oxygen_mixer.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627
  1. /*
  2. * C-Media CMI8788 driver - mixer code
  3. *
  4. * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
  5. *
  6. *
  7. * This driver is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License, version 2.
  9. *
  10. * This driver is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this driver; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/mutex.h>
  20. #include <sound/ac97_codec.h>
  21. #include <sound/asoundef.h>
  22. #include <sound/control.h>
  23. #include <sound/tlv.h>
  24. #include "oxygen.h"
  25. static int dac_volume_info(struct snd_kcontrol *ctl,
  26. struct snd_ctl_elem_info *info)
  27. {
  28. struct oxygen *chip = ctl->private_data;
  29. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  30. info->count = 8;
  31. info->value.integer.min = chip->model->dac_minimum_volume;
  32. info->value.integer.max = 0xff;
  33. return 0;
  34. }
  35. static int dac_volume_get(struct snd_kcontrol *ctl,
  36. struct snd_ctl_elem_value *value)
  37. {
  38. struct oxygen *chip = ctl->private_data;
  39. unsigned int i;
  40. mutex_lock(&chip->mutex);
  41. for (i = 0; i < 8; ++i)
  42. value->value.integer.value[i] = chip->dac_volume[i];
  43. mutex_unlock(&chip->mutex);
  44. return 0;
  45. }
  46. static int dac_volume_put(struct snd_kcontrol *ctl,
  47. struct snd_ctl_elem_value *value)
  48. {
  49. struct oxygen *chip = ctl->private_data;
  50. unsigned int i;
  51. int changed;
  52. changed = 0;
  53. mutex_lock(&chip->mutex);
  54. for (i = 0; i < 8; ++i)
  55. if (value->value.integer.value[i] != chip->dac_volume[i]) {
  56. chip->dac_volume[i] = value->value.integer.value[i];
  57. changed = 1;
  58. }
  59. if (changed)
  60. chip->model->update_dac_volume(chip);
  61. mutex_unlock(&chip->mutex);
  62. return changed;
  63. }
  64. static int dac_mute_get(struct snd_kcontrol *ctl,
  65. struct snd_ctl_elem_value *value)
  66. {
  67. struct oxygen *chip = ctl->private_data;
  68. mutex_lock(&chip->mutex);
  69. value->value.integer.value[0] = !chip->dac_mute;
  70. mutex_unlock(&chip->mutex);
  71. return 0;
  72. }
  73. static int dac_mute_put(struct snd_kcontrol *ctl,
  74. struct snd_ctl_elem_value *value)
  75. {
  76. struct oxygen *chip = ctl->private_data;
  77. int changed;
  78. mutex_lock(&chip->mutex);
  79. changed = !value->value.integer.value[0] != chip->dac_mute;
  80. if (changed) {
  81. chip->dac_mute = !value->value.integer.value[0];
  82. chip->model->update_dac_mute(chip);
  83. }
  84. mutex_unlock(&chip->mutex);
  85. return changed;
  86. }
  87. static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  88. {
  89. static const char *const names[3] = {
  90. "Front", "Front+Surround", "Front+Surround+Back"
  91. };
  92. info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  93. info->count = 1;
  94. info->value.enumerated.items = 3;
  95. if (info->value.enumerated.item > 2)
  96. info->value.enumerated.item = 2;
  97. strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
  98. return 0;
  99. }
  100. static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  101. {
  102. struct oxygen *chip = ctl->private_data;
  103. mutex_lock(&chip->mutex);
  104. value->value.enumerated.item[0] = chip->dac_routing;
  105. mutex_unlock(&chip->mutex);
  106. return 0;
  107. }
  108. void oxygen_update_dac_routing(struct oxygen *chip)
  109. {
  110. static const unsigned int reg_values[3] = {
  111. 0xe100, /* front <- 0, surround <- 1, center <- 2, back <- 3 */
  112. 0xe000, /* front <- 0, surround <- 0, center <- 2, back <- 3 */
  113. 0x2000 /* front <- 0, surround <- 0, center <- 2, back <- 0 */
  114. };
  115. u8 channels;
  116. unsigned int reg_value;
