots; i++)
  1583. INIT_LIST_HEAD(&pcpu_slot[i]);
  1584. /*
  1585. * Initialize static chunk. If reserved_size is zero, the
  1586. * static chunk covers static area + dynamic allocation area
  1587. * in the first chunk. If reserved_size is not zero, it
  1588. * covers static area + reserved area (mostly used for module
  1589. * static percpu allocation).
  1590. */
  1591. schunk = alloc_bootmem(pcpu_chunk_struct_size);
  1592. INIT_LIST_HEAD(&schunk->list);
  1593. schunk->base_addr = base_addr;
  1594. schunk->map = smap;
  1595. schunk->map_alloc = ARRAY_SIZE(smap);
  1596. schunk->immutable = true;
  1597. bitmap_fill(schunk->populated, pcpu_unit_pages);
  1598. if (ai->reserved_size) {
  1599. schunk->free_size = ai->reserved_size;
  1600. pcpu_reserved_chunk = schunk;
  1601. pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
  1602. } else {
  1603. schunk->free_size = dyn_size;
  1604. dyn_size = 0; /* dynamic area covered */
  1605. }
  1606. schunk->contig_hint = schunk->free_size;
  1607. schunk->map[schunk->map_used++] = -ai->static_size;
  1608. if (schunk->free_size)
  1609. schunk->map[schunk->map_used++] = schunk->free_size;
  1610. /* init dynamic chunk if necessary */
  1611. if (dyn_size) {
  1612. dchunk = alloc_bootmem(pcpu_chunk_struct_size);
  1613. INIT_LIST_HEAD(&dchunk->list);
  1614. dchunk->base_addr = base_addr;
  1615. dchunk->map = dmap;
  1616. dchunk->map_alloc = ARRAY_SIZE(dmap);
  1617. dchunk->immutable = true;
  1618. bitmap_fill(dchunk->populated, pcpu_unit_pages);
  1619. dchunk->contig_hint = dchunk->free_size = dyn_size;
  1620. dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
  1621. dchunk->map[dchunk->map_used++] = dchunk->free_size;
  1622. }
  1623. /* link the first chunk in */
  1624. pcpu_first_chunk = dchunk ?: schunk;
  1625. pcpu_chunk_relocate(pcpu_first_chunk, -1);
  1626. /* we're done */
  1627. pcpu_base_addr = base_addr;
  1628. return 0;
  1629. }
  1630. const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
  1631. [PCPU_FC_AUTO] = "auto",
  1632. [PCPU_FC_EMBED] = "embed",
  1633. [PCPU_FC_PAGE] = "page",
  1634. };
  1635. enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
  1636. static int __init percpu_alloc_setup(char *str)
  1637. {
  1638. if (0)
  1639. /* nada */;
  1640. #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
  1641. else if (!strcmp(str, "embed"))
  1642. pcpu_chosen_fc = PCPU_FC_EMBED;
  1643. #endif
  1644. #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
  1645. else if (!strcmp(str, "page"))
  1646. pcpu_chosen_fc = PCPU_FC_PAGE;
  1647. #endif
  1648. else
  1649. pr_warning("PERCPU: unknown allocator %s specified\n", str);
  1650. return 0;
  1651. }
  1652. early_param("percpu_alloc", percpu_alloc_setup);
  1653. #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
  1654. !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
  1655. /**
  1656. * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
  1657. * @reserved_size: the size of reserved percpu area in bytes
  1658. * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
  1659. * @atom_size: allocation atom size
  1660. * @cpu_distance_fn: callback to determine distance between cpus, optional
  1661. * @alloc_fn: function to allocate percpu page
  1662. * @free_fn: funtion to free percpu page
  1663. *
  1664. * This is a helper to ease setting up embedded first percpu chunk and
  1665. * can be called where pcpu_setup_first_chunk() is expected.
  1666. *
  1667. * If this function is used to setup the first chunk, it is allocated
  1668. * by calling @alloc_fn and used as-is without being mapped into
  1669. * vmalloc area. Allocations are always whole multiples of @atom_size
  1670. * aligned to @atom_size.
  1671. *
  1672. * This enables the first chunk to piggy back on the linear physical
  1673. * mapping which often uses larger page size. Please note that this
  1674. * can result in very sparse cpu->unit mapping on NUMA machines thus
  1675. * requiring large vmalloc address space. Don't use this allocator if
  1676. * vmalloc space is not orders of magnitude larger than distances
  1677. * between node memory addresses (ie. 32bit NUMA machines).
