exit.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/mnt_namespace.h>
  15. #include <linux/iocontext.h>
  16. #include <linux/key.h>
  17. #include <linux/security.h>
  18. #include <linux/cpu.h>
  19. #include <linux/acct.h>
  20. #include <linux/tsacct_kern.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/binfmts.h>
  24. #include <linux/nsproxy.h>
  25. #include <linux/pid_namespace.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/profile.h>
  28. #include <linux/mount.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/kthread.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/taskstats_kern.h>
  33. #include <linux/delayacct.h>
  34. #include <linux/freezer.h>
  35. #include <linux/cgroup.h>
  36. #include <linux/syscalls.h>
  37. #include <linux/signal.h>
  38. #include <linux/posix-timers.h>
  39. #include <linux/cn_proc.h>
  40. #include <linux/mutex.h>
  41. #include <linux/futex.h>
  42. #include <linux/pipe_fs_i.h>
  43. #include <linux/audit.h> /* for audit_free() */
  44. #include <linux/resource.h>
  45. #include <linux/blkdev.h>
  46. #include <linux/task_io_accounting_ops.h>
  47. #include <linux/tracehook.h>
  48. #include <linux/fs_struct.h>
  49. #include <linux/init_task.h>
  50. #include <trace/sched.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/unistd.h>
  53. #include <asm/pgtable.h>
  54. #include <asm/mmu_context.h>
  55. #include "cred-internals.h"
  56. DEFINE_TRACE(sched_process_free);
  57. DEFINE_TRACE(sched_process_exit);
  58. DEFINE_TRACE(sched_process_wait);
  59. static void exit_mm(struct task_struct * tsk);
  60. static void __unhash_process(struct task_struct *p)
  61. {
  62. nr_threads--;
  63. detach_pid(p, PIDTYPE_PID);
  64. if (thread_group_leader(p)) {
  65. detach_pid(p, PIDTYPE_PGID);
  66. detach_pid(p, PIDTYPE_SID);
  67. list_del_rcu(&p->tasks);
  68. __get_cpu_var(process_counts)--;
  69. }
  70. list_del_rcu(&p->thread_group);
  71. list_del_init(&p->sibling);
  72. }
  73. /*
  74. * This function expects the tasklist_lock write-locked.
  75. */
  76. static void __exit_signal(struct task_struct *tsk)
  77. {
  78. struct signal_struct *sig = tsk->signal;
  79. struct sighand_struct *sighand;
  80. BUG_ON(!sig);
  81. BUG_ON(!atomic_read(&sig->count));
  82. sighand = rcu_dereference(tsk->sighand);
  83. spin_lock(&sighand->siglock);
  84. posix_cpu_timers_exit(tsk);
  85. if (atomic_dec_and_test(&sig->count))
  86. posix_cpu_timers_exit_group(tsk);
  87. else {
  88. /*
  89. * If there is any task waiting for the group exit
  90. * then notify it:
  91. */
  92. if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
  93. wake_up_process(sig->group_exit_task);
  94. if (tsk == sig->curr_target)
  95. sig->curr_target = next_thread(tsk);
  96. /*
  97. * Accumulate here the counters for all threads but the
  98. * group leader as they die, so they can be added into
  99. * the process-wide totals when those are taken.
  100. * The group leader stays around as a zombie as long
  101. * as there are other threads. When it gets reaped,
  102. * the exit.c code will add its counts into these totals.
  103. * We won't ever get here for the group leader, since it
  104. * will have been the last reference on the signal_struct.
  105. */
  106. sig->utime = cputime_add(sig->utime, task_utime(tsk));
  107. sig->stime = cputime_add(sig->stime, task_stime(tsk));
  108. sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
  109. sig->min_flt += tsk->min_flt;
  110. sig->maj_flt += tsk->maj_flt;
  111. sig->nvcsw += tsk->nvcsw;
  112. sig->nivcsw += tsk->nivcsw;
  113. sig->inblock += task_io_get_inblock(tsk);
  114. sig->oublock += task_io_get_oublock(tsk);
  115. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  116. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  117. sig = NULL; /* Marker for below. */
  118. }
  119. __unhash_process(tsk);
  120. /*
  121. * Do this under ->siglock, we can race with another thread
  122. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  123. */
  124. flush_sigqueue(&tsk->pending);
  125. tsk->signal = NULL;
  126. tsk->sighand = NULL;
  127. spin_unlock(&sighand->siglock);
  128. __cleanup_sighand(sighand);
  129. clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
  130. if (sig) {
  131. flush_sigqueue(&sig->shared_pending);
  132. taskstats_tgid_free(sig);
  133. /*
  134. * Make sure ->signal can't go away under rq->lock,
  135. * see account_group_exec_runtime().
  136. */
  137. task_rq_unlock_wait(tsk);
  138. __cleanup_signal(sig);
  139. }
  140. }
  141. static void delayed_put_task_struct(struct rcu_head *rhp)
  142. {
  143. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  144. #ifdef CONFIG_PERF_COUNTERS
  145. WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list));
  146. #endif
  147. trace_sched_process_free(tsk);
  148. put_task_struct(tsk);
  149. }
  150. void release_task(struct task_struct * p)
  151. {
  152. struct task_struct *leader;
  153. int zap_leader;
  154. repeat:
  155. tracehook_prepare_release_task(p);
  156. /* don't need to get the RCU readlock here - the process is dead and
  157. * can't be modifying its own credentials */
  158. atomic_dec(&__task_cred(p)->user->processes);
  159. proc_flush_task(p);
  160. /*
  161. * Flush inherited counters to the parent - before the parent
  162. * gets woken up by child-exit notifications.
  163. */
  164. perf_counter_exit_task(p);
  165. write_lock_irq(&tasklist_lock);
  166. tracehook_finish_release_task(p);
  167. __exit_signal(p);
  168. /*
  169. * If we are the last non-leader member of the thread
  170. * group, and the leader is zombie, then notify the
  171. * group leader's parent process. (if it wants notification.)
  172. */
  173. zap_leader = 0;
  174. leader = p->group_leader;
  175. if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
  176. BUG_ON(task_detached(leader));
  177. do_notify_parent(leader, leader->exit_signal);
  178. /*
  179. * If we were the last child thread and the leader has
  180. * exited already, and the leader's parent ignores SIGCHLD,
  181. * then we are the one who should release the leader.
  182. *
  183. * do_notify_parent() will have marked it self-reaping in
  184. * that case.
  185. */
  186. zap_leader = task_detached(leader);
  187. /*
  188. * This maintains the invariant that release_task()
  189. * only runs on a task in EXIT_DEAD, just for sanity.
  190. */
  191. if (zap_leader)
  192. leader->exit_state = EXIT_DEAD;
  193. }
  194. write_unlock_irq(&tasklist_lock);
  195. release_thread(p);
  196. call_rcu(&p->rcu, delayed_put_task_struct);
  197. p = leader;
  198. if (unlikely(zap_leader))
  199. goto repeat;
  200. }
  201. /*
  202. * This checks not only the pgrp, but falls back on the pid if no
  203. * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
  204. * without this...
