cpuset.c 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/module.h>
  39. #include <linux/mount.h>
  40. #include <linux/namei.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/proc_fs.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/sched.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/security.h>
  47. #include <linux/slab.h>
  48. #include <linux/spinlock.h>
  49. #include <linux/stat.h>
  50. #include <linux/string.h>
  51. #include <linux/time.h>
  52. #include <linux/backing-dev.h>
  53. #include <linux/sort.h>
  54. #include <asm/uaccess.h>
  55. #include <asm/atomic.h>
  56. #include <linux/mutex.h>
  57. #include <linux/workqueue.h>
  58. #include <linux/cgroup.h>
  59. /*
  60. * Tracks how many cpusets are currently defined in system.
  61. * When there is only one cpuset (the root cpuset) we can
  62. * short circuit some hooks.
  63. */
  64. int number_of_cpusets __read_mostly;
  65. /* Forward declare cgroup structures */
  66. struct cgroup_subsys cpuset_subsys;
  67. struct cpuset;
  68. /* See "Frequency meter" comments, below. */
  69. struct fmeter {
  70. int cnt; /* unprocessed events count */
  71. int val; /* most recent output value */
  72. time_t time; /* clock (secs) when val computed */
  73. spinlock_t lock; /* guards read or write of above */
  74. };
  75. struct cpuset {
  76. struct cgroup_subsys_state css;
  77. unsigned long flags; /* "unsigned long" so bitops work */
  78. cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  79. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  80. struct cpuset *parent; /* my parent */
  81. /*
  82. * Copy of global cpuset_mems_generation as of the most
  83. * recent time this cpuset changed its mems_allowed.
  84. */
  85. int mems_generation;
  86. struct fmeter fmeter; /* memory_pressure filter */
  87. /* partition number for rebuild_sched_domains() */
  88. int pn;
  89. /* for custom sched domain */
  90. int relax_domain_level;
  91. /* used for walking a cpuset heirarchy */
  92. struct list_head stack_list;
  93. };
  94. /* Retrieve the cpuset for a cgroup */
  95. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  96. {
  97. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  98. struct cpuset, css);
  99. }
  100. /* Retrieve the cpuset for a task */
  101. static inline struct cpuset *task_cs(struct task_struct *task)
  102. {
  103. return container_of(task_subsys_state(task, cpuset_subsys_id),
  104. struct cpuset, css);
  105. }
  106. struct cpuset_hotplug_scanner {
  107. struct cgroup_scanner scan;
  108. struct cgroup *to;
  109. };
  110. /* bits in struct cpuset flags field */
  111. typedef enum {
  112. CS_CPU_EXCLUSIVE,
  113. CS_MEM_EXCLUSIVE,
  114. CS_MEM_HARDWALL,
  115. CS_MEMORY_MIGRATE,
  116. CS_SCHED_LOAD_BALANCE,
  117. CS_SPREAD_PAGE,
  118. CS_SPREAD_SLAB,
  119. } cpuset_flagbits_t;
  120. /* convenient tests for these bits */
  121. static inline int is_cpu_exclusive(const struct cpuset *cs)
  122. {
  123. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  124. }
  125. static inline int is_mem_exclusive(const struct cpuset *cs)
  126. {
  127. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  128. }
  129. static inline int is_mem_hardwall(const struct cpuset *cs)
  130. {
  131. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  132. }
  133. static inline int is_sched_load_balance(const struct cpuset *cs)
  134. {
  135. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  136. }
  137. static inline int is_memory_migrate(const struct cpuset *cs)
  138. {
  139. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  140. }
  141. static inline int is_spread_page(const struct cpuset *cs)
  142. {
  143. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  144. }
  145. static inline int is_spread_slab(const struct cpuset *cs)
  146. {
  147. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  148. }
  149. /*
  150. * Increment this integer everytime any cpuset changes its
  151. * mems_allowed value. Users of cpusets can track this generation
  152. * number, and avoid having to lock and reload mems_allowed unless
  153. * the cpuset they're using changes generation.
  154. *
  155. * A single, global generation is needed because cpuset_attach_task() could
  156. * reattach a task to a different cpuset, which must not have its
  157. * generation numbers aliased with those of that tasks previous cpuset.
  158. *
  159. * Generations are needed for mems_allowed because one task cannot
  160. * modify another's memory placement. So we must enable every task,
  161. * on every visit to __alloc_pages(), to efficiently check whether
  162. * its current->cpuset->mems_allowed has changed, requiring an update
  163. * of its current->mems_allowed.
  164. *
  165. * Since writes to cpuset_mems_generation are guarded by the cgroup lock
  166. * there is no need to mark it atomic.
  167. */
  168. static int cpuset_mems_generation;
  169. static struct cpuset top_cpuset = {
  170. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  171. .cpus_allowed = CPU_MASK_ALL,
  172. .mems_allowed = NODE_MASK_ALL,
  173. };
  174. /*
  175. * There are two global mutexes guarding cpuset structures. The first
  176. * is the main control groups cgroup_mutex, accessed via
  177. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  178. * callback_mutex, below. They can nest. It is ok to first take
  179. * cgroup_mutex, then nest callback_mutex. We also require taking
  180. * task_lock() when dereferencing a task's cpuset pointer. See "The
  181. * task_lock() exception", at the end of this comment.
  182. *
  183. * A task must hold both mutexes to modify cpusets. If a task
  184. * holds cgroup_mutex, then it blocks others wanting that mutex,
  185. * ensuring that it is the only task able to also acquire callback_mutex
  186. * and be able to modify cpusets. It can perform various checks on
  187. * the cpuset structure first, knowing nothing will change. It can
  188. * also allocate memory while just holding cgroup_mutex. While it is
  189. * performing these checks, various callback routines can briefly
  190. * acquire callback_mutex to query cpusets. Once it is ready to make
  191. * the changes, it takes callback_mutex, blocking everyone else.
  192. *
  193. * Calls to the kernel memory allocator can not be made while holding
  194. * callback_mutex, as that would risk double tripping on callback_mutex
  195. * from one of the callbacks into the cpuset code from within
  196. * __alloc_pages().
  197. *
  198. * If a task is only holding callback_mutex, then it has read-only
  199. * access to cpusets.
  200. *
  201. * The task_struct fields mems_allowed and mems_generation may only
  202. * be accessed in the context of that task, so require no locks.
  203. *
  204. * The cpuset_common_file_read() handlers only hold callback_mutex across
  205. * small pieces of code, such as when reading out possibly multi-word
  206. * cpumasks and nodemasks.
  207. *
  208. * Accessing a task's cpuset should be done in accordance with the
  209. * guidelines for accessing subsystem state in kernel/cgroup.c
  210. */
  211. static DEFINE_MUTEX(callback_mutex);
  212. /*
  213. * This is ugly, but preserves the userspace API for existing cpuset
  214. * users. If someone tries to mount the "cpuset" filesystem, we
  215. * silently switch it to mount "cgroup" instead
  216. */
  217. static int cpuset_get_sb(struct file_system_type *fs_type,
  218. int flags, const char *unused_dev_name,
  219. void *data, struct vfsmount *mnt)
  220. {
  221. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  222. int ret = -ENODEV;
  223. if (cgroup_fs) {
  224. char mountopts[] =
  225. "cpuset,noprefix,"
  226. "release_agent=/sbin/cpuset_release_agent";
  227. ret = cgroup_fs->get_sb(cgroup_fs, flags,
  228. unused_dev_name, mountopts, mnt);
  229. put_filesystem(cgroup_fs);
  230. }
  231. return ret;
  232. }
  233. static struct file_system_type cpuset_fs_type = {
  234. .name = "cpuset",
  235. .get_sb = cpuset_get_sb,
  236. };
  237. /*
  238. * Return in *pmask the portion of a cpusets's cpus_allowed that
  239. * are online. If none are online, walk up the cpuset hierarchy
  240. * until we find one that does have some online cpus. If we get
  241. * all the way to the top and still haven't found any online cpus,
  242. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  243. * task, return cpu_online_map.
  244. *
  245. * One way or another, we guarantee to return some non-empty subset
  246. * of cpu_online_map.
  247. *
  248. * Call with callback_mutex held.
  249. */
  250. static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
  251. {
  252. while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
  253. cs = cs->parent;
  254. if (cs)
  255. cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
  256. else
  257. *pmask = cpu_online_map;
  258. BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
  259. }
  260. /*
  261. * Return in *pmask the portion of a cpusets's mems_allowed that
  262. * are online, with memory. If none are online with memory, walk
  263. * up the cpuset hierarchy until we find one that does have some
  264. * online mems. If we get all the way to the top and still haven't
  265. * found any online mems, return node_states[N_HIGH_MEMORY].
  266. *
  267. * One way or another, we guarantee to return some non-empty subset
  268. * of node_states[N_HIGH_MEMORY].
  269. *
  270. * Call with callback_mutex held.
  271. */
  272. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  273. {
  274. while (cs && !nodes_intersects(cs->mems_allowed,
  275. node_states[N_HIGH_MEMORY]))
  276. cs = cs->parent;
  277. if (cs)
  278. nodes_and(*pmask, cs->mems_allowed,
  279. node_states[N_HIGH_MEMORY]);
  280. else
  281. *pmask = node_states[N_HIGH_MEMORY];
  282. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  283. }
  284. /**
  285. * cpuset_update_task_memory_state - update task memory placement
  286. *
  287. * If the current tasks cpusets mems_allowed changed behind our
  288. * backs, update current->mems_allowed, mems_generation and task NUMA
  289. * mempolicy to the new value.
  290. *
  291. * Task mempolicy is updated by rebinding it relative to the
  292. * current->cpuset if a task has its memory placement changed.
  293. * Do not call this routine if in_interrupt().
  294. *
  295. * Call without callback_mutex or task_lock() held. May be
  296. * called with or without cgroup_mutex held. Thanks in part to
  297. * 'the_top_cpuset_hack', the task's cpuset pointer will never
  298. * be NULL. This routine also might acquire callback_mutex during
  299. * call.
  300. *
  301. * Reading current->cpuset->mems_generation doesn't need task_lock
  302. * to guard the current->cpuset derefence, because it is guarded
  303. * from concurrent freeing of current->cpuset using RCU.
  304. *
  305. * The rcu_dereference() is technically probably not needed,
  306. * as I don't actually mind if I see a new cpuset pointer but
  307. * an old value of mems_generation. However this really only
  308. * matters on alpha systems using cpusets heavily. If I dropped
  309. * that rcu_dereference(), it would save them a memory barrier.
  310. * For all other arch's, rcu_dereference is a no-op anyway, and for
  311. * alpha systems not using cpusets, another planned optimization,
  312. * avoiding the rcu critical section for tasks in the root cpuset
  313. * which is statically allocated, so can't vanish, will make this
  314. * irrelevant. Better to use RCU as intended, than to engage in
  315. * some cute trick to save a memory barrier that is impossible to
  316. * test, for alpha systems using cpusets heavily, which might not
  317. * even exist.
  318. *
  319. * This routine is needed to update the per-task mems_allowed data,
  320. * within the tasks context, when it is trying to allocate memory
  321. * (in various mm/mempolicy.c routines) and notices that some other
  322. * task has been modifying its cpuset.
  323. */
  324. void cpuset_update_task_memory_state(void)
  325. {
  326. int my_cpusets_mem_gen;
  327. struct task_struct *tsk = current;
  328. struct cpuset *cs;
  329. if (task_cs(tsk) == &top_cpuset) {
  330. /* Don't need rcu for top_cpuset. It's never freed. */
  331. my_cpusets_mem_gen = top_cpuset.mems_generation;
  332. } else {
  333. rcu_read_lock();
  334. my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
  335. rcu_read_unlock();
  336. }
  337. if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
  338. mutex_lock(&callback_mutex);
  339. task_lock(tsk);
  340. cs = task_cs(tsk); /* Maybe changed when task not locked */
  341. guarantee_online_mems(cs, &tsk->mems_allowed);
  342. tsk->cpuset_mems_generation = cs->mems_generation;
  343. if (is_spread_page(cs))
  344. tsk->flags |= PF_SPREAD_PAGE;
  345. else
  346. tsk->flags &= ~PF_SPREAD_PAGE;
  347. if (is_spread_slab(cs))
  348. tsk->flags |= PF_SPREAD_SLAB;
  349. else
  350. tsk->flags &= ~PF_SPREAD_SLAB;
  351. task_unlock(tsk);
  352. mutex_unlock(&callback_mutex);
  353. mpol_rebind_task(tsk, &tsk->mems_allowed);
  354. }
  355. }
  356. /*
  357. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  358. *
  359. * One cpuset is a subset of another if all its allowed CPUs and
  360. * Memory Nodes are a subset of the other, and its exclusive flags
  361. * are only set if the other's are set. Call holding cgroup_mutex.
  362. */
  363. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  364. {
  365. return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
  366. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  367. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  368. is_mem_exclusive(p) <= is_mem_exclusive(q);
  369. }
  370. /*
  371. * validate_change() - Used to validate that any proposed cpuset change
  372. * follows the structural rules for cpusets.
  373. *
  374. * If we replaced the flag and mask values of the current cpuset
  375. * (cur) with those values in the trial cpuset (trial), would
  376. * our various subset and exclusive rules still be valid? Presumes
  377. * cgroup_mutex held.
  378. *
  379. * 'cur' is the address of an actual, in-use cpuset. Operations
  380. * such as list traversal that depend on the actual address of the
  381. * cpuset in the list must use cur below, not trial.
  382. *
  383. * 'trial' is the address of bulk structure copy of cur, with
  384. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  385. * or flags changed to new, trial values.
  386. *
  387. * Return 0 if valid, -errno if not.
  388. */
  389. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  390. {
  391. struct cgroup *cont;
  392. struct cpuset *c, *par;
  393. /* Each of our child cpusets must be a subset of us */
  394. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  395. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  396. return -EBUSY;
  397. }
  398. /* Remaining checks don't apply to root cpuset */
  399. if (cur == &top_cpuset)
  400. return 0;
  401. par = cur->parent;
  402. /* We must be a subset of our parent cpuset */
  403. if (!is_cpuset_subset(trial, par))
  404. return -EACCES;
  405. /*
  406. * If either I or some sibling (!= me) is exclusive, we can't
  407. * overlap
  408. */
  409. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  410. c = cgroup_cs(cont);
  411. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  412. c != cur &&
  413. cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
  414. return -EINVAL;
  415. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  416. c != cur &&
  417. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  418. return -EINVAL;
  419. }
  420. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  421. if (cgroup_task_count(cur->css.cgroup)) {
  422. if (cpus_empty(trial->cpus_allowed) ||
  423. nodes_empty(trial->mems_allowed)) {
  424. return -ENOSPC;
  425. }
  426. }
  427. return 0;
  428. }
  429. /*
  430. * Helper routine for generate_sched_domains().
  431. * Do cpusets a, b have overlapping cpus_allowed masks?
  432. */
  433. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  434. {
  435. return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
  436. }
  437. static void
  438. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  439. {
  440. if (dattr->relax_domain_level < c->relax_domain_level)
  441. dattr->relax_domain_level = c->relax_domain_level;
  442. return;
  443. }
  444. static void
  445. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  446. {
  447. LIST_HEAD(q);
  448. list_add(&c->stack_list, &q);
  449. while (!list_empty(&q)) {
  450. struct cpuset *cp;
  451. struct cgroup *cont;
  452. struct cpuset *child;
  453. cp = list_first_entry(&q, struct cpuset, stack_list);
  454. list_del(q.next);
  455. if (cpus_empty(cp->cpus_allowed))
  456. continue;
  457. if (is_sched_load_balance(cp))
  458. update_domain_attr(dattr, cp);
  459. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  460. child = cgroup_cs(cont);
  461. list_add_tail(&child->stack_list, &q);
  462. }
  463. }
  464. }
  465. /*
  466. * generate_sched_domains()
  467. *
  468. * This function builds a partial partition of the systems CPUs
  469. * A 'partial partition' is a set of non-overlapping subsets whose
  470. * union is a subset of that set.
  471. * The output of this function needs to be passed to kernel/sched.c
  472. * partition_sched_domains() routine, which will rebuild the scheduler's
  473. * load balancing domains (sched domains) as specified by that partial
  474. * partition.
  475. *
  476. * See "What is sched_load_balance" in Documentation/cpusets.txt
  477. * for a background explanation of this.
  478. *
  479. * Does not return errors, on the theory that the callers of this
  480. * routine would rather not worry about failures to rebuild sched
  481. * domains when operating in the severe memory shortage situations
  482. * that could cause allocation failures below.
  483. *
  484. * Must be called with cgroup_lock held.
  485. *
  486. * The three key local variables below are:
  487. * q - a linked-list queue of cpuset pointers, used to implement a
  488. * top-down scan of all cpusets. This scan loads a pointer
  489. * to each cpuset marked is_sched_load_balance into the
  490. * array 'csa'. For our purposes, rebuilding the schedulers
  491. * sched domains, we can ignore !is_sched_load_balance cpusets.
  492. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  493. * that need to be load balanced, for convenient iterative
  494. * access by the subsequent code that finds the best partition,
  495. * i.e the set of domains (subsets) of CPUs such that the
  496. * cpus_allowed of every cpuset marked is_sched_load_balance
  497. * is a subset of one of these domains, while there are as
  498. * many such domains as possible, each as small as possible.
  499. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  500. * the kernel/sched.c routine partition_sched_domains() in a
  501. * convenient format, that can be easily compared to the prior
  502. * value to determine what partition elements (sched domains)
  503. * were changed (added or removed.)
  504. *
  505. * Finding the best partition (set of domains):
  506. * The triple nested loops below over i, j, k scan over the
  507. * load balanced cpusets (using the array of cpuset pointers in
  508. * csa[]) looking for pairs of cpusets that have overlapping
  509. * cpus_allowed, but which don't have the same 'pn' partition
  510. * number and gives them in the same partition number. It keeps
  511. * looping on the 'restart' label until it can no longer find
  512. * any such pairs.
  513. *
  514. * The union of the cpus_allowed masks from the set of
  515. * all cpusets having the same 'pn' value then form the one
  516. * element of the partition (one sched domain) to be passed to
  517. * partition_sched_domains().
  518. */
  519. static int generate_sched_domains(cpumask_t **domains,
  520. struct sched_domain_attr **attributes)
  521. {
  522. LIST_HEAD(q); /* queue of cpusets to be scanned */
  523. struct cpuset *cp; /* scans q */
  524. struct cpuset **csa; /* array of all cpuset ptrs */
  525. int csn; /* how many cpuset ptrs in csa so far */
  526. int i, j, k; /* indices for partition finding loops */
  527. cpumask_t *doms; /* resulting partition; i.e. sched domains */
  528. struct sched_domain_attr *dattr; /* attributes for custom domains */
  529. int ndoms; /* number of sched domains in result */
  530. int nslot; /* next empty doms[] cpumask_t slot */
  531. ndoms = 0;
  532. doms = NULL;
  533. dattr = NULL;
  534. csa = NULL;
  535. /* Special case for the 99% of systems with one, full, sched domain */
  536. if (is_sched_load_balance(&top_cpuset)) {
  537. doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  538. if (!doms)
  539. goto done;
  540. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  541. if (dattr) {
  542. *dattr = SD_ATTR_INIT;
  543. update_domain_attr_tree(dattr, &top_cpuset);
  544. }
  545. *doms = top_cpuset.cpus_allowed;
  546. ndoms = 1;
  547. goto done;
  548. }
  549. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  550. if (!csa)
  551. goto done;
  552. csn = 0;
  553. list_add(&top_cpuset.stack_list, &q);
  554. while (!list_empty(&q)) {
  555. struct cgroup *cont;
  556. struct cpuset *child; /* scans child cpusets of cp */
  557. cp = list_first_entry(&q, struct cpuset, stack_list);
  558. list_del(q.next);
  559. if (cpus_empty(cp->cpus_allowed))
  560. continue;
  561. /*
  562. * All child cpusets contain a subset of the parent's cpus, so
  563. * just skip them, and then we call update_domain_attr_tree()
  564. * to calc relax_domain_level of the corresponding sched
  565. * domain.
  566. */
  567. if (is_sched_load_balance(cp)) {
  568. csa[csn++] = cp;
  569. continue;
  570. }
  571. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  572. child = cgroup_cs(cont);
  573. list_add_tail(&child->stack_list, &q);
  574. }
  575. }
  576. for (i = 0; i < csn; i++)
  577. csa[i]->pn = i;
  578. ndoms = csn;
  579. restart:
  580. /* Find the best partition (set of sched domains) */
  581. for (i = 0; i < csn; i++) {
  582. struct cpuset *a = csa[i];
  583. int apn = a->pn;
  584. for (j = 0; j < csn; j++) {
  585. struct cpuset *b = csa[j];
  586. int bpn = b->pn;
  587. if (apn != bpn && cpusets_overlap(a, b)) {
  588. for (k = 0; k < csn; k++) {
  589. struct cpuset *c = csa[k];
  590. if (c->pn == bpn)
  591. c->pn = apn;
  592. }
  593. ndoms--; /* one less element */
  594. goto restart;
  595. }
  596. }
  597. }
  598. /*
  599. * Now we know how many domains to create.
  600. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  601. */
  602. doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
  603. if (!doms) {
  604. ndoms = 0;
  605. goto done;
  606. }
  607. /*
  608. * The rest of the code, including the scheduler, can deal with
  609. * dattr==NULL case. No need to abort if alloc fails.
  610. */
  611. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  612. for (nslot = 0, i = 0; i < csn; i++) {
  613. struct cpuset *a = csa[i];
  614. cpumask_t *dp;
  615. int apn = a->pn;
  616. if (apn < 0) {
  617. /* Skip completed partitions */
  618. continue;
  619. }
  620. dp = doms + nslot;
  621. if (nslot == ndoms) {
  622. static int warnings = 10;
  623. if (warnings) {
  624. printk(KERN_WARNING
  625. "rebuild_sched_domains confused:"
  626. " nslot %d, ndoms %d, csn %d, i %d,"
  627. " apn %d\n",
  628. nslot, ndoms, csn, i, apn);
  629. warnings--;
  630. }
  631. continue;
  632. }
  633. cpus_clear(*dp);
  634. if (dattr)
  635. *(dattr + nslot) = SD_ATTR_INIT;
  636. for (j = i; j < csn; j++) {
  637. struct cpuset *b = csa[j];
  638. if (apn == b->pn) {
  639. cpus_or(*dp, *dp, b->cpus_allowed);
  640. if (dattr)
  641. update_domain_attr_tree(dattr + nslot, b);
  642. /* Done with this partition */
  643. b->pn = -1;
  644. }
  645. }
  646. nslot++;
  647. }
  648. BUG_ON(nslot != ndoms);
  649. done:
  650. kfree(csa);
  651. *domains = doms;
  652. *attributes = dattr;
  653. return ndoms;
  654. }
  655. /*
  656. * Rebuild scheduler domains.
  657. *
  658. * Call with neither cgroup_mutex held nor within get_online_cpus().
  659. * Takes both cgroup_mutex and get_online_cpus().
  660. *
  661. * Cannot be directly called from cpuset code handling changes
  662. * to the cpuset pseudo-filesystem, because it cannot be called
  663. * from code that already holds cgroup_mutex.
  664. */
  665. static void do_rebuild_sched_domains(struct work_struct *unused)
  666. {
  667. struct sched_domain_attr *attr;
  668. cpumask_t *doms;
  669. int ndoms;
  670. get_online_cpus();
  671. /* Generate domain masks and attrs */
  672. cgroup_lock();
  673. ndoms = generate_sched_domains(&doms, &attr);
  674. cgroup_unlock();
  675. /* Have scheduler rebuild the domains */
  676. partition_sched_domains(ndoms, doms, attr);
  677. put_online_cpus();
  678. }
  679. static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
  680. /*
  681. * Rebuild scheduler domains, asynchronously via workqueue.
  682. *
  683. * If the flag 'sched_load_balance' of any cpuset with non-empty
  684. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  685. * which has that flag enabled, or if any cpuset with a non-empty
  686. * 'cpus' is removed, then call this routine to rebuild the
  687. * scheduler's dynamic sched domains.
  688. *
  689. * The rebuild_sched_domains() and partition_sched_domains()
  690. * routines must nest cgroup_lock() inside get_online_cpus(),
  691. * but such cpuset changes as these must nest that locking the
  692. * other way, holding cgroup_lock() for much of the code.
  693. *
  694. * So in order to avoid an ABBA deadlock, the cpuset code handling
  695. * these user changes delegates the actual sched domain rebuilding
  696. * to a separate workqueue thread, which ends up processing the
  697. * above do_rebuild_sched_domains() function.
  698. */
  699. static void async_rebuild_sched_domains(void)
  700. {
  701. schedule_work(&rebuild_sched_domains_work);
  702. }
  703. /*
  704. * Accomplishes the same scheduler domain rebuild as the above
  705. * async_rebuild_sched_domains(), however it directly calls the
  706. * rebuild routine synchronously rather than calling it via an
  707. * asynchronous work thread.
  708. *
  709. * This can only be called from code that is not holding
  710. * cgroup_mutex (not nested in a cgroup_lock() call.)
  711. */
  712. void rebuild_sched_domains(void)
  713. {
  714. do_rebuild_sched_domains(NULL);
  715. }
  716. /**
  717. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  718. * @tsk: task to test
  719. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  720. *
  721. * Call with cgroup_mutex held. May take callback_mutex during call.
  722. * Called for each task in a cgroup by cgroup_scan_tasks().
  723. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  724. * words, if its mask is not equal to its cpuset's mask).
  725. */
  726. static int cpuset_test_cpumask(struct task_struct *tsk,
  727. struct cgroup_scanner *scan)
  728. {
  729. return !cpus_equal(tsk->cpus_allowed,
  730. (cgroup_cs(scan->cg))->cpus_allowed);
  731. }
  732. /**
  733. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  734. * @tsk: task to test
  735. * @scan: struct cgroup_scanner containing the cgroup of the task
  736. *
  737. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  738. * cpus_allowed mask needs to be changed.
  739. *
  740. * We don't need to re-check for the cgroup/cpuset membership, since we're
  741. * holding cgroup_lock() at this point.
  742. */
  743. static void cpuset_change_cpumask(struct task_struct *tsk,
  744. struct cgroup_scanner *scan)
  745. {
  746. set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
  747. }
  748. /**
  749. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  750. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  751. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  752. *
  753. * Called with cgroup_mutex held
  754. *
  755. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  756. * calling callback functions for each.
  757. *
  758. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  759. * if @heap != NULL.
  760. */
  761. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  762. {
  763. struct cgroup_scanner scan;
  764. scan.cg = cs->css.cgroup;
  765. scan.test_task = cpuset_test_cpumask;
  766. scan.process_task = cpuset_change_cpumask;
  767. scan.heap = heap;
  768. cgroup_scan_tasks(&scan);
  769. }
  770. /**
  771. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  772. * @cs: the cpuset to consider
  773. * @buf: buffer of cpu numbers written to this cpuset
  774. */
  775. static int update_cpumask(struct cpuset *cs, const char *buf)
  776. {
  777. struct ptr_heap heap;
  778. struct cpuset trialcs;
  779. int retval;
  780. int is_load_balanced;
  781. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  782. if (cs == &top_cpuset)
  783. return -EACCES;
  784. trialcs = *cs;
  785. /*
  786. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  787. * Since cpulist_parse() fails on an empty mask, we special case
  788. * that parsing. The validate_change() call ensures that cpusets
  789. * with tasks have cpus.
  790. */
  791. if (!*buf) {
  792. cpus_clear(trialcs.cpus_allowed);
  793. } else {
  794. retval = cpulist_parse(buf, trialcs.cpus_allowed);
  795. if (retval < 0)
  796. return retval;
  797. if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
  798. return -EINVAL;
  799. }
  800. retval = validate_change(cs, &trialcs);
  801. if (retval < 0)
  802. return retval;
  803. /* Nothing to do if the cpus didn't change */
  804. if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
  805. return 0;
  806. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  807. if (retval)
  808. return retval;
  809. is_load_balanced = is_sched_load_balance(&trialcs);
  810. mutex_lock(&callback_mutex);
  811. cs->cpus_allowed = trialcs.cpus_allowed;
  812. mutex_unlock(&callback_mutex);
  813. /*
  814. * Scan tasks in the cpuset, and update the cpumasks of any
  815. * that need an update.
  816. */
  817. update_tasks_cpumask(cs, &heap);
  818. heap_free(&heap);
  819. if (is_load_balanced)
  820. async_rebuild_sched_domains();
  821. return 0;
  822. }
  823. /*
  824. * cpuset_migrate_mm
  825. *
  826. * Migrate memory region from one set of nodes to another.
  827. *
  828. * Temporarilly set tasks mems_allowed to target nodes of migration,
  829. * so that the migration code can allocate pages on these nodes.
  830. *
  831. * Call holding cgroup_mutex, so current's cpuset won't change
  832. * during this call, as manage_mutex holds off any cpuset_attach()
  833. * calls. Therefore we don't need to take task_lock around the
  834. * call to guarantee_online_mems(), as we know no one is changing
  835. * our task's cpuset.
  836. *
  837. * Hold callback_mutex around the two modifications of our tasks
  838. * mems_allowed to synchronize with cpuset_mems_allowed().
  839. *
  840. * While the mm_struct we are migrating is typically from some
  841. * other task, the task_struct mems_allowed that we are hacking
  842. * is for our current task, which must allocate new pages for that
  843. * migrating memory region.
  844. *
  845. * We call cpuset_update_task_memory_state() before hacking
  846. * our tasks mems_allowed, so that we are assured of being in
  847. * sync with our tasks cpuset, and in particular, callbacks to
  848. * cpuset_update_task_memory_state() from nested page allocations
  849. * won't see any mismatch of our cpuset and task mems_generation
  850. * values, so won't overwrite our hacked tasks mems_allowed
  851. * nodemask.
  852. */
  853. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  854. const nodemask_t *to)
  855. {
  856. struct task_struct *tsk = current;
  857. cpuset_update_task_memory_state();
  858. mutex_lock(&callback_mutex);
  859. tsk->mems_allowed = *to;
  860. mutex_unlock(&callback_mutex);
  861. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  862. mutex_lock(&callback_mutex);
  863. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  864. mutex_unlock(&callback_mutex);
  865. }
  866. static void *cpuset_being_rebound;
  867. /**
  868. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  869. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  870. * @oldmem: old mems_allowed of cpuset cs
  871. *
  872. * Called with cgroup_mutex held
  873. * Return 0 if successful, -errno if not.
  874. */
  875. static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
  876. {
  877. struct task_struct *p;
  878. struct mm_struct **mmarray;
  879. int i, n, ntasks;
  880. int migrate;
  881. int fudge;
  882. struct cgroup_iter it;
  883. int retval;
  884. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  885. fudge = 10; /* spare mmarray[] slots */
  886. fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
  887. retval = -ENOMEM;
  888. /*
  889. * Allocate mmarray[] to hold mm reference for each task
  890. * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
  891. * tasklist_lock. We could use GFP_ATOMIC, but with a
  892. * few more lines of code, we can retry until we get a big
  893. * enough mmarray[] w/o using GFP_ATOMIC.
  894. */
  895. while (1) {
  896. ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
  897. ntasks += fudge;
  898. mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
  899. if (!mmarray)
  900. goto done;
  901. read_lock(&tasklist_lock); /* block fork */
  902. if (cgroup_task_count(cs->css.cgroup) <= ntasks)
  903. break; /* got enough */
  904. read_unlock(&tasklist_lock); /* try again */
  905. kfree(mmarray);
  906. }
  907. n = 0;
  908. /* Load up mmarray[] with mm reference for each task in cpuset. */
  909. cgroup_iter_start(cs->css.cgroup, &it);
  910. while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
  911. struct mm_struct *mm;
  912. if (n >= ntasks) {
  913. printk(KERN_WARNING
  914. "Cpuset mempolicy rebind incomplete.\n");
  915. break;
  916. }
  917. mm = get_task_mm(p);
  918. if (!mm)
  919. continue;
  920. mmarray[n++] = mm;
  921. }
  922. cgroup_iter_end(cs->css.cgroup, &it);
  923. read_unlock(&tasklist_lock);
  924. /*
  925. * Now that we've dropped the tasklist spinlock, we can
  926. * rebind the vma mempolicies of each mm in mmarray[] to their
  927. * new cpuset, and release that mm. The mpol_rebind_mm()
  928. * call takes mmap_sem, which we couldn't take while holding
  929. * tasklist_lock. Forks can happen again now - the mpol_dup()
  930. * cpuset_being_rebound check will catch such forks, and rebind
  931. * their vma mempolicies too. Because we still hold the global
  932. * cgroup_mutex, we know that no other rebind effort will
  933. * be contending for the global variable cpuset_being_rebound.
  934. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  935. * is idempotent. Also migrate pages in each mm to new nodes.
  936. */
  937. migrate = is_memory_migrate(cs);
  938. for (i = 0; i < n; i++) {
  939. struct mm_struct *mm = mmarray[i];
  940. mpol_rebind_mm(mm, &cs->mems_allowed);
  941. if (migrate)
  942. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  943. mmput(mm);
  944. }
  945. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  946. kfree(mmarray);
  947. cpuset_being_rebound = NULL;
  948. retval = 0;
  949. done:
  950. return retval;
  951. }
  952. /*
  953. * Handle user request to change the 'mems' memory placement
  954. * of a cpuset. Needs to validate the request, update the
  955. * cpusets mems_allowed and mems_generation, and for each
  956. * task in the cpuset, rebind any vma mempolicies and if
  957. * the cpuset is marked 'memory_migrate', migrate the tasks
  958. * pages to the new memory.
  959. *
  960. * Call with cgroup_mutex held. May take callback_mutex during call.
  961. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  962. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  963. * their mempolicies to the cpusets new mems_allowed.
  964. */
  965. static int update_nodemask(struct cpuset *cs, const char *buf)
  966. {
  967. struct cpuset trialcs;
  968. nodemask_t oldmem;
  969. int retval;
  970. /*
  971. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  972. * it's read-only
  973. */
  974. if (cs == &top_cpuset)
  975. return -EACCES;
  976. trialcs = *cs;
  977. /*
  978. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  979. * Since nodelist_parse() fails on an empty mask, we special case
  980. * that parsing. The validate_change() call ensures that cpusets
  981. * with tasks have memory.
  982. */
  983. if (!*buf) {
  984. nodes_clear(trialcs.mems_allowed);
  985. } else {
  986. retval = nodelist_parse(buf, trialcs.mems_allowed);
  987. if (retval < 0)
  988. goto done;
  989. if (!nodes_subset(trialcs.mems_allowed,
  990. node_states[N_HIGH_MEMORY]))
  991. return -EINVAL;
  992. }
  993. oldmem = cs->mems_allowed;
  994. if (nodes_equal(oldmem, trialcs.mems_allowed)) {
  995. retval = 0; /* Too easy - nothing to do */
  996. goto done;
  997. }
  998. retval = validate_change(cs, &trialcs);
  999. if (retval < 0)
  1000. goto done;
  1001. mutex_lock(&callback_mutex);
  1002. cs->mems_allowed = trialcs.mems_allowed;
  1003. cs->mems_generation = cpuset_mems_generation++;
  1004. mutex_unlock(&callback_mutex);
  1005. retval = update_tasks_nodemask(cs, &oldmem);
  1006. done:
  1007. return retval;
  1008. }
  1009. int current_cpuset_is_being_rebound(void)
  1010. {
  1011. return task_cs(current) == cpuset_being_rebound;
  1012. }
  1013. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1014. {
  1015. if (val < -1 || val >= SD_LV_MAX)
  1016. return -EINVAL;
  1017. if (val != cs->relax_domain_level) {
  1018. cs->relax_domain_level = val;
  1019. if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
  1020. async_rebuild_sched_domains();
  1021. }
  1022. return 0;
  1023. }
  1024. /*
  1025. * update_flag - read a 0 or a 1 in a file and update associated flag
  1026. * bit: the bit to update (see cpuset_flagbits_t)
  1027. * cs: the cpuset to update
  1028. * turning_on: whether the flag is being set or cleared
  1029. *
  1030. * Call with cgroup_mutex held.
  1031. */
  1032. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1033. int turning_on)
  1034. {
  1035. struct cpuset trialcs;
  1036. int err;
  1037. int balance_flag_changed;
  1038. trialcs = *cs;
  1039. if (turning_on)
  1040. set_bit(bit, &trialcs.flags);
  1041. else
  1042. clear_bit(bit, &trialcs.flags);
  1043. err = validate_change(cs, &trialcs);
  1044. if (err < 0)
  1045. return err;
  1046. balance_flag_changed = (is_sched_load_balance(cs) !=
  1047. is_sched_load_balance(&trialcs));
  1048. mutex_lock(&callback_mutex);
  1049. cs->flags = trialcs.flags;
  1050. mutex_unlock(&callback_mutex);
  1051. if (!cpus_empty(trialcs.cpus_allowed) && balance_flag_changed)
  1052. async_rebuild_sched_domains();
  1053. return 0;
  1054. }
  1055. /*
  1056. * Frequency meter - How fast is some event occurring?
  1057. *
  1058. * These routines manage a digitally filtered, constant time based,
  1059. * event frequency meter. There are four routines:
  1060. * fmeter_init() - initialize a frequency meter.
  1061. * fmeter_markevent() - called each time the event happens.
  1062. * fmeter_getrate() - returns the recent rate of such events.
  1063. * fmeter_update() - internal routine used to update fmeter.
  1064. *
  1065. * A common data structure is passed to each of these routines,
  1066. * which is used to keep track of the state required to manage the
  1067. * frequency meter and its digital filter.
  1068. *
  1069. * The filter works on the number of events marked per unit time.
  1070. * The filter is single-pole low-pass recursive (IIR). The time unit
  1071. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1072. * simulate 3 decimal digits of precision (multiplied by 1000).
  1073. *
  1074. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1075. * has a half-life of 10 seconds, meaning that if the events quit
  1076. * happening, then the rate returned from the fmeter_getrate()
  1077. * will be cut in half each 10 seconds, until it converges to zero.
  1078. *
  1079. * It is not worth doing a real infinitely recursive filter. If more
  1080. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1081. * just compute FM_MAXTICKS ticks worth, by which point the level
  1082. * will be stable.
  1083. *
  1084. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1085. * arithmetic overflow in the fmeter_update() routine.
  1086. *
  1087. * Given the simple 32 bit integer arithmetic used, this meter works
  1088. * best for reporting rates between one per millisecond (msec) and
  1089. * one per 32 (approx) seconds. At constant rates faster than one
  1090. * per msec it maxes out at values just under 1,000,000. At constant
  1091. * rates between one per msec, and one per second it will stabilize
  1092. * to a value N*1000, where N is the rate of events per second.
  1093. * At constant rates between one per second and one per 32 seconds,
  1094. * it will be choppy, moving up on the seconds that have an event,
  1095. * and then decaying until the next event. At rates slower than
  1096. * about one in 32 seconds, it decays all the way back to zero between
  1097. * each event.
  1098. */
  1099. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1100. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1101. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1102. #define FM_SCALE 1000 /* faux fixed point scale */
  1103. /* Initialize a frequency meter */
  1104. static void fmeter_init(struct fmeter *fmp)
  1105. {
  1106. fmp->cnt = 0;
  1107. fmp->val = 0;
  1108. fmp->time = 0;
  1109. spin_lock_init(&fmp->lock);
  1110. }
  1111. /* Internal meter update - process cnt events and update value */
  1112. static void fmeter_update(struct fmeter *fmp)
  1113. {
  1114. time_t now = get_seconds();
  1115. time_t ticks = now - fmp->time;
  1116. if (ticks == 0)
  1117. return;
  1118. ticks = min(FM_MAXTICKS, ticks);
  1119. while (ticks-- > 0)
  1120. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1121. fmp->time = now;
  1122. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1123. fmp->cnt = 0;
  1124. }
  1125. /* Process any previous ticks, then bump cnt by one (times scale). */
  1126. static void fmeter_markevent(struct fmeter *fmp)
  1127. {
  1128. spin_lock(&fmp->lock);
  1129. fmeter_update(fmp);
  1130. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1131. spin_unlock(&fmp->lock);
  1132. }
  1133. /* Process any previous ticks, then return current value. */
  1134. static int fmeter_getrate(struct fmeter *fmp)
  1135. {
  1136. int val;
  1137. spin_lock(&fmp->lock);
  1138. fmeter_update(fmp);
  1139. val = fmp->val;
  1140. spin_unlock(&fmp->lock);
  1141. return val;
  1142. }
  1143. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1144. static int cpuset_can_attach(struct cgroup_subsys *ss,
  1145. struct cgroup *cont, struct task_struct *tsk)
  1146. {
  1147. struct cpuset *cs = cgroup_cs(cont);
  1148. if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1149. return -ENOSPC;
  1150. if (tsk->flags & PF_THREAD_BOUND) {
  1151. cpumask_t mask;
  1152. mutex_lock(&callback_mutex);
  1153. mask = cs->cpus_allowed;
  1154. mutex_unlock(&callback_mutex);
  1155. if (!cpus_equal(tsk->cpus_allowed, mask))
  1156. return -EINVAL;
  1157. }
  1158. return security_task_setscheduler(tsk, 0, NULL);
  1159. }
  1160. static void cpuset_attach(struct cgroup_subsys *ss,
  1161. struct cgroup *cont, struct cgroup *oldcont,
  1162. struct task_struct *tsk)
  1163. {
  1164. cpumask_t cpus;
  1165. nodemask_t from, to;
  1166. struct mm_struct *mm;
  1167. struct cpuset *cs = cgroup_cs(cont);
  1168. struct cpuset *oldcs = cgroup_cs(oldcont);
  1169. int err;
  1170. mutex_lock(&callback_mutex);
  1171. guarantee_online_cpus(cs, &cpus);
  1172. err = set_cpus_allowed_ptr(tsk, &cpus);
  1173. mutex_unlock(&callback_mutex);
  1174. if (err)
  1175. return;
  1176. from = oldcs->mems_allowed;
  1177. to = cs->mems_allowed;
  1178. mm = get_task_mm(tsk);
  1179. if (mm) {
  1180. mpol_rebind_mm(mm, &to);
  1181. if (is_memory_migrate(cs))
  1182. cpuset_migrate_mm(mm, &from, &to);
  1183. mmput(mm);
  1184. }
  1185. }
  1186. /* The various types of files and directories in a cpuset file system */
  1187. typedef enum {
  1188. FILE_MEMORY_MIGRATE,
  1189. FILE_CPULIST,
  1190. FILE_MEMLIST,
  1191. FILE_CPU_EXCLUSIVE,
  1192. FILE_MEM_EXCLUSIVE,
  1193. FILE_MEM_HARDWALL,
  1194. FILE_SCHED_LOAD_BALANCE,
  1195. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1196. FILE_MEMORY_PRESSURE_ENABLED,
  1197. FILE_MEMORY_PRESSURE,
  1198. FILE_SPREAD_PAGE,
  1199. FILE_SPREAD_SLAB,
  1200. } cpuset_filetype_t;
  1201. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1202. {
  1203. int retval = 0;
  1204. struct cpuset *cs = cgroup_cs(cgrp);
  1205. cpuset_filetype_t type = cft->private;
  1206. if (!cgroup_lock_live_group(cgrp))
  1207. return -ENODEV;
  1208. switch (type) {
  1209. case FILE_CPU_EXCLUSIVE:
  1210. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1211. break;
  1212. case FILE_MEM_EXCLUSIVE:
  1213. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1214. break;
  1215. case FILE_MEM_HARDWALL:
  1216. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1217. break;
  1218. case FILE_SCHED_LOAD_BALANCE:
  1219. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1220. break;
  1221. case FILE_MEMORY_MIGRATE:
  1222. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1223. break;
  1224. case FILE_MEMORY_PRESSURE_ENABLED:
  1225. cpuset_memory_pressure_enabled = !!val;
  1226. break;
  1227. case FILE_MEMORY_PRESSURE:
  1228. retval = -EACCES;
  1229. break;
  1230. case FILE_SPREAD_PAGE:
  1231. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1232. cs->mems_generation = cpuset_mems_generation++;
  1233. break;
  1234. case FILE_SPREAD_SLAB:
  1235. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1236. cs->mems_generation = cpuset_mems_generation++;
  1237. break;
  1238. default:
  1239. retval = -EINVAL;
  1240. break;
  1241. }
  1242. cgroup_unlock();
  1243. return retval;
  1244. }
  1245. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1246. {
  1247. int retval = 0;
  1248. struct cpuset *cs = cgroup_cs(cgrp);
  1249. cpuset_filetype_t type = cft->private;
  1250. if (!cgroup_lock_live_group(cgrp))
  1251. return -ENODEV;
  1252. switch (type) {
  1253. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1254. retval = update_relax_domain_level(cs, val);
  1255. break;
  1256. default:
  1257. retval = -EINVAL;
  1258. break;
  1259. }
  1260. cgroup_unlock();
  1261. return retval;
  1262. }
  1263. /*
  1264. * Common handling for a write to a "cpus" or "mems" file.
  1265. */
  1266. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1267. const char *buf)
  1268. {
  1269. int retval = 0;
  1270. if (!cgroup_lock_live_group(cgrp))
  1271. return -ENODEV;
  1272. switch (cft->private) {
  1273. case FILE_CPULIST:
  1274. retval = update_cpumask(cgroup_cs(cgrp), buf);
  1275. break;
  1276. case FILE_MEMLIST:
  1277. retval = update_nodemask(cgroup_cs(cgrp), buf);
  1278. break;
  1279. default:
  1280. retval = -EINVAL;
  1281. break;
  1282. }
  1283. cgroup_unlock();
  1284. return retval;
  1285. }
  1286. /*
  1287. * These ascii lists should be read in a single call, by using a user
  1288. * buffer large enough to hold the entire map. If read in smaller
  1289. * chunks, there is no guarantee of atomicity. Since the display format
  1290. * used, list of ranges of sequential numbers, is variable length,
  1291. * and since these maps can change value dynamically, one could read
  1292. * gibberish by doing partial reads while a list was changing.
  1293. * A single large read to a buffer that crosses a page boundary is
  1294. * ok, because the result being copied to user land is not recomputed
  1295. * across a page fault.
  1296. */
  1297. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1298. {
  1299. cpumask_t mask;
  1300. mutex_lock(&callback_mutex);
  1301. mask = cs->cpus_allowed;
  1302. mutex_unlock(&callback_mutex);
  1303. return cpulist_scnprintf(page, PAGE_SIZE, mask);
  1304. }
  1305. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1306. {
  1307. nodemask_t mask;
  1308. mutex_lock(&callback_mutex);
  1309. mask = cs->mems_allowed;
  1310. mutex_unlock(&callback_mutex);
  1311. return nodelist_scnprintf(page, PAGE_SIZE, mask);
  1312. }
  1313. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1314. struct cftype *cft,
  1315. struct file *file,
  1316. char __user *buf,
  1317. size_t nbytes, loff_t *ppos)
  1318. {
  1319. struct cpuset *cs = cgroup_cs(cont);
  1320. cpuset_filetype_t type = cft->private;
  1321. char *page;
  1322. ssize_t retval = 0;
  1323. char *s;
  1324. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1325. return -ENOMEM;
  1326. s = page;
  1327. switch (type) {
  1328. case FILE_CPULIST:
  1329. s += cpuset_sprintf_cpulist(s, cs);
  1330. break;
  1331. case FILE_MEMLIST:
  1332. s += cpuset_sprintf_memlist(s, cs);
  1333. break;
  1334. default:
  1335. retval = -EINVAL;
  1336. goto out;
  1337. }
  1338. *s++ = '\n';
  1339. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1340. out:
  1341. free_page((unsigned long)page);
  1342. return retval;
  1343. }
  1344. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1345. {
  1346. struct cpuset *cs = cgroup_cs(cont);
  1347. cpuset_filetype_t type = cft->private;
  1348. switch (type) {
  1349. case FILE_CPU_EXCLUSIVE:
  1350. return is_cpu_exclusive(cs);
  1351. case FILE_MEM_EXCLUSIVE:
  1352. return is_mem_exclusive(cs);
  1353. case FILE_MEM_HARDWALL:
  1354. return is_mem_hardwall(cs);
  1355. case FILE_SCHED_LOAD_BALANCE:
  1356. return is_sched_load_balance(cs);
  1357. case FILE_MEMORY_MIGRATE:
  1358. return is_memory_migrate(cs);
  1359. case FILE_MEMORY_PRESSURE_ENABLED:
  1360. return cpuset_memory_pressure_enabled;
  1361. case FILE_MEMORY_PRESSURE:
  1362. return fmeter_getrate(&cs->fmeter);
  1363. case FILE_SPREAD_PAGE:
  1364. return is_spread_page(cs);
  1365. case FILE_SPREAD_SLAB:
  1366. return is_spread_slab(cs);
  1367. default:
  1368. BUG();
  1369. }
  1370. /* Unreachable but makes gcc happy */
  1371. return 0;
  1372. }
  1373. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1374. {
  1375. struct cpuset *cs = cgroup_cs(cont);
  1376. cpuset_filetype_t type = cft->private;
  1377. switch (type) {
  1378. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1379. return cs->relax_domain_level;
  1380. default:
  1381. BUG();
  1382. }
  1383. /* Unrechable but makes gcc happy */
  1384. return 0;
  1385. }
  1386. /*
  1387. * for the common functions, 'private' gives the type of file
  1388. */
  1389. static struct cftype files[] = {
  1390. {
  1391. .name = "cpus",
  1392. .read = cpuset_common_file_read,
  1393. .write_string = cpuset_write_resmask,
  1394. .max_write_len = (100U + 6 * NR_CPUS),
  1395. .private = FILE_CPULIST,
  1396. },
  1397. {
  1398. .name = "mems",
  1399. .read = cpuset_common_file_read,
  1400. .write_string = cpuset_write_resmask,
  1401. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1402. .private = FILE_MEMLIST,
  1403. },
  1404. {
  1405. .name = "cpu_exclusive",
  1406. .read_u64 = cpuset_read_u64,
  1407. .write_u64 = cpuset_write_u64,
  1408. .private = FILE_CPU_EXCLUSIVE,
  1409. },
  1410. {
  1411. .name = "mem_exclusive",
  1412. .read_u64 = cpuset_read_u64,
  1413. .write_u64 = cpuset_write_u64,
  1414. .private = FILE_MEM_EXCLUSIVE,
  1415. },
  1416. {
  1417. .name = "mem_hardwall",
  1418. .read_u64 = cpuset_read_u64,
  1419. .write_u64 = cpuset_write_u64,
  1420. .private = FILE_MEM_HARDWALL,
  1421. },
  1422. {
  1423. .name = "sched_load_balance",
  1424. .read_u64 = cpuset_read_u64,
  1425. .write_u64 = cpuset_write_u64,
  1426. .private = FILE_SCHED_LOAD_BALANCE,
  1427. },
  1428. {
  1429. .name = "sched_relax_domain_level",
  1430. .read_s64 = cpuset_read_s64,
  1431. .write_s64 = cpuset_write_s64,
  1432. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1433. },
  1434. {
  1435. .name = "memory_migrate",
  1436. .read_u64 = cpuset_read_u64,
  1437. .write_u64 = cpuset_write_u64,
  1438. .private = FILE_MEMORY_MIGRATE,
  1439. },
  1440. {
  1441. .name = "memory_pressure",
  1442. .read_u64 = cpuset_read_u64,
  1443. .write_u64 = cpuset_write_u64,
  1444. .private = FILE_MEMORY_PRESSURE,
  1445. },
  1446. {
  1447. .name = "memory_spread_page",
  1448. .read_u64 = cpuset_read_u64,
  1449. .write_u64 = cpuset_write_u64,
  1450. .private = FILE_SPREAD_PAGE,
  1451. },
  1452. {
  1453. .name = "memory_spread_slab",
  1454. .read_u64 = cpuset_read_u64,
  1455. .write_u64 = cpuset_write_u64,
  1456. .private = FILE_SPREAD_SLAB,
  1457. },
  1458. };
  1459. static struct cftype cft_memory_pressure_enabled = {
  1460. .name = "memory_pressure_enabled",
  1461. .read_u64 = cpuset_read_u64,
  1462. .write_u64 = cpuset_write_u64,
  1463. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1464. };
  1465. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1466. {
  1467. int err;
  1468. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1469. if (err)
  1470. return err;
  1471. /* memory_pressure_enabled is in root cpuset only */
  1472. if (!cont->parent)
  1473. err = cgroup_add_file(cont, ss,
  1474. &cft_memory_pressure_enabled);
  1475. return err;
  1476. }
  1477. /*
  1478. * post_clone() is called at the end of cgroup_clone().
  1479. * 'cgroup' was just created automatically as a result of
  1480. * a cgroup_clone(), and the current task is about to
  1481. * be moved into 'cgroup'.
  1482. *
  1483. * Currently we refuse to set up the cgroup - thereby
  1484. * refusing the task to be entered, and as a result refusing
  1485. * the sys_unshare() or clone() which initiated it - if any
  1486. * sibling cpusets have exclusive cpus or mem.
  1487. *
  1488. * If this becomes a problem for some users who wish to
  1489. * allow that scenario, then cpuset_post_clone() could be
  1490. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1491. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1492. * held.
  1493. */
  1494. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1495. struct cgroup *cgroup)
  1496. {
  1497. struct cgroup *parent, *child;
  1498. struct cpuset *cs, *parent_cs;
  1499. parent = cgroup->parent;
  1500. list_for_each_entry(child, &parent->children, sibling) {
  1501. cs = cgroup_cs(child);
  1502. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1503. return;
  1504. }
  1505. cs = cgroup_cs(cgroup);
  1506. parent_cs = cgroup_cs(parent);
  1507. cs->mems_allowed = parent_cs->mems_allowed;
  1508. cs->cpus_allowed = parent_cs->cpus_allowed;
  1509. return;
  1510. }
  1511. /*
  1512. * cpuset_create - create a cpuset
  1513. * ss: cpuset cgroup subsystem
  1514. * cont: control group that the new cpuset will be part of
  1515. */
  1516. static struct cgroup_subsys_state *cpuset_create(
  1517. struct cgroup_subsys *ss,
  1518. struct cgroup *cont)
  1519. {
  1520. struct cpuset *cs;
  1521. struct cpuset *parent;
  1522. if (!cont->parent) {
  1523. /* This is early initialization for the top cgroup */
  1524. top_cpuset.mems_generation = cpuset_mems_generation++;
  1525. return &top_cpuset.css;
  1526. }
  1527. parent = cgroup_cs(cont->parent);
  1528. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1529. if (!cs)
  1530. return ERR_PTR(-ENOMEM);
  1531. cpuset_update_task_memory_state();
  1532. cs->flags = 0;
  1533. if (is_spread_page(parent))
  1534. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1535. if (is_spread_slab(parent))
  1536. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1537. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1538. cpus_clear(cs->cpus_allowed);
  1539. nodes_clear(cs->mems_allowed);
  1540. cs->mems_generation = cpuset_mems_generation++;
  1541. fmeter_init(&cs->fmeter);
  1542. cs->relax_domain_level = -1;
  1543. cs->parent = parent;
  1544. number_of_cpusets++;
  1545. return &cs->css ;
  1546. }
  1547. /*
  1548. * If the cpuset being removed has its flag 'sched_load_balance'
  1549. * enabled, then simulate turning sched_load_balance off, which
  1550. * will call async_rebuild_sched_domains().
  1551. */
  1552. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1553. {
  1554. struct cpuset *cs = cgroup_cs(cont);
  1555. cpuset_update_task_memory_state();
  1556. if (is_sched_load_balance(cs))
  1557. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1558. number_of_cpusets--;
  1559. kfree(cs);
  1560. }
  1561. struct cgroup_subsys cpuset_subsys = {
  1562. .name = "cpuset",
  1563. .create = cpuset_create,
  1564. .destroy = cpuset_destroy,
  1565. .can_attach = cpuset_can_attach,
  1566. .attach = cpuset_attach,
  1567. .populate = cpuset_populate,
  1568. .post_clone = cpuset_post_clone,
  1569. .subsys_id = cpuset_subsys_id,
  1570. .early_init = 1,
  1571. };
  1572. /*
  1573. * cpuset_init_early - just enough so that the calls to
  1574. * cpuset_update_task_memory_state() in early init code
  1575. * are harmless.
  1576. */
  1577. int __init cpuset_init_early(void)
  1578. {
  1579. top_cpuset.mems_generation = cpuset_mems_generation++;
  1580. return 0;
  1581. }
  1582. /**
  1583. * cpuset_init - initialize cpusets at system boot
  1584. *
  1585. * Description: Initialize top_cpuset and the cpuset internal file system,
  1586. **/
  1587. int __init cpuset_init(void)
  1588. {
  1589. int err = 0;
  1590. cpus_setall(top_cpuset.cpus_allowed);
  1591. nodes_setall(top_cpuset.mems_allowed);
  1592. fmeter_init(&top_cpuset.fmeter);
  1593. top_cpuset.mems_generation = cpuset_mems_generation++;
  1594. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1595. top_cpuset.relax_domain_level = -1;
  1596. err = register_filesystem(&cpuset_fs_type);
  1597. if (err < 0)
  1598. return err;
  1599. number_of_cpusets = 1;
  1600. return 0;
  1601. }
  1602. /**
  1603. * cpuset_do_move_task - move a given task to another cpuset
  1604. * @tsk: pointer to task_struct the task to move
  1605. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1606. *
  1607. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1608. * Return nonzero to stop the walk through the tasks.
  1609. */
  1610. static void cpuset_do_move_task(struct task_struct *tsk,
  1611. struct cgroup_scanner *scan)
  1612. {
  1613. struct cpuset_hotplug_scanner *chsp;
  1614. chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
  1615. cgroup_attach_task(chsp->to, tsk);
  1616. }
  1617. /**
  1618. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1619. * @from: cpuset in which the tasks currently reside
  1620. * @to: cpuset to which the tasks will be moved
  1621. *
  1622. * Called with cgroup_mutex held
  1623. * callback_mutex must not be held, as cpuset_attach() will take it.
  1624. *
  1625. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1626. * calling callback functions for each.
  1627. */
  1628. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1629. {
  1630. struct cpuset_hotplug_scanner scan;
  1631. scan.scan.cg = from->css.cgroup;
  1632. scan.scan.test_task = NULL; /* select all tasks in cgroup */
  1633. scan.scan.process_task = cpuset_do_move_task;
  1634. scan.scan.heap = NULL;
  1635. scan.to = to->css.cgroup;
  1636. if (cgroup_scan_tasks(&scan.scan))
  1637. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1638. "cgroup_scan_tasks failed\n");
  1639. }
  1640. /*
  1641. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1642. * or memory nodes, we need to walk over the cpuset hierarchy,
  1643. * removing that CPU or node from all cpusets. If this removes the
  1644. * last CPU or node from a cpuset, then move the tasks in the empty
  1645. * cpuset to its next-highest non-empty parent.
  1646. *
  1647. * Called with cgroup_mutex held
  1648. * callback_mutex must not be held, as cpuset_attach() will take it.
  1649. */
  1650. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1651. {
  1652. struct cpuset *parent;
  1653. /*
  1654. * The cgroup's css_sets list is in use if there are tasks
  1655. * in the cpuset; the list is empty if there are none;
  1656. * the cs->css.refcnt seems always 0.
  1657. */
  1658. if (list_empty(&cs->css.cgroup->css_sets))
  1659. return;
  1660. /*
  1661. * Find its next-highest non-empty parent, (top cpuset
  1662. * has online cpus, so can't be empty).
  1663. */
  1664. parent = cs->parent;
  1665. while (cpus_empty(parent->cpus_allowed) ||
  1666. nodes_empty(parent->mems_allowed))
  1667. parent = parent->parent;
  1668. move_member_tasks_to_cpuset(cs, parent);
  1669. }
  1670. /*
  1671. * Walk the specified cpuset subtree and look for empty cpusets.
  1672. * The tasks of such cpuset must be moved to a parent cpuset.
  1673. *
  1674. * Called with cgroup_mutex held. We take callback_mutex to modify
  1675. * cpus_allowed and mems_allowed.
  1676. *
  1677. * This walk processes the tree from top to bottom, completing one layer
  1678. * before dropping down to the next. It always processes a node before
  1679. * any of its children.
  1680. *
  1681. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1682. * that has tasks along with an empty 'mems'. But if we did see such
  1683. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1684. */
  1685. static void scan_for_empty_cpusets(struct cpuset *root)
  1686. {
  1687. LIST_HEAD(queue);
  1688. struct cpuset *cp; /* scans cpusets being updated */
  1689. struct cpuset *child; /* scans child cpusets of cp */
  1690. struct cgroup *cont;
  1691. nodemask_t oldmems;
  1692. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1693. while (!list_empty(&queue)) {
  1694. cp = list_first_entry(&queue, struct cpuset, stack_list);
  1695. list_del(queue.next);
  1696. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1697. child = cgroup_cs(cont);
  1698. list_add_tail(&child->stack_list, &queue);
  1699. }
  1700. /* Continue past cpusets with all cpus, mems online */
  1701. if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
  1702. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1703. continue;
  1704. oldmems = cp->mems_allowed;
  1705. /* Remove offline cpus and mems from this cpuset. */
  1706. mutex_lock(&callback_mutex);
  1707. cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
  1708. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1709. node_states[N_HIGH_MEMORY]);
  1710. mutex_unlock(&callback_mutex);
  1711. /* Move tasks from the empty cpuset to a parent */
  1712. if (cpus_empty(cp->cpus_allowed) ||
  1713. nodes_empty(cp->mems_allowed))
  1714. remove_tasks_in_empty_cpuset(cp);
  1715. else {
  1716. update_tasks_cpumask(cp, NULL);
  1717. update_tasks_nodemask(cp, &oldmems);
  1718. }
  1719. }
  1720. }
  1721. /*
  1722. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1723. * period. This is necessary in order to make cpusets transparent
  1724. * (of no affect) on systems that are actively using CPU hotplug
  1725. * but making no active use of cpusets.
  1726. *
  1727. * This routine ensures that top_cpuset.cpus_allowed tracks
  1728. * cpu_online_map on each CPU hotplug (cpuhp) event.
  1729. *
  1730. * Called within get_online_cpus(). Needs to call cgroup_lock()
  1731. * before calling generate_sched_domains().
  1732. */
  1733. static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
  1734. unsigned long phase, void *unused_cpu)
  1735. {
  1736. struct sched_domain_attr *attr;
  1737. cpumask_t *doms;
  1738. int ndoms;
  1739. switch (phase) {
  1740. case CPU_ONLINE:
  1741. case CPU_ONLINE_FROZEN:
  1742. case CPU_DEAD:
  1743. case CPU_DEAD_FROZEN:
  1744. break;
  1745. default:
  1746. return NOTIFY_DONE;
  1747. }
  1748. cgroup_lock();
  1749. top_cpuset.cpus_allowed = cpu_online_map;
  1750. scan_for_empty_cpusets(&top_cpuset);
  1751. ndoms = generate_sched_domains(&doms, &attr);
  1752. cgroup_unlock();
  1753. /* Have scheduler rebuild the domains */
  1754. partition_sched_domains(ndoms, doms, attr);
  1755. return NOTIFY_OK;
  1756. }
  1757. #ifdef CONFIG_MEMORY_HOTPLUG
  1758. /*
  1759. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1760. * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
  1761. * See also the previous routine cpuset_track_online_cpus().
  1762. */
  1763. void cpuset_track_online_nodes(void)
  1764. {
  1765. cgroup_lock();
  1766. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1767. scan_for_empty_cpusets(&top_cpuset);
  1768. cgroup_unlock();
  1769. }
  1770. #endif
  1771. /**
  1772. * cpuset_init_smp - initialize cpus_allowed
  1773. *
  1774. * Description: Finish top cpuset after cpu, node maps are initialized
  1775. **/
  1776. void __init cpuset_init_smp(void)
  1777. {
  1778. top_cpuset.cpus_allowed = cpu_online_map;
  1779. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1780. hotcpu_notifier(cpuset_track_online_cpus, 0);
  1781. }
  1782. /**
  1783. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1784. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1785. * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
  1786. *
  1787. * Description: Returns the cpumask_t cpus_allowed of the cpuset
  1788. * attached to the specified @tsk. Guaranteed to return some non-empty
  1789. * subset of cpu_online_map, even if this means going outside the
  1790. * tasks cpuset.
  1791. **/
  1792. void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
  1793. {
  1794. mutex_lock(&callback_mutex);
  1795. cpuset_cpus_allowed_locked(tsk, pmask);
  1796. mutex_unlock(&callback_mutex);
  1797. }
  1798. /**
  1799. * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
  1800. * Must be called with callback_mutex held.
  1801. **/
  1802. void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
  1803. {
  1804. task_lock(tsk);
  1805. guarantee_online_cpus(task_cs(tsk), pmask);
  1806. task_unlock(tsk);
  1807. }
  1808. void cpuset_init_current_mems_allowed(void)
  1809. {
  1810. nodes_setall(current->mems_allowed);
  1811. }
  1812. /**
  1813. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1814. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1815. *
  1816. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1817. * attached to the specified @tsk. Guaranteed to return some non-empty
  1818. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1819. * tasks cpuset.
  1820. **/
  1821. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1822. {
  1823. nodemask_t mask;
  1824. mutex_lock(&callback_mutex);
  1825. task_lock(tsk);
  1826. guarantee_online_mems(task_cs(tsk), &mask);
  1827. task_unlock(tsk);
  1828. mutex_unlock(&callback_mutex);
  1829. return mask;
  1830. }
  1831. /**
  1832. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1833. * @nodemask: the nodemask to be checked
  1834. *
  1835. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1836. */
  1837. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1838. {
  1839. return nodes_intersects(*nodemask, current->mems_allowed);
  1840. }
  1841. /*
  1842. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1843. * mem_hardwall ancestor to the specified cpuset. Call holding
  1844. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1845. * (an unusual configuration), then returns the root cpuset.
  1846. */
  1847. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1848. {
  1849. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1850. cs = cs->parent;
  1851. return cs;
  1852. }
  1853. /**
  1854. * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
  1855. * @z: is this zone on an allowed node?
  1856. * @gfp_mask: memory allocation flags
  1857. *
  1858. * If we're in interrupt, yes, we can always allocate. If
  1859. * __GFP_THISNODE is set, yes, we can always allocate. If zone
  1860. * z's node is in our tasks mems_allowed, yes. If it's not a
  1861. * __GFP_HARDWALL request and this zone's nodes is in the nearest
  1862. * hardwalled cpuset ancestor to this tasks cpuset, yes.
  1863. * If the task has been OOM killed and has access to memory reserves
  1864. * as specified by the TIF_MEMDIE flag, yes.
  1865. * Otherwise, no.
  1866. *
  1867. * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
  1868. * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
  1869. * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
  1870. * from an enclosing cpuset.
  1871. *
  1872. * cpuset_zone_allowed_hardwall() only handles the simpler case of
  1873. * hardwall cpusets, and never sleeps.
  1874. *
  1875. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1876. * by forcibly using a zonelist starting at a specified node, and by
  1877. * (in get_page_from_freelist()) refusing to consider the zones for
  1878. * any node on the zonelist except the first. By the time any such
  1879. * calls get to this routine, we should just shut up and say 'yes'.
  1880. *
  1881. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1882. * and do not allow allocations outside the current tasks cpuset
  1883. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  1884. * GFP_KERNEL allocations are not so marked, so can escape to the
  1885. * nearest enclosing hardwalled ancestor cpuset.
  1886. *
  1887. * Scanning up parent cpusets requires callback_mutex. The
  1888. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  1889. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  1890. * current tasks mems_allowed came up empty on the first pass over
  1891. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  1892. * cpuset are short of memory, might require taking the callback_mutex
  1893. * mutex.
  1894. *
  1895. * The first call here from mm/page_alloc:get_page_from_freelist()
  1896. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  1897. * so no allocation on a node outside the cpuset is allowed (unless
  1898. * in interrupt, of course).
  1899. *
  1900. * The second pass through get_page_from_freelist() doesn't even call
  1901. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  1902. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  1903. * in alloc_flags. That logic and the checks below have the combined
  1904. * affect that:
  1905. * in_interrupt - any node ok (current task context irrelevant)
  1906. * GFP_ATOMIC - any node ok
  1907. * TIF_MEMDIE - any node ok
  1908. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  1909. * GFP_USER - only nodes in current tasks mems allowed ok.
  1910. *
  1911. * Rule:
  1912. * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
  1913. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  1914. * the code that might scan up ancestor cpusets and sleep.
  1915. */
  1916. int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
  1917. {
  1918. int node; /* node that zone z is on */
  1919. const struct cpuset *cs; /* current cpuset ancestors */
  1920. int allowed; /* is allocation in zone z allowed? */
  1921. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1922. return 1;
  1923. node = zone_to_nid(z);
  1924. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  1925. if (node_isset(node, current->mems_allowed))
  1926. return 1;
  1927. /*
  1928. * Allow tasks that have access to memory reserves because they have
  1929. * been OOM killed to get memory anywhere.
  1930. */
  1931. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1932. return 1;
  1933. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  1934. return 0;
  1935. if (current->flags & PF_EXITING) /* Let dying task have memory */
  1936. return 1;
  1937. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  1938. mutex_lock(&callback_mutex);
  1939. task_lock(current);
  1940. cs = nearest_hardwall_ancestor(task_cs(current));
  1941. task_unlock(current);
  1942. allowed = node_isset(node, cs->mems_allowed);
  1943. mutex_unlock(&callback_mutex);
  1944. return allowed;
  1945. }
  1946. /*
  1947. * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
  1948. * @z: is this zone on an allowed node?
  1949. * @gfp_mask: memory allocation flags
  1950. *
  1951. * If we're in interrupt, yes, we can always allocate.
  1952. * If __GFP_THISNODE is set, yes, we can always allocate. If zone
  1953. * z's node is in our tasks mems_allowed, yes. If the task has been
  1954. * OOM killed and has access to memory reserves as specified by the
  1955. * TIF_MEMDIE flag, yes. Otherwise, no.
  1956. *
  1957. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1958. * by forcibly using a zonelist starting at a specified node, and by
  1959. * (in get_page_from_freelist()) refusing to consider the zones for
  1960. * any node on the zonelist except the first. By the time any such
  1961. * calls get to this routine, we should just shut up and say 'yes'.
  1962. *
  1963. * Unlike the cpuset_zone_allowed_softwall() variant, above,
  1964. * this variant requires that the zone be in the current tasks
  1965. * mems_allowed or that we're in interrupt. It does not scan up the
  1966. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  1967. * It never sleeps.
  1968. */
  1969. int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
  1970. {
  1971. int node; /* node that zone z is on */
  1972. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1973. return 1;
  1974. node = zone_to_nid(z);
  1975. if (node_isset(node, current->mems_allowed))
  1976. return 1;
  1977. /*
  1978. * Allow tasks that have access to memory reserves because they have
  1979. * been OOM killed to get memory anywhere.
  1980. */
  1981. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1982. return 1;
  1983. return 0;
  1984. }
  1985. /**
  1986. * cpuset_lock - lock out any changes to cpuset structures
  1987. *
  1988. * The out of memory (oom) code needs to mutex_lock cpusets
  1989. * from being changed while it scans the tasklist looking for a
  1990. * task in an overlapping cpuset. Expose callback_mutex via this
  1991. * cpuset_lock() routine, so the oom code can lock it, before
  1992. * locking the task list. The tasklist_lock is a spinlock, so
  1993. * must be taken inside callback_mutex.
  1994. */
  1995. void cpuset_lock(void)
  1996. {
  1997. mutex_lock(&callback_mutex);
  1998. }
  1999. /**
  2000. * cpuset_unlock - release lock on cpuset changes
  2001. *
  2002. * Undo the lock taken in a previous cpuset_lock() call.
  2003. */
  2004. void cpuset_unlock(void)
  2005. {
  2006. mutex_unlock(&callback_mutex);
  2007. }
  2008. /**
  2009. * cpuset_mem_spread_node() - On which node to begin search for a page
  2010. *
  2011. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2012. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2013. * and if the memory allocation used cpuset_mem_spread_node()
  2014. * to determine on which node to start looking, as it will for
  2015. * certain page cache or slab cache pages such as used for file
  2016. * system buffers and inode caches, then instead of starting on the
  2017. * local node to look for a free page, rather spread the starting
  2018. * node around the tasks mems_allowed nodes.
  2019. *
  2020. * We don't have to worry about the returned node being offline
  2021. * because "it can't happen", and even if it did, it would be ok.
  2022. *
  2023. * The routines calling guarantee_online_mems() are careful to
  2024. * only set nodes in task->mems_allowed that are online. So it
  2025. * should not be possible for the following code to return an
  2026. * offline node. But if it did, that would be ok, as this routine
  2027. * is not returning the node where the allocation must be, only
  2028. * the node where the search should start. The zonelist passed to
  2029. * __alloc_pages() will include all nodes. If the slab allocator
  2030. * is passed an offline node, it will fall back to the local node.
  2031. * See kmem_cache_alloc_node().
  2032. */
  2033. int cpuset_mem_spread_node(void)
  2034. {
  2035. int node;
  2036. node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
  2037. if (node == MAX_NUMNODES)
  2038. node = first_node(current->mems_allowed);
  2039. current->cpuset_mem_spread_rotor = node;
  2040. return node;
  2041. }
  2042. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2043. /**
  2044. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2045. * @tsk1: pointer to task_struct of some task.
  2046. * @tsk2: pointer to task_struct of some other task.
  2047. *
  2048. * Description: Return true if @tsk1's mems_allowed intersects the
  2049. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2050. * one of the task's memory usage might impact the memory available
  2051. * to the other.
  2052. **/
  2053. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2054. const struct task_struct *tsk2)
  2055. {
  2056. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2057. }
  2058. /*
  2059. * Collection of memory_pressure is suppressed unless
  2060. * this flag is enabled by writing "1" to the special
  2061. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2062. */
  2063. int cpuset_memory_pressure_enabled __read_mostly;
  2064. /**
  2065. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2066. *
  2067. * Keep a running average of the rate of synchronous (direct)
  2068. * page reclaim efforts initiated by tasks in each cpuset.
  2069. *
  2070. * This represents the rate at which some task in the cpuset
  2071. * ran low on memory on all nodes it was allowed to use, and
  2072. * had to enter the kernels page reclaim code in an effort to
  2073. * create more free memory by tossing clean pages or swapping
  2074. * or writing dirty pages.
  2075. *
  2076. * Display to user space in the per-cpuset read-only file
  2077. * "memory_pressure". Value displayed is an integer
  2078. * representing the recent rate of entry into the synchronous
  2079. * (direct) page reclaim by any task attached to the cpuset.
  2080. **/
  2081. void __cpuset_memory_pressure_bump(void)
  2082. {
  2083. task_lock(current);
  2084. fmeter_markevent(&task_cs(current)->fmeter);
  2085. task_unlock(current);
  2086. }
  2087. #ifdef CONFIG_PROC_PID_CPUSET
  2088. /*
  2089. * proc_cpuset_show()
  2090. * - Print tasks cpuset path into seq_file.
  2091. * - Used for /proc/<pid>/cpuset.
  2092. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2093. * doesn't really matter if tsk->cpuset changes after we read it,
  2094. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2095. * anyway.
  2096. */
  2097. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2098. {
  2099. struct pid *pid;
  2100. struct task_struct *tsk;
  2101. char *buf;
  2102. struct cgroup_subsys_state *css;
  2103. int retval;
  2104. retval = -ENOMEM;
  2105. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2106. if (!buf)
  2107. goto out;
  2108. retval = -ESRCH;
  2109. pid = m->private;
  2110. tsk = get_pid_task(pid, PIDTYPE_PID);
  2111. if (!tsk)
  2112. goto out_free;
  2113. retval = -EINVAL;
  2114. cgroup_lock();
  2115. css = task_subsys_state(tsk, cpuset_subsys_id);
  2116. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2117. if (retval < 0)
  2118. goto out_unlock;
  2119. seq_puts(m, buf);
  2120. seq_putc(m, '\n');
  2121. out_unlock:
  2122. cgroup_unlock();
  2123. put_task_struct(tsk);
  2124. out_free:
  2125. kfree(buf);
  2126. out:
  2127. return retval;
  2128. }
  2129. static int cpuset_open(struct inode *inode, struct file *file)
  2130. {
  2131. struct pid *pid = PROC_I(inode)->pid;
  2132. return single_open(file, proc_cpuset_show, pid);
  2133. }
  2134. const struct file_operations proc_cpuset_operations = {
  2135. .open = cpuset_open,
  2136. .read = seq_read,
  2137. .llseek = seq_lseek,
  2138. .release = single_release,
  2139. };
  2140. #endif /* CONFIG_PROC_PID_CPUSET */
  2141. /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
  2142. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2143. {
  2144. seq_printf(m, "Cpus_allowed:\t");
  2145. seq_cpumask(m, &task->cpus_allowed);
  2146. seq_printf(m, "\n");
  2147. seq_printf(m, "Cpus_allowed_list:\t");
  2148. seq_cpumask_list(m, &task->cpus_allowed);
  2149. seq_printf(m, "\n");
  2150. seq_printf(m, "Mems_allowed:\t");
  2151. seq_nodemask(m, &task->mems_allowed);
  2152. seq_printf(m, "\n");
  2153. seq_printf(m, "Mems_allowed_list:\t");
  2154. seq_nodemask_list(m, &task->mems_allowed);
  2155. seq_printf(m, "\n");
  2156. }