  1678. *
  1679. * When @dyn_size is positive, dynamic area might be larger than
  1680. * specified to fill page alignment. When @dyn_size is auto,
  1681. * @dyn_size is just big enough to fill page alignment after static
  1682. * and reserved areas.
  1683. *
  1684. * If the needed size is smaller than the minimum or specified unit
  1685. * size, the leftover is returned using @free_fn.
  1686. *
  1687. * RETURNS:
  1688. * 0 on success, -errno on failure.
  1689. */
  1690. int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
  1691. size_t atom_size,
  1692. pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
  1693. pcpu_fc_alloc_fn_t alloc_fn,
  1694. pcpu_fc_free_fn_t free_fn)
  1695. {
  1696. void *base = (void *)ULONG_MAX;
  1697. void **areas = NULL;
  1698. struct pcpu_alloc_info *ai;
  1699. size_t size_sum, areas_size, max_distance;
  1700. int group, i, rc;
  1701. ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
  1702. cpu_distance_fn);
  1703. if (IS_ERR(ai))
  1704. return PTR_ERR(ai);
  1705. size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
  1706. areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
  1707. areas = alloc_bootmem_nopanic(areas_size);
  1708. if (!areas) {
  1709. rc = -ENOMEM;
  1710. goto out_free;
  1711. }
  1712. /* allocate, copy and determine base address */
  1713. for (group = 0; group < ai->nr_groups; group++) {
  1714. struct pcpu_group_info *gi = &ai->groups[group];
  1715. unsigned int cpu = NR_CPUS;
  1716. void *ptr;
  1717. for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
  1718. cpu = gi->cpu_map[i];
  1719. BUG_ON(cpu == NR_CPUS);
  1720. /* allocate space for the whole group */
  1721. ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
  1722. if (!ptr) {
  1723. rc = -ENOMEM;
  1724. goto out_free_areas;
  1725. }
  1726. areas[group] = ptr;
  1727. base = min(ptr, base);
  1728. for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
  1729. if (gi->cpu_map[i] == NR_CPUS) {
  1730. /* unused unit, free whole */
  1731. free_fn(ptr, ai->unit_size);
  1732. continue;
  1733. }
  1734. /* copy and return the unused part */
  1735. memcpy(ptr, __per_cpu_load, ai->static_size);
  1736. free_fn(ptr + size_sum, ai->unit_size - size_sum);
  1737. }
  1738. }
  1739. /* base address is now known, determine group base offsets */
  1740. max_distance = 0;
  1741. for (group = 0; group < ai->nr_groups; group++) {
  1742. ai->groups[group].base_offset = areas[group] - base;
  1743. max_distance = max_t(size_t, max_distance,
  1744. ai->groups[group].base_offset);
  1745. }
  1746. max_distance += ai->unit_size;
  1747. /* warn if maximum distance is further than 75% of vmalloc space */
  1748. if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
  1749. pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
  1750. "space 0x%lx\n",
  1751. max_distance, VMALLOC_END - VMALLOC_START);
  1752. #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
  1753. /* and fail if we have fallback */
  1754. rc = -EINVAL;
  1755. goto out_free;
  1756. #endif
  1757. }
  1758. pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
  1759. PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
  1760. ai->dyn_size, ai->unit_size);
  1761. rc = pcpu_setup_first_chunk(ai, base);
  1762. goto out_free;
  1763. out_free_areas:
  1764. for (group = 0; group < ai->nr_groups; group++)
  1765. free_fn(areas[group],
  1766. ai->groups[group].nr_units * ai->unit_size);
  1767. out_free:
  1768. pcpu_free_alloc_info(ai);
  1769. if (areas)
  1770. free_bootmem(__pa(areas), areas_size);
  1771. return rc;
  1772. }
  1773. #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
  1774. !CONFIG_HAVE_SETUP_PER_CPU_AREA */
  1775. #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
  1776. /**
  1777. * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
  1778. * @reserved_size: the size of reserved percpu area in bytes
  1779. * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
  1780. * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
  1781. * @populate_pte_fn: function to populate pte
  1782. *
  1783. * This is a helper to ease setting up page-remapped first percpu
  1784. * chunk and can be called where pcpu_setup_first_chunk() is expected.
  1785. *
  1786. * This is the basic allocator. Static percpu area is allocated
  1787. * page-by-page into vmalloc area.
  1788. *
  1789. * RETURNS:
  1790. * 0 on success, -errno on failure.