  205. *
  206. * The caller must hold rcu lock or the tasklist lock.
  207. */
  208. struct pid *session_of_pgrp(struct pid *pgrp)
  209. {
  210. struct task_struct *p;
  211. struct pid *sid = NULL;
  212. p = pid_task(pgrp, PIDTYPE_PGID);
  213. if (p == NULL)
  214. p = pid_task(pgrp, PIDTYPE_PID);
  215. if (p != NULL)
  216. sid = task_session(p);
  217. return sid;
  218. }
  219. /*
  220. * Determine if a process group is "orphaned", according to the POSIX
  221. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  222. * by terminal-generated stop signals. Newly orphaned process groups are
  223. * to receive a SIGHUP and a SIGCONT.
  224. *
  225. * "I ask you, have you ever known what it is to be an orphan?"
  226. */
  227. static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
  228. {
  229. struct task_struct *p;
  230. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  231. if ((p == ignored_task) ||
  232. (p->exit_state && thread_group_empty(p)) ||
  233. is_global_init(p->real_parent))
  234. continue;
  235. if (task_pgrp(p->real_parent) != pgrp &&
  236. task_session(p->real_parent) == task_session(p))
  237. return 0;
  238. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  239. return 1;
  240. }
  241. int is_current_pgrp_orphaned(void)
  242. {
  243. int retval;
  244. read_lock(&tasklist_lock);
  245. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  246. read_unlock(&tasklist_lock);
  247. return retval;
  248. }
  249. static int has_stopped_jobs(struct pid *pgrp)
  250. {
  251. int retval = 0;
  252. struct task_struct *p;
  253. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  254. if (!task_is_stopped(p))
  255. continue;
  256. retval = 1;
  257. break;
  258. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  259. return retval;
  260. }
  261. /*
  262. * Check to see if any process groups have become orphaned as
  263. * a result of our exiting, and if they have any stopped jobs,
  264. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  265. */
  266. static void
  267. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  268. {
  269. struct pid *pgrp = task_pgrp(tsk);
  270. struct task_struct *ignored_task = tsk;
  271. if (!parent)
  272. /* exit: our father is in a different pgrp than
  273. * we are and we were the only connection outside.
  274. */
  275. parent = tsk->real_parent;
  276. else
  277. /* reparent: our child is in a different pgrp than
  278. * we are, and it was the only connection outside.
  279. */
  280. ignored_task = NULL;
  281. if (task_pgrp(parent) != pgrp &&
  282. task_session(parent) == task_session(tsk) &&
  283. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  284. has_stopped_jobs(pgrp)) {
  285. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  286. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  287. }
  288. }
  289. /**
  290. * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
  291. *
  292. * If a kernel thread is launched as a result of a system call, or if
  293. * it ever exits, it should generally reparent itself to kthreadd so it
  294. * isn't in the way of other processes and is correctly cleaned up on exit.
  295. *
  296. * The various task state such as scheduling policy and priority may have
  297. * been inherited from a user process, so we reset them to sane values here.
  298. *
  299. * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
  300. */
  301. static void reparent_to_kthreadd(void)
  302. {
  303. write_lock_irq(&tasklist_lock);
  304. ptrace_unlink(current);
  305. /* Reparent to init */
  306. current->real_parent = current->parent = kthreadd_task;
  307. list_move_tail(&current->sibling, &current->real_parent->children);
  308. /* Set the exit signal to SIGCHLD so we signal init on exit */
  309. current->exit_signal = SIGCHLD;
  310. if (task_nice(current) < 0)
  311. set_user_nice(current, 0);
  312. /* cpus_allowed? */
  313. /* rt_priority? */
  314. /* signals? */
  315. memcpy(current->signal->rlim, init_task.signal->rlim,
  316. sizeof(current->signal->rlim));
  317. atomic_inc(&init_cred.usage);
  318. commit_creds(&init_cred);
  319. write_unlock_irq(&tasklist_lock);
  320. }
  321. void __set_special_pids(struct pid *pid)
  322. {
  323. struct task_struct *curr = current->group_leader;
  324. if (task_session(curr) != pid)
  325. change_pid(curr, PIDTYPE_SID, pid);
  326. if (task_pgrp(curr) != pid)
  327. change_pid(curr, PIDTYPE_PGID, pid);
  328. }
  329. static void set_special_pids(struct pid *pid)
  330. {
  331. write_lock_irq(&tasklist_lock);
  332. __set_special_pids(pid);
  333. write_unlock_irq(&tasklist_lock);
  334. }
  335. /*
  336. * Let kernel threads use this to say that they
  337. * allow a certain signal (since daemonize() will
  338. * have disabled all of them by default).
  339. */
  340. int allow_signal(int sig)
  341. {
  342. if (!valid_signal(sig) || sig < 1)
  343. return -EINVAL;
  344. spin_lock_irq(&current->sighand->siglock);
  345. sigdelset(&current->blocked, sig);
  346. if (!current->mm) {
  347. /* Kernel threads handle their own signals.
  348. Let the signal code know it'll be handled, so
  349. that they don't get converted to SIGKILL or
  350. just silently dropped */
  351. current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
  352. }
  353. recalc_sigpending();
  354. spin_unlock_irq(&current->sighand->siglock);
  355. return 0;
  356. }
  357. EXPORT_SYMBOL(allow_signal);
  358. int disallow_signal(int sig)
  359. {
  360. if (!valid_signal(sig) || sig < 1)
  361. return -EINVAL;
  362. spin_lock_irq(&current->sighand->siglock);
  363. current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
  364. recalc_sigpending();
  365. spin_unlock_irq(&current->sighand->siglock);
  366. return 0;
  367. }
  368. EXPORT_SYMBOL(disallow_signal);
  369. /*
  370. * Put all the gunge required to become a kernel thread without
  371. * attached user resources in one place where it belongs.
  372. */
  373. void daemonize(const char *name, ...)
  374. {
  375. va_list args;
  376. sigset_t blocked;
  377. va_start(args, name);
  378. vsnprintf(current->comm, sizeof(current->comm), name, args);
  379. va_end(args);
  380. /*
  381. * If we were started as result of loading a module, close all of the
  382. * user space pages. We don't need them, and if we didn't close them
  383. * they would be locked into memory.
  384. */
  385. exit_mm(current);
  386. /*
  387. * We don't want to have TIF_FREEZE set if the system-wide hibernation
  388. * or suspend transition begins right now.
