cgroup.c 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176
  1. /*
  2. * Generic process-grouping system.
  3. *
  4. * Based originally on the cpuset system, extracted by Paul Menage
  5. * Copyright (C) 2006 Google, Inc
  6. *
  7. * Copyright notices from the original cpuset code:
  8. * --------------------------------------------------
  9. * Copyright (C) 2003 BULL SA.
  10. * Copyright (C) 2004-2006 Silicon Graphics, Inc.
  11. *
  12. * Portions derived from Patrick Mochel's sysfs code.
  13. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  14. *
  15. * 2003-10-10 Written by Simon Derr.
  16. * 2003-10-22 Updates by Stephen Hemminger.
  17. * 2004 May-July Rework by Paul Jackson.
  18. * ---------------------------------------------------
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cgroup.h>
  25. #include <linux/errno.h>
  26. #include <linux/fs.h>
  27. #include <linux/kernel.h>
  28. #include <linux/list.h>
  29. #include <linux/mm.h>
  30. #include <linux/mutex.h>
  31. #include <linux/mount.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/proc_fs.h>
  34. #include <linux/rcupdate.h>
  35. #include <linux/sched.h>
  36. #include <linux/backing-dev.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/slab.h>
  39. #include <linux/magic.h>
  40. #include <linux/spinlock.h>
  41. #include <linux/string.h>
  42. #include <linux/sort.h>
  43. #include <linux/kmod.h>
  44. #include <linux/delayacct.h>
  45. #include <linux/cgroupstats.h>
  46. #include <linux/hash.h>
  47. #include <linux/namei.h>
  48. #include <asm/atomic.h>
  49. static DEFINE_MUTEX(cgroup_mutex);
  50. /* Generate an array of cgroup subsystem pointers */
  51. #define SUBSYS(_x) &_x ## _subsys,
  52. static struct cgroup_subsys *subsys[] = {
  53. #include <linux/cgroup_subsys.h>
  54. };
  55. /*
  56. * A cgroupfs_root represents the root of a cgroup hierarchy,
  57. * and may be associated with a superblock to form an active
  58. * hierarchy
  59. */
  60. struct cgroupfs_root {
  61. struct super_block *sb;
  62. /*
  63. * The bitmask of subsystems intended to be attached to this
  64. * hierarchy
  65. */
  66. unsigned long subsys_bits;
  67. /* The bitmask of subsystems currently attached to this hierarchy */
  68. unsigned long actual_subsys_bits;
  69. /* A list running through the attached subsystems */
  70. struct list_head subsys_list;
  71. /* The root cgroup for this hierarchy */
  72. struct cgroup top_cgroup;
  73. /* Tracks how many cgroups are currently defined in hierarchy.*/
  74. int number_of_cgroups;
  75. /* A list running through the mounted hierarchies */
  76. struct list_head root_list;
  77. /* Hierarchy-specific flags */
  78. unsigned long flags;
  79. /* The path to use for release notifications. */
  80. char release_agent_path[PATH_MAX];
  81. };
  82. /*
  83. * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
  84. * subsystems that are otherwise unattached - it never has more than a
  85. * single cgroup, and all tasks are part of that cgroup.
  86. */
  87. static struct cgroupfs_root rootnode;
  88. /* The list of hierarchy roots */
  89. static LIST_HEAD(roots);
  90. static int root_count;
  91. /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
  92. #define dummytop (&rootnode.top_cgroup)
  93. /* This flag indicates whether tasks in the fork and exit paths should
  94. * check for fork/exit handlers to call. This avoids us having to do
  95. * extra work in the fork/exit path if none of the subsystems need to
  96. * be called.
  97. */
  98. static int need_forkexit_callback __read_mostly;
  99. static int need_mm_owner_callback __read_mostly;
  100. /* convenient tests for these bits */
  101. inline int cgroup_is_removed(const struct cgroup *cgrp)
  102. {
  103. return test_bit(CGRP_REMOVED, &cgrp->flags);
  104. }
  105. /* bits in struct cgroupfs_root flags field */
  106. enum {
  107. ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
  108. };
  109. static int cgroup_is_releasable(const struct cgroup *cgrp)
  110. {
  111. const int bits =
  112. (1 << CGRP_RELEASABLE) |
  113. (1 << CGRP_NOTIFY_ON_RELEASE);
  114. return (cgrp->flags & bits) == bits;
  115. }
  116. static int notify_on_release(const struct cgroup *cgrp)
  117. {
  118. return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  119. }
  120. /*
  121. * for_each_subsys() allows you to iterate on each subsystem attached to
  122. * an active hierarchy
  123. */
  124. #define for_each_subsys(_root, _ss) \
  125. list_for_each_entry(_ss, &_root->subsys_list, sibling)
  126. /* for_each_root() allows you to iterate across the active hierarchies */
  127. #define for_each_root(_root) \
  128. list_for_each_entry(_root, &roots, root_list)
  129. /* the list of cgroups eligible for automatic release. Protected by
  130. * release_list_lock */
  131. static LIST_HEAD(release_list);
  132. static DEFINE_SPINLOCK(release_list_lock);
  133. static void cgroup_release_agent(struct work_struct *work);
  134. static DECLARE_WORK(release_agent_work, cgroup_release_agent);
  135. static void check_for_release(struct cgroup *cgrp);
  136. /* Link structure for associating css_set objects with cgroups */
  137. struct cg_cgroup_link {
  138. /*
  139. * List running through cg_cgroup_links associated with a
  140. * cgroup, anchored on cgroup->css_sets
  141. */
  142. struct list_head cgrp_link_list;
  143. /*
  144. * List running through cg_cgroup_links pointing at a
  145. * single css_set object, anchored on css_set->cg_links
  146. */
  147. struct list_head cg_link_list;
  148. struct css_set *cg;
  149. };
  150. /* The default css_set - used by init and its children prior to any
  151. * hierarchies being mounted. It contains a pointer to the root state
  152. * for each subsystem. Also used to anchor the list of css_sets. Not
  153. * reference-counted, to improve performance when child cgroups
  154. * haven't been created.
  155. */
  156. static struct css_set init_css_set;
  157. static struct cg_cgroup_link init_css_set_link;
  158. /* css_set_lock protects the list of css_set objects, and the
  159. * chain of tasks off each css_set. Nests outside task->alloc_lock
  160. * due to cgroup_iter_start() */
  161. static DEFINE_RWLOCK(css_set_lock);
  162. static int css_set_count;
  163. /* hash table for cgroup groups. This improves the performance to
  164. * find an existing css_set */
  165. #define CSS_SET_HASH_BITS 7
  166. #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
  167. static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
  168. static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
  169. {
  170. int i;
  171. int index;
  172. unsigned long tmp = 0UL;
  173. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
  174. tmp += (unsigned long)css[i];
  175. tmp = (tmp >> 16) ^ tmp;
  176. index = hash_long(tmp, CSS_SET_HASH_BITS);
  177. return &css_set_table[index];
  178. }
  179. /* We don't maintain the lists running through each css_set to its
  180. * task until after the first call to cgroup_iter_start(). This
  181. * reduces the fork()/exit() overhead for people who have cgroups
  182. * compiled into their kernel but not actually in use */
  183. static int use_task_css_set_links __read_mostly;
  184. /* When we create or destroy a css_set, the operation simply
  185. * takes/releases a reference count on all the cgroups referenced
  186. * by subsystems in this css_set. This can end up multiple-counting
  187. * some cgroups, but that's OK - the ref-count is just a
  188. * busy/not-busy indicator; ensuring that we only count each cgroup
  189. * once would require taking a global lock to ensure that no
  190. * subsystems moved between hierarchies while we were doing so.
  191. *
  192. * Possible TODO: decide at boot time based on the number of
  193. * registered subsystems and the number of CPUs or NUMA nodes whether
  194. * it's better for performance to ref-count every subsystem, or to
  195. * take a global lock and only add one ref count to each hierarchy.
  196. */
  197. /*
  198. * unlink a css_set from the list and free it
  199. */
  200. static void unlink_css_set(struct css_set *cg)
  201. {
  202. struct cg_cgroup_link *link;
  203. struct cg_cgroup_link *saved_link;
  204. hlist_del(&cg->hlist);
  205. css_set_count--;
  206. list_for_each_entry_safe(link, saved_link, &cg->cg_links,
  207. cg_link_list) {
  208. list_del(&link->cg_link_list);
  209. list_del(&link->cgrp_link_list);
  210. kfree(link);
  211. }
  212. }
  213. static void __put_css_set(struct css_set *cg, int taskexit)
  214. {
  215. int i;
  216. /*
  217. * Ensure that the refcount doesn't hit zero while any readers
  218. * can see it. Similar to atomic_dec_and_lock(), but for an
  219. * rwlock
  220. */
  221. if (atomic_add_unless(&cg->refcount, -1, 1))
  222. return;
  223. write_lock(&css_set_lock);
  224. if (!atomic_dec_and_test(&cg->refcount)) {
  225. write_unlock(&css_set_lock);
  226. return;
  227. }
  228. unlink_css_set(cg);
  229. write_unlock(&css_set_lock);
  230. rcu_read_lock();
  231. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  232. struct cgroup *cgrp = cg->subsys[i]->cgroup;
  233. if (atomic_dec_and_test(&cgrp->count) &&
  234. notify_on_release(cgrp)) {
  235. if (taskexit)
  236. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  237. check_for_release(cgrp);
  238. }
  239. }
  240. rcu_read_unlock();
  241. kfree(cg);
  242. }
  243. /*
  244. * refcounted get/put for css_set objects
  245. */
  246. static inline void get_css_set(struct css_set *cg)
  247. {
  248. atomic_inc(&cg->refcount);
  249. }
  250. static inline void put_css_set(struct css_set *cg)
  251. {
  252. __put_css_set(cg, 0);
  253. }
  254. static inline void put_css_set_taskexit(struct css_set *cg)
  255. {
  256. __put_css_set(cg, 1);
  257. }
  258. /*
  259. * find_existing_css_set() is a helper for
  260. * find_css_set(), and checks to see whether an existing
  261. * css_set is suitable.
  262. *
  263. * oldcg: the cgroup group that we're using before the cgroup
  264. * transition
  265. *
  266. * cgrp: the cgroup that we're moving into
  267. *
  268. * template: location in which to build the desired set of subsystem
  269. * state objects for the new cgroup group
  270. */
  271. static struct css_set *find_existing_css_set(
  272. struct css_set *oldcg,
  273. struct cgroup *cgrp,
  274. struct cgroup_subsys_state *template[])
  275. {
  276. int i;
  277. struct cgroupfs_root *root = cgrp->root;
  278. struct hlist_head *hhead;
  279. struct hlist_node *node;
  280. struct css_set *cg;
  281. /* Built the set of subsystem state objects that we want to
  282. * see in the new css_set */
  283. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  284. if (root->subsys_bits & (1UL << i)) {
  285. /* Subsystem is in this hierarchy. So we want
  286. * the subsystem state from the new
  287. * cgroup */
  288. template[i] = cgrp->subsys[i];
  289. } else {
  290. /* Subsystem is not in this hierarchy, so we
  291. * don't want to change the subsystem state */
  292. template[i] = oldcg->subsys[i];
  293. }
  294. }
  295. hhead = css_set_hash(template);
  296. hlist_for_each_entry(cg, node, hhead, hlist) {
  297. if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
  298. /* All subsystems matched */
  299. return cg;
  300. }
  301. }
  302. /* No existing cgroup group matched */
  303. return NULL;
  304. }
  305. static void free_cg_links(struct list_head *tmp)
  306. {
  307. struct cg_cgroup_link *link;
  308. struct cg_cgroup_link *saved_link;
  309. list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
  310. list_del(&link->cgrp_link_list);
  311. kfree(link);
  312. }
  313. }
  314. /*
  315. * allocate_cg_links() allocates "count" cg_cgroup_link structures
  316. * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
  317. * success or a negative error
  318. */
  319. static int allocate_cg_links(int count, struct list_head *tmp)
  320. {
  321. struct cg_cgroup_link *link;
  322. int i;
  323. INIT_LIST_HEAD(tmp);
  324. for (i = 0; i < count; i++) {
  325. link = kmalloc(sizeof(*link), GFP_KERNEL);
  326. if (!link) {
  327. free_cg_links(tmp);
  328. return -ENOMEM;
  329. }
  330. list_add(&link->cgrp_link_list, tmp);
  331. }
  332. return 0;
  333. }
  334. /*
  335. * find_css_set() takes an existing cgroup group and a
  336. * cgroup object, and returns a css_set object that's
  337. * equivalent to the old group, but with the given cgroup
  338. * substituted into the appropriate hierarchy. Must be called with
  339. * cgroup_mutex held
  340. */
  341. static struct css_set *find_css_set(
  342. struct css_set *oldcg, struct cgroup *cgrp)
  343. {
  344. struct css_set *res;
  345. struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
  346. int i;
  347. struct list_head tmp_cg_links;
  348. struct cg_cgroup_link *link;
  349. struct hlist_head *hhead;
  350. /* First see if we already have a cgroup group that matches
  351. * the desired set */
  352. read_lock(&css_set_lock);
  353. res = find_existing_css_set(oldcg, cgrp, template);
  354. if (res)
  355. get_css_set(res);
  356. read_unlock(&css_set_lock);
  357. if (res)
  358. return res;
  359. res = kmalloc(sizeof(*res), GFP_KERNEL);
  360. if (!res)
  361. return NULL;
  362. /* Allocate all the cg_cgroup_link objects that we'll need */
  363. if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
  364. kfree(res);
  365. return NULL;
  366. }
  367. atomic_set(&res->refcount, 1);
  368. INIT_LIST_HEAD(&res->cg_links);
  369. INIT_LIST_HEAD(&res->tasks);
  370. INIT_HLIST_NODE(&res->hlist);
  371. /* Copy the set of subsystem state objects generated in
  372. * find_existing_css_set() */
  373. memcpy(res->subsys, template, sizeof(res->subsys));
  374. write_lock(&css_set_lock);
  375. /* Add reference counts and links from the new css_set. */
  376. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  377. struct cgroup *cgrp = res->subsys[i]->cgroup;
  378. struct cgroup_subsys *ss = subsys[i];
  379. atomic_inc(&cgrp->count);
  380. /*
  381. * We want to add a link once per cgroup, so we
  382. * only do it for the first subsystem in each
  383. * hierarchy
  384. */
  385. if (ss->root->subsys_list.next == &ss->sibling) {
  386. BUG_ON(list_empty(&tmp_cg_links));
  387. link = list_entry(tmp_cg_links.next,
  388. struct cg_cgroup_link,
  389. cgrp_link_list);
  390. list_del(&link->cgrp_link_list);
  391. list_add(&link->cgrp_link_list, &cgrp->css_sets);
  392. link->cg = res;
  393. list_add(&link->cg_link_list, &res->cg_links);
  394. }
  395. }
  396. if (list_empty(&rootnode.subsys_list)) {
  397. link = list_entry(tmp_cg_links.next,
  398. struct cg_cgroup_link,
  399. cgrp_link_list);
  400. list_del(&link->cgrp_link_list);
  401. list_add(&link->cgrp_link_list, &dummytop->css_sets);
  402. link->cg = res;
  403. list_add(&link->cg_link_list, &res->cg_links);
  404. }
  405. BUG_ON(!list_empty(&tmp_cg_links));
  406. css_set_count++;
  407. /* Add this cgroup group to the hash table */
  408. hhead = css_set_hash(res->subsys);
  409. hlist_add_head(&res->hlist, hhead);
  410. write_unlock(&css_set_lock);
  411. return res;
  412. }
  413. /*
  414. * There is one global cgroup mutex. We also require taking
  415. * task_lock() when dereferencing a task's cgroup subsys pointers.