  117. channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
  118. OXYGEN_PLAY_CHANNELS_MASK;
  119. if (channels == OXYGEN_PLAY_CHANNELS_2)
  120. reg_value = reg_values[chip->dac_routing];
  121. else if (channels == OXYGEN_PLAY_CHANNELS_8)
  122. reg_value = 0x6c00; /* surround <- 3, back <- 1 */
  123. else
  124. reg_value = 0xe100;
  125. oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value, 0xff00);
  126. }
  127. static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  128. {
  129. struct oxygen *chip = ctl->private_data;
  130. int changed;
  131. mutex_lock(&chip->mutex);
  132. changed = value->value.enumerated.item[0] != chip->dac_routing;
  133. if (changed) {
  134. chip->dac_routing = min(value->value.enumerated.item[0], 2u);
  135. spin_lock_irq(&chip->reg_lock);
  136. oxygen_update_dac_routing(chip);
  137. spin_unlock_irq(&chip->reg_lock);
  138. }
  139. mutex_unlock(&chip->mutex);
  140. return changed;
  141. }
  142. static int spdif_switch_get(struct snd_kcontrol *ctl,
  143. struct snd_ctl_elem_value *value)
  144. {
  145. struct oxygen *chip = ctl->private_data;
  146. mutex_lock(&chip->mutex);
  147. value->value.integer.value[0] = chip->spdif_playback_enable;
  148. mutex_unlock(&chip->mutex);
  149. return 0;
  150. }
  151. static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
  152. {
  153. switch (oxygen_rate) {
  154. case OXYGEN_RATE_32000:
  155. return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  156. case OXYGEN_RATE_44100:
  157. return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  158. default: /* OXYGEN_RATE_48000 */
  159. return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  160. case OXYGEN_RATE_64000:
  161. return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
  162. case OXYGEN_RATE_88200:
  163. return 0x8 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  164. case OXYGEN_RATE_96000:
  165. return 0xa << OXYGEN_SPDIF_CS_RATE_SHIFT;
  166. case OXYGEN_RATE_176400:
  167. return 0xc << OXYGEN_SPDIF_CS_RATE_SHIFT;
  168. case OXYGEN_RATE_192000:
  169. return 0xe << OXYGEN_SPDIF_CS_RATE_SHIFT;
  170. }
  171. }
  172. void oxygen_update_spdif_source(struct oxygen *chip)
  173. {
  174. u32 old_control, new_control;
  175. u16 old_routing, new_routing;
  176. unsigned int oxygen_rate;
  177. old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  178. old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
  179. if (chip->pcm_active & (1 << PCM_SPDIF)) {
  180. new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
  181. new_routing = (old_routing & ~0x00e0) | 0x0000;
  182. oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
  183. & OXYGEN_I2S_RATE_MASK;
  184. /* S/PDIF rate was already set by the caller */
  185. } else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
  186. chip->spdif_playback_enable) {
  187. new_routing = (old_routing & ~0x00e0) | 0x0020;
  188. oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
  189. & OXYGEN_I2S_RATE_MASK;
  190. new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
  191. (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
  192. OXYGEN_SPDIF_OUT_ENABLE;
  193. } else {
  194. new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
  195. new_routing = old_routing;
  196. oxygen_rate = OXYGEN_RATE_44100;
  197. }
  198. if (old_routing != new_routing) {
  199. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
  200. new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
  201. oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
  202. }
  203. if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
  204. oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
  205. oxygen_spdif_rate(oxygen_rate) |
  206. ((chip->pcm_active & (1 << PCM_SPDIF)) ?
  207. chip->spdif_pcm_bits : chip->spdif_bits));
  208. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
  209. }
  210. static int spdif_switch_put(struct snd_kcontrol *ctl,
  211. struct snd_ctl_elem_value *value)
  212. {
  213. struct oxygen *chip = ctl->private_data;
  214. int changed;
  215. mutex_lock(&chip->mutex);
  216. changed = value->value.integer.value[0] != chip->spdif_playback_enable;
  217. if (changed) {
  218. chip->spdif_playback_enable = !!value->value.integer.value[0];
  219. spin_lock_irq(&chip->reg_lock);
  220. oxygen_update_spdif_source(chip);
  221. spin_unlock_irq(&chip->reg_lock);
  222. }
  223. mutex_unlock(&chip->mutex);
  224. return changed;
  225. }
  226. static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  227. {
  228. info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  229. info->count = 1;
  230. return 0;
  231. }
  232. static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
  233. {
  234. value->value.iec958.status[0] =
  235. bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  236. OXYGEN_SPDIF_PREEMPHASIS);
  237. value->value.iec958.status[1] = /* category and original */
  238. bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
  239. }
  240. static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
  241. {
  242. u32 bits;
  243. bits = value->value.iec958.status[0] &
  244. (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  245. OXYGEN_SPDIF_PREEMPHASIS);
  246. bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
  247. if (bits & OXYGEN_SPDIF_NONAUDIO)
  248. bits |= OXYGEN_SPDIF_V;
  249. return bits;
  250. }
  251. static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
  252. {
  253. oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
  254. OXYGEN_SPDIF_NONAUDIO |
  255. OXYGEN_SPDIF_C |
  256. OXYGEN_SPDIF_PREEMPHASIS |
  257. OXYGEN_SPDIF_CATEGORY_MASK |
  258. OXYGEN_SPDIF_ORIGINAL |
  259. OXYGEN_SPDIF_V);
  260. }
  261. static int spdif_default_get(struct snd_kcontrol *ctl,
  262. struct snd_ctl_elem_value *value)
  263. {
  264. struct oxygen *chip = ctl->private_data;
  265. mutex_lock(&chip->mutex);
  266. oxygen_to_iec958(chip->spdif_bits, value);
  267. mutex_unlock(&chip->mutex);
  268. return 0;
  269. }
  270. static int spdif_default_put(struct snd_kcontrol *ctl,
  271. struct snd_ctl_elem_value *value)
  272. {
  273. struct oxygen *chip = ctl->private_data;
  274. u32 new_bits;
  275. int changed;
  276. new_bits = iec958_to_oxygen(value);
  277. mutex_lock(&chip->mutex);
  278. changed = new_bits != chip->spdif_bits;
  279. if (changed) {
  280. chip->spdif_bits = new_bits;
  281. if (!(chip->pcm_active & (1 << PCM_SPDIF)))
  282. write_spdif_bits(chip, new_bits);
  283. }
  284. mutex_unlock(&chip->mutex);
  285. return changed;
  286. }
  287. static int spdif_mask_get(struct snd_kcontrol *ctl,
  288. struct snd_ctl_elem_value *value)
  289. {
  290. value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
  291. IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
  292. value->value.iec958.status[1] =
  293. IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
  294. return 0;
  295. }
  296. static int spdif_pcm_get(struct snd_kcontrol *ctl,
  297. struct snd_ctl_elem_value *value)
  298. {
  299. struct oxygen *chip = ctl->private_data;
  300. mutex_lock(&chip->mutex);
  301. oxygen_to_iec958(chip->spdif_pcm_bits, value);
  302. mutex_unlock(&chip->mutex);
  303. return 0;
  304. }
  305. static int spdif_pcm_put(struct snd_kcontrol *ctl,
  306. struct snd_ctl_elem_value *value)
  307. {
  308. struct oxygen *chip = ctl->private_data;
  309. u32 new_bits;
  310. int changed;
  311. new_bits = iec958_to_oxygen(value);
  312. mutex_lock(&chip->mutex);
  313. changed = new_bits != chip->spdif_pcm_bits;
  314. if (changed) {
  315. chip->spdif_pcm_bits = new_bits;
  316. if (chip->pcm_active & (1 << PCM_SPDIF))
  317. write_spdif_bits(chip, new_bits);
  318. }
  319. mutex_unlock(&chip->mutex);
  320. return changed;
  321. }
  322. static int spdif_input_mask_get(struct snd_kcontrol *ctl,
  323. struct snd_ctl_elem_value *value)
  324. {
  325. value->value.iec958.status[0] = 0xff;
  326. value->value.iec958.status[1] = 0xff;
  327. value->value.iec958.status[2] = 0xff;
  328. value->value.iec958.status[3] = 0xff;
  329. return 0;