  389. */
  390. current->flags |= (PF_NOFREEZE | PF_KTHREAD);
  391. if (current->nsproxy != &init_nsproxy) {
  392. get_nsproxy(&init_nsproxy);
  393. switch_task_namespaces(current, &init_nsproxy);
  394. }
  395. set_special_pids(&init_struct_pid);
  396. proc_clear_tty(current);
  397. /* Block and flush all signals */
  398. sigfillset(&blocked);
  399. sigprocmask(SIG_BLOCK, &blocked, NULL);
  400. flush_signals(current);
  401. /* Become as one with the init task */
  402. daemonize_fs_struct();
  403. exit_files(current);
  404. current->files = init_task.files;
  405. atomic_inc(&current->files->count);
  406. reparent_to_kthreadd();
  407. }
  408. EXPORT_SYMBOL(daemonize);
  409. static void close_files(struct files_struct * files)
  410. {
  411. int i, j;
  412. struct fdtable *fdt;
  413. j = 0;
  414. /*
  415. * It is safe to dereference the fd table without RCU or
  416. * ->file_lock because this is the last reference to the
  417. * files structure.
  418. */
  419. fdt = files_fdtable(files);
  420. for (;;) {
  421. unsigned long set;
  422. i = j * __NFDBITS;
  423. if (i >= fdt->max_fds)
  424. break;
  425. set = fdt->open_fds->fds_bits[j++];
  426. while (set) {
  427. if (set & 1) {
  428. struct file * file = xchg(&fdt->fd[i], NULL);
  429. if (file) {
  430. filp_close(file, files);
  431. cond_resched();
  432. }
  433. }
  434. i++;
  435. set >>= 1;
  436. }
  437. }
  438. }
  439. struct files_struct *get_files_struct(struct task_struct *task)
  440. {
  441. struct files_struct *files;
  442. task_lock(task);
  443. files = task->files;
  444. if (files)
  445. atomic_inc(&files->count);
  446. task_unlock(task);
  447. return files;
  448. }
  449. void put_files_struct(struct files_struct *files)
  450. {
  451. struct fdtable *fdt;
  452. if (atomic_dec_and_test(&files->count)) {
  453. close_files(files);
  454. /*
  455. * Free the fd and fdset arrays if we expanded them.
  456. * If the fdtable was embedded, pass files for freeing
  457. * at the end of the RCU grace period. Otherwise,
  458. * you can free files immediately.
  459. */
  460. fdt = files_fdtable(files);
  461. if (fdt != &files->fdtab)
  462. kmem_cache_free(files_cachep, files);
  463. free_fdtable(fdt);
  464. }
  465. }
  466. void reset_files_struct(struct files_struct *files)
  467. {
  468. struct task_struct *tsk = current;
  469. struct files_struct *old;
  470. old = tsk->files;
  471. task_lock(tsk);
  472. tsk->files = files;
  473. task_unlock(tsk);
  474. put_files_struct(old);
  475. }
  476. void exit_files(struct task_struct *tsk)
  477. {
  478. struct files_struct * files = tsk->files;
  479. if (files) {
  480. task_lock(tsk);
  481. tsk->files = NULL;
  482. task_unlock(tsk);
  483. put_files_struct(files);
  484. }
  485. }
  486. #ifdef CONFIG_MM_OWNER
  487. /*
  488. * Task p is exiting and it owned mm, lets find a new owner for it
  489. */
  490. static inline int
  491. mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
  492. {
  493. /*
  494. * If there are other users of the mm and the owner (us) is exiting
  495. * we need to find a new owner to take on the responsibility.
  496. */
  497. if (atomic_read(&mm->mm_users) <= 1)
  498. return 0;
  499. if (mm->owner != p)
  500. return 0;
  501. return 1;
  502. }
  503. void mm_update_next_owner(struct mm_struct *mm)
  504. {
  505. struct task_struct *c, *g, *p = current;
  506. retry:
  507. if (!mm_need_new_owner(mm, p))
  508. return;
  509. read_lock(&tasklist_lock);
  510. /*
  511. * Search in the children
  512. */
  513. list_for_each_entry(c, &p->children, sibling) {
  514. if (c->mm == mm)
  515. goto assign_new_owner;
  516. }
  517. /*
  518. * Search in the siblings
  519. */
  520. list_for_each_entry(c, &p->parent->children, sibling) {
  521. if (c->mm == mm)
  522. goto assign_new_owner;
  523. }
  524. /*
  525. * Search through everything else. We should not get
  526. * here often
  527. */
  528. do_each_thread(g, c) {
  529. if (c->mm == mm)
  530. goto assign_new_owner;
  531. } while_each_thread(g, c);
  532. read_unlock(&tasklist_lock);
  533. /*
  534. * We found no owner yet mm_users > 1: this implies that we are
  535. * most likely racing with swapoff (try_to_unuse()) or /proc or
  536. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  537. */
  538. mm->owner = NULL;
  539. return;
  540. assign_new_owner:
  541. BUG_ON(c == p);
  542. get_task_struct(c);
  543. /*
  544. * The task_lock protects c->mm from changing.
  545. * We always want mm->owner->mm == mm
  546. */
  547. task_lock(c);
  548. /*
  549. * Delay read_unlock() till we have the task_lock()
  550. * to ensure that c does not slip away underneath us
  551. */
  552. read_unlock(&tasklist_lock);
  553. if (c->mm != mm) {
  554. task_unlock(c);
  555. put_task_struct(c);
  556. goto retry;
  557. }
  558. mm->owner = c;
  559. task_unlock(c);
  560. put_task_struct(c);
  561. }
  562. #endif /* CONFIG_MM_OWNER */
  563. /*
  564. * Turn us into a lazy TLB process if we
  565. * aren't already..
  566. */
  567. static void exit_mm(struct task_struct * tsk)
  568. {
  569. struct mm_struct *mm = tsk->mm;
  570. struct core_state *core_state;
  571. mm_release(tsk, mm);
  572. if (!mm)
  573. return;
  574. /*
  575. * Serialize with any possible pending coredump.
  576. * We must hold mmap_sem around checking core_state
  577. * and clearing tsk->mm. The core-inducing thread
  578. * will increment ->nr_threads for each thread in the
  579. * group with ->mm != NULL.
  580. */
  581. down_read(&mm->mmap_sem);
  582. core_state = mm->core_state;
  583. if (core_state) {
  584. struct core_thread self;
  585. up_read(&mm->mmap_sem);
  586. self.task = tsk;
  587. self.next = xchg(&core_state->dumper.next, &self);
  588. /*
  589. * Implies mb(), the result of xchg() must be visible
  590. * to core_state->dumper.
  591. */
  592. if (atomic_dec_and_test(&core_state->nr_threads))
  593. complete(&core_state->startup);
  594. for (;;) {
  595. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  596. if (!self.task) /* see coredump_finish() */
  597. break;
  598. schedule();
  599. }
  600. __set_task_state(tsk, TASK_RUNNING);
  601. down_read(&mm->mmap_sem);
  602. }
  603. atomic_inc(&mm->mm_count);
  604. BUG_ON(mm != tsk->active_mm);
  605. /* more a memory barrier than a real lock */
  606. task_lock(tsk);
  607. tsk->mm = NULL;
  608. up_read(&mm->mmap_sem);
  609. enter_lazy_tlb(mm, current);
  610. /* We don't want this task to be frozen prematurely */
  611. clear_freeze_flag(tsk);
  612. task_unlock(tsk);
  613. mm_update_next_owner(mm);
  614. mmput(mm);
  615. }
  616. /*
  617. * When we die, we re-parent all our children.
  618. * Try to give them to another thread in our thread
  619. * group, and if no such member exists, give it to
  620. * the child reaper process (ie "init") in our pid
  621. * space.
  622. */
  623. static struct task_struct *find_new_reaper(struct task_struct *father)
  624. {
  625. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  626. struct task_struct *thread;
  627. thread = father;
  628. while_each_thread(father, thread) {
  629. if (thread->flags & PF_EXITING)
  630. continue;
  631. if (unlikely(pid_ns->child_reaper == father))
  632. pid_ns->child_reaper = thread;
  633. return thread;
  634. }
  635. if (unlikely(pid_ns->child_reaper == father)) {
  636. write_unlock_irq(&tasklist_lock);
  637. if (unlikely(pid_ns == &init_pid_ns))
  638. panic("Attempted to kill init!");
  639. zap_pid_ns_processes(pid_ns);
  640. write_lock_irq(&tasklist_lock);
  641. /*
  642. * We can not clear ->child_reaper or leave it alone.
  643. * There may by stealth EXIT_DEAD tasks on ->children,
  644. * forget_original_parent() must move them somewhere.
  645. */
  646. pid_ns->child_reaper = init_pid_ns.child_reaper;
  647. }
  648. return pid_ns->child_reaper;
  649. }
  650. /*
  651. * Any that need to be release_task'd are put on the @dead list.
  652. */
  653. static void reparent_thread(struct task_struct *father, struct task_struct *p,
  654. struct list_head *dead)
  655. {
  656. if (p->pdeath_signal)
  657. group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
  658. list_move_tail(&p->sibling, &p->real_parent->children);
  659. if (task_detached(p))
  660. return;
  661. /*
  662. * If this is a threaded reparent there is no need to
  663. * notify anyone anything has happened.
  664. */
  665. if (same_thread_group(p->real_parent, father))
  666. return;
  667. /* We don't want people slaying init. */
  668. p->exit_signal = SIGCHLD;
  669. /* If it has exited notify the new parent about this child's death. */
  670. if (!p->ptrace &&
  671. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  672. do_notify_parent(p, p->exit_signal);
  673. if (task_detached(p)) {
  674. p->exit_state = EXIT_DEAD;
  675. list_move_tail(&p->sibling, dead);
  676. }
  677. }
  678. kill_orphaned_pgrp(p, father);
  679. }
  680. static void forget_original_parent(struct task_struct *father)
  681. {
  682. struct task_struct *p, *n, *reaper;
  683. LIST_HEAD(dead_children);
  684. exit_ptrace(father);
  685. write_lock_irq(&tasklist_lock);
  686. reaper = find_new_reaper(father);
  687. list_for_each_entry_safe(p, n, &father->children, sibling) {
  688. p->real_parent = reaper;
  689. if (p->parent == father) {
  690. BUG_ON(p->ptrace);
  691. p->parent = p->real_parent;
  692. }
  693. reparent_thread(father, p, &dead_children);
  694. }
  695. write_unlock_irq(&tasklist_lock);
  696. BUG_ON(!list_empty(&father->children));
  697. list_for_each_entry_safe(p, n, &dead_children, sibling) {
  698. list_del_init(&p->sibling);
  699. release_task(p);
  700. }
  701. }
  702. /*
  703. * Send signals to all our closest relatives so that they know
  704. * to properly mourn us..
  705. */
  706. static void exit_notify(struct task_struct *tsk, int group_dead)
  707. {
  708. int signal;
  709. void *cookie;
  710. /*
  711. * This does two things:
  712. *
  713. * A. Make init inherit all the child processes
  714. * B. Check to see if any process groups have become orphaned
  715. * as a result of our exiting, and if they have any stopped
  716. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  717. */
  718. forget_original_parent(tsk);
  719. exit_task_namespaces(tsk);
  720. write_lock_irq(&tasklist_lock);
  721. if (group_dead)
  722. kill_orphaned_pgrp(tsk->group_leader, NULL);
  723. /* Let father know we died
  724. *
  725. * Thread signals are configurable, but you aren't going to use
  726. * that to send signals to arbitary processes.
  727. * That stops right now.
  728. *
  729. * If the parent exec id doesn't match the exec id we saved
  730. * when we started then we know the parent has changed security
  731. * domain.
  732. *
  733. * If our self_exec id doesn't match our parent_exec_id then
  734. * we have changed execution domain as these two values started
  735. * the same after a fork.
  736. */
  737. if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
  738. (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
  739. tsk->self_exec_id != tsk->parent_exec_id))
  740. tsk->exit_signal = SIGCHLD;
  741. signal = tracehook_notify_death(tsk, &cookie, group_dead);
  742. if (signal >= 0)
  743. signal = do_notify_parent(tsk, signal);
  744. tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
  745. /* mt-exec, de_thread() is waiting for us */
  746. if (thread_group_leader(tsk) &&
  747. tsk->signal->group_exit_task &&
  748. tsk->signal->notify_count < 0)
  749. wake_up_process(tsk->signal->group_exit_task);
  750. write_unlock_irq(&tasklist_lock);
  751. tracehook_report_death(tsk, signal, cookie, group_dead);
  752. /* If the process is dead, release it - nobody will wait for it */
  753. if (signal == DEATH_REAP)
  754. release_task(tsk);
  755. }
  756. #ifdef CONFIG_DEBUG_STACK_USAGE
  757. static void check_stack_usage(void)
  758. {
  759. static DEFINE_SPINLOCK(low_water_lock);
  760. static int lowest_to_date = THREAD_SIZE;
  761. unsigned long free;
  762. free = stack_not_used(current);
  763. if (free >= lowest_to_date)
  764. return;
  765. spin_lock(&low_water_lock);
  766. if (free < lowest_to_date) {
  767. printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
  768. "left\n",
  769. current->comm, free);
  770. lowest_to_date = free;
  771. }
  772. spin_unlock(&low_water_lock);
  773. }
  774. #else
  775. static inline void check_stack_usage(void) {}
  776. #endif
  777. NORET_TYPE void do_exit(long code)
  778. {
  779. struct task_struct *tsk = current;
  780. int group_dead;
  781. profile_task_exit(tsk);
  782. WARN_ON(atomic_read(&tsk->fs_excl));
  783. if (unlikely(in_interrupt()))
  784. panic("Aiee, killing interrupt handler!");
  785. if (unlikely(!tsk->pid))
  786. panic("Attempted to kill the idle task!");
  787. tracehook_report_exit(&code);
  788. /*
  789. * We're taking recursive faults here in do_exit. Safest is to just
  790. * leave this task alone and wait for reboot.
  791. */
  792. if (unlikely(tsk->flags & PF_EXITING)) {
  793. printk(KERN_ALERT
  794. "Fixing recursive fault but reboot is needed!\n");
  795. /*
  796. * We can do this unlocked here. The futex code uses
  797. * this flag just to verify whether the pi state
  798. * cleanup has been done or not. In the worst case it
  799. * loops once more. We pretend that the cleanup was
  800. * done as there is no way to return. Either the
  801. * OWNER_DIED bit is set by now or we push the blocked
  802. * task into the wait for ever nirwana as well.
  803. */
  804. tsk->flags |= PF_EXITPIDONE;
  805. set_current_state(TASK_UNINTERRUPTIBLE);
  806. schedule();
  807. }
  808. exit_irq_thread();
  809. exit_signals(tsk); /* sets PF_EXITING */
  810. /*
  811. * tsk->flags are checked in the futex code to protect against
  812. * an exiting task cleaning up the robust pi futexes.
  813. */
  814. smp_mb();
  815. spin_unlock_wait(&tsk->pi_lock);
  816. if (unlikely(in_atomic()))
  817. printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
  818. current->comm, task_pid_nr(current),
  819. preempt_count());
  820. acct_update_integrals(tsk);
  821. group_dead = atomic_dec_and_test(&tsk->signal->live);
  822. if (group_dead) {
  823. hrtimer_cancel(&tsk->signal->real_timer);
  824. exit_itimers(tsk->signal);
  825. }
  826. acct_collect(code, group_dead);
  827. if (group_dead)
  828. tty_audit_exit();
  829. if (unlikely(tsk->audit_context))
  830. audit_free(tsk);
  831. tsk->exit_code = code;
  832. taskstats_exit(tsk, group_dead);
  833. exit_mm(tsk);
  834. if (group_dead)
  835. acct_process();
  836. trace_sched_process_exit(tsk);
  837. exit_sem(tsk);
  838. exit_files(tsk);
  839. exit_fs(tsk);
  840. check_stack_usage();
  841. exit_thread();
  842. cgroup_exit(tsk, 1);
  843. if (group_dead && tsk->signal->leader)
  844. disassociate_ctty(1);
  845. module_put(task_thread_info(tsk)->exec_domain->module);
  846. if (tsk->binfmt)
  847. module_put(tsk->binfmt->module);
  848. proc_exit_connector(tsk);
  849. exit_notify(tsk, group_dead);
  850. #ifdef CONFIG_NUMA
  851. mpol_put(tsk->mempolicy);
  852. tsk->mempolicy = NULL;
  853. #endif
  854. #ifdef CONFIG_FUTEX
  855. if (unlikely(!list_empty(&tsk->pi_state_list)))
  856. exit_pi_state_list(tsk);
  857. if (unlikely(current->pi_state_cache))
  858. kfree(current->pi_state_cache);
  859. #endif
  860. /*
  861. * Make sure we are holding no locks:
  862. */
  863. debug_check_no_locks_held(tsk);
  864. /*
  865. * We can do this unlocked here. The futex code uses this flag
  866. * just to verify whether the pi state cleanup has been done
  867. * or not. In the worst case it loops once more.
  868. */
  869. tsk->flags |= PF_EXITPIDONE;
  870. if (tsk->io_context)
  871. exit_io_context();
  872. if (tsk->splice_pipe)
  873. __free_pipe_info(tsk->splice_pipe);
  874. preempt_disable();
  875. /* causes final put_task_struct in finish_task_switch(). */
  876. tsk->state = TASK_DEAD;
  877. schedule();
  878. BUG();
  879. /* Avoid "noreturn function does return". */
  880. for (;;)
  881. cpu_relax(); /* For when BUG is null */
  882. }
  883. EXPORT_SYMBOL_GPL(do_exit);
  884. NORET_TYPE void complete_and_exit(struct completion *comp, long code)
  885. {
  886. if (comp)
  887. complete(comp);
  888. do_exit(code);
  889. }
  890. EXPORT_SYMBOL(complete_and_exit);
  891. SYSCALL_DEFINE1(exit, int, error_code)
  892. {
  893. do_exit((error_code&0xff)<<8);
  894. }
  895. /*
  896. * Take down every thread in the group. This is called by fatal signals
  897. * as well as by sys_exit_group (below).
  898. */
  899. NORET_TYPE void
  900. do_group_exit(int exit_code)
  901. {
  902. struct signal_struct *sig = current->signal;
  903. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  904. if (signal_group_exit(sig))
  905. exit_code = sig->group_exit_code;
  906. else if (!thread_group_empty(current)) {
  907. struct sighand_struct *const sighand = current->sighand;
  908. spin_lock_irq(&sighand->siglock);
  909. if (signal_group_exit(sig))
  910. /* Another thread got here before we took the lock. */
  911. exit_code = sig->group_exit_code;
  912. else {
  913. sig->group_exit_code = exit_code;
  914. sig->flags = SIGNAL_GROUP_EXIT;
  915. zap_other_threads(current);
  916. }
  917. spin_unlock_irq(&sighand->siglock);
  918. }
  919. do_exit(exit_code);
  920. /* NOTREACHED */
  921. }
  922. /*
  923. * this kills every thread in the thread group. Note that any externally
  924. * wait4()-ing process will get the correct exit code - even if this
  925. * thread is not the thread group leader.
  926. */
  927. SYSCALL_DEFINE1(exit_group, int, error_code)
  928. {
  929. do_group_exit((error_code & 0xff) << 8);
  930. /* NOTREACHED */
  931. return 0;
  932. }
  933. static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  934. {
  935. struct pid *pid = NULL;
  936. if (type == PIDTYPE_PID)
  937. pid = task->pids[type].pid;
  938. else if (type < PIDTYPE_MAX)
  939. pid = task->group_leader->pids[type].pid;
  940. return pid;
  941. }
  942. static int eligible_child(enum pid_type type, struct pid *pid, int options,
  943. struct task_struct *p)
  944. {
  945. int err;
  946. if (type < PIDTYPE_MAX) {
  947. if (task_pid_type(p, type) != pid)
  948. return 0;
  949. }
  950. /* Wait for all children (clone and not) if __WALL is set;
  951. * otherwise, wait for clone children *only* if __WCLONE is
  952. * set; otherwise, wait for non-clone children *only*. (Note:
  953. * A "clone" child here is one that reports to its parent
  954. * using a signal other than SIGCHLD.) */
  955. if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
  956. && !(options & __WALL))
  957. return 0;
  958. err = security_task_wait(p);
  959. if (err)
  960. return err;
  961. return 1;
  962. }
  963. static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
  964. int why, int status,
  965. struct siginfo __user *infop,
  966. struct rusage __user *rusagep)
  967. {
  968. int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
  969. put_task_struct(p);
  970. if (!retval)
  971. retval = put_user(SIGCHLD, &infop->si_signo);
  972. if (!retval)
  973. retval = put_user(0, &infop->si_errno);
  974. if (!retval)
  975. retval = put_user((short)why, &infop->si_code);
  976. if (!retval)
  977. retval = put_user(pid, &infop->si_pid);
  978. if (!retval)
  979. retval = put_user(uid, &infop->si_uid);
  980. if (!retval)
  981. retval = put_user(status, &infop->si_status);
  982. if (!retval)
  983. retval = pid;
  984. return retval;
  985. }
  986. /*
  987. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  988. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  989. * the lock and this task is uninteresting. If we return nonzero, we have
  990. * released the lock and the system call should return.
  991. */
  992. static int wait_task_zombie(struct task_struct *p, int options,
  993. struct siginfo __user *infop,
  994. int __user *stat_addr, struct rusage __user *ru)
  995. {
  996. unsigned long state;
  997. int retval, status, traced;
  998. pid_t pid = task_pid_vnr(p);
  999. uid_t uid = __task_cred(p)->uid;
  1000. if (!likely(options & WEXITED))
  1001. return 0;
  1002. if (unlikely(options & WNOWAIT)) {
  1003. int exit_code = p->exit_code;
  1004. int why, status;
  1005. get_task_struct(p);
  1006. read_unlock(&tasklist_lock);
  1007. if ((exit_code & 0x7f) == 0) {
  1008. why = CLD_EXITED;
  1009. status = exit_code >> 8;
  1010. } else {
  1011. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1012. status = exit_code & 0x7f;
  1013. }
  1014. return wait_noreap_copyout(p, pid, uid, why,
  1015. status, infop, ru);
  1016. }
  1017. /*
  1018. * Try to move the task's state to DEAD
  1019. * only one thread is allowed to do this:
  1020. */
  1021. state = xchg(&p->exit_state, EXIT_DEAD);
  1022. if (state != EXIT_ZOMBIE) {
  1023. BUG_ON(state != EXIT_DEAD);
  1024. return 0;
  1025. }
  1026. traced = ptrace_reparented(p);
  1027. if (likely(!traced)) {
  1028. struct signal_struct *psig;
  1029. struct signal_struct *sig;
  1030. struct task_cputime cputime;
  1031. /*
  1032. * The resource counters for the group leader are in its
  1033. * own task_struct. Those for dead threads in the group
  1034. * are in its signal_struct, as are those for the child
  1035. * processes it has previously reaped. All these
  1036. * accumulate in the parent's signal_struct c* fields.
  1037. *
  1038. * We don't bother to take a lock here to protect these
  1039. * p->signal fields, because they are only touched by
  1040. * __exit_signal, which runs with tasklist_lock
  1041. * write-locked anyway, and so is excluded here. We do
  1042. * need to protect the access to p->parent->signal fields,
  1043. * as other threads in the parent group can be right
  1044. * here reaping other children at the same time.
  1045. *
  1046. * We use thread_group_cputime() to get times for the thread
  1047. * group, which consolidates times for all threads in the
  1048. * group including the group leader.
  1049. */
  1050. thread_group_cputime(p, &cputime);
  1051. spin_lock_irq(&p->parent->sighand->siglock);
  1052. psig = p->parent->signal;
  1053. sig = p->signal;
  1054. psig->cutime =
  1055. cputime_add(psig->cutime,
  1056. cputime_add(cputime.utime,
  1057. sig->cutime));
  1058. psig->cstime =
  1059. cputime_add(psig->cstime,
  1060. cputime_add(cputime.stime,
  1061. sig->cstime));
  1062. psig->cgtime =
  1063. cputime_add(psig->cgtime,
  1064. cputime_add(p->gtime,
  1065. cputime_add(sig->gtime,
  1066. sig->cgtime)));
  1067. psig->cmin_flt +=
  1068. p->min_flt + sig->min_flt + sig->cmin_flt;
  1069. psig->cmaj_flt +=
  1070. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  1071. psig->cnvcsw +=
  1072. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  1073. psig->cnivcsw +=
  1074. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  1075. psig->cinblock +=
  1076. task_io_get_inblock(p) +
  1077. sig->inblock + sig->cinblock;
  1078. psig->coublock +=
  1079. task_io_get_oublock(p) +
  1080. sig->oublock + sig->coublock;
  1081. task_io_accounting_add(&psig->ioac, &p->ioac);
  1082. task_io_accounting_add(&psig->ioac, &sig->ioac);
  1083. spin_unlock_irq(&p->parent->sighand->siglock);
  1084. }
  1085. /*
  1086. * Now we are sure this task is interesting, and no other
  1087. * thread can reap it because we set its state to EXIT_DEAD.
  1088. */
  1089. read_unlock(&tasklist_lock);
  1090. /*
  1091. * Flush inherited counters to the parent - before the parent
  1092. * gets woken up by child-exit notifications.
  1093. */
  1094. perf_counter_exit_task(p);
  1095. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1096. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  1097. ? p->signal->group_exit_code : p->exit_code;
  1098. if (!retval && stat_addr)
  1099. retval = put_user(status, stat_addr);
  1100. if (!retval && infop)
  1101. retval = put_user(SIGCHLD, &infop->si_signo);
  1102. if (!retval && infop)
  1103. retval = put_user(0, &infop->si_errno);
  1104. if (!retval && infop) {
  1105. int why;
  1106. if ((status & 0x7f) == 0) {
  1107. why = CLD_EXITED;
  1108. status >>= 8;
  1109. } else {
  1110. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1111. status &= 0x7f;
  1112. }
  1113. retval = put_user((short)why, &infop->si_code);
  1114. if (!retval)
  1115. retval = put_user(status, &infop->si_status);
  1116. }
  1117. if (!retval && infop)
  1118. retval = put_user(pid, &infop->si_pid);
  1119. if (!retval && infop)
  1120. retval = put_user(uid, &infop->si_uid);
  1121. if (!retval)
  1122. retval = pid;
  1123. if (traced) {
  1124. write_lock_irq(&tasklist_lock);
  1125. /* We dropped tasklist, ptracer could die and untrace */
  1126. ptrace_unlink(p);
  1127. /*
  1128. * If this is not a detached task, notify the parent.
  1129. * If it's still not detached after that, don't release
  1130. * it now.
  1131. */
  1132. if (!task_detached(p)) {
  1133. do_notify_parent(p, p->exit_signal);
  1134. if (!task_detached(p)) {
  1135. p->exit_state = EXIT_ZOMBIE;
  1136. p = NULL;
  1137. }
  1138. }
  1139. write_unlock_irq(&tasklist_lock);
  1140. }
  1141. if (p != NULL)
  1142. release_task(p);
  1143. return retval;
  1144. }
  1145. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1146. {
  1147. if (ptrace) {
  1148. if (task_is_stopped_or_traced(p))
  1149. return &p->exit_code;
  1150. } else {
  1151. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1152. return &p->signal->group_exit_code;
  1153. }
  1154. return NULL;
  1155. }
  1156. /*
  1157. * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
  1158. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1159. * the lock and this task is uninteresting. If we return nonzero, we have
  1160. * released the lock and the system call should return.
  1161. */
  1162. static int wait_task_stopped(int ptrace, struct task_struct *p,
  1163. int options, struct siginfo __user *infop,
  1164. int __user *stat_addr, struct rusage __user *ru)
  1165. {
  1166. int retval, exit_code, *p_code, why;
  1167. uid_t uid = 0; /* unneeded, required by compiler */
  1168. pid_t pid;
  1169. if (!(options & WUNTRACED))
  1170. return 0;
  1171. exit_code = 0;
  1172. spin_lock_irq(&p->sighand->siglock);
  1173. p_code = task_stopped_code(p, ptrace);
  1174. if (unlikely(!p_code))
  1175. goto unlock_sig;
  1176. exit_code = *p_code;
  1177. if (!exit_code)
  1178. goto unlock_sig;
  1179. if (!unlikely(options & WNOWAIT))
  1180. *p_code = 0;
  1181. /* don't need the RCU readlock here as we're holding a spinlock */
  1182. uid = __task_cred(p)->uid;
  1183. unlock_sig:
  1184. spin_unlock_irq(&p->sighand->siglock);
  1185. if (!exit_code)
  1186. return 0;
  1187. /*
  1188. * Now we are pretty sure this task is interesting.
  1189. * Make sure it doesn't get reaped out from under us while we
  1190. * give up the lock and then examine it below. We don't want to
  1191. * keep holding onto the tasklist_lock while we call getrusage and
  1192. * possibly take page faults for user memory.
  1193. */
  1194. get_task_struct(p);
  1195. pid = task_pid_vnr(p);
  1196. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1197. read_unlock(&tasklist_lock);
  1198. if (unlikely(options & WNOWAIT))
  1199. return wait_noreap_copyout(p, pid, uid,
  1200. why, exit_code,
  1201. infop, ru);
  1202. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1203. if (!retval && stat_addr)
  1204. retval = put_user((exit_code << 8) | 0x7f, stat_addr);
  1205. if (!retval && infop)
  1206. retval = put_user(SIGCHLD, &infop->si_signo);
  1207. if (!retval && infop)
  1208. retval = put_user(0, &infop->si_errno);
  1209. if (!retval && infop)
  1210. retval = put_user((short)why, &infop->si_code);
  1211. if (!retval && infop)
  1212. retval = put_user(exit_code, &infop->si_status);
  1213. if (!retval && infop)
  1214. retval = put_user(pid, &infop->si_pid);
  1215. if (!retval && infop)
  1216. retval = put_user(uid, &infop->si_uid);
  1217. if (!retval)
  1218. retval = pid;
  1219. put_task_struct(p);
  1220. BUG_ON(!retval);
  1221. return retval;
  1222. }
  1223. /*
  1224. * Handle do_wait work for one task in a live, non-stopped state.
  1225. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1226. * the lock and this task is uninteresting. If we return nonzero, we have
  1227. * released the lock and the system call should return.
  1228. */
  1229. static int wait_task_continued(struct task_struct *p, int options,
  1230. struct siginfo __user *infop,
  1231. int __user *stat_addr, struct rusage __user *ru)
  1232. {
  1233. int retval;
  1234. pid_t pid;
  1235. uid_t uid;
  1236. if (!unlikely(options & WCONTINUED))
  1237. return 0;
  1238. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1239. return 0;
  1240. spin_lock_irq(&p->sighand->siglock);
  1241. /* Re-check with the lock held. */
  1242. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1243. spin_unlock_irq(&p->sighand->siglock);
  1244. return 0;
  1245. }
  1246. if (!unlikely(options & WNOWAIT))
  1247. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1248. uid = __task_cred(p)->uid;
  1249. spin_unlock_irq(&p->sighand->siglock);
  1250. pid = task_pid_vnr(p);
  1251. get_task_struct(p);
  1252. read_unlock(&tasklist_lock);
  1253. if (!infop) {
  1254. retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
  1255. put_task_struct(p);
  1256. if (!retval && stat_addr)
  1257. retval = put_user(0xffff, stat_addr);
  1258. if (!retval)
  1259. retval = pid;
  1260. } else {
  1261. retval = wait_noreap_copyout(p, pid, uid,
  1262. CLD_CONTINUED, SIGCONT,
  1263. infop, ru);
  1264. BUG_ON(retval == 0);
  1265. }
  1266. return retval;
  1267. }
  1268. /*
  1269. * Consider @p for a wait by @parent.
  1270. *
  1271. * -ECHILD should be in *@notask_error before the first call.
  1272. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1273. * Returns zero if the search for a child should continue;
  1274. * then *@notask_error is 0 if @p is an eligible child,
  1275. * or another error from security_task_wait(), or still -ECHILD.
  1276. */
  1277. static int wait_consider_task(struct task_struct *parent, int ptrace,
  1278. struct task_struct *p, int *notask_error,
  1279. enum pid_type type, struct pid *pid, int options,
  1280. struct siginfo __user *infop,
  1281. int __user *stat_addr, struct rusage __user *ru)
  1282. {
  1283. int ret = eligible_child(type, pid, options, p);
  1284. if (!ret)
  1285. return ret;
  1286. if (unlikely(ret < 0)) {
  1287. /*
  1288. * If we have not yet seen any eligible child,
  1289. * then let this error code replace -ECHILD.
  1290. * A permission error will give the user a clue
  1291. * to look for security policy problems, rather
  1292. * than for mysterious wait bugs.
  1293. */
  1294. if (*notask_error)
  1295. *notask_error = ret;
  1296. }
  1297. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1298. /*
  1299. * This child is hidden by ptrace.
  1300. * We aren't allowed to see it now, but eventually we will.
  1301. */
  1302. *notask_error = 0;
  1303. return 0;
  1304. }
  1305. if (p->exit_state == EXIT_DEAD)
  1306. return 0;
  1307. /*
  1308. * We don't reap group leaders with subthreads.
  1309. */
  1310. if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
  1311. return wait_task_zombie(p, options, infop, stat_addr, ru);
  1312. /*
  1313. * It's stopped or running now, so it might
  1314. * later continue, exit, or stop again.
  1315. */
  1316. *notask_error = 0;
  1317. if (task_stopped_code(p, ptrace))
  1318. return wait_task_stopped(ptrace, p, options,
  1319. infop, stat_addr, ru);
  1320. return wait_task_continued(p, options, infop, stat_addr, ru);
  1321. }
  1322. /*
  1323. * Do the work of do_wait() for one thread in the group, @tsk.
  1324. *
  1325. * -ECHILD should be in *@notask_error before the first call.
  1326. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1327. * Returns zero if the search for a child should continue; then
  1328. * *@notask_error is 0 if there were any eligible children,
  1329. * or another error from security_task_wait(), or still -ECHILD.
  1330. */
  1331. static int do_wait_thread(struct task_struct *tsk, int *notask_error,
  1332. enum pid_type type, struct pid *pid, int options,
  1333. struct siginfo __user *infop, int __user *stat_addr,
  1334. struct rusage __user *ru)
  1335. {
  1336. struct task_struct *p;
  1337. list_for_each_entry(p, &tsk->children, sibling) {
  1338. /*
  1339. * Do not consider detached threads.
  1340. */
  1341. if (!task_detached(p)) {
  1342. int ret = wait_consider_task(tsk, 0, p, notask_error,
  1343. type, pid, options,
  1344. infop, stat_addr, ru);
  1345. if (ret)
  1346. return ret;
  1347. }
  1348. }
  1349. return 0;
  1350. }
  1351. static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
  1352. enum pid_type type, struct pid *pid, int options,
  1353. struct siginfo __user *infop, int __user *stat_addr,
  1354. struct rusage __user *ru)
  1355. {
  1356. struct task_struct *p;
  1357. /*
  1358. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1359. */
  1360. options |= WUNTRACED;
  1361. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1362. int ret = wait_consider_task(tsk, 1, p, notask_error,
  1363. type, pid, options,
  1364. infop, stat_addr, ru);
  1365. if (ret)
  1366. return ret;
  1367. }
  1368. return 0;
  1369. }
  1370. static long do_wait(enum pid_type type, struct pid *pid, int options,
  1371. struct siginfo __user *infop, int __user *stat_addr,
  1372. struct rusage __user *ru)
  1373. {
  1374. DECLARE_WAITQUEUE(wait, current);
  1375. struct task_struct *tsk;
  1376. int retval;
  1377. trace_sched_process_wait(pid);
  1378. add_wait_queue(&current->signal->wait_chldexit,&wait);
  1379. repeat:
  1380. /*
  1381. * If there is nothing that can match our critiera just get out.
  1382. * We will clear @retval to zero if we see any child that might later
  1383. * match our criteria, even if we are not able to reap it yet.
  1384. */
  1385. retval = -ECHILD;
  1386. if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
  1387. goto end;
  1388. current->state = TASK_INTERRUPTIBLE;
  1389. read_lock(&tasklist_lock);
  1390. tsk = current;
  1391. do {
  1392. int tsk_result = do_wait_thread(tsk, &retval,
  1393. type, pid, options,
  1394. infop, stat_addr, ru);
  1395. if (!tsk_result)
  1396. tsk_result = ptrace_do_wait(tsk, &retval,
  1397. type, pid, options,
  1398. infop, stat_addr, ru);
  1399. if (tsk_result) {
  1400. /*
  1401. * tasklist_lock is unlocked and we have a final result.
  1402. */
  1403. retval = tsk_result;
  1404. goto end;
  1405. }
  1406. if (options & __WNOTHREAD)
  1407. break;
  1408. tsk = next_thread(tsk);
  1409. BUG_ON(tsk->signal != current->signal);
  1410. } while (tsk != current);
  1411. read_unlock(&tasklist_lock);
  1412. if (!retval && !(options & WNOHANG)) {
  1413. retval = -ERESTARTSYS;
  1414. if (!signal_pending(current)) {
  1415. schedule();
  1416. goto repeat;
  1417. }
  1418. }
  1419. end:
  1420. current->state = TASK_RUNNING;
  1421. remove_wait_queue(&current->signal->wait_chldexit,&wait);
  1422. if (infop) {
  1423. if (retval > 0)
  1424. retval = 0;
  1425. else {
  1426. /*
  1427. * For a WNOHANG return, clear out all the fields
  1428. * we would set so the user can easily tell the
  1429. * difference.
  1430. */
  1431. if (!retval)
  1432. retval = put_user(0, &infop->si_signo);
  1433. if (!retval)
  1434. retval = put_user(0, &infop->si_errno);
  1435. if (!retval)
  1436. retval = put_user(0, &infop->si_code);
  1437. if (!retval)
  1438. retval = put_user(0, &infop->si_pid);
  1439. if (!retval)
  1440. retval = put_user(0, &infop->si_uid);
  1441. if (!retval)
  1442. retval = put_user(0, &infop->si_status);
  1443. }
  1444. }
  1445. return retval;
  1446. }
  1447. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1448. infop, int, options, struct rusage __user *, ru)
  1449. {
  1450. struct pid *pid = NULL;
  1451. enum pid_type type;
  1452. long ret;
  1453. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1454. return -EINVAL;
  1455. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1456. return -EINVAL;
  1457. switch (which) {
  1458. case P_ALL:
  1459. type = PIDTYPE_MAX;
  1460. break;
  1461. case P_PID:
  1462. type = PIDTYPE_PID;
  1463. if (upid <= 0)
  1464. return -EINVAL;
  1465. break;
  1466. case P_PGID:
  1467. type = PIDTYPE_PGID;
  1468. if (upid <= 0)
  1469. return -EINVAL;
  1470. break;
  1471. default:
  1472. return -EINVAL;
  1473. }
  1474. if (type < PIDTYPE_MAX)
  1475. pid = find_get_pid(upid);
  1476. ret = do_wait(type, pid, options, infop, NULL, ru);
  1477. put_pid(pid);
  1478. /* avoid REGPARM breakage on x86: */
  1479. asmlinkage_protect(5, ret, which, upid, infop, options, ru);
  1480. return ret;
  1481. }
  1482. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1483. int, options, struct rusage __user *, ru)
  1484. {
  1485. struct pid *pid = NULL;
  1486. enum pid_type type;
  1487. long ret;
  1488. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1489. __WNOTHREAD|__WCLONE|__WALL))
  1490. return -EINVAL;
  1491. if (upid == -1)
  1492. type = PIDTYPE_MAX;
  1493. else if (upid < 0) {
  1494. type = PIDTYPE_PGID;
  1495. pid = find_get_pid(-upid);
  1496. } else if (upid == 0) {
  1497. type = PIDTYPE_PGID;
  1498. pid = get_task_pid(current, PIDTYPE_PGID);
  1499. } else /* upid > 0 */ {
  1500. type = PIDTYPE_PID;
  1501. pid = find_get_pid(upid);
  1502. }
  1503. ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
  1504. put_pid(pid);
  1505. /* avoid REGPARM breakage on x86: */
  1506. asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
  1507. return ret;
  1508. }
  1509. #ifdef __ARCH_WANT_SYS_WAITPID
  1510. /*
  1511. * sys_waitpid() remains for compatibility. waitpid() should be
  1512. * implemented by calling sys_wait4() from libc.a.
  1513. */
  1514. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1515. {
  1516. return sys_wait4(pid, stat_addr, options, NULL);
  1517. }
  1518. #endif