  416. * See "The task_lock() exception", at the end of this comment.
  417. *
  418. * A task must hold cgroup_mutex to modify cgroups.
  419. *
  420. * Any task can increment and decrement the count field without lock.
  421. * So in general, code holding cgroup_mutex can't rely on the count
  422. * field not changing. However, if the count goes to zero, then only
  423. * cgroup_attach_task() can increment it again. Because a count of zero
  424. * means that no tasks are currently attached, therefore there is no
  425. * way a task attached to that cgroup can fork (the other way to
  426. * increment the count). So code holding cgroup_mutex can safely
  427. * assume that if the count is zero, it will stay zero. Similarly, if
  428. * a task holds cgroup_mutex on a cgroup with zero count, it
  429. * knows that the cgroup won't be removed, as cgroup_rmdir()
  430. * needs that mutex.
  431. *
  432. * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
  433. * (usually) take cgroup_mutex. These are the two most performance
  434. * critical pieces of code here. The exception occurs on cgroup_exit(),
  435. * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
  436. * is taken, and if the cgroup count is zero, a usermode call made
  437. * to the release agent with the name of the cgroup (path relative to
  438. * the root of cgroup file system) as the argument.
  439. *
  440. * A cgroup can only be deleted if both its 'count' of using tasks
  441. * is zero, and its list of 'children' cgroups is empty. Since all
  442. * tasks in the system use _some_ cgroup, and since there is always at
  443. * least one task in the system (init, pid == 1), therefore, top_cgroup
  444. * always has either children cgroups and/or using tasks. So we don't
  445. * need a special hack to ensure that top_cgroup cannot be deleted.
  446. *
  447. * The task_lock() exception
  448. *
  449. * The need for this exception arises from the action of
  450. * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
  451. * another. It does so using cgroup_mutex, however there are
  452. * several performance critical places that need to reference
  453. * task->cgroup without the expense of grabbing a system global
  454. * mutex. Therefore except as noted below, when dereferencing or, as
  455. * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
  456. * task_lock(), which acts on a spinlock (task->alloc_lock) already in
  457. * the task_struct routinely used for such matters.
  458. *
  459. * P.S. One more locking exception. RCU is used to guard the
  460. * update of a tasks cgroup pointer by cgroup_attach_task()
  461. */
  462. /**
  463. * cgroup_lock - lock out any changes to cgroup structures
  464. *
  465. */
  466. void cgroup_lock(void)
  467. {
  468. mutex_lock(&cgroup_mutex);
  469. }
  470. /**
  471. * cgroup_unlock - release lock on cgroup changes
  472. *
  473. * Undo the lock taken in a previous cgroup_lock() call.
  474. */
  475. void cgroup_unlock(void)
  476. {
  477. mutex_unlock(&cgroup_mutex);
  478. }
  479. /*
  480. * A couple of forward declarations required, due to cyclic reference loop:
  481. * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
  482. * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
  483. * -> cgroup_mkdir.
  484. */
  485. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
  486. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
  487. static int cgroup_populate_dir(struct cgroup *cgrp);
  488. static struct inode_operations cgroup_dir_inode_operations;
  489. static struct file_operations proc_cgroupstats_operations;
  490. static struct backing_dev_info cgroup_backing_dev_info = {
  491. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  492. };
  493. static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
  494. {
  495. struct inode *inode = new_inode(sb);
  496. if (inode) {
  497. inode->i_mode = mode;
  498. inode->i_uid = current->fsuid;
  499. inode->i_gid = current->fsgid;
  500. inode->i_blocks = 0;
  501. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  502. inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
  503. }
  504. return inode;
  505. }
  506. /*
  507. * Call subsys's pre_destroy handler.
  508. * This is called before css refcnt check.
  509. */
  510. static void cgroup_call_pre_destroy(struct cgroup *cgrp)
  511. {
  512. struct cgroup_subsys *ss;
  513. for_each_subsys(cgrp->root, ss)
  514. if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
  515. ss->pre_destroy(ss, cgrp);
  516. return;
  517. }
  518. static void cgroup_diput(struct dentry *dentry, struct inode *inode)
  519. {
  520. /* is dentry a directory ? if so, kfree() associated cgroup */
  521. if (S_ISDIR(inode->i_mode)) {
  522. struct cgroup *cgrp = dentry->d_fsdata;
  523. struct cgroup_subsys *ss;
  524. BUG_ON(!(cgroup_is_removed(cgrp)));
  525. /* It's possible for external users to be holding css
  526. * reference counts on a cgroup; css_put() needs to
  527. * be able to access the cgroup after decrementing
  528. * the reference count in order to know if it needs to
  529. * queue the cgroup to be handled by the release
  530. * agent */
  531. synchronize_rcu();
  532. mutex_lock(&cgroup_mutex);
  533. /*
  534. * Release the subsystem state objects.
  535. */
  536. for_each_subsys(cgrp->root, ss) {
  537. if (cgrp->subsys[ss->subsys_id])
  538. ss->destroy(ss, cgrp);
  539. }
  540. cgrp->root->number_of_cgroups--;
  541. mutex_unlock(&cgroup_mutex);
  542. /* Drop the active superblock reference that we took when we
  543. * created the cgroup */
  544. deactivate_super(cgrp->root->sb);
  545. kfree(cgrp);
  546. }
  547. iput(inode);
  548. }
  549. static void remove_dir(struct dentry *d)
  550. {
  551. struct dentry *parent = dget(d->d_parent);
  552. d_delete(d);
  553. simple_rmdir(parent->d_inode, d);
  554. dput(parent);
  555. }
  556. static void cgroup_clear_directory(struct dentry *dentry)
  557. {
  558. struct list_head *node;
  559. BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
  560. spin_lock(&dcache_lock);
  561. node = dentry->d_subdirs.next;
  562. while (node != &dentry->d_subdirs) {
  563. struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
  564. list_del_init(node);
  565. if (d->d_inode) {
  566. /* This should never be called on a cgroup
  567. * directory with child cgroups */
  568. BUG_ON(d->d_inode->i_mode & S_IFDIR);
  569. d = dget_locked(d);
  570. spin_unlock(&dcache_lock);
  571. d_delete(d);
  572. simple_unlink(dentry->d_inode, d);
  573. dput(d);
  574. spin_lock(&dcache_lock);
  575. }
  576. node = dentry->d_subdirs.next;
  577. }
  578. spin_unlock(&dcache_lock);
  579. }
  580. /*
  581. * NOTE : the dentry must have been dget()'ed
  582. */
  583. static void cgroup_d_remove_dir(struct dentry *dentry)
  584. {
  585. cgroup_clear_directory(dentry);
  586. spin_lock(&dcache_lock);
  587. list_del_init(&dentry->d_u.d_child);
  588. spin_unlock(&dcache_lock);
  589. remove_dir(dentry);
  590. }
  591. static int rebind_subsystems(struct cgroupfs_root *root,
  592. unsigned long final_bits)
  593. {
  594. unsigned long added_bits, removed_bits;
  595. struct cgroup *cgrp = &root->top_cgroup;
  596. int i;
  597. removed_bits = root->actual_subsys_bits & ~final_bits;
  598. added_bits = final_bits & ~root->actual_subsys_bits;
  599. /* Check that any added subsystems are currently free */
  600. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  601. unsigned long bit = 1UL << i;
  602. struct cgroup_subsys *ss = subsys[i];
  603. if (!(bit & added_bits))
  604. continue;
  605. if (ss->root != &rootnode) {
  606. /* Subsystem isn't free */
  607. return -EBUSY;
  608. }
  609. }
  610. /* Currently we don't handle adding/removing subsystems when
  611. * any child cgroups exist. This is theoretically supportable
  612. * but involves complex error handling, so it's being left until
  613. * later */
  614. if (!list_empty(&cgrp->children))
  615. return -EBUSY;
  616. /* Process each subsystem */
  617. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  618. struct cgroup_subsys *ss = subsys[i];
  619. unsigned long bit = 1UL << i;
  620. if (bit & added_bits) {
  621. /* We're binding this subsystem to this hierarchy */
  622. BUG_ON(cgrp->subsys[i]);
  623. BUG_ON(!dummytop->subsys[i]);
  624. BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
  625. cgrp->subsys[i] = dummytop->subsys[i];
  626. cgrp->subsys[i]->cgroup = cgrp;
  627. list_add(&ss->sibling, &root->subsys_list);
  628. rcu_assign_pointer(ss->root, root);
  629. if (ss->bind)
  630. ss->bind(ss, cgrp);
  631. } else if (bit & removed_bits) {
  632. /* We're removing this subsystem */
  633. BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
  634. BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
  635. if (ss->bind)
  636. ss->bind(ss, dummytop);
  637. dummytop->subsys[i]->cgroup = dummytop;
  638. cgrp->subsys[i] = NULL;
  639. rcu_assign_pointer(subsys[i]->root, &rootnode);
  640. list_del(&ss->sibling);
  641. } else if (bit & final_bits) {
  642. /* Subsystem state should already exist */
  643. BUG_ON(!cgrp->subsys[i]);
  644. } else {
  645. /* Subsystem state shouldn't exist */
  646. BUG_ON(cgrp->subsys[i]);
  647. }
  648. }
  649. root->subsys_bits = root->actual_subsys_bits = final_bits;
  650. synchronize_rcu();
  651. return 0;
  652. }
  653. static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
  654. {
  655. struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
  656. struct cgroup_subsys *ss;
  657. mutex_lock(&cgroup_mutex);
  658. for_each_subsys(root, ss)
  659. seq_printf(seq, ",%s", ss->name);
  660. if (test_bit(ROOT_NOPREFIX, &root->flags))
  661. seq_puts(seq, ",noprefix");
  662. if (strlen(root->release_agent_path))
  663. seq_printf(seq, ",release_agent=%s", root->release_agent_path);
  664. mutex_unlock(&cgroup_mutex);
  665. return 0;
  666. }
  667. struct cgroup_sb_opts {
  668. unsigned long subsys_bits;
  669. unsigned long flags;
  670. char *release_agent;
  671. };
  672. /* Convert a hierarchy specifier into a bitmask of subsystems and
  673. * flags. */
  674. static int parse_cgroupfs_options(char *data,
  675. struct cgroup_sb_opts *opts)
  676. {
  677. char *token, *o = data ?: "all";
  678. opts->subsys_bits = 0;
  679. opts->flags = 0;
  680. opts->release_agent = NULL;
  681. while ((token = strsep(&o, ",")) != NULL) {
  682. if (!*token)
  683. return -EINVAL;
  684. if (!strcmp(token, "all")) {
  685. /* Add all non-disabled subsystems */
  686. int i;
  687. opts->subsys_bits = 0;
  688. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  689. struct cgroup_subsys *ss = subsys[i];
  690. if (!ss->disabled)
  691. opts->subsys_bits |= 1ul << i;
  692. }
  693. } else if (!strcmp(token, "noprefix")) {
  694. set_bit(ROOT_NOPREFIX, &opts->flags);
  695. } else if (!strncmp(token, "release_agent=", 14)) {
  696. /* Specifying two release agents is forbidden */
  697. if (opts->release_agent)
  698. return -EINVAL;
  699. opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
  700. if (!opts->release_agent)
  701. return -ENOMEM;
  702. strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
  703. opts->release_agent[PATH_MAX - 1] = 0;
  704. } else {
  705. struct cgroup_subsys *ss;
  706. int i;
  707. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  708. ss = subsys[i];
  709. if (!strcmp(token, ss->name)) {
  710. if (!ss->disabled)
  711. set_bit(i, &opts->subsys_bits);
  712. break;
  713. }
  714. }
  715. if (i == CGROUP_SUBSYS_COUNT)
  716. return -ENOENT;
  717. }
  718. }
  719. /* We can't have an empty hierarchy */
  720. if (!opts->subsys_bits)
  721. return -EINVAL;
  722. return 0;
  723. }
  724. static int cgroup_remount(struct super_block *sb, int *flags, char *data)
  725. {
  726. int ret = 0;
  727. struct cgroupfs_root *root = sb->s_fs_info;
  728. struct cgroup *cgrp = &root->top_cgroup;
  729. struct cgroup_sb_opts opts;
  730. mutex_lock(&cgrp->dentry->d_inode->i_mutex);
  731. mutex_lock(&cgroup_mutex);
  732. /* See what subsystems are wanted */
  733. ret = parse_cgroupfs_options(data, &opts);
  734. if (ret)
  735. goto out_unlock;
  736. /* Don't allow flags to change at remount */
  737. if (opts.flags != root->flags) {
  738. ret = -EINVAL;
  739. goto out_unlock;
  740. }
  741. ret = rebind_subsystems(root, opts.subsys_bits);
  742. /* (re)populate subsystem files */
  743. if (!ret)
  744. cgroup_populate_dir(cgrp);
  745. if (opts.release_agent)
  746. strcpy(root->release_agent_path, opts.release_agent);
  747. out_unlock:
  748. if (opts.release_agent)
  749. kfree(opts.release_agent);
  750. mutex_unlock(&cgroup_mutex);
  751. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  752. return ret;
  753. }
  754. static struct super_operations cgroup_ops = {
  755. .statfs = simple_statfs,
  756. .drop_inode = generic_delete_inode,
  757. .show_options = cgroup_show_options,
  758. .remount_fs = cgroup_remount,
  759. };
  760. static void init_cgroup_housekeeping(struct cgroup *cgrp)
  761. {
  762. INIT_LIST_HEAD(&cgrp->sibling);
  763. INIT_LIST_HEAD(&cgrp->children);
  764. INIT_LIST_HEAD(&cgrp->css_sets);
  765. INIT_LIST_HEAD(&cgrp->release_list);
  766. init_rwsem(&cgrp->pids_mutex);
  767. }
  768. static void init_cgroup_root(struct cgroupfs_root *root)
  769. {
  770. struct cgroup *cgrp = &root->top_cgroup;
  771. INIT_LIST_HEAD(&root->subsys_list);
  772. INIT_LIST_HEAD(&root->root_list);
  773. root->number_of_cgroups = 1;
  774. cgrp->root = root;
  775. cgrp->top_cgroup = cgrp;
  776. init_cgroup_housekeeping(cgrp);
  777. }
  778. static int cgroup_test_super(struct super_block *sb, void *data)
  779. {
  780. struct cgroupfs_root *new = data;
  781. struct cgroupfs_root *root = sb->s_fs_info;
  782. /* First check subsystems */
  783. if (new->subsys_bits != root->subsys_bits)
  784. return 0;
  785. /* Next check flags */
  786. if (new->flags != root->flags)
  787. return 0;
  788. return 1;
  789. }
  790. static int cgroup_set_super(struct super_block *sb, void *data)
  791. {
  792. int ret;
  793. struct cgroupfs_root *root = data;
  794. ret = set_anon_super(sb, NULL);
  795. if (ret)
  796. return ret;
  797. sb->s_fs_info = root;
  798. root->sb = sb;
  799. sb->s_blocksize = PAGE_CACHE_SIZE;
  800. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  801. sb->s_magic = CGROUP_SUPER_MAGIC;
  802. sb->s_op = &cgroup_ops;
  803. return 0;
  804. }
  805. static int cgroup_get_rootdir(struct super_block *sb)
  806. {
  807. struct inode *inode =
  808. cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
  809. struct dentry *dentry;
  810. if (!inode)
  811. return -ENOMEM;
  812. inode->i_fop = &simple_dir_operations;
  813. inode->i_op = &cgroup_dir_inode_operations;
  814. /* directories start off with i_nlink == 2 (for "." entry) */
  815. inc_nlink(inode);
  816. dentry = d_alloc_root(inode);
  817. if (!dentry) {
  818. iput(inode);
  819. return -ENOMEM;
  820. }
  821. sb->s_root = dentry;
  822. return 0;
  823. }
  824. static int cgroup_get_sb(struct file_system_type *fs_type,
  825. int flags, const char *unused_dev_name,
  826. void *data, struct vfsmount *mnt)
  827. {
  828. struct cgroup_sb_opts opts;
  829. int ret = 0;
  830. struct super_block *sb;
  831. struct cgroupfs_root *root;
  832. struct list_head tmp_cg_links;
  833. /* First find the desired set of subsystems */
  834. ret = parse_cgroupfs_options(data, &opts);
  835. if (ret) {
  836. if (opts.release_agent)
  837. kfree(opts.release_agent);
  838. return ret;
  839. }
  840. root = kzalloc(sizeof(*root), GFP_KERNEL);
  841. if (!root) {
  842. if (opts.release_agent)
  843. kfree(opts.release_agent);
  844. return -ENOMEM;
  845. }
  846. init_cgroup_root(root);
  847. root->subsys_bits = opts.subsys_bits;
  848. root->flags = opts.flags;
  849. if (opts.release_agent) {
  850. strcpy(root->release_agent_path, opts.release_agent);
  851. kfree(opts.release_agent);
  852. }
  853. sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
  854. if (IS_ERR(sb)) {
  855. kfree(root);
  856. return PTR_ERR(sb);
  857. }
  858. if (sb->s_fs_info != root) {
  859. /* Reusing an existing superblock */
  860. BUG_ON(sb->s_root == NULL);
  861. kfree(root);
  862. root = NULL;
  863. } else {
  864. /* New superblock */
  865. struct cgroup *cgrp = &root->top_cgroup;
  866. struct inode *inode;
  867. int i;
  868. BUG_ON(sb->s_root != NULL);
  869. ret = cgroup_get_rootdir(sb);
  870. if (ret)
  871. goto drop_new_super;
  872. inode = sb->s_root->d_inode;
  873. mutex_lock(&inode->i_mutex);
  874. mutex_lock(&cgroup_mutex);
  875. /*
  876. * We're accessing css_set_count without locking
  877. * css_set_lock here, but that's OK - it can only be
  878. * increased by someone holding cgroup_lock, and
  879. * that's us. The worst that can happen is that we
  880. * have some link structures left over
  881. */
  882. ret = allocate_cg_links(css_set_count, &tmp_cg_links);
  883. if (ret) {
  884. mutex_unlock(&cgroup_mutex);
  885. mutex_unlock(&inode->i_mutex);
  886. goto drop_new_super;
  887. }
  888. ret = rebind_subsystems(root, root->subsys_bits);
  889. if (ret == -EBUSY) {
  890. mutex_unlock(&cgroup_mutex);
  891. mutex_unlock(&inode->i_mutex);
  892. goto drop_new_super;
  893. }
  894. /* EBUSY should be the only error here */
  895. BUG_ON(ret);
  896. list_add(&root->root_list, &roots);
  897. root_count++;
  898. sb->s_root->d_fsdata = &root->top_cgroup;
  899. root->top_cgroup.dentry = sb->s_root;
  900. /* Link the top cgroup in this hierarchy into all
  901. * the css_set objects */
  902. write_lock(&css_set_lock);
  903. for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
  904. struct hlist_head *hhead = &css_set_table[i];
  905. struct hlist_node *node;
  906. struct css_set *cg;
  907. hlist_for_each_entry(cg, node, hhead, hlist) {
  908. struct cg_cgroup_link *link;
  909. BUG_ON(list_empty(&tmp_cg_links));
  910. link = list_entry(tmp_cg_links.next,
  911. struct cg_cgroup_link,
  912. cgrp_link_list);
  913. list_del(&link->cgrp_link_list);
  914. link->cg = cg;
  915. list_add(&link->cgrp_link_list,
  916. &root->top_cgroup.css_sets);
  917. list_add(&link->cg_link_list, &cg->cg_links);
  918. }
  919. }
  920. write_unlock(&css_set_lock);
  921. free_cg_links(&tmp_cg_links);
  922. BUG_ON(!list_empty(&cgrp->sibling));
  923. BUG_ON(!list_empty(&cgrp->children));
  924. BUG_ON(root->number_of_cgroups != 1);
  925. cgroup_populate_dir(cgrp);
  926. mutex_unlock(&inode->i_mutex);
  927. mutex_unlock(&cgroup_mutex);
  928. }
  929. return simple_set_mnt(mnt, sb);
  930. drop_new_super:
  931. up_write(&sb->s_umount);
  932. deactivate_super(sb);
  933. free_cg_links(&tmp_cg_links);
  934. return ret;
  935. }
  936. static void cgroup_kill_sb(struct super_block *sb) {
  937. struct cgroupfs_root *root = sb->s_fs_info;
  938. struct cgroup *cgrp = &root->top_cgroup;
  939. int ret;
  940. struct cg_cgroup_link *link;
  941. struct cg_cgroup_link *saved_link;
  942. BUG_ON(!root);
  943. BUG_ON(root->number_of_cgroups != 1);
  944. BUG_ON(!list_empty(&cgrp->children));
  945. BUG_ON(!list_empty(&cgrp->sibling));
  946. mutex_lock(&cgroup_mutex);
  947. /* Rebind all subsystems back to the default hierarchy */
  948. ret = rebind_subsystems(root, 0);
  949. /* Shouldn't be able to fail ... */
  950. BUG_ON(ret);
  951. /*
  952. * Release all the links from css_sets to this hierarchy's
  953. * root cgroup
  954. */
  955. write_lock(&css_set_lock);
  956. list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
  957. cgrp_link_list) {
  958. list_del(&link->cg_link_list);
  959. list_del(&link->cgrp_link_list);
  960. kfree(link);
  961. }
  962. write_unlock(&css_set_lock);
  963. if (!list_empty(&root->root_list)) {
  964. list_del(&root->root_list);
  965. root_count--;
  966. }
  967. mutex_unlock(&cgroup_mutex);
  968. kfree(root);
  969. kill_litter_super(sb);
  970. }
  971. static struct file_system_type cgroup_fs_type = {
  972. .name = "cgroup",
  973. .get_sb = cgroup_get_sb,
  974. .kill_sb = cgroup_kill_sb,
  975. };
  976. static inline struct cgroup *__d_cgrp(struct dentry *dentry)
  977. {
  978. return dentry->d_fsdata;
  979. }
  980. static inline struct cftype *__d_cft(struct dentry *dentry)
  981. {
  982. return dentry->d_fsdata;
  983. }
  984. /**
  985. * cgroup_path - generate the path of a cgroup
  986. * @cgrp: the cgroup in question
  987. * @buf: the buffer to write the path into
  988. * @buflen: the length of the buffer
  989. *
  990. * Called with cgroup_mutex held. Writes path of cgroup into buf.
  991. * Returns 0 on success, -errno on error.
  992. */
  993. int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
  994. {
  995. char *start;
  996. if (cgrp == dummytop) {
  997. /*
  998. * Inactive subsystems have no dentry for their root
  999. * cgroup
  1000. */
  1001. strcpy(buf, "/");
  1002. return 0;
  1003. }
  1004. start = buf + buflen;
  1005. *--start = '\0';
  1006. for (;;) {
  1007. int len = cgrp->dentry->d_name.len;
  1008. if ((start -= len) < buf)
  1009. return -ENAMETOOLONG;
  1010. memcpy(start, cgrp->dentry->d_name.name, len);
  1011. cgrp = cgrp->parent;
  1012. if (!cgrp)
  1013. break;
  1014. if (!cgrp->parent)
  1015. continue;
  1016. if (--start < buf)
  1017. return -ENAMETOOLONG;
  1018. *start = '/';
  1019. }
  1020. memmove(buf, start, buf + buflen - start);
  1021. return 0;
  1022. }
  1023. /*
  1024. * Return the first subsystem attached to a cgroup's hierarchy, and
  1025. * its subsystem id.
  1026. */
  1027. static void get_first_subsys(const struct cgroup *cgrp,
  1028. struct cgroup_subsys_state **css, int *subsys_id)
  1029. {
  1030. const struct cgroupfs_root *root = cgrp->root;
  1031. const struct cgroup_subsys *test_ss;
  1032. BUG_ON(list_empty(&root->subsys_list));
  1033. test_ss = list_entry(root->subsys_list.next,
  1034. struct cgroup_subsys, sibling);
  1035. if (css) {
  1036. *css = cgrp->subsys[test_ss->subsys_id];
  1037. BUG_ON(!*css);
  1038. }
  1039. if (subsys_id)
  1040. *subsys_id = test_ss->subsys_id;
  1041. }
  1042. /**
  1043. * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
  1044. * @cgrp: the cgroup the task is attaching to
  1045. * @tsk: the task to be attached
  1046. *
  1047. * Call holding cgroup_mutex. May take task_lock of
  1048. * the task 'tsk' during call.
  1049. */
  1050. int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  1051. {
  1052. int retval = 0;
  1053. struct cgroup_subsys *ss;
  1054. struct cgroup *oldcgrp;
  1055. struct css_set *cg = tsk->cgroups;
  1056. struct css_set *newcg;
  1057. struct cgroupfs_root *root = cgrp->root;
  1058. int subsys_id;
  1059. get_first_subsys(cgrp, NULL, &subsys_id);
  1060. /* Nothing to do if the task is already in that cgroup */
  1061. oldcgrp = task_cgroup(tsk, subsys_id);
  1062. if (cgrp == oldcgrp)
  1063. return 0;
  1064. for_each_subsys(root, ss) {
  1065. if (ss->can_attach) {
  1066. retval = ss->can_attach(ss, cgrp, tsk);
  1067. if (retval)
  1068. return retval;
  1069. }
  1070. }
  1071. /*
  1072. * Locate or allocate a new css_set for this task,
  1073. * based on its final set of cgroups
  1074. */
  1075. newcg = find_css_set(cg, cgrp);
  1076. if (!newcg)
  1077. return -ENOMEM;
  1078. task_lock(tsk);
  1079. if (tsk->flags & PF_EXITING) {
  1080. task_unlock(tsk);
  1081. put_css_set(newcg);
  1082. return -ESRCH;
  1083. }
  1084. rcu_assign_pointer(tsk->cgroups, newcg);
  1085. task_unlock(tsk);
  1086. /* Update the css_set linked lists if we're using them */
  1087. write_lock(&css_set_lock);
  1088. if (!list_empty(&tsk->cg_list)) {
  1089. list_del(&tsk->cg_list);
  1090. list_add(&tsk->cg_list, &newcg->tasks);
  1091. }
  1092. write_unlock(&css_set_lock);
  1093. for_each_subsys(root, ss) {
  1094. if (ss->attach)
  1095. ss->attach(ss, cgrp, oldcgrp, tsk);
  1096. }
  1097. set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
  1098. synchronize_rcu();
  1099. put_css_set(cg);
  1100. return 0;
  1101. }
  1102. /*
  1103. * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
  1104. * held. May take task_lock of task
  1105. */
  1106. static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
  1107. {
  1108. struct task_struct *tsk;
  1109. int ret;
  1110. if (pid) {
  1111. rcu_read_lock();
  1112. tsk = find_task_by_vpid(pid);
  1113. if (!tsk || tsk->flags & PF_EXITING) {
  1114. rcu_read_unlock();
  1115. return -ESRCH;
  1116. }
  1117. get_task_struct(tsk);
  1118. rcu_read_unlock();
  1119. if ((current->euid) && (current->euid != tsk->uid)
  1120. && (current->euid != tsk->suid)) {
  1121. put_task_struct(tsk);
  1122. return -EACCES;
  1123. }
  1124. } else {
  1125. tsk = current;
  1126. get_task_struct(tsk);
  1127. }
  1128. ret = cgroup_attach_task(cgrp, tsk);
  1129. put_task_struct(tsk);
  1130. return ret;
  1131. }
  1132. static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
  1133. {
  1134. int ret;
  1135. if (!cgroup_lock_live_group(cgrp))
  1136. return -ENODEV;
  1137. ret = attach_task_by_pid(cgrp, pid);
  1138. cgroup_unlock();
  1139. return ret;
  1140. }
  1141. /* The various types of files and directories in a cgroup file system */
  1142. enum cgroup_filetype {
  1143. FILE_ROOT,
  1144. FILE_DIR,
  1145. FILE_TASKLIST,
  1146. FILE_NOTIFY_ON_RELEASE,
  1147. FILE_RELEASE_AGENT,
  1148. };
  1149. /**
  1150. * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
  1151. * @cgrp: the cgroup to be checked for liveness
  1152. *
  1153. * On success, returns true; the lock should be later released with
  1154. * cgroup_unlock(). On failure returns false with no lock held.
  1155. */
  1156. bool cgroup_lock_live_group(struct cgroup *cgrp)
  1157. {
  1158. mutex_lock(&cgroup_mutex);
  1159. if (cgroup_is_removed(cgrp)) {
  1160. mutex_unlock(&cgroup_mutex);
  1161. return false;
  1162. }
  1163. return true;
  1164. }
  1165. static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
  1166. const char *buffer)
  1167. {
  1168. BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
  1169. if (!cgroup_lock_live_group(cgrp))
  1170. return -ENODEV;
  1171. strcpy(cgrp->root->release_agent_path, buffer);
  1172. cgroup_unlock();
  1173. return 0;
  1174. }
  1175. static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
  1176. struct seq_file *seq)
  1177. {
  1178. if (!cgroup_lock_live_group(cgrp))
  1179. return -ENODEV;
  1180. seq_puts(seq, cgrp->root->release_agent_path);
  1181. seq_putc(seq, '\n');
  1182. cgroup_unlock();
  1183. return 0;
  1184. }
  1185. /* A buffer size big enough for numbers or short strings */
  1186. #define CGROUP_LOCAL_BUFFER_SIZE 64
  1187. static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
  1188. struct file *file,
  1189. const char __user *userbuf,
  1190. size_t nbytes, loff_t *unused_ppos)
  1191. {
  1192. char buffer[CGROUP_LOCAL_BUFFER_SIZE];
  1193. int retval = 0;
  1194. char *end;
  1195. if (!nbytes)
  1196. return -EINVAL;
  1197. if (nbytes >= sizeof(buffer))
  1198. return -E2BIG;
  1199. if (copy_from_user(buffer, userbuf, nbytes))
  1200. return -EFAULT;
  1201. buffer[nbytes] = 0; /* nul-terminate */
  1202. strstrip(buffer);
  1203. if (cft->write_u64) {
  1204. u64 val = simple_strtoull(buffer, &end, 0);
  1205. if (*end)
  1206. return -EINVAL;
  1207. retval = cft->write_u64(cgrp, cft, val);
  1208. } else {
  1209. s64 val = simple_strtoll(buffer, &end, 0);
  1210. if (*end)
  1211. return -EINVAL;
  1212. retval = cft->write_s64(cgrp, cft, val);
  1213. }
  1214. if (!retval)
  1215. retval = nbytes;
  1216. return retval;
  1217. }
  1218. static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
  1219. struct file *file,
  1220. const char __user *userbuf,
  1221. size_t nbytes, loff_t *unused_ppos)
  1222. {
  1223. char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
  1224. int retval = 0;
  1225. size_t max_bytes = cft->max_write_len;
  1226. char *buffer = local_buffer;
  1227. if (!max_bytes)
  1228. max_bytes = sizeof(local_buffer) - 1;
  1229. if (nbytes >= max_bytes)
  1230. return -E2BIG;
  1231. /* Allocate a dynamic buffer if we need one */
  1232. if (nbytes >= sizeof(local_buffer)) {
  1233. buffer = kmalloc(nbytes + 1, GFP_KERNEL);
  1234. if (buffer == NULL)
  1235. return -ENOMEM;
  1236. }
  1237. if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
  1238. retval = -EFAULT;
  1239. goto out;
  1240. }
  1241. buffer[nbytes] = 0; /* nul-terminate */
  1242. strstrip(buffer);
  1243. retval = cft->write_string(cgrp, cft, buffer);
  1244. if (!retval)
  1245. retval = nbytes;
  1246. out:
  1247. if (buffer != local_buffer)
  1248. kfree(buffer);
  1249. return retval;
  1250. }
  1251. static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
  1252. size_t nbytes, loff_t *ppos)
  1253. {
  1254. struct cftype *cft = __d_cft(file->f_dentry);
  1255. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  1256. if (!cft || cgroup_is_removed(cgrp))
  1257. return -ENODEV;
  1258. if (cft->write)
  1259. return cft->write(cgrp, cft, file, buf, nbytes, ppos);
  1260. if (cft->write_u64 || cft->write_s64)
  1261. return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
  1262. if (cft->write_string)
  1263. return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
  1264. if (cft->trigger) {
  1265. int ret = cft->trigger(cgrp, (unsigned int)cft->private);
  1266. return ret ? ret : nbytes;
  1267. }
  1268. return -EINVAL;
  1269. }
  1270. static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
  1271. struct file *file,
  1272. char __user *buf, size_t nbytes,
  1273. loff_t *ppos)
  1274. {
  1275. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  1276. u64 val = cft->read_u64(cgrp, cft);
  1277. int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
  1278. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  1279. }
  1280. static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
  1281. struct file *file,
  1282. char __user *buf, size_t nbytes,
  1283. loff_t *ppos)
  1284. {
  1285. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  1286. s64 val = cft->read_s64(cgrp, cft);
  1287. int len = sprintf(tmp, "%lld\n", (long long) val);
  1288. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  1289. }
  1290. static ssize_t cgroup_file_read(struct file *file, char __user *buf,
  1291. size_t nbytes, loff_t *ppos)
  1292. {
  1293. struct cftype *cft = __d_cft(file->f_dentry);
  1294. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  1295. if (!cft || cgroup_is_removed(cgrp))
  1296. return -ENODEV;
  1297. if (cft->read)
  1298. return cft->read(cgrp, cft, file, buf, nbytes, ppos);
  1299. if (cft->read_u64)
  1300. return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
  1301. if (cft->read_s64)
  1302. return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
  1303. return -EINVAL;
  1304. }
  1305. /*
  1306. * seqfile ops/methods for returning structured data. Currently just
  1307. * supports string->u64 maps, but can be extended in future.
  1308. */
  1309. struct cgroup_seqfile_state {
  1310. struct cftype *cft;
  1311. struct cgroup *cgroup;
  1312. };
  1313. static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
  1314. {
  1315. struct seq_file *sf = cb->state;
  1316. return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
  1317. }
  1318. static int cgroup_seqfile_show(struct seq_file *m, void *arg)
  1319. {
  1320. struct cgroup_seqfile_state *state = m->private;
  1321. struct cftype *cft = state->cft;
  1322. if (cft->read_map) {
  1323. struct cgroup_map_cb cb = {
  1324. .fill = cgroup_map_add,
  1325. .state = m,
  1326. };
  1327. return cft->read_map(state->cgroup, cft, &cb);
  1328. }
  1329. return cft->read_seq_string(state->cgroup, cft, m);
  1330. }
  1331. static int cgroup_seqfile_release(struct inode *inode, struct file *file)
  1332. {
  1333. struct seq_file *seq = file->private_data;
  1334. kfree(seq->private);
  1335. return single_release(inode, file);
  1336. }
  1337. static struct file_operations cgroup_seqfile_operations = {
  1338. .read = seq_read,
  1339. .write = cgroup_file_write,
  1340. .llseek = seq_lseek,
  1341. .release = cgroup_seqfile_release,
  1342. };
  1343. static int cgroup_file_open(struct inode *inode, struct file *file)
  1344. {
  1345. int err;
  1346. struct cftype *cft;
  1347. err = generic_file_open(inode, file);
  1348. if (err)
  1349. return err;
  1350. cft = __d_cft(file->f_dentry);
  1351. if (!cft)
  1352. return -ENODEV;
  1353. if (cft->read_map || cft->read_seq_string) {
  1354. struct cgroup_seqfile_state *state =
  1355. kzalloc(sizeof(*state), GFP_USER);
  1356. if (!state)
  1357. return -ENOMEM;
  1358. state->cft = cft;
  1359. state->cgroup = __d_cgrp(file->f_dentry->d_parent);
  1360. file->f_op = &cgroup_seqfile_operations;
  1361. err = single_open(file, cgroup_seqfile_show, state);
  1362. if (err < 0)
  1363. kfree(state);
  1364. } else if (cft->open)
  1365. err = cft->open(inode, file);
  1366. else
  1367. err = 0;
  1368. return err;
  1369. }
  1370. static int cgroup_file_release(struct inode *inode, struct file *file)
  1371. {
  1372. struct cftype *cft = __d_cft(file->f_dentry);
  1373. if (cft->release)
  1374. return cft->release(inode, file);
  1375. return 0;
  1376. }
  1377. /*
  1378. * cgroup_rename - Only allow simple rename of directories in place.
  1379. */
  1380. static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
  1381. struct inode *new_dir, struct dentry *new_dentry)
  1382. {
  1383. if (!S_ISDIR(old_dentry->d_inode->i_mode))
  1384. return -ENOTDIR;
  1385. if (new_dentry->d_inode)
  1386. return -EEXIST;
  1387. if (old_dir != new_dir)
  1388. return -EIO;
  1389. return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
  1390. }
  1391. static struct file_operations cgroup_file_operations = {
  1392. .read = cgroup_file_read,
  1393. .write = cgroup_file_write,
  1394. .llseek = generic_file_llseek,
  1395. .open = cgroup_file_open,
  1396. .release = cgroup_file_release,
  1397. };
  1398. static struct inode_operations cgroup_dir_inode_operations = {
  1399. .lookup = simple_lookup,
  1400. .mkdir = cgroup_mkdir,
  1401. .rmdir = cgroup_rmdir,
  1402. .rename = cgroup_rename,
  1403. };
  1404. static int cgroup_create_file(struct dentry *dentry, int mode,
  1405. struct super_block *sb)
  1406. {
  1407. static struct dentry_operations cgroup_dops = {
  1408. .d_iput = cgroup_diput,
  1409. };
  1410. struct inode *inode;
  1411. if (!dentry)
  1412. return -ENOENT;
  1413. if (dentry->d_inode)
  1414. return -EEXIST;
  1415. inode = cgroup_new_inode(mode, sb);
  1416. if (!inode)
  1417. return -ENOMEM;
  1418. if (S_ISDIR(mode)) {
  1419. inode->i_op = &cgroup_dir_inode_operations;
  1420. inode->i_fop = &simple_dir_operations;
  1421. /* start off with i_nlink == 2 (for "." entry) */
  1422. inc_nlink(inode);
  1423. /* start with the directory inode held, so that we can
  1424. * populate it without racing with another mkdir */
  1425. mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
  1426. } else if (S_ISREG(mode)) {
  1427. inode->i_size = 0;
  1428. inode->i_fop = &cgroup_file_operations;
  1429. }
  1430. dentry->d_op = &cgroup_dops;
  1431. d_instantiate(dentry, inode);
  1432. dget(dentry); /* Extra count - pin the dentry in core */
  1433. return 0;
  1434. }
  1435. /*
  1436. * cgroup_create_dir - create a directory for an object.
  1437. * @cgrp: the cgroup we create the directory for. It must have a valid
  1438. * ->parent field. And we are going to fill its ->dentry field.
  1439. * @dentry: dentry of the new cgroup
  1440. * @mode: mode to set on new directory.
  1441. */
  1442. static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
  1443. int mode)
  1444. {
  1445. struct dentry *parent;
  1446. int error = 0;
  1447. parent = cgrp->parent->dentry;
  1448. error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
  1449. if (!error) {
  1450. dentry->d_fsdata = cgrp;
  1451. inc_nlink(parent->d_inode);
  1452. cgrp->dentry = dentry;
  1453. dget(dentry);
  1454. }
  1455. dput(dentry);
  1456. return error;
  1457. }
  1458. int cgroup_add_file(struct cgroup *cgrp,
  1459. struct cgroup_subsys *subsys,
  1460. const struct cftype *cft)
  1461. {
  1462. struct dentry *dir = cgrp->dentry;
  1463. struct dentry *dentry;
  1464. int error;
  1465. char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
  1466. if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
  1467. strcpy(name, subsys->name);
  1468. strcat(name, ".");
  1469. }
  1470. strcat(name, cft->name);
  1471. BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
  1472. dentry = lookup_one_len(name, dir, strlen(name));
  1473. if (!IS_ERR(dentry)) {
  1474. error = cgroup_create_file(dentry, 0644 | S_IFREG,
  1475. cgrp->root->sb);
  1476. if (!error)
  1477. dentry->d_fsdata = (void *)cft;
  1478. dput(dentry);
  1479. } else
  1480. error = PTR_ERR(dentry);
  1481. return error;
  1482. }
  1483. int cgroup_add_files(struct cgroup *cgrp,
  1484. struct cgroup_subsys *subsys,
  1485. const struct cftype cft[],
  1486. int count)
  1487. {
  1488. int i, err;
  1489. for (i = 0; i < count; i++) {
  1490. err = cgroup_add_file(cgrp, subsys, &cft[i]);
  1491. if (err)
  1492. return err;
  1493. }
  1494. return 0;
  1495. }
  1496. /**
  1497. * cgroup_task_count - count the number of tasks in a cgroup.
  1498. * @cgrp: the cgroup in question
  1499. *
  1500. * Return the number of tasks in the cgroup.
  1501. */
  1502. int cgroup_task_count(const struct cgroup *cgrp)
  1503. {
  1504. int count = 0;
  1505. struct cg_cgroup_link *link;
  1506. read_lock(&css_set_lock);
  1507. list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
  1508. count += atomic_read(&link->cg->refcount);
  1509. }
  1510. read_unlock(&css_set_lock);
  1511. return count;
  1512. }
  1513. /*
  1514. * Advance a list_head iterator. The iterator should be positioned at
  1515. * the start of a css_set
  1516. */
  1517. static void cgroup_advance_iter(struct cgroup *cgrp,
  1518. struct cgroup_iter *it)
  1519. {
  1520. struct list_head *l = it->cg_link;
  1521. struct cg_cgroup_link *link;
  1522. struct css_set *cg;
  1523. /* Advance to the next non-empty css_set */
  1524. do {
  1525. l = l->next;
  1526. if (l == &cgrp->css_sets) {
  1527. it->cg_link = NULL;
  1528. return;
  1529. }
  1530. link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
  1531. cg = link->cg;
  1532. } while (list_empty(&cg->tasks));
  1533. it->cg_link = l;
  1534. it->task = cg->tasks.next;
  1535. }
  1536. /*
  1537. * To reduce the fork() overhead for systems that are not actually
  1538. * using their cgroups capability, we don't maintain the lists running
  1539. * through each css_set to its tasks until we see the list actually
  1540. * used - in other words after the first call to cgroup_iter_start().
  1541. *
  1542. * The tasklist_lock is not held here, as do_each_thread() and
  1543. * while_each_thread() are protected by RCU.
  1544. */
  1545. static void cgroup_enable_task_cg_lists(void)
  1546. {
  1547. struct task_struct *p, *g;
  1548. write_lock(&css_set_lock);
  1549. use_task_css_set_links = 1;
  1550. do_each_thread(g, p) {
  1551. task_lock(p);
  1552. /*
  1553. * We should check if the process is exiting, otherwise
  1554. * it will race with cgroup_exit() in that the list
  1555. * entry won't be deleted though the process has exited.
  1556. */
  1557. if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
  1558. list_add(&p->cg_list, &p->cgroups->tasks);
  1559. task_unlock(p);
  1560. } while_each_thread(g, p);
  1561. write_unlock(&css_set_lock);
  1562. }
  1563. void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
  1564. {
  1565. /*
  1566. * The first time anyone tries to iterate across a cgroup,
  1567. * we need to enable the list linking each css_set to its
  1568. * tasks, and fix up all existing tasks.
  1569. */
  1570. if (!use_task_css_set_links)
  1571. cgroup_enable_task_cg_lists();
  1572. read_lock(&css_set_lock);
  1573. it->cg_link = &cgrp->css_sets;
  1574. cgroup_advance_iter(cgrp, it);
  1575. }
  1576. struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
  1577. struct cgroup_iter *it)
  1578. {
  1579. struct task_struct *res;
  1580. struct list_head *l = it->task;
  1581. /* If the iterator cg is NULL, we have no tasks */
  1582. if (!it->cg_link)
  1583. return NULL;
  1584. res = list_entry(l, struct task_struct, cg_list);
  1585. /* Advance iterator to find next entry */
  1586. l = l->next;
  1587. if (l == &res->cgroups->tasks) {
  1588. /* We reached the end of this task list - move on to
  1589. * the next cg_cgroup_link */
  1590. cgroup_advance_iter(cgrp, it);
  1591. } else {
  1592. it->task = l;
  1593. }
  1594. return res;
  1595. }
  1596. void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
  1597. {
  1598. read_unlock(&css_set_lock);
  1599. }
  1600. static inline int started_after_time(struct task_struct *t1,
  1601. struct timespec *time,
  1602. struct task_struct *t2)
  1603. {
  1604. int start_diff = timespec_compare(&t1->start_time, time);
  1605. if (start_diff > 0) {
  1606. return 1;
  1607. } else if (start_diff < 0) {
  1608. return 0;
  1609. } else {
  1610. /*
  1611. * Arbitrarily, if two processes started at the same
  1612. * time, we'll say that the lower pointer value
  1613. * started first. Note that t2 may have exited by now
  1614. * so this may not be a valid pointer any longer, but
  1615. * that's fine - it still serves to distinguish
  1616. * between two tasks started (effectively) simultaneously.
  1617. */
  1618. return t1 > t2;
  1619. }
  1620. }
  1621. /*
  1622. * This function is a callback from heap_insert() and is used to order
  1623. * the heap.
  1624. * In this case we order the heap in descending task start time.
  1625. */
  1626. static inline int started_after(void *p1, void *p2)
  1627. {
  1628. struct task_struct *t1 = p1;
  1629. struct task_struct *t2 = p2;
  1630. return started_after_time(t1, &t2->start_time, t2);
  1631. }
  1632. /**
  1633. * cgroup_scan_tasks - iterate though all the tasks in a cgroup
  1634. * @scan: struct cgroup_scanner containing arguments for the scan
  1635. *
  1636. * Arguments include pointers to callback functions test_task() and
  1637. * process_task().
  1638. * Iterate through all the tasks in a cgroup, calling test_task() for each,
  1639. * and if it returns true, call process_task() for it also.
  1640. * The test_task pointer may be NULL, meaning always true (select all tasks).
  1641. * Effectively duplicates cgroup_iter_{start,next,end}()
  1642. * but does not lock css_set_lock for the call to process_task().
  1643. * The struct cgroup_scanner may be embedded in any structure of the caller's
  1644. * creation.
  1645. * It is guaranteed that process_task() will act on every task that
  1646. * is a member of the cgroup for the duration of this call. This
  1647. * function may or may not call process_task() for tasks that exit
  1648. * or move to a different cgroup during the call, or are forked or
  1649. * move into the cgroup during the call.
  1650. *
  1651. * Note that test_task() may be called with locks held, and may in some
  1652. * situations be called multiple times for the same task, so it should
  1653. * be cheap.
  1654. * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
  1655. * pre-allocated and will be used for heap operations (and its "gt" member will
  1656. * be overwritten), else a temporary heap will be used (allocation of which
  1657. * may cause this function to fail).
  1658. */
  1659. int cgroup_scan_tasks(struct cgroup_scanner *scan)
  1660. {
  1661. int retval, i;
  1662. struct cgroup_iter it;
  1663. struct task_struct *p, *dropped;
  1664. /* Never dereference latest_task, since it's not refcounted */
  1665. struct task_struct *latest_task = NULL;
  1666. struct ptr_heap tmp_heap;
  1667. struct ptr_heap *heap;
  1668. struct timespec latest_time = { 0, 0 };
  1669. if (scan->heap) {
  1670. /* The caller supplied our heap and pre-allocated its memory */
  1671. heap = scan->heap;
  1672. heap->gt = &started_after;
  1673. } else {
  1674. /* We need to allocate our own heap memory */
  1675. heap = &tmp_heap;
  1676. retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
  1677. if (retval)
  1678. /* cannot allocate the heap */
  1679. return retval;
  1680. }
  1681. again:
  1682. /*
  1683. * Scan tasks in the cgroup, using the scanner's "test_task" callback
  1684. * to determine which are of interest, and using the scanner's
  1685. * "process_task" callback to process any of them that need an update.
  1686. * Since we don't want to hold any locks during the task updates,
  1687. * gather tasks to be processed in a heap structure.
  1688. * The heap is sorted by descending task start time.
  1689. * If the statically-sized heap fills up, we overflow tasks that
  1690. * started later, and in future iterations only consider tasks that
  1691. * started after the latest task in the previous pass. This
  1692. * guarantees forward progress and that we don't miss any tasks.
  1693. */
  1694. heap->size = 0;
  1695. cgroup_iter_start(scan->cg, &it);
  1696. while ((p = cgroup_iter_next(scan->cg, &it))) {
  1697. /*
  1698. * Only affect tasks that qualify per the caller's callback,
  1699. * if he provided one
  1700. */
  1701. if (scan->test_task && !scan->test_task(p, scan))
  1702. continue;
  1703. /*
  1704. * Only process tasks that started after the last task
  1705. * we processed
  1706. */
  1707. if (!started_after_time(p, &latest_time, latest_task))
  1708. continue;
  1709. dropped = heap_insert(heap, p);
  1710. if (dropped == NULL) {
  1711. /*
  1712. * The new task was inserted; the heap wasn't
  1713. * previously full
  1714. */
  1715. get_task_struct(p);
  1716. } else if (dropped != p) {
  1717. /*
  1718. * The new task was inserted, and pushed out a
  1719. * different task
  1720. */
  1721. get_task_struct(p);
  1722. put_task_struct(dropped);
  1723. }
  1724. /*
  1725. * Else the new task was newer than anything already in
  1726. * the heap and wasn't inserted
  1727. */
  1728. }
  1729. cgroup_iter_end(scan->cg, &it);
  1730. if (heap->size) {
  1731. for (i = 0; i < heap->size; i++) {
  1732. struct task_struct *q = heap->ptrs[i];
  1733. if (i == 0) {
  1734. latest_time = q->start_time;
  1735. latest_task = q;
  1736. }
  1737. /* Process the task per the caller's callback */
  1738. scan->process_task(q, scan);
  1739. put_task_struct(q);
  1740. }
  1741. /*
  1742. * If we had to process any tasks at all, scan again
  1743. * in case some of them were in the middle of forking
  1744. * children that didn't get processed.
  1745. * Not the most efficient way to do it, but it avoids
  1746. * having to take callback_mutex in the fork path
  1747. */
  1748. goto again;
  1749. }
  1750. if (heap == &tmp_heap)
  1751. heap_free(&tmp_heap);
  1752. return 0;
  1753. }
  1754. /*
  1755. * Stuff for reading the 'tasks' file.
  1756. *
  1757. * Reading this file can return large amounts of data if a cgroup has
  1758. * *lots* of attached tasks. So it may need several calls to read(),
  1759. * but we cannot guarantee that the information we produce is correct
  1760. * unless we produce it entirely atomically.
  1761. *
  1762. */
  1763. /*
  1764. * Load into 'pidarray' up to 'npids' of the tasks using cgroup
  1765. * 'cgrp'. Return actual number of pids loaded. No need to
  1766. * task_lock(p) when reading out p->cgroup, since we're in an RCU
  1767. * read section, so the css_set can't go away, and is
  1768. * immutable after creation.
  1769. */
  1770. static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
  1771. {
  1772. int n = 0;
  1773. struct cgroup_iter it;
  1774. struct task_struct *tsk;
  1775. cgroup_iter_start(cgrp, &it);
  1776. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  1777. if (unlikely(n == npids))
  1778. break;
  1779. pidarray[n++] = task_pid_vnr(tsk);
  1780. }
  1781. cgroup_iter_end(cgrp, &it);
  1782. return n;
  1783. }
  1784. /**
  1785. * cgroupstats_build - build and fill cgroupstats
  1786. * @stats: cgroupstats to fill information into
  1787. * @dentry: A dentry entry belonging to the cgroup for which stats have
  1788. * been requested.
  1789. *
  1790. * Build and fill cgroupstats so that taskstats can export it to user
  1791. * space.
  1792. */
  1793. int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
  1794. {
  1795. int ret = -EINVAL;
  1796. struct cgroup *cgrp;
  1797. struct cgroup_iter it;
  1798. struct task_struct *tsk;
  1799. /*
  1800. * Validate dentry by checking the superblock operations
  1801. */
  1802. if (dentry->d_sb->s_op != &cgroup_ops)
  1803. goto err;
  1804. ret = 0;
  1805. cgrp = dentry->d_fsdata;
  1806. rcu_read_lock();
  1807. cgroup_iter_start(cgrp, &it);
  1808. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  1809. switch (tsk->state) {
  1810. case TASK_RUNNING:
  1811. stats->nr_running++;
  1812. break;
  1813. case TASK_INTERRUPTIBLE:
  1814. stats->nr_sleeping++;
  1815. break;
  1816. case TASK_UNINTERRUPTIBLE:
  1817. stats->nr_uninterruptible++;
  1818. break;
  1819. case TASK_STOPPED:
  1820. stats->nr_stopped++;
  1821. break;
  1822. default:
  1823. if (delayacct_is_task_waiting_on_io(tsk))
  1824. stats->nr_io_wait++;
  1825. break;
  1826. }
  1827. }
  1828. cgroup_iter_end(cgrp, &it);
  1829. rcu_read_unlock();
  1830. err:
  1831. return ret;
  1832. }
  1833. static int cmppid(const void *a, const void *b)
  1834. {
  1835. return *(pid_t *)a - *(pid_t *)b;
  1836. }
  1837. /*
  1838. * seq_file methods for the "tasks" file. The seq_file position is the
  1839. * next pid to display; the seq_file iterator is a pointer to the pid
  1840. * in the cgroup->tasks_pids array.
  1841. */
  1842. static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
  1843. {
  1844. /*
  1845. * Initially we receive a position value that corresponds to
  1846. * one more than the last pid shown (or 0 on the first call or
  1847. * after a seek to the start). Use a binary-search to find the
  1848. * next pid to display, if any
  1849. */
  1850. struct cgroup *cgrp = s->private;
  1851. int index = 0, pid = *pos;
  1852. int *iter;
  1853. down_read(&cgrp->pids_mutex);
  1854. if (pid) {
  1855. int end = cgrp->pids_length;
  1856. int i;
  1857. while (index < end) {
  1858. int mid = (index + end) / 2;
  1859. if (cgrp->tasks_pids[mid] == pid) {
  1860. index = mid;
  1861. break;
  1862. } else if (cgrp->tasks_pids[mid] <= pid)
  1863. index = mid + 1;
  1864. else
  1865. end = mid;
  1866. }
  1867. }
  1868. /* If we're off the end of the array, we're done */
  1869. if (index >= cgrp->pids_length)
  1870. return NULL;
  1871. /* Update the abstract position to be the actual pid that we found */
  1872. iter = cgrp->tasks_pids + index;
  1873. *pos = *iter;
  1874. return iter;
  1875. }
  1876. static void cgroup_tasks_stop(struct seq_file *s, void *v)
  1877. {
  1878. struct cgroup *cgrp = s->private;
  1879. up_read(&cgrp->pids_mutex);
  1880. }
  1881. static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
  1882. {
  1883. struct cgroup *cgrp = s->private;
  1884. int *p = v;
  1885. int *end = cgrp->tasks_pids + cgrp->pids_length;
  1886. /*
  1887. * Advance to the next pid in the array. If this goes off the
  1888. * end, we're done
  1889. */
  1890. p++;
  1891. if (p >= end) {
  1892. return NULL;
  1893. } else {
  1894. *pos = *p;
  1895. return p;
  1896. }
  1897. }
  1898. static int cgroup_tasks_show(struct seq_file *s, void *v)
  1899. {
  1900. return seq_printf(s, "%d\n", *(int *)v);
  1901. }
  1902. static struct seq_operations cgroup_tasks_seq_operations = {
  1903. .start = cgroup_tasks_start,
  1904. .stop = cgroup_tasks_stop,
  1905. .next = cgroup_tasks_next,
  1906. .show = cgroup_tasks_show,
  1907. };
  1908. static void release_cgroup_pid_array(struct cgroup *cgrp)
  1909. {
  1910. down_write(&cgrp->pids_mutex);
  1911. BUG_ON(!cgrp->pids_use_count);
  1912. if (!--cgrp->pids_use_count) {
  1913. kfree(cgrp->tasks_pids);
  1914. cgrp->tasks_pids = NULL;
  1915. cgrp->pids_length = 0;
  1916. }
  1917. up_write(&cgrp->pids_mutex);
  1918. }
  1919. static int cgroup_tasks_release(struct inode *inode, struct file *file)
  1920. {
  1921. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  1922. if (!(file->f_mode & FMODE_READ))
  1923. return 0;
  1924. release_cgroup_pid_array(cgrp);
  1925. return seq_release(inode, file);
  1926. }
  1927. static struct file_operations cgroup_tasks_operations = {
  1928. .read = seq_read,
  1929. .llseek = seq_lseek,
  1930. .write = cgroup_file_write,
  1931. .release = cgroup_tasks_release,
  1932. };
  1933. /*
  1934. * Handle an open on 'tasks' file. Prepare an array containing the
  1935. * process id's of tasks currently attached to the cgroup being opened.
  1936. */
  1937. static int cgroup_tasks_open(struct inode *unused, struct file *file)
  1938. {
  1939. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  1940. pid_t *pidarray;
  1941. int npids;
  1942. int retval;
  1943. /* Nothing to do for write-only files */
  1944. if (!(file->f_mode & FMODE_READ))
  1945. return 0;
  1946. /*
  1947. * If cgroup gets more users after we read count, we won't have
  1948. * enough space - tough. This race is indistinguishable to the
  1949. * caller from the case that the additional cgroup users didn't
  1950. * show up until sometime later on.
  1951. */
  1952. npids = cgroup_task_count(cgrp);
  1953. pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
  1954. if (!pidarray)
  1955. return -ENOMEM;
  1956. npids = pid_array_load(pidarray, npids, cgrp);
  1957. sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
  1958. /*
  1959. * Store the array in the cgroup, freeing the old
  1960. * array if necessary
  1961. */
  1962. down_write(&cgrp->pids_mutex);
  1963. kfree(cgrp->tasks_pids);
  1964. cgrp->tasks_pids = pidarray;
  1965. cgrp->pids_length = npids;
  1966. cgrp->pids_use_count++;
  1967. up_write(&cgrp->pids_mutex);
  1968. file->f_op = &cgroup_tasks_operations;
  1969. retval = seq_open(file, &cgroup_tasks_seq_operations);
  1970. if (retval) {
  1971. release_cgroup_pid_array(cgrp);
  1972. return retval;
  1973. }
  1974. ((struct seq_file *)file->private_data)->private = cgrp;
  1975. return 0;
  1976. }
  1977. static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
  1978. struct cftype *cft)
  1979. {
  1980. return notify_on_release(cgrp);
  1981. }
  1982. static int cgroup_write_notify_on_release(struct cgroup *cgrp,
  1983. struct cftype *cft,
  1984. u64 val)
  1985. {
  1986. clear_bit(CGRP_RELEASABLE, &cgrp->flags);
  1987. if (val)
  1988. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  1989. else
  1990. clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  1991. return 0;
  1992. }
  1993. /*
  1994. * for the common functions, 'private' gives the type of file
  1995. */
  1996. static struct cftype files[] = {
  1997. {
  1998. .name = "tasks",
  1999. .open = cgroup_tasks_open,
  2000. .write_u64 = cgroup_tasks_write,
  2001. .release = cgroup_tasks_release,
  2002. .private = FILE_TASKLIST,
  2003. },
  2004. {
  2005. .name = "notify_on_release",
  2006. .read_u64 = cgroup_read_notify_on_release,
  2007. .write_u64 = cgroup_write_notify_on_release,
  2008. .private = FILE_NOTIFY_ON_RELEASE,
  2009. },
  2010. };
  2011. static struct cftype cft_release_agent = {
  2012. .name = "release_agent",
  2013. .read_seq_string = cgroup_release_agent_show,
  2014. .write_string = cgroup_release_agent_write,
  2015. .max_write_len = PATH_MAX,
  2016. .private = FILE_RELEASE_AGENT,
  2017. };
  2018. static int cgroup_populate_dir(struct cgroup *cgrp)
  2019. {
  2020. int err;
  2021. struct cgroup_subsys *ss;
  2022. /* First clear out any existing files */
  2023. cgroup_clear_directory(cgrp->dentry);
  2024. err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
  2025. if (err < 0)
  2026. return err;
  2027. if (cgrp == cgrp->top_cgroup) {
  2028. if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
  2029. return err;
  2030. }
  2031. for_each_subsys(cgrp->root, ss) {
  2032. if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
  2033. return err;
  2034. }
  2035. return 0;
  2036. }
  2037. static void init_cgroup_css(struct cgroup_subsys_state *css,
  2038. struct cgroup_subsys *ss,
  2039. struct cgroup *cgrp)
  2040. {
  2041. css->cgroup = cgrp;
  2042. atomic_set(&css->refcnt, 0);
  2043. css->flags = 0;
  2044. if (cgrp == dummytop)
  2045. set_bit(CSS_ROOT, &css->flags);
  2046. BUG_ON(cgrp->subsys[ss->subsys_id]);
  2047. cgrp->subsys[ss->subsys_id] = css;
  2048. }
  2049. /*
  2050. * cgroup_create - create a cgroup
  2051. * @parent: cgroup that will be parent of the new cgroup
  2052. * @dentry: dentry of the new cgroup
  2053. * @mode: mode to set on new inode
  2054. *
  2055. * Must be called with the mutex on the parent inode held
  2056. */
  2057. static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
  2058. int mode)
  2059. {
  2060. struct cgroup *cgrp;
  2061. struct cgroupfs_root *root = parent->root;
  2062. int err = 0;
  2063. struct cgroup_subsys *ss;
  2064. struct super_block *sb = root->sb;
  2065. cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
  2066. if (!cgrp)
  2067. return -ENOMEM;
  2068. /* Grab a reference on the superblock so the hierarchy doesn't
  2069. * get deleted on unmount if there are child cgroups. This
  2070. * can be done outside cgroup_mutex, since the sb can't
  2071. * disappear while someone has an open control file on the
  2072. * fs */
  2073. atomic_inc(&sb->s_active);
  2074. mutex_lock(&cgroup_mutex);
  2075. init_cgroup_housekeeping(cgrp);
  2076. cgrp->parent = parent;
  2077. cgrp->root = parent->root;
  2078. cgrp->top_cgroup = parent->top_cgroup;
  2079. if (notify_on_release(parent))
  2080. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  2081. for_each_subsys(root, ss) {
  2082. struct cgroup_subsys_state *css = ss->create(ss, cgrp);
  2083. if (IS_ERR(css)) {
  2084. err = PTR_ERR(css);
  2085. goto err_destroy;
  2086. }
  2087. init_cgroup_css(css, ss, cgrp);
  2088. }
  2089. list_add(&cgrp->sibling, &cgrp->parent->children);
  2090. root->number_of_cgroups++;
  2091. err = cgroup_create_dir(cgrp, dentry, mode);
  2092. if (err < 0)
  2093. goto err_remove;
  2094. /* The cgroup directory was pre-locked for us */
  2095. BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
  2096. err = cgroup_populate_dir(cgrp);
  2097. /* If err < 0, we have a half-filled directory - oh well ;) */
  2098. mutex_unlock(&cgroup_mutex);
  2099. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  2100. return 0;
  2101. err_remove:
  2102. list_del(&cgrp->sibling);
  2103. root->number_of_cgroups--;
  2104. err_destroy:
  2105. for_each_subsys(root, ss) {
  2106. if (cgrp->subsys[ss->subsys_id])
  2107. ss->destroy(ss, cgrp);
  2108. }
  2109. mutex_unlock(&cgroup_mutex);
  2110. /* Release the reference count that we took on the superblock */
  2111. deactivate_super(sb);
  2112. kfree(cgrp);
  2113. return err;
  2114. }
  2115. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  2116. {
  2117. struct cgroup *c_parent = dentry->d_parent->d_fsdata;
  2118. /* the vfs holds inode->i_mutex already */
  2119. return cgroup_create(c_parent, dentry, mode | S_IFDIR);
  2120. }
  2121. static int cgroup_has_css_refs(struct cgroup *cgrp)
  2122. {
  2123. /* Check the reference count on each subsystem. Since we
  2124. * already established that there are no tasks in the
  2125. * cgroup, if the css refcount is also 0, then there should
  2126. * be no outstanding references, so the subsystem is safe to
  2127. * destroy. We scan across all subsystems rather than using
  2128. * the per-hierarchy linked list of mounted subsystems since
  2129. * we can be called via check_for_release() with no
  2130. * synchronization other than RCU, and the subsystem linked
  2131. * list isn't RCU-safe */
  2132. int i;
  2133. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2134. struct cgroup_subsys *ss = subsys[i];
  2135. struct cgroup_subsys_state *css;
  2136. /* Skip subsystems not in this hierarchy */
  2137. if (ss->root != cgrp->root)
  2138. continue;
  2139. css = cgrp->subsys[ss->subsys_id];
  2140. /* When called from check_for_release() it's possible
  2141. * that by this point the cgroup has been removed
  2142. * and the css deleted. But a false-positive doesn't
  2143. * matter, since it can only happen if the cgroup
  2144. * has been deleted and hence no longer needs the
  2145. * release agent to be called anyway. */
  2146. if (css && atomic_read(&css->refcnt))
  2147. return 1;
  2148. }
  2149. return 0;
  2150. }
  2151. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
  2152. {
  2153. struct cgroup *cgrp = dentry->d_fsdata;
  2154. struct dentry *d;
  2155. struct cgroup *parent;
  2156. struct super_block *sb;
  2157. struct cgroupfs_root *root;
  2158. /* the vfs holds both inode->i_mutex already */
  2159. mutex_lock(&cgroup_mutex);
  2160. if (atomic_read(&cgrp->count) != 0) {
  2161. mutex_unlock(&cgroup_mutex);
  2162. return -EBUSY;
  2163. }
  2164. if (!list_empty(&cgrp->children)) {
  2165. mutex_unlock(&cgroup_mutex);
  2166. return -EBUSY;
  2167. }
  2168. parent = cgrp->parent;
  2169. root = cgrp->root;
  2170. sb = root->sb;
  2171. /*
  2172. * Call pre_destroy handlers of subsys. Notify subsystems
  2173. * that rmdir() request comes.
  2174. */
  2175. cgroup_call_pre_destroy(cgrp);
  2176. if (cgroup_has_css_refs(cgrp)) {
  2177. mutex_unlock(&cgroup_mutex);
  2178. return -EBUSY;
  2179. }
  2180. spin_lock(&release_list_lock);
  2181. set_bit(CGRP_REMOVED, &cgrp->flags);
  2182. if (!list_empty(&cgrp->release_list))
  2183. list_del(&cgrp->release_list);
  2184. spin_unlock(&release_list_lock);
  2185. /* delete my sibling from parent->children */
  2186. list_del(&cgrp->sibling);
  2187. spin_lock(&cgrp->dentry->d_lock);
  2188. d = dget(cgrp->dentry);
  2189. cgrp->dentry = NULL;
  2190. spin_unlock(&d->d_lock);
  2191. cgroup_d_remove_dir(d);
  2192. dput(d);
  2193. set_bit(CGRP_RELEASABLE, &parent->flags);
  2194. check_for_release(parent);
  2195. mutex_unlock(&cgroup_mutex);
  2196. return 0;
  2197. }
  2198. static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
  2199. {
  2200. struct cgroup_subsys_state *css;
  2201. printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
  2202. /* Create the top cgroup state for this subsystem */
  2203. ss->root = &rootnode;
  2204. css = ss->create(ss, dummytop);
  2205. /* We don't handle early failures gracefully */
  2206. BUG_ON(IS_ERR(css));
  2207. init_cgroup_css(css, ss, dummytop);
  2208. /* Update the init_css_set to contain a subsys
  2209. * pointer to this state - since the subsystem is
  2210. * newly registered, all tasks and hence the
  2211. * init_css_set is in the subsystem's top cgroup. */
  2212. init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
  2213. need_forkexit_callback |= ss->fork || ss->exit;
  2214. need_mm_owner_callback |= !!ss->mm_owner_changed;
  2215. /* At system boot, before all subsystems have been
  2216. * registered, no tasks have been forked, so we don't
  2217. * need to invoke fork callbacks here. */
  2218. BUG_ON(!list_empty(&init_task.tasks));
  2219. ss->active = 1;
  2220. }
  2221. /**
  2222. * cgroup_init_early - cgroup initialization at system boot
  2223. *
  2224. * Initialize cgroups at system boot, and initialize any
  2225. * subsystems that request early init.
  2226. */
  2227. int __init cgroup_init_early(void)
  2228. {
  2229. int i;
  2230. atomic_set(&init_css_set.refcount, 1);
  2231. INIT_LIST_HEAD(&init_css_set.cg_links);
  2232. INIT_LIST_HEAD(&init_css_set.tasks);
  2233. INIT_HLIST_NODE(&init_css_set.hlist);
  2234. css_set_count = 1;
  2235. init_cgroup_root(&rootnode);
  2236. list_add(&rootnode.root_list, &roots);
  2237. root_count = 1;
  2238. init_task.cgroups = &init_css_set;
  2239. init_css_set_link.cg = &init_css_set;
  2240. list_add(&init_css_set_link.cgrp_link_list,
  2241. &rootnode.top_cgroup.css_sets);
  2242. list_add(&init_css_set_link.cg_link_list,
  2243. &init_css_set.cg_links);
  2244. for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
  2245. INIT_HLIST_HEAD(&css_set_table[i]);
  2246. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2247. struct cgroup_subsys *ss = subsys[i];
  2248. BUG_ON(!ss->name);
  2249. BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
  2250. BUG_ON(!ss->create);
  2251. BUG_ON(!ss->destroy);
  2252. if (ss->subsys_id != i) {
  2253. printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
  2254. ss->name, ss->subsys_id);
  2255. BUG();
  2256. }
  2257. if (ss->early_init)
  2258. cgroup_init_subsys(ss);
  2259. }
  2260. return 0;
  2261. }
  2262. /**
  2263. * cgroup_init - cgroup initialization
  2264. *
  2265. * Register cgroup filesystem and /proc file, and initialize
  2266. * any subsystems that didn't request early init.
  2267. */
  2268. int __init cgroup_init(void)
  2269. {
  2270. int err;
  2271. int i;
  2272. struct hlist_head *hhead;
  2273. err = bdi_init(&cgroup_backing_dev_info);
  2274. if (err)
  2275. return err;
  2276. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2277. struct cgroup_subsys *ss = subsys[i];
  2278. if (!ss->early_init)
  2279. cgroup_init_subsys(ss);
  2280. }
  2281. /* Add init_css_set to the hash table */
  2282. hhead = css_set_hash(init_css_set.subsys);
  2283. hlist_add_head(&init_css_set.hlist, hhead);
  2284. err = register_filesystem(&cgroup_fs_type);
  2285. if (err < 0)
  2286. goto out;
  2287. proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
  2288. out:
  2289. if (err)
  2290. bdi_destroy(&cgroup_backing_dev_info);
  2291. return err;
  2292. }
  2293. /*
  2294. * proc_cgroup_show()
  2295. * - Print task's cgroup paths into seq_file, one line for each hierarchy
  2296. * - Used for /proc/<pid>/cgroup.
  2297. * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
  2298. * doesn't really matter if tsk->cgroup changes after we read it,
  2299. * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
  2300. * anyway. No need to check that tsk->cgroup != NULL, thanks to
  2301. * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
  2302. * cgroup to top_cgroup.
  2303. */
  2304. /* TODO: Use a proper seq_file iterator */
  2305. static int proc_cgroup_show(struct seq_file *m, void *v)
  2306. {
  2307. struct pid *pid;
  2308. struct task_struct *tsk;
  2309. char *buf;
  2310. int retval;
  2311. struct cgroupfs_root *root;
  2312. retval = -ENOMEM;
  2313. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2314. if (!buf)
  2315. goto out;
  2316. retval = -ESRCH;
  2317. pid = m->private;
  2318. tsk = get_pid_task(pid, PIDTYPE_PID);
  2319. if (!tsk)
  2320. goto out_free;
  2321. retval = 0;
  2322. mutex_lock(&cgroup_mutex);
  2323. for_each_root(root) {
  2324. struct cgroup_subsys *ss;
  2325. struct cgroup *cgrp;
  2326. int subsys_id;
  2327. int count = 0;
  2328. /* Skip this hierarchy if it has no active subsystems */
  2329. if (!root->actual_subsys_bits)
  2330. continue;
  2331. seq_printf(m, "%lu:", root->subsys_bits);
  2332. for_each_subsys(root, ss)
  2333. seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
  2334. seq_putc(m, ':');
  2335. get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
  2336. cgrp = task_cgroup(tsk, subsys_id);
  2337. retval = cgroup_path(cgrp, buf, PAGE_SIZE);
  2338. if (retval < 0)
  2339. goto out_unlock;
  2340. seq_puts(m, buf);
  2341. seq_putc(m, '\n');
  2342. }
  2343. out_unlock:
  2344. mutex_unlock(&cgroup_mutex);
  2345. put_task_struct(tsk);
  2346. out_free:
  2347. kfree(buf);
  2348. out:
  2349. return retval;
  2350. }
  2351. static int cgroup_open(struct inode *inode, struct file *file)
  2352. {
  2353. struct pid *pid = PROC_I(inode)->pid;
  2354. return single_open(file, proc_cgroup_show, pid);
  2355. }
  2356. struct file_operations proc_cgroup_operations = {
  2357. .open = cgroup_open,
  2358. .read = seq_read,
  2359. .llseek = seq_lseek,
  2360. .release = single_release,
  2361. };
  2362. /* Display information about each subsystem and each hierarchy */
  2363. static int proc_cgroupstats_show(struct seq_file *m, void *v)
  2364. {
  2365. int i;
  2366. seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
  2367. mutex_lock(&cgroup_mutex);
  2368. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2369. struct cgroup_subsys *ss = subsys[i];
  2370. seq_printf(m, "%s\t%lu\t%d\t%d\n",
  2371. ss->name, ss->root->subsys_bits,
  2372. ss->root->number_of_cgroups, !ss->disabled);
  2373. }
  2374. mutex_unlock(&cgroup_mutex);
  2375. return 0;
  2376. }
  2377. static int cgroupstats_open(struct inode *inode, struct file *file)
  2378. {
  2379. return single_open(file, proc_cgroupstats_show, NULL);
  2380. }
  2381. static struct file_operations proc_cgroupstats_operations = {
  2382. .open = cgroupstats_open,
  2383. .read = seq_read,
  2384. .llseek = seq_lseek,
  2385. .release = single_release,
  2386. };
  2387. /**
  2388. * cgroup_fork - attach newly forked task to its parents cgroup.
  2389. * @child: pointer to task_struct of forking parent process.
  2390. *
  2391. * Description: A task inherits its parent's cgroup at fork().
  2392. *
  2393. * A pointer to the shared css_set was automatically copied in
  2394. * fork.c by dup_task_struct(). However, we ignore that copy, since
  2395. * it was not made under the protection of RCU or cgroup_mutex, so
  2396. * might no longer be a valid cgroup pointer. cgroup_attach_task() might
  2397. * have already changed current->cgroups, allowing the previously
  2398. * referenced cgroup group to be removed and freed.
  2399. *
  2400. * At the point that cgroup_fork() is called, 'current' is the parent
  2401. * task, and the passed argument 'child' points to the child task.
  2402. */
  2403. void cgroup_fork(struct task_struct *child)
  2404. {
  2405. task_lock(current);
  2406. child->cgroups = current->cgroups;
  2407. get_css_set(child->cgroups);
  2408. task_unlock(current);
  2409. INIT_LIST_HEAD(&child->cg_list);
  2410. }
  2411. /**
  2412. * cgroup_fork_callbacks - run fork callbacks
  2413. * @child: the new task
  2414. *
  2415. * Called on a new task very soon before adding it to the
  2416. * tasklist. No need to take any locks since no-one can
  2417. * be operating on this task.
  2418. */
  2419. void cgroup_fork_callbacks(struct task_struct *child)
  2420. {
  2421. if (need_forkexit_callback) {
  2422. int i;
  2423. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2424. struct cgroup_subsys *ss = subsys[i];
  2425. if (ss->fork)
  2426. ss->fork(ss, child);
  2427. }
  2428. }
  2429. }
  2430. #ifdef CONFIG_MM_OWNER
  2431. /**
  2432. * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
  2433. * @p: the new owner
  2434. *
  2435. * Called on every change to mm->owner. mm_init_owner() does not
  2436. * invoke this routine, since it assigns the mm->owner the first time
  2437. * and does not change it.
  2438. *
  2439. * The callbacks are invoked with mmap_sem held in read mode.
  2440. */
  2441. void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
  2442. {
  2443. struct cgroup *oldcgrp, *newcgrp = NULL;
  2444. if (need_mm_owner_callback) {
  2445. int i;
  2446. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2447. struct cgroup_subsys *ss = subsys[i];
  2448. oldcgrp = task_cgroup(old, ss->subsys_id);
  2449. if (new)
  2450. newcgrp = task_cgroup(new, ss->subsys_id);
  2451. if (oldcgrp == newcgrp)
  2452. continue;
  2453. if (ss->mm_owner_changed)
  2454. ss->mm_owner_changed(ss, oldcgrp, newcgrp, new);
  2455. }
  2456. }
  2457. }
  2458. #endif /* CONFIG_MM_OWNER */
  2459. /**
  2460. * cgroup_post_fork - called on a new task after adding it to the task list
  2461. * @child: the task in question
  2462. *
  2463. * Adds the task to the list running through its css_set if necessary.
  2464. * Has to be after the task is visible on the task list in case we race
  2465. * with the first call to cgroup_iter_start() - to guarantee that the
  2466. * new task ends up on its list.
  2467. */
  2468. void cgroup_post_fork(struct task_struct *child)
  2469. {
  2470. if (use_task_css_set_links) {
  2471. write_lock(&css_set_lock);
  2472. if (list_empty(&child->cg_list))
  2473. list_add(&child->cg_list, &child->cgroups->tasks);
  2474. write_unlock(&css_set_lock);
  2475. }
  2476. }
  2477. /**
  2478. * cgroup_exit - detach cgroup from exiting task
  2479. * @tsk: pointer to task_struct of exiting process
  2480. * @run_callback: run exit callbacks?
  2481. *
  2482. * Description: Detach cgroup from @tsk and release it.
  2483. *
  2484. * Note that cgroups marked notify_on_release force every task in
  2485. * them to take the global cgroup_mutex mutex when exiting.
  2486. * This could impact scaling on very large systems. Be reluctant to
  2487. * use notify_on_release cgroups where very high task exit scaling
  2488. * is required on large systems.
  2489. *
  2490. * the_top_cgroup_hack:
  2491. *
  2492. * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
  2493. *
  2494. * We call cgroup_exit() while the task is still competent to
  2495. * handle notify_on_release(), then leave the task attached to the
  2496. * root cgroup in each hierarchy for the remainder of its exit.
  2497. *
  2498. * To do this properly, we would increment the reference count on
  2499. * top_cgroup, and near the very end of the kernel/exit.c do_exit()
  2500. * code we would add a second cgroup function call, to drop that
  2501. * reference. This would just create an unnecessary hot spot on
  2502. * the top_cgroup reference count, to no avail.
  2503. *
  2504. * Normally, holding a reference to a cgroup without bumping its
  2505. * count is unsafe. The cgroup could go away, or someone could
  2506. * attach us to a different cgroup, decrementing the count on
  2507. * the first cgroup that we never incremented. But in this case,
  2508. * top_cgroup isn't going away, and either task has PF_EXITING set,
  2509. * which wards off any cgroup_attach_task() attempts, or task is a failed
  2510. * fork, never visible to cgroup_attach_task.
  2511. */
  2512. void cgroup_exit(struct task_struct *tsk, int run_callbacks)
  2513. {
  2514. int i;
  2515. struct css_set *cg;
  2516. if (run_callbacks && need_forkexit_callback) {
  2517. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2518. struct cgroup_subsys *ss = subsys[i];
  2519. if (ss->exit)
  2520. ss->exit(ss, tsk);
  2521. }
  2522. }
  2523. /*
  2524. * Unlink from the css_set task list if necessary.
  2525. * Optimistically check cg_list before taking
  2526. * css_set_lock
  2527. */
  2528. if (!list_empty(&tsk->cg_list)) {
  2529. write_lock(&css_set_lock);
  2530. if (!list_empty(&tsk->cg_list))
  2531. list_del(&tsk->cg_list);
  2532. write_unlock(&css_set_lock);
  2533. }
  2534. /* Reassign the task to the init_css_set. */
  2535. task_lock(tsk);
  2536. cg = tsk->cgroups;
  2537. tsk->cgroups = &init_css_set;
  2538. task_unlock(tsk);
  2539. if (cg)
  2540. put_css_set_taskexit(cg);
  2541. }
  2542. /**
  2543. * cgroup_clone - clone the cgroup the given subsystem is attached to
  2544. * @tsk: the task to be moved
  2545. * @subsys: the given subsystem
  2546. * @nodename: the name for the new cgroup
  2547. *
  2548. * Duplicate the current cgroup in the hierarchy that the given
  2549. * subsystem is attached to, and move this task into the new
  2550. * child.
  2551. */
  2552. int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
  2553. char *nodename)
  2554. {
  2555. struct dentry *dentry;
  2556. int ret = 0;
  2557. struct cgroup *parent, *child;
  2558. struct inode *inode;
  2559. struct css_set *cg;
  2560. struct cgroupfs_root *root;
  2561. struct cgroup_subsys *ss;
  2562. /* We shouldn't be called by an unregistered subsystem */
  2563. BUG_ON(!subsys->active);
  2564. /* First figure out what hierarchy and cgroup we're dealing
  2565. * with, and pin them so we can drop cgroup_mutex */
  2566. mutex_lock(&cgroup_mutex);
  2567. again:
  2568. root = subsys->root;
  2569. if (root == &rootnode) {
  2570. printk(KERN_INFO
  2571. "Not cloning cgroup for unused subsystem %s\n",
  2572. subsys->name);
  2573. mutex_unlock(&cgroup_mutex);
  2574. return 0;
  2575. }
  2576. cg = tsk->cgroups;
  2577. parent = task_cgroup(tsk, subsys->subsys_id);
  2578. /* Pin the hierarchy */
  2579. atomic_inc(&parent->root->sb->s_active);
  2580. /* Keep the cgroup alive */
  2581. get_css_set(cg);
  2582. mutex_unlock(&cgroup_mutex);
  2583. /* Now do the VFS work to create a cgroup */
  2584. inode = parent->dentry->d_inode;
  2585. /* Hold the parent directory mutex across this operation to
  2586. * stop anyone else deleting the new cgroup */
  2587. mutex_lock(&inode->i_mutex);
  2588. dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
  2589. if (IS_ERR(dentry)) {
  2590. printk(KERN_INFO
  2591. "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
  2592. PTR_ERR(dentry));
  2593. ret = PTR_ERR(dentry);
  2594. goto out_release;
  2595. }
  2596. /* Create the cgroup directory, which also creates the cgroup */
  2597. ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
  2598. child = __d_cgrp(dentry);
  2599. dput(dentry);
  2600. if (ret) {
  2601. printk(KERN_INFO
  2602. "Failed to create cgroup %s: %d\n", nodename,
  2603. ret);
  2604. goto out_release;
  2605. }
  2606. if (!child) {
  2607. printk(KERN_INFO
  2608. "Couldn't find new cgroup %s\n", nodename);
  2609. ret = -ENOMEM;
  2610. goto out_release;
  2611. }
  2612. /* The cgroup now exists. Retake cgroup_mutex and check
  2613. * that we're still in the same state that we thought we
  2614. * were. */
  2615. mutex_lock(&cgroup_mutex);
  2616. if ((root != subsys->root) ||
  2617. (parent != task_cgroup(tsk, subsys->subsys_id))) {
  2618. /* Aargh, we raced ... */
  2619. mutex_unlock(&inode->i_mutex);
  2620. put_css_set(cg);
  2621. deactivate_super(parent->root->sb);
  2622. /* The cgroup is still accessible in the VFS, but
  2623. * we're not going to try to rmdir() it at this
  2624. * point. */
  2625. printk(KERN_INFO
  2626. "Race in cgroup_clone() - leaking cgroup %s\n",
  2627. nodename);
  2628. goto again;
  2629. }
  2630. /* do any required auto-setup */
  2631. for_each_subsys(root, ss) {
  2632. if (ss->post_clone)
  2633. ss->post_clone(ss, child);
  2634. }
  2635. /* All seems fine. Finish by moving the task into the new cgroup */
  2636. ret = cgroup_attach_task(child, tsk);
  2637. mutex_unlock(&cgroup_mutex);
  2638. out_release:
  2639. mutex_unlock(&inode->i_mutex);
  2640. mutex_lock(&cgroup_mutex);
  2641. put_css_set(cg);
  2642. mutex_unlock(&cgroup_mutex);
  2643. deactivate_super(parent->root->sb);
  2644. return ret;
  2645. }
  2646. /**
  2647. * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
  2648. * @cgrp: the cgroup in question
  2649. *
  2650. * See if @cgrp is a descendant of the current task's cgroup in
  2651. * the appropriate hierarchy.
  2652. *
  2653. * If we are sending in dummytop, then presumably we are creating
  2654. * the top cgroup in the subsystem.
  2655. *
  2656. * Called only by the ns (nsproxy) cgroup.
  2657. */
  2658. int cgroup_is_descendant(const struct cgroup *cgrp)
  2659. {
  2660. int ret;
  2661. struct cgroup *target;
  2662. int subsys_id;
  2663. if (cgrp == dummytop)
  2664. return 1;
  2665. get_first_subsys(cgrp, NULL, &subsys_id);
  2666. target = task_cgroup(current, subsys_id);
  2667. while (cgrp != target && cgrp!= cgrp->top_cgroup)
  2668. cgrp = cgrp->parent;
  2669. ret = (cgrp == target);
  2670. return ret;
  2671. }
  2672. static void check_for_release(struct cgroup *cgrp)
  2673. {
  2674. /* All of these checks rely on RCU to keep the cgroup
  2675. * structure alive */
  2676. if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
  2677. && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
  2678. /* Control Group is currently removeable. If it's not
  2679. * already queued for a userspace notification, queue
  2680. * it now */
  2681. int need_schedule_work = 0;
  2682. spin_lock(&release_list_lock);
  2683. if (!cgroup_is_removed(cgrp) &&
  2684. list_empty(&cgrp->release_list)) {
  2685. list_add(&cgrp->release_list, &release_list);
  2686. need_schedule_work = 1;
  2687. }
  2688. spin_unlock(&release_list_lock);
  2689. if (need_schedule_work)
  2690. schedule_work(&release_agent_work);
  2691. }
  2692. }
  2693. void __css_put(struct cgroup_subsys_state *css)
  2694. {
  2695. struct cgroup *cgrp = css->cgroup;
  2696. rcu_read_lock();
  2697. if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
  2698. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  2699. check_for_release(cgrp);
  2700. }
  2701. rcu_read_unlock();
  2702. }
  2703. /*
  2704. * Notify userspace when a cgroup is released, by running the
  2705. * configured release agent with the name of the cgroup (path
  2706. * relative to the root of cgroup file system) as the argument.
  2707. *
  2708. * Most likely, this user command will try to rmdir this cgroup.
  2709. *
  2710. * This races with the possibility that some other task will be
  2711. * attached to this cgroup before it is removed, or that some other
  2712. * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
  2713. * The presumed 'rmdir' will fail quietly if this cgroup is no longer
  2714. * unused, and this cgroup will be reprieved from its death sentence,
  2715. * to continue to serve a useful existence. Next time it's released,
  2716. * we will get notified again, if it still has 'notify_on_release' set.
  2717. *
  2718. * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
  2719. * means only wait until the task is successfully execve()'d. The
  2720. * separate release agent task is forked by call_usermodehelper(),
  2721. * then control in this thread returns here, without waiting for the
  2722. * release agent task. We don't bother to wait because the caller of
  2723. * this routine has no use for the exit status of the release agent
  2724. * task, so no sense holding our caller up for that.
  2725. */
  2726. static void cgroup_release_agent(struct work_struct *work)
  2727. {
  2728. BUG_ON(work != &release_agent_work);
  2729. mutex_lock(&cgroup_mutex);
  2730. spin_lock(&release_list_lock);
  2731. while (!list_empty(&release_list)) {
  2732. char *argv[3], *envp[3];
  2733. int i;
  2734. char *pathbuf = NULL, *agentbuf = NULL;
  2735. struct cgroup *cgrp = list_entry(release_list.next,
  2736. struct cgroup,
  2737. release_list);
  2738. list_del_init(&cgrp->release_list);
  2739. spin_unlock(&release_list_lock);
  2740. pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2741. if (!pathbuf)
  2742. goto continue_free;
  2743. if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
  2744. goto continue_free;
  2745. agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
  2746. if (!agentbuf)
  2747. goto continue_free;
  2748. i = 0;
  2749. argv[i++] = agentbuf;
  2750. argv[i++] = pathbuf;
  2751. argv[i] = NULL;
  2752. i = 0;
  2753. /* minimal command environment */
  2754. envp[i++] = "HOME=/";
  2755. envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
  2756. envp[i] = NULL;
  2757. /* Drop the lock while we invoke the usermode helper,
  2758. * since the exec could involve hitting disk and hence
  2759. * be a slow process */
  2760. mutex_unlock(&cgroup_mutex);
  2761. call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
  2762. mutex_lock(&cgroup_mutex);
  2763. continue_free:
  2764. kfree(pathbuf);
  2765. kfree(agentbuf);
  2766. spin_lock(&release_list_lock);
  2767. }
  2768. spin_unlock(&release_list_lock);
  2769. mutex_unlock(&cgroup_mutex);
  2770. }
  2771. static int __init cgroup_disable(char *str)
  2772. {
  2773. int i;
  2774. char *token;
  2775. while ((token = strsep(&str, ",")) != NULL) {
  2776. if (!*token)
  2777. continue;
  2778. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2779. struct cgroup_subsys *ss = subsys[i];
  2780. if (!strcmp(token, ss->name)) {
  2781. ss->disabled = 1;
  2782. printk(KERN_INFO "Disabling %s control group"
  2783. " subsystem\n", ss->name);
  2784. break;
  2785. }
  2786. }
  2787. }
  2788. return 1;
  2789. }
  2790. __setup("cgroup_disable=", cgroup_disable);