  330. }
  331. static int spdif_input_default_get(struct snd_kcontrol *ctl,
  332. struct snd_ctl_elem_value *value)
  333. {
  334. struct oxygen *chip = ctl->private_data;
  335. u32 bits;
  336. bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
  337. value->value.iec958.status[0] = bits;
  338. value->value.iec958.status[1] = bits >> 8;
  339. value->value.iec958.status[2] = bits >> 16;
  340. value->value.iec958.status[3] = bits >> 24;
  341. return 0;
  342. }
  343. static int ac97_switch_get(struct snd_kcontrol *ctl,
  344. struct snd_ctl_elem_value *value)
  345. {
  346. struct oxygen *chip = ctl->private_data;
  347. unsigned int index = ctl->private_value & 0xff;
  348. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  349. int invert = ctl->private_value & (1 << 16);
  350. u16 reg;
  351. mutex_lock(&chip->mutex);
  352. reg = oxygen_read_ac97(chip, 0, index);
  353. mutex_unlock(&chip->mutex);
  354. if (!(reg & (1 << bitnr)) ^ !invert)
  355. value->value.integer.value[0] = 1;
  356. else
  357. value->value.integer.value[0] = 0;
  358. return 0;
  359. }
  360. static int ac97_switch_put(struct snd_kcontrol *ctl,
  361. struct snd_ctl_elem_value *value)
  362. {
  363. struct oxygen *chip = ctl->private_data;
  364. unsigned int index = ctl->private_value & 0xff;
  365. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  366. int invert = ctl->private_value & (1 << 16);
  367. u16 oldreg, newreg;
  368. int change;
  369. mutex_lock(&chip->mutex);
  370. oldreg = oxygen_read_ac97(chip, 0, index);
  371. newreg = oldreg;
  372. if (!value->value.integer.value[0] ^ !invert)
  373. newreg |= 1 << bitnr;
  374. else
  375. newreg &= ~(1 << bitnr);
  376. change = newreg != oldreg;
  377. if (change) {
  378. oxygen_write_ac97(chip, 0, index, newreg);
  379. if (index == AC97_LINE)
  380. oxygen_write_ac97_masked(chip, 0, 0x72,
  381. !!(newreg & 0x8000), 0x0001);
  382. }
  383. mutex_unlock(&chip->mutex);
  384. return change;
  385. }
  386. static int ac97_volume_info(struct snd_kcontrol *ctl,
  387. struct snd_ctl_elem_info *info)
  388. {
  389. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  390. info->count = 2;
  391. info->value.integer.min = 0;
  392. info->value.integer.max = 0x1f;
  393. return 0;
  394. }
  395. static int ac97_volume_get(struct snd_kcontrol *ctl,
  396. struct snd_ctl_elem_value *value)
  397. {
  398. struct oxygen *chip = ctl->private_data;
  399. unsigned int index = ctl->private_value;
  400. u16 reg;
  401. mutex_lock(&chip->mutex);
  402. reg = oxygen_read_ac97(chip, 0, index);
  403. mutex_unlock(&chip->mutex);
  404. value->value.integer.value[0] = 31 - (reg & 0x1f);
  405. value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f);
  406. return 0;
  407. }
  408. static int ac97_volume_put(struct snd_kcontrol *ctl,
  409. struct snd_ctl_elem_value *value)
  410. {
  411. struct oxygen *chip = ctl->private_data;
  412. unsigned int index = ctl->private_value;
  413. u16 oldreg, newreg;
  414. int change;
  415. mutex_lock(&chip->mutex);
  416. oldreg = oxygen_read_ac97(chip, 0, index);
  417. newreg = oldreg;
  418. newreg = (newreg & ~0x1f) |
  419. (31 - (value->value.integer.value[0] & 0x1f));
  420. newreg = (newreg & ~0x1f00) |
  421. ((31 - (value->value.integer.value[0] & 0x1f)) << 8);
  422. change = newreg != oldreg;
  423. if (change)
  424. oxygen_write_ac97(chip, 0, index, newreg);
  425. mutex_unlock(&chip->mutex);
  426. return change;
  427. }
  428. #define AC97_SWITCH(xname, index, bitnr, invert) { \
  429. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  430. .name = xname, \
  431. .info = snd_ctl_boolean_mono_info, \
  432. .get = ac97_switch_get, \
  433. .put = ac97_switch_put, \
  434. .private_value = ((invert) << 16) | ((bitnr) << 8) | (index), \
  435. }
  436. #define AC97_VOLUME(xname, index) { \
  437. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  438. .name = xname, \
  439. .info = ac97_volume_info, \
  440. .get = ac97_volume_get, \
  441. .put = ac97_volume_put, \
  442. .tlv = { .p = ac97_db_scale, }, \
  443. .private_value = (index), \
  444. }
  445. static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
  446. static const struct snd_kcontrol_new controls[] = {
  447. {
  448. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  449. .name = "PCM Playback Volume",
  450. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  451. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  452. .info = dac_volume_info,
  453. .get = dac_volume_get,
  454. .put = dac_volume_put,
  455. .tlv = {
  456. .p = NULL, /* set later */
  457. },
  458. },
  459. {
  460. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  461. .name = "PCM Playback Switch",
  462. .info = snd_ctl_boolean_mono_info,
  463. .get = dac_mute_get,
  464. .put = dac_mute_put,
  465. },
  466. {
  467. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  468. .name = "Stereo Upmixing",
  469. .info = upmix_info,
  470. .get = upmix_get,
  471. .put = upmix_put,
  472. },
  473. {
  474. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  475. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
  476. .info = snd_ctl_boolean_mono_info,
  477. .get = spdif_switch_get,
  478. .put = spdif_switch_put,
  479. },
  480. {
  481. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  482. .device = 1,
  483. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  484. .info = spdif_info,
  485. .get = spdif_default_get,
  486. .put = spdif_default_put,
  487. },
  488. {
  489. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  490. .device = 1,
  491. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
  492. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  493. .info = spdif_info,
  494. .get = spdif_mask_get,
  495. },
  496. {
  497. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  498. .device = 1,
  499. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  500. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  501. SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  502. .info = spdif_info,
  503. .get = spdif_pcm_get,
  504. .put = spdif_pcm_put,
  505. },
  506. {
  507. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  508. .device = 1,
  509. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
  510. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  511. .info = spdif_info,
  512. .get = spdif_input_mask_get,
  513. },
  514. {
  515. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  516. .device = 1,
  517. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  518. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  519. .info = spdif_info,
  520. .get = spdif_input_default_get,
  521. },
  522. AC97_VOLUME("Mic Capture Volume", AC97_MIC),
  523. AC97_SWITCH("Mic Capture Switch", AC97_MIC, 15, 1),
  524. AC97_SWITCH("Mic Boost (+20dB)", AC97_MIC, 6, 0),
  525. AC97_SWITCH("Line Capture Switch", AC97_LINE, 15, 1),
  526. AC97_VOLUME("CD Capture Volume", AC97_CD),
  527. AC97_SWITCH("CD Capture Switch", AC97_CD, 15, 1),
  528. AC97_VOLUME("Aux Capture Volume", AC97_AUX),
  529. AC97_SWITCH("Aux Capture Switch", AC97_AUX, 15, 1),
  530. };
  531. static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
  532. {
  533. struct oxygen *chip = ctl->private_data;
  534. unsigned int i;
  535. /* I'm too lazy to write a function for each control :-) */
  536. for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
  537. chip->controls[i] = NULL;
  538. }
  539. int oxygen_mixer_init(struct oxygen *chip)
  540. {
  541. static const char *const known_ctl_names[CONTROL_COUNT] = {
  542. [CONTROL_SPDIF_PCM] =
  543. SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  544. [CONTROL_SPDIF_INPUT_BITS] =
  545. SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  546. };
  547. unsigned int i, j;
  548. struct snd_kcontrol *ctl;
  549. int err;
  550. for (i = 0; i < ARRAY_SIZE(controls); ++i) {
  551. ctl = snd_ctl_new1(&controls[i], chip);
  552. if (!ctl)
  553. return -ENOMEM;
  554. if (!strcmp(ctl->id.name, "PCM Playback Volume"))
  555. ctl->tlv.p = chip->model->dac_tlv;
  556. else if (chip->model->cd_in_from_video_in &&
  557. !strncmp(ctl->id.name, "CD Capture ", 11))
  558. ctl->private_value ^= AC97_CD ^ AC97_VIDEO;
  559. err = snd_ctl_add(chip->card, ctl);
  560. if (err < 0)
  561. return err;
  562. for (j = 0; j < CONTROL_COUNT; ++j)
  563. if (!strcmp(ctl->id.name, known_ctl_names[j])) {
  564. chip->controls[j] = ctl;
  565. ctl->private_free = oxygen_any_ctl_free;
  566. }
  567. }
  568. return chip->model->mixer_init ? chip->model->mixer_init(chip) : 0;
  569. }