  1791. */
  1792. int __init pcpu_page_first_chunk(size_t reserved_size,
  1793. pcpu_fc_alloc_fn_t alloc_fn,
  1794. pcpu_fc_free_fn_t free_fn,
  1795. pcpu_fc_populate_pte_fn_t populate_pte_fn)
  1796. {
  1797. static struct vm_struct vm;
  1798. struct pcpu_alloc_info *ai;
  1799. char psize_str[16];
  1800. int unit_pages;
  1801. size_t pages_size;
  1802. struct page **pages;
  1803. int unit, i, j, rc;
  1804. snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
  1805. ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
  1806. if (IS_ERR(ai))
  1807. return PTR_ERR(ai);
  1808. BUG_ON(ai->nr_groups != 1);
  1809. BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
  1810. unit_pages = ai->unit_size >> PAGE_SHIFT;
  1811. /* unaligned allocations can't be freed, round up to page size */
  1812. pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
  1813. sizeof(pages[0]));
  1814. pages = alloc_bootmem(pages_size);
  1815. /* allocate pages */
  1816. j = 0;
  1817. for (unit = 0; unit < num_possible_cpus(); unit++)
  1818. for (i = 0; i < unit_pages; i++) {
  1819. unsigned int cpu = ai->groups[0].cpu_map[unit];
  1820. void *ptr;
  1821. ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
  1822. if (!ptr) {
  1823. pr_warning("PERCPU: failed to allocate %s page "
  1824. "for cpu%u\n", psize_str, cpu);
  1825. goto enomem;
  1826. }
  1827. pages[j++] = virt_to_page(ptr);
  1828. }
  1829. /* allocate vm area, map the pages and copy static data */
  1830. vm.flags = VM_ALLOC;
  1831. vm.size = num_possible_cpus() * ai->unit_size;
  1832. vm_area_register_early(&vm, PAGE_SIZE);
  1833. for (unit = 0; unit < num_possible_cpus(); unit++) {
  1834. unsigned long unit_addr =
  1835. (unsigned long)vm.addr + unit * ai->unit_size;
  1836. for (i = 0; i < unit_pages; i++)
  1837. populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
  1838. /* pte already populated, the following shouldn't fail */
  1839. rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
  1840. unit_pages);
  1841. if (rc < 0)
  1842. panic("failed to map percpu area, err=%d\n", rc);
  1843. /*
  1844. * FIXME: Archs with virtual cache should flush local
  1845. * cache for the linear mapping here - something
  1846. * equivalent to flush_cache_vmap() on the local cpu.
  1847. * flush_cache_vmap() can't be used as most supporting
  1848. * data structures are not set up yet.
  1849. */
  1850. /* copy static data */
  1851. memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
  1852. }
  1853. /* we're ready, commit */
  1854. pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
  1855. unit_pages, psize_str, vm.addr, ai->static_size,
  1856. ai->reserved_size, ai->dyn_size);
  1857. rc = pcpu_setup_first_chunk(ai, vm.addr);
  1858. goto out_free_ar;
  1859. enomem:
  1860. while (--j >= 0)
  1861. free_fn(page_address(pages[j]), PAGE_SIZE);
  1862. rc = -ENOMEM;
  1863. out_free_ar:
  1864. free_bootmem(__pa(pages), pages_size);
  1865. pcpu_free_alloc_info(ai);
  1866. return rc;
  1867. }
  1868. #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
  1869. /*
  1870. * Generic percpu area setup.
  1871. *
  1872. * The embedding helper is used because its behavior closely resembles
  1873. * the original non-dynamic generic percpu area setup. This is
  1874. * important because many archs have addressing restrictions and might
  1875. * fail if the percpu area is located far away from the previous
  1876. * location. As an added bonus, in non-NUMA cases, embedding is
  1877. * generally a good idea TLB-wise because percpu area can piggy back
  1878. * on the physical linear memory mapping which uses large page
  1879. * mappings on applicable archs.
  1880. */
  1881. #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
  1882. unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
  1883. EXPORT_SYMBOL(__per_cpu_offset);
  1884. static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
  1885. size_t align)
  1886. {
  1887. return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
  1888. }
  1889. static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
  1890. {
  1891. free_bootmem(__pa(ptr), size);
  1892. }
  1893. void __init setup_per_cpu_areas(void)
  1894. {
  1895. unsigned long delta;
  1896. unsigned int cpu;
  1897. int rc;
  1898. /*
  1899. * Always reserve area for module percpu variables. That's
  1900. * what the legacy allocator did.
  1901. */
  1902. rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
  1903. PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
  1904. pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
  1905. if (rc < 0)
  1906. panic("Failed to initialized percpu areas.");
  1907. delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
  1908. for_each_possible_cpu(cpu)
  1909. __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
  1910. }
  1911. #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */