sched_fair.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. static const struct sched_class fair_sched_class;
  68. /**************************************************************
  69. * CFS operations on generic schedulable entities:
  70. */
  71. static inline struct task_struct *task_of(struct sched_entity *se)
  72. {
  73. return container_of(se, struct task_struct, se);
  74. }
  75. #ifdef CONFIG_FAIR_GROUP_SCHED
  76. /* cpu runqueue to which this cfs_rq is attached */
  77. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  78. {
  79. return cfs_rq->rq;
  80. }
  81. /* An entity is a task if it doesn't "own" a runqueue */
  82. #define entity_is_task(se) (!se->my_q)
  83. /* Walk up scheduling entities hierarchy */
  84. #define for_each_sched_entity(se) \
  85. for (; se; se = se->parent)
  86. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  87. {
  88. return p->se.cfs_rq;
  89. }
  90. /* runqueue on which this entity is (to be) queued */
  91. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  92. {
  93. return se->cfs_rq;
  94. }
  95. /* runqueue "owned" by this group */
  96. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  97. {
  98. return grp->my_q;
  99. }
  100. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  101. * another cpu ('this_cpu')
  102. */
  103. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  104. {
  105. return cfs_rq->tg->cfs_rq[this_cpu];
  106. }
  107. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  108. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  109. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  110. /* Do the two (enqueued) entities belong to the same group ? */
  111. static inline int
  112. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  113. {
  114. if (se->cfs_rq == pse->cfs_rq)
  115. return 1;
  116. return 0;
  117. }
  118. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  119. {
  120. return se->parent;
  121. }
  122. #else /* CONFIG_FAIR_GROUP_SCHED */
  123. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  124. {
  125. return container_of(cfs_rq, struct rq, cfs);
  126. }
  127. #define entity_is_task(se) 1
  128. #define for_each_sched_entity(se) \
  129. for (; se; se = NULL)
  130. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  131. {
  132. return &task_rq(p)->cfs;
  133. }
  134. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  135. {
  136. struct task_struct *p = task_of(se);
  137. struct rq *rq = task_rq(p);
  138. return &rq->cfs;
  139. }
  140. /* runqueue "owned" by this group */
  141. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  142. {
  143. return NULL;
  144. }
  145. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  146. {
  147. return &cpu_rq(this_cpu)->cfs;
  148. }
  149. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  150. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  151. static inline int
  152. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  153. {
  154. return 1;
  155. }
  156. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  157. {
  158. return NULL;
  159. }
  160. #endif /* CONFIG_FAIR_GROUP_SCHED */
  161. /**************************************************************
  162. * Scheduling class tree data structure manipulation methods:
  163. */
  164. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  165. {
  166. s64 delta = (s64)(vruntime - min_vruntime);
  167. if (delta > 0)
  168. min_vruntime = vruntime;
  169. return min_vruntime;
  170. }
  171. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  172. {
  173. s64 delta = (s64)(vruntime - min_vruntime);
  174. if (delta < 0)
  175. min_vruntime = vruntime;
  176. return min_vruntime;
  177. }
  178. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  179. {
  180. return se->vruntime - cfs_rq->min_vruntime;
  181. }
  182. /*
  183. * Enqueue an entity into the rb-tree:
  184. */
  185. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  186. {
  187. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  188. struct rb_node *parent = NULL;
  189. struct sched_entity *entry;
  190. s64 key = entity_key(cfs_rq, se);
  191. int leftmost = 1;
  192. /*
  193. * Find the right place in the rbtree:
  194. */
  195. while (*link) {
  196. parent = *link;
  197. entry = rb_entry(parent, struct sched_entity, run_node);
  198. /*
  199. * We dont care about collisions. Nodes with
  200. * the same key stay together.
  201. */
  202. if (key < entity_key(cfs_rq, entry)) {
  203. link = &parent->rb_left;
  204. } else {
  205. link = &parent->rb_right;
  206. leftmost = 0;
  207. }
  208. }
  209. /*
  210. * Maintain a cache of leftmost tree entries (it is frequently
  211. * used):
  212. */
  213. if (leftmost) {
  214. cfs_rq->rb_leftmost = &se->run_node;
  215. /*
  216. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  217. * value tracking the leftmost vruntime in the tree.
  218. */
  219. cfs_rq->min_vruntime =
  220. max_vruntime(cfs_rq->min_vruntime, se->vruntime);
  221. }
  222. rb_link_node(&se->run_node, parent, link);
  223. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  224. }
  225. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  226. {
  227. if (cfs_rq->rb_leftmost == &se->run_node) {
  228. struct rb_node *next_node;
  229. struct sched_entity *next;
  230. next_node = rb_next(&se->run_node);
  231. cfs_rq->rb_leftmost = next_node;
  232. if (next_node) {
  233. next = rb_entry(next_node,
  234. struct sched_entity, run_node);
  235. cfs_rq->min_vruntime =
  236. max_vruntime(cfs_rq->min_vruntime,
  237. next->vruntime);
  238. }
  239. }
  240. if (cfs_rq->next == se)
  241. cfs_rq->next = NULL;
  242. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  243. }
  244. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  245. {
  246. return cfs_rq->rb_leftmost;
  247. }
  248. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  249. {
  250. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  251. }
  252. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  253. {
  254. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  255. if (!last)
  256. return NULL;
  257. return rb_entry(last, struct sched_entity, run_node);
  258. }
  259. /**************************************************************
  260. * Scheduling class statistics methods:
  261. */
  262. #ifdef CONFIG_SCHED_DEBUG
  263. int sched_nr_latency_handler(struct ctl_table *table, int write,
  264. struct file *filp, void __user *buffer, size_t *lenp,
  265. loff_t *ppos)
  266. {
  267. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  268. if (ret || !write)
  269. return ret;
  270. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  271. sysctl_sched_min_granularity);
  272. return 0;
  273. }
  274. #endif
  275. /*
  276. * delta *= P[w / rw]
  277. */
  278. static inline unsigned long
  279. calc_delta_weight(unsigned long delta, struct sched_entity *se)
  280. {
  281. for_each_sched_entity(se) {
  282. delta = calc_delta_mine(delta,
  283. se->load.weight, &cfs_rq_of(se)->load);
  284. }
  285. return delta;
  286. }
  287. /*
  288. * delta /= w
  289. */
  290. static inline unsigned long
  291. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  292. {
  293. if (unlikely(se->load.weight != NICE_0_LOAD))
  294. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  295. return delta;
  296. }
  297. /*
  298. * The idea is to set a period in which each task runs once.
  299. *
  300. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  301. * this period because otherwise the slices get too small.
  302. *
  303. * p = (nr <= nl) ? l : l*nr/nl
  304. */
  305. static u64 __sched_period(unsigned long nr_running)
  306. {
  307. u64 period = sysctl_sched_latency;
  308. unsigned long nr_latency = sched_nr_latency;
  309. if (unlikely(nr_running > nr_latency)) {
  310. period = sysctl_sched_min_granularity;
  311. period *= nr_running;
  312. }
  313. return period;
  314. }
  315. /*
  316. * We calculate the wall-time slice from the period by taking a part
  317. * proportional to the weight.
  318. *
  319. * s = p*P[w/rw]
  320. */
  321. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  322. {
  323. unsigned long nr_running = cfs_rq->nr_running;
  324. if (unlikely(!se->on_rq))
  325. nr_running++;
  326. return calc_delta_weight(__sched_period(nr_running), se);
  327. }
  328. /*
  329. * We calculate the vruntime slice of a to be inserted task
  330. *
  331. * vs = s/w
  332. */
  333. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  334. {
  335. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  336. }
  337. /*
  338. * Update the current task's runtime statistics. Skip current tasks that
  339. * are not in our scheduling class.
  340. */
  341. static inline void
  342. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  343. unsigned long delta_exec)
  344. {
  345. unsigned long delta_exec_weighted;
  346. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  347. curr->sum_exec_runtime += delta_exec;
  348. schedstat_add(cfs_rq, exec_clock, delta_exec);
  349. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  350. curr->vruntime += delta_exec_weighted;
  351. }
  352. static void update_curr(struct cfs_rq *cfs_rq)
  353. {
  354. struct sched_entity *curr = cfs_rq->curr;
  355. u64 now = rq_of(cfs_rq)->clock;
  356. unsigned long delta_exec;
  357. if (unlikely(!curr))
  358. return;
  359. /*
  360. * Get the amount of time the current task was running
  361. * since the last time we changed load (this cannot
  362. * overflow on 32 bits):
  363. */
  364. delta_exec = (unsigned long)(now - curr->exec_start);
  365. __update_curr(cfs_rq, curr, delta_exec);
  366. curr->exec_start = now;
  367. if (entity_is_task(curr)) {
  368. struct task_struct *curtask = task_of(curr);
  369. cpuacct_charge(curtask, delta_exec);
  370. account_group_exec_runtime(curtask, delta_exec);
  371. }
  372. }
  373. static inline void
  374. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  375. {
  376. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  377. }
  378. /*
  379. * Task is being enqueued - update stats:
  380. */
  381. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  382. {
  383. /*
  384. * Are we enqueueing a waiting task? (for current tasks
  385. * a dequeue/enqueue event is a NOP)
  386. */
  387. if (se != cfs_rq->curr)
  388. update_stats_wait_start(cfs_rq, se);
  389. }
  390. static void
  391. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  392. {
  393. schedstat_set(se->wait_max, max(se->wait_max,
  394. rq_of(cfs_rq)->clock - se->wait_start));
  395. schedstat_set(se->wait_count, se->wait_count + 1);
  396. schedstat_set(se->wait_sum, se->wait_sum +
  397. rq_of(cfs_rq)->clock - se->wait_start);
  398. schedstat_set(se->wait_start, 0);
  399. }
  400. static inline void
  401. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  402. {
  403. /*
  404. * Mark the end of the wait period if dequeueing a
  405. * waiting task:
  406. */
  407. if (se != cfs_rq->curr)
  408. update_stats_wait_end(cfs_rq, se);
  409. }
  410. /*
  411. * We are picking a new current task - update its stats:
  412. */
  413. static inline void
  414. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  415. {
  416. /*
  417. * We are starting a new run period:
  418. */
  419. se->exec_start = rq_of(cfs_rq)->clock;
  420. }
  421. /**************************************************
  422. * Scheduling class queueing methods:
  423. */
  424. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  425. static void
  426. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  427. {
  428. cfs_rq->task_weight += weight;
  429. }
  430. #else
  431. static inline void
  432. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  433. {
  434. }
  435. #endif
  436. static void
  437. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  438. {
  439. update_load_add(&cfs_rq->load, se->load.weight);
  440. if (!parent_entity(se))
  441. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  442. if (entity_is_task(se)) {
  443. add_cfs_task_weight(cfs_rq, se->load.weight);
  444. list_add(&se->group_node, &cfs_rq->tasks);
  445. }
  446. cfs_rq->nr_running++;
  447. se->on_rq = 1;
  448. }
  449. static void
  450. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  451. {
  452. update_load_sub(&cfs_rq->load, se->load.weight);
  453. if (!parent_entity(se))
  454. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  455. if (entity_is_task(se)) {
  456. add_cfs_task_weight(cfs_rq, -se->load.weight);
  457. list_del_init(&se->group_node);
  458. }
  459. cfs_rq->nr_running--;
  460. se->on_rq = 0;
  461. }
  462. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  463. {
  464. #ifdef CONFIG_SCHEDSTATS
  465. if (se->sleep_start) {
  466. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  467. struct task_struct *tsk = task_of(se);
  468. if ((s64)delta < 0)
  469. delta = 0;
  470. if (unlikely(delta > se->sleep_max))
  471. se->sleep_max = delta;
  472. se->sleep_start = 0;
  473. se->sum_sleep_runtime += delta;
  474. account_scheduler_latency(tsk, delta >> 10, 1);
  475. }
  476. if (se->block_start) {
  477. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  478. struct task_struct *tsk = task_of(se);
  479. if ((s64)delta < 0)
  480. delta = 0;
  481. if (unlikely(delta > se->block_max))
  482. se->block_max = delta;
  483. se->block_start = 0;
  484. se->sum_sleep_runtime += delta;
  485. /*
  486. * Blocking time is in units of nanosecs, so shift by 20 to
  487. * get a milliseconds-range estimation of the amount of
  488. * time that the task spent sleeping:
  489. */
  490. if (unlikely(prof_on == SLEEP_PROFILING)) {
  491. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  492. delta >> 20);
  493. }
  494. account_scheduler_latency(tsk, delta >> 10, 0);
  495. }
  496. #endif
  497. }
  498. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  499. {
  500. #ifdef CONFIG_SCHED_DEBUG
  501. s64 d = se->vruntime - cfs_rq->min_vruntime;
  502. if (d < 0)
  503. d = -d;
  504. if (d > 3*sysctl_sched_latency)
  505. schedstat_inc(cfs_rq, nr_spread_over);
  506. #endif
  507. }
  508. static void
  509. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  510. {
  511. u64 vruntime;
  512. if (first_fair(cfs_rq)) {
  513. vruntime = min_vruntime(cfs_rq->min_vruntime,
  514. __pick_next_entity(cfs_rq)->vruntime);
  515. } else
  516. vruntime = cfs_rq->min_vruntime;
  517. /*
  518. * The 'current' period is already promised to the current tasks,
  519. * however the extra weight of the new task will slow them down a
  520. * little, place the new task so that it fits in the slot that
  521. * stays open at the end.
  522. */
  523. if (initial && sched_feat(START_DEBIT))
  524. vruntime += sched_vslice(cfs_rq, se);
  525. if (!initial) {
  526. /* sleeps upto a single latency don't count. */
  527. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  528. unsigned long thresh = sysctl_sched_latency;
  529. /*
  530. * convert the sleeper threshold into virtual time
  531. */
  532. if (sched_feat(NORMALIZED_SLEEPER))
  533. thresh = calc_delta_fair(thresh, se);
  534. vruntime -= thresh;
  535. }
  536. /* ensure we never gain time by being placed backwards. */
  537. vruntime = max_vruntime(se->vruntime, vruntime);
  538. }
  539. se->vruntime = vruntime;
  540. }
  541. static void
  542. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  543. {
  544. /*
  545. * Update run-time statistics of the 'current'.
  546. */
  547. update_curr(cfs_rq);
  548. account_entity_enqueue(cfs_rq, se);
  549. if (wakeup) {
  550. place_entity(cfs_rq, se, 0);
  551. enqueue_sleeper(cfs_rq, se);
  552. }
  553. update_stats_enqueue(cfs_rq, se);
  554. check_spread(cfs_rq, se);
  555. if (se != cfs_rq->curr)
  556. __enqueue_entity(cfs_rq, se);
  557. }
  558. static void
  559. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  560. {
  561. /*
  562. * Update run-time statistics of the 'current'.
  563. */
  564. update_curr(cfs_rq);
  565. update_stats_dequeue(cfs_rq, se);
  566. if (sleep) {
  567. #ifdef CONFIG_SCHEDSTATS
  568. if (entity_is_task(se)) {
  569. struct task_struct *tsk = task_of(se);
  570. if (tsk->state & TASK_INTERRUPTIBLE)
  571. se->sleep_start = rq_of(cfs_rq)->clock;
  572. if (tsk->state & TASK_UNINTERRUPTIBLE)
  573. se->block_start = rq_of(cfs_rq)->clock;
  574. }
  575. #endif
  576. }
  577. if (se != cfs_rq->curr)
  578. __dequeue_entity(cfs_rq, se);
  579. account_entity_dequeue(cfs_rq, se);
  580. }
  581. /*
  582. * Preempt the current task with a newly woken task if needed:
  583. */
  584. static void
  585. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  586. {
  587. unsigned long ideal_runtime, delta_exec;
  588. ideal_runtime = sched_slice(cfs_rq, curr);
  589. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  590. if (delta_exec > ideal_runtime)
  591. resched_task(rq_of(cfs_rq)->curr);
  592. }
  593. static void
  594. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  595. {
  596. /* 'current' is not kept within the tree. */
  597. if (se->on_rq) {
  598. /*
  599. * Any task has to be enqueued before it get to execute on
  600. * a CPU. So account for the time it spent waiting on the
  601. * runqueue.
  602. */
  603. update_stats_wait_end(cfs_rq, se);
  604. __dequeue_entity(cfs_rq, se);
  605. }
  606. update_stats_curr_start(cfs_rq, se);
  607. cfs_rq->curr = se;
  608. #ifdef CONFIG_SCHEDSTATS
  609. /*
  610. * Track our maximum slice length, if the CPU's load is at
  611. * least twice that of our own weight (i.e. dont track it
  612. * when there are only lesser-weight tasks around):
  613. */
  614. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  615. se->slice_max = max(se->slice_max,
  616. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  617. }
  618. #endif
  619. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  620. }
  621. static struct sched_entity *
  622. pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
  623. {
  624. struct rq *rq = rq_of(cfs_rq);
  625. u64 pair_slice = rq->clock - cfs_rq->pair_start;
  626. if (!cfs_rq->next || pair_slice > sysctl_sched_min_granularity) {
  627. cfs_rq->pair_start = rq->clock;
  628. return se;
  629. }
  630. return cfs_rq->next;
  631. }
  632. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  633. {
  634. struct sched_entity *se = NULL;
  635. if (first_fair(cfs_rq)) {
  636. se = __pick_next_entity(cfs_rq);
  637. se = pick_next(cfs_rq, se);
  638. set_next_entity(cfs_rq, se);
  639. }
  640. return se;
  641. }
  642. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  643. {
  644. /*
  645. * If still on the runqueue then deactivate_task()
  646. * was not called and update_curr() has to be done:
  647. */
  648. if (prev->on_rq)
  649. update_curr(cfs_rq);
  650. check_spread(cfs_rq, prev);
  651. if (prev->on_rq) {
  652. update_stats_wait_start(cfs_rq, prev);
  653. /* Put 'current' back into the tree. */
  654. __enqueue_entity(cfs_rq, prev);
  655. }
  656. cfs_rq->curr = NULL;
  657. }
  658. static void
  659. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  660. {
  661. /*
  662. * Update run-time statistics of the 'current'.
  663. */
  664. update_curr(cfs_rq);
  665. #ifdef CONFIG_SCHED_HRTICK
  666. /*
  667. * queued ticks are scheduled to match the slice, so don't bother
  668. * validating it and just reschedule.
  669. */
  670. if (queued) {
  671. resched_task(rq_of(cfs_rq)->curr);
  672. return;
  673. }
  674. /*
  675. * don't let the period tick interfere with the hrtick preemption
  676. */
  677. if (!sched_feat(DOUBLE_TICK) &&
  678. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  679. return;
  680. #endif
  681. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  682. check_preempt_tick(cfs_rq, curr);
  683. }
  684. /**************************************************
  685. * CFS operations on tasks:
  686. */
  687. #ifdef CONFIG_SCHED_HRTICK
  688. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  689. {
  690. struct sched_entity *se = &p->se;
  691. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  692. WARN_ON(task_rq(p) != rq);
  693. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  694. u64 slice = sched_slice(cfs_rq, se);
  695. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  696. s64 delta = slice - ran;
  697. if (delta < 0) {
  698. if (rq->curr == p)
  699. resched_task(p);
  700. return;
  701. }
  702. /*
  703. * Don't schedule slices shorter than 10000ns, that just
  704. * doesn't make sense. Rely on vruntime for fairness.
  705. */
  706. if (rq->curr != p)
  707. delta = max_t(s64, 10000LL, delta);
  708. hrtick_start(rq, delta);
  709. }
  710. }
  711. /*
  712. * called from enqueue/dequeue and updates the hrtick when the
  713. * current task is from our class and nr_running is low enough
  714. * to matter.
  715. */
  716. static void hrtick_update(struct rq *rq)
  717. {
  718. struct task_struct *curr = rq->curr;
  719. if (curr->sched_class != &fair_sched_class)
  720. return;
  721. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  722. hrtick_start_fair(rq, curr);
  723. }
  724. #else /* !CONFIG_SCHED_HRTICK */
  725. static inline void
  726. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  727. {
  728. }
  729. static inline void hrtick_update(struct rq *rq)
  730. {
  731. }
  732. #endif
  733. /*
  734. * The enqueue_task method is called before nr_running is
  735. * increased. Here we update the fair scheduling stats and
  736. * then put the task into the rbtree:
  737. */
  738. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  739. {
  740. struct cfs_rq *cfs_rq;
  741. struct sched_entity *se = &p->se;
  742. for_each_sched_entity(se) {
  743. if (se->on_rq)
  744. break;
  745. cfs_rq = cfs_rq_of(se);
  746. enqueue_entity(cfs_rq, se, wakeup);
  747. wakeup = 1;
  748. }
  749. hrtick_update(rq);
  750. }
  751. /*
  752. * The dequeue_task method is called before nr_running is
  753. * decreased. We remove the task from the rbtree and
  754. * update the fair scheduling stats:
  755. */
  756. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  757. {
  758. struct cfs_rq *cfs_rq;
  759. struct sched_entity *se = &p->se;
  760. for_each_sched_entity(se) {
  761. cfs_rq = cfs_rq_of(se);
  762. dequeue_entity(cfs_rq, se, sleep);
  763. /* Don't dequeue parent if it has other entities besides us */
  764. if (cfs_rq->load.weight)
  765. break;
  766. sleep = 1;
  767. }
  768. hrtick_update(rq);
  769. }
  770. /*
  771. * sched_yield() support is very simple - we dequeue and enqueue.
  772. *
  773. * If compat_yield is turned on then we requeue to the end of the tree.
  774. */
  775. static void yield_task_fair(struct rq *rq)
  776. {
  777. struct task_struct *curr = rq->curr;
  778. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  779. struct sched_entity *rightmost, *se = &curr->se;
  780. /*
  781. * Are we the only task in the tree?
  782. */
  783. if (unlikely(cfs_rq->nr_running == 1))
  784. return;
  785. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  786. update_rq_clock(rq);
  787. /*
  788. * Update run-time statistics of the 'current'.
  789. */
  790. update_curr(cfs_rq);
  791. return;
  792. }
  793. /*
  794. * Find the rightmost entry in the rbtree:
  795. */
  796. rightmost = __pick_last_entity(cfs_rq);
  797. /*
  798. * Already in the rightmost position?
  799. */
  800. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  801. return;
  802. /*
  803. * Minimally necessary key value to be last in the tree:
  804. * Upon rescheduling, sched_class::put_prev_task() will place
  805. * 'current' within the tree based on its new key value.
  806. */
  807. se->vruntime = rightmost->vruntime + 1;
  808. }
  809. /*
  810. * wake_idle() will wake a task on an idle cpu if task->cpu is
  811. * not idle and an idle cpu is available. The span of cpus to
  812. * search starts with cpus closest then further out as needed,
  813. * so we always favor a closer, idle cpu.
  814. * Domains may include CPUs that are not usable for migration,
  815. * hence we need to mask them out (cpu_active_map)
  816. *
  817. * Returns the CPU we should wake onto.
  818. */
  819. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  820. static int wake_idle(int cpu, struct task_struct *p)
  821. {
  822. cpumask_t tmp;
  823. struct sched_domain *sd;
  824. int i;
  825. /*
  826. * If it is idle, then it is the best cpu to run this task.
  827. *
  828. * This cpu is also the best, if it has more than one task already.
  829. * Siblings must be also busy(in most cases) as they didn't already
  830. * pickup the extra load from this cpu and hence we need not check
  831. * sibling runqueue info. This will avoid the checks and cache miss
  832. * penalities associated with that.
  833. */
  834. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  835. return cpu;
  836. for_each_domain(cpu, sd) {
  837. if ((sd->flags & SD_WAKE_IDLE)
  838. || ((sd->flags & SD_WAKE_IDLE_FAR)
  839. && !task_hot(p, task_rq(p)->clock, sd))) {
  840. cpus_and(tmp, sd->span, p->cpus_allowed);
  841. cpus_and(tmp, tmp, cpu_active_map);
  842. for_each_cpu_mask_nr(i, tmp) {
  843. if (idle_cpu(i)) {
  844. if (i != task_cpu(p)) {
  845. schedstat_inc(p,
  846. se.nr_wakeups_idle);
  847. }
  848. return i;
  849. }
  850. }
  851. } else {
  852. break;
  853. }
  854. }
  855. return cpu;
  856. }
  857. #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
  858. static inline int wake_idle(int cpu, struct task_struct *p)
  859. {
  860. return cpu;
  861. }
  862. #endif
  863. #ifdef CONFIG_SMP
  864. #ifdef CONFIG_FAIR_GROUP_SCHED
  865. /*
  866. * effective_load() calculates the load change as seen from the root_task_group
  867. *
  868. * Adding load to a group doesn't make a group heavier, but can cause movement
  869. * of group shares between cpus. Assuming the shares were perfectly aligned one
  870. * can calculate the shift in shares.
  871. *
  872. * The problem is that perfectly aligning the shares is rather expensive, hence
  873. * we try to avoid doing that too often - see update_shares(), which ratelimits
  874. * this change.
  875. *
  876. * We compensate this by not only taking the current delta into account, but
  877. * also considering the delta between when the shares were last adjusted and
  878. * now.
  879. *
  880. * We still saw a performance dip, some tracing learned us that between
  881. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  882. * significantly. Therefore try to bias the error in direction of failing
  883. * the affine wakeup.
  884. *
  885. */
  886. static long effective_load(struct task_group *tg, int cpu,
  887. long wl, long wg)
  888. {
  889. struct sched_entity *se = tg->se[cpu];
  890. if (!tg->parent)
  891. return wl;
  892. /*
  893. * By not taking the decrease of shares on the other cpu into
  894. * account our error leans towards reducing the affine wakeups.
  895. */
  896. if (!wl && sched_feat(ASYM_EFF_LOAD))
  897. return wl;
  898. for_each_sched_entity(se) {
  899. long S, rw, s, a, b;
  900. long more_w;
  901. /*
  902. * Instead of using this increment, also add the difference
  903. * between when the shares were last updated and now.
  904. */
  905. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  906. wl += more_w;
  907. wg += more_w;
  908. S = se->my_q->tg->shares;
  909. s = se->my_q->shares;
  910. rw = se->my_q->rq_weight;
  911. a = S*(rw + wl);
  912. b = S*rw + s*wg;
  913. wl = s*(a-b);
  914. if (likely(b))
  915. wl /= b;
  916. /*
  917. * Assume the group is already running and will
  918. * thus already be accounted for in the weight.
  919. *
  920. * That is, moving shares between CPUs, does not
  921. * alter the group weight.
  922. */
  923. wg = 0;
  924. }
  925. return wl;
  926. }
  927. #else
  928. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  929. unsigned long wl, unsigned long wg)
  930. {
  931. return wl;
  932. }
  933. #endif
  934. static int
  935. wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
  936. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  937. int idx, unsigned long load, unsigned long this_load,
  938. unsigned int imbalance)
  939. {
  940. struct task_struct *curr = this_rq->curr;
  941. struct task_group *tg;
  942. unsigned long tl = this_load;
  943. unsigned long tl_per_task;
  944. unsigned long weight;
  945. int balanced;
  946. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  947. return 0;
  948. if (!sync && sched_feat(SYNC_WAKEUPS) &&
  949. curr->se.avg_overlap < sysctl_sched_migration_cost &&
  950. p->se.avg_overlap < sysctl_sched_migration_cost)
  951. sync = 1;
  952. /*
  953. * If sync wakeup then subtract the (maximum possible)
  954. * effect of the currently running task from the load
  955. * of the current CPU:
  956. */
  957. if (sync) {
  958. tg = task_group(current);
  959. weight = current->se.load.weight;
  960. tl += effective_load(tg, this_cpu, -weight, -weight);
  961. load += effective_load(tg, prev_cpu, 0, -weight);
  962. }
  963. tg = task_group(p);
  964. weight = p->se.load.weight;
  965. balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
  966. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  967. /*
  968. * If the currently running task will sleep within
  969. * a reasonable amount of time then attract this newly
  970. * woken task:
  971. */
  972. if (sync && balanced)
  973. return 1;
  974. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  975. tl_per_task = cpu_avg_load_per_task(this_cpu);
  976. if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
  977. tl_per_task)) {
  978. /*
  979. * This domain has SD_WAKE_AFFINE and
  980. * p is cache cold in this domain, and
  981. * there is no bad imbalance.
  982. */
  983. schedstat_inc(this_sd, ttwu_move_affine);
  984. schedstat_inc(p, se.nr_wakeups_affine);
  985. return 1;
  986. }
  987. return 0;
  988. }
  989. static int select_task_rq_fair(struct task_struct *p, int sync)
  990. {
  991. struct sched_domain *sd, *this_sd = NULL;
  992. int prev_cpu, this_cpu, new_cpu;
  993. unsigned long load, this_load;
  994. struct rq *this_rq;
  995. unsigned int imbalance;
  996. int idx;
  997. prev_cpu = task_cpu(p);
  998. this_cpu = smp_processor_id();
  999. this_rq = cpu_rq(this_cpu);
  1000. new_cpu = prev_cpu;
  1001. if (prev_cpu == this_cpu)
  1002. goto out;
  1003. /*
  1004. * 'this_sd' is the first domain that both
  1005. * this_cpu and prev_cpu are present in:
  1006. */
  1007. for_each_domain(this_cpu, sd) {
  1008. if (cpu_isset(prev_cpu, sd->span)) {
  1009. this_sd = sd;
  1010. break;
  1011. }
  1012. }
  1013. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1014. goto out;
  1015. /*
  1016. * Check for affine wakeup and passive balancing possibilities.
  1017. */
  1018. if (!this_sd)
  1019. goto out;
  1020. idx = this_sd->wake_idx;
  1021. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1022. load = source_load(prev_cpu, idx);
  1023. this_load = target_load(this_cpu, idx);
  1024. if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  1025. load, this_load, imbalance))
  1026. return this_cpu;
  1027. /*
  1028. * Start passive balancing when half the imbalance_pct
  1029. * limit is reached.
  1030. */
  1031. if (this_sd->flags & SD_WAKE_BALANCE) {
  1032. if (imbalance*this_load <= 100*load) {
  1033. schedstat_inc(this_sd, ttwu_move_balance);
  1034. schedstat_inc(p, se.nr_wakeups_passive);
  1035. return this_cpu;
  1036. }
  1037. }
  1038. out:
  1039. return wake_idle(new_cpu, p);
  1040. }
  1041. #endif /* CONFIG_SMP */
  1042. static unsigned long wakeup_gran(struct sched_entity *se)
  1043. {
  1044. unsigned long gran = sysctl_sched_wakeup_granularity;
  1045. /*
  1046. * More easily preempt - nice tasks, while not making it harder for
  1047. * + nice tasks.
  1048. */
  1049. if (sched_feat(ASYM_GRAN))
  1050. gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
  1051. return gran;
  1052. }
  1053. /*
  1054. * Preempt the current task with a newly woken task if needed:
  1055. */
  1056. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
  1057. {
  1058. struct task_struct *curr = rq->curr;
  1059. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1060. struct sched_entity *se = &curr->se, *pse = &p->se;
  1061. s64 delta_exec;
  1062. if (unlikely(rt_prio(p->prio))) {
  1063. update_rq_clock(rq);
  1064. update_curr(cfs_rq);
  1065. resched_task(curr);
  1066. return;
  1067. }
  1068. if (unlikely(se == pse))
  1069. return;
  1070. cfs_rq_of(pse)->next = pse;
  1071. /*
  1072. * We can come here with TIF_NEED_RESCHED already set from new task
  1073. * wake up path.
  1074. */
  1075. if (test_tsk_need_resched(curr))
  1076. return;
  1077. /*
  1078. * Batch tasks do not preempt (their preemption is driven by
  1079. * the tick):
  1080. */
  1081. if (unlikely(p->policy == SCHED_BATCH))
  1082. return;
  1083. if (!sched_feat(WAKEUP_PREEMPT))
  1084. return;
  1085. if (sched_feat(WAKEUP_OVERLAP) && (sync ||
  1086. (se->avg_overlap < sysctl_sched_migration_cost &&
  1087. pse->avg_overlap < sysctl_sched_migration_cost))) {
  1088. resched_task(curr);
  1089. return;
  1090. }
  1091. delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1092. if (delta_exec > wakeup_gran(pse))
  1093. resched_task(curr);
  1094. }
  1095. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1096. {
  1097. struct task_struct *p;
  1098. struct cfs_rq *cfs_rq = &rq->cfs;
  1099. struct sched_entity *se;
  1100. if (unlikely(!cfs_rq->nr_running))
  1101. return NULL;
  1102. do {
  1103. se = pick_next_entity(cfs_rq);
  1104. cfs_rq = group_cfs_rq(se);
  1105. } while (cfs_rq);
  1106. p = task_of(se);
  1107. hrtick_start_fair(rq, p);
  1108. return p;
  1109. }
  1110. /*
  1111. * Account for a descheduled task:
  1112. */
  1113. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1114. {
  1115. struct sched_entity *se = &prev->se;
  1116. struct cfs_rq *cfs_rq;
  1117. for_each_sched_entity(se) {
  1118. cfs_rq = cfs_rq_of(se);
  1119. put_prev_entity(cfs_rq, se);
  1120. }
  1121. }
  1122. #ifdef CONFIG_SMP
  1123. /**************************************************
  1124. * Fair scheduling class load-balancing methods:
  1125. */
  1126. /*
  1127. * Load-balancing iterator. Note: while the runqueue stays locked
  1128. * during the whole iteration, the current task might be
  1129. * dequeued so the iterator has to be dequeue-safe. Here we
  1130. * achieve that by always pre-iterating before returning
  1131. * the current task:
  1132. */
  1133. static struct task_struct *
  1134. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1135. {
  1136. struct task_struct *p = NULL;
  1137. struct sched_entity *se;
  1138. if (next == &cfs_rq->tasks)
  1139. return NULL;
  1140. se = list_entry(next, struct sched_entity, group_node);
  1141. p = task_of(se);
  1142. cfs_rq->balance_iterator = next->next;
  1143. return p;
  1144. }
  1145. static struct task_struct *load_balance_start_fair(void *arg)
  1146. {
  1147. struct cfs_rq *cfs_rq = arg;
  1148. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1149. }
  1150. static struct task_struct *load_balance_next_fair(void *arg)
  1151. {
  1152. struct cfs_rq *cfs_rq = arg;
  1153. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1154. }
  1155. static unsigned long
  1156. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1157. unsigned long max_load_move, struct sched_domain *sd,
  1158. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1159. struct cfs_rq *cfs_rq)
  1160. {
  1161. struct rq_iterator cfs_rq_iterator;
  1162. cfs_rq_iterator.start = load_balance_start_fair;
  1163. cfs_rq_iterator.next = load_balance_next_fair;
  1164. cfs_rq_iterator.arg = cfs_rq;
  1165. return balance_tasks(this_rq, this_cpu, busiest,
  1166. max_load_move, sd, idle, all_pinned,
  1167. this_best_prio, &cfs_rq_iterator);
  1168. }
  1169. #ifdef CONFIG_FAIR_GROUP_SCHED
  1170. static unsigned long
  1171. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1172. unsigned long max_load_move,
  1173. struct sched_domain *sd, enum cpu_idle_type idle,
  1174. int *all_pinned, int *this_best_prio)
  1175. {
  1176. long rem_load_move = max_load_move;
  1177. int busiest_cpu = cpu_of(busiest);
  1178. struct task_group *tg;
  1179. rcu_read_lock();
  1180. update_h_load(busiest_cpu);
  1181. list_for_each_entry_rcu(tg, &task_groups, list) {
  1182. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1183. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1184. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1185. u64 rem_load, moved_load;
  1186. /*
  1187. * empty group
  1188. */
  1189. if (!busiest_cfs_rq->task_weight)
  1190. continue;
  1191. rem_load = (u64)rem_load_move * busiest_weight;
  1192. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1193. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1194. rem_load, sd, idle, all_pinned, this_best_prio,
  1195. tg->cfs_rq[busiest_cpu]);
  1196. if (!moved_load)
  1197. continue;
  1198. moved_load *= busiest_h_load;
  1199. moved_load = div_u64(moved_load, busiest_weight + 1);
  1200. rem_load_move -= moved_load;
  1201. if (rem_load_move < 0)
  1202. break;
  1203. }
  1204. rcu_read_unlock();
  1205. return max_load_move - rem_load_move;
  1206. }
  1207. #else
  1208. static unsigned long
  1209. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1210. unsigned long max_load_move,
  1211. struct sched_domain *sd, enum cpu_idle_type idle,
  1212. int *all_pinned, int *this_best_prio)
  1213. {
  1214. return __load_balance_fair(this_rq, this_cpu, busiest,
  1215. max_load_move, sd, idle, all_pinned,
  1216. this_best_prio, &busiest->cfs);
  1217. }
  1218. #endif
  1219. static int
  1220. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1221. struct sched_domain *sd, enum cpu_idle_type idle)
  1222. {
  1223. struct cfs_rq *busy_cfs_rq;
  1224. struct rq_iterator cfs_rq_iterator;
  1225. cfs_rq_iterator.start = load_balance_start_fair;
  1226. cfs_rq_iterator.next = load_balance_next_fair;
  1227. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1228. /*
  1229. * pass busy_cfs_rq argument into
  1230. * load_balance_[start|next]_fair iterators
  1231. */
  1232. cfs_rq_iterator.arg = busy_cfs_rq;
  1233. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1234. &cfs_rq_iterator))
  1235. return 1;
  1236. }
  1237. return 0;
  1238. }
  1239. #endif /* CONFIG_SMP */
  1240. /*
  1241. * scheduler tick hitting a task of our scheduling class:
  1242. */
  1243. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1244. {
  1245. struct cfs_rq *cfs_rq;
  1246. struct sched_entity *se = &curr->se;
  1247. for_each_sched_entity(se) {
  1248. cfs_rq = cfs_rq_of(se);
  1249. entity_tick(cfs_rq, se, queued);
  1250. }
  1251. }
  1252. #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  1253. /*
  1254. * Share the fairness runtime between parent and child, thus the
  1255. * total amount of pressure for CPU stays equal - new tasks
  1256. * get a chance to run but frequent forkers are not allowed to
  1257. * monopolize the CPU. Note: the parent runqueue is locked,
  1258. * the child is not running yet.
  1259. */
  1260. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1261. {
  1262. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1263. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1264. int this_cpu = smp_processor_id();
  1265. sched_info_queued(p);
  1266. update_curr(cfs_rq);
  1267. place_entity(cfs_rq, se, 1);
  1268. /* 'curr' will be NULL if the child belongs to a different group */
  1269. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1270. curr && curr->vruntime < se->vruntime) {
  1271. /*
  1272. * Upon rescheduling, sched_class::put_prev_task() will place
  1273. * 'current' within the tree based on its new key value.
  1274. */
  1275. swap(curr->vruntime, se->vruntime);
  1276. resched_task(rq->curr);
  1277. }
  1278. enqueue_task_fair(rq, p, 0);
  1279. }
  1280. /*
  1281. * Priority of the task has changed. Check to see if we preempt
  1282. * the current task.
  1283. */
  1284. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1285. int oldprio, int running)
  1286. {
  1287. /*
  1288. * Reschedule if we are currently running on this runqueue and
  1289. * our priority decreased, or if we are not currently running on
  1290. * this runqueue and our priority is higher than the current's
  1291. */
  1292. if (running) {
  1293. if (p->prio > oldprio)
  1294. resched_task(rq->curr);
  1295. } else
  1296. check_preempt_curr(rq, p, 0);
  1297. }
  1298. /*
  1299. * We switched to the sched_fair class.
  1300. */
  1301. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1302. int running)
  1303. {
  1304. /*
  1305. * We were most likely switched from sched_rt, so
  1306. * kick off the schedule if running, otherwise just see
  1307. * if we can still preempt the current task.
  1308. */
  1309. if (running)
  1310. resched_task(rq->curr);
  1311. else
  1312. check_preempt_curr(rq, p, 0);
  1313. }
  1314. /* Account for a task changing its policy or group.
  1315. *
  1316. * This routine is mostly called to set cfs_rq->curr field when a task
  1317. * migrates between groups/classes.
  1318. */
  1319. static void set_curr_task_fair(struct rq *rq)
  1320. {
  1321. struct sched_entity *se = &rq->curr->se;
  1322. for_each_sched_entity(se)
  1323. set_next_entity(cfs_rq_of(se), se);
  1324. }
  1325. #ifdef CONFIG_FAIR_GROUP_SCHED
  1326. static void moved_group_fair(struct task_struct *p)
  1327. {
  1328. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1329. update_curr(cfs_rq);
  1330. place_entity(cfs_rq, &p->se, 1);
  1331. }
  1332. #endif
  1333. /*
  1334. * All the scheduling class methods:
  1335. */
  1336. static const struct sched_class fair_sched_class = {
  1337. .next = &idle_sched_class,
  1338. .enqueue_task = enqueue_task_fair,
  1339. .dequeue_task = dequeue_task_fair,
  1340. .yield_task = yield_task_fair,
  1341. .check_preempt_curr = check_preempt_wakeup,
  1342. .pick_next_task = pick_next_task_fair,
  1343. .put_prev_task = put_prev_task_fair,
  1344. #ifdef CONFIG_SMP
  1345. .select_task_rq = select_task_rq_fair,
  1346. .load_balance = load_balance_fair,
  1347. .move_one_task = move_one_task_fair,
  1348. #endif
  1349. .set_curr_task = set_curr_task_fair,
  1350. .task_tick = task_tick_fair,
  1351. .task_new = task_new_fair,
  1352. .prio_changed = prio_changed_fair,
  1353. .switched_to = switched_to_fair,
  1354. #ifdef CONFIG_FAIR_GROUP_SCHED
  1355. .moved_group = moved_group_fair,
  1356. #endif
  1357. };
  1358. #ifdef CONFIG_SCHED_DEBUG
  1359. static void print_cfs_stats(struct seq_file *m, int cpu)
  1360. {
  1361. struct cfs_rq *cfs_rq;
  1362. rcu_read_lock();
  1363. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1364. print_cfs_rq(m, cpu, cfs_rq);
  1365. rcu_read_unlock();
  1366. }
  1367. #endif