kvm_main.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "irq.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/profile.h>
  39. #include <linux/kvm_para.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/mman.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/desc.h>
  46. MODULE_AUTHOR("Qumranet");
  47. MODULE_LICENSE("GPL");
  48. DEFINE_SPINLOCK(kvm_lock);
  49. LIST_HEAD(vm_list);
  50. static cpumask_t cpus_hardware_enabled;
  51. struct kmem_cache *kvm_vcpu_cache;
  52. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  53. static __read_mostly struct preempt_ops kvm_preempt_ops;
  54. static struct dentry *debugfs_dir;
  55. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  56. unsigned long arg);
  57. static inline int valid_vcpu(int n)
  58. {
  59. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  60. }
  61. /*
  62. * Switches to specified vcpu, until a matching vcpu_put()
  63. */
  64. void vcpu_load(struct kvm_vcpu *vcpu)
  65. {
  66. int cpu;
  67. mutex_lock(&vcpu->mutex);
  68. cpu = get_cpu();
  69. preempt_notifier_register(&vcpu->preempt_notifier);
  70. kvm_arch_vcpu_load(vcpu, cpu);
  71. put_cpu();
  72. }
  73. void vcpu_put(struct kvm_vcpu *vcpu)
  74. {
  75. preempt_disable();
  76. kvm_arch_vcpu_put(vcpu);
  77. preempt_notifier_unregister(&vcpu->preempt_notifier);
  78. preempt_enable();
  79. mutex_unlock(&vcpu->mutex);
  80. }
  81. static void ack_flush(void *_completed)
  82. {
  83. }
  84. void kvm_flush_remote_tlbs(struct kvm *kvm)
  85. {
  86. int i, cpu;
  87. cpumask_t cpus;
  88. struct kvm_vcpu *vcpu;
  89. cpus_clear(cpus);
  90. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  91. vcpu = kvm->vcpus[i];
  92. if (!vcpu)
  93. continue;
  94. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  95. continue;
  96. cpu = vcpu->cpu;
  97. if (cpu != -1 && cpu != raw_smp_processor_id())
  98. cpu_set(cpu, cpus);
  99. }
  100. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  101. }
  102. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  103. {
  104. struct page *page;
  105. int r;
  106. mutex_init(&vcpu->mutex);
  107. vcpu->cpu = -1;
  108. vcpu->kvm = kvm;
  109. vcpu->vcpu_id = id;
  110. init_waitqueue_head(&vcpu->wq);
  111. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  112. if (!page) {
  113. r = -ENOMEM;
  114. goto fail;
  115. }
  116. vcpu->run = page_address(page);
  117. r = kvm_arch_vcpu_init(vcpu);
  118. if (r < 0)
  119. goto fail_free_run;
  120. return 0;
  121. fail_free_run:
  122. free_page((unsigned long)vcpu->run);
  123. fail:
  124. return r;
  125. }
  126. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  127. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  128. {
  129. kvm_arch_vcpu_uninit(vcpu);
  130. free_page((unsigned long)vcpu->run);
  131. }
  132. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  133. static struct kvm *kvm_create_vm(void)
  134. {
  135. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  136. if (!kvm)
  137. return ERR_PTR(-ENOMEM);
  138. kvm_io_bus_init(&kvm->pio_bus);
  139. mutex_init(&kvm->lock);
  140. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  141. kvm_io_bus_init(&kvm->mmio_bus);
  142. spin_lock(&kvm_lock);
  143. list_add(&kvm->vm_list, &vm_list);
  144. spin_unlock(&kvm_lock);
  145. return kvm;
  146. }
  147. /*
  148. * Free any memory in @free but not in @dont.
  149. */
  150. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  151. struct kvm_memory_slot *dont)
  152. {
  153. if (!dont || free->rmap != dont->rmap)
  154. vfree(free->rmap);
  155. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  156. vfree(free->dirty_bitmap);
  157. free->npages = 0;
  158. free->dirty_bitmap = NULL;
  159. free->rmap = NULL;
  160. }
  161. static void kvm_free_physmem(struct kvm *kvm)
  162. {
  163. int i;
  164. for (i = 0; i < kvm->nmemslots; ++i)
  165. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  166. }
  167. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  168. {
  169. vcpu_load(vcpu);
  170. kvm_mmu_unload(vcpu);
  171. vcpu_put(vcpu);
  172. }
  173. static void kvm_free_vcpus(struct kvm *kvm)
  174. {
  175. unsigned int i;
  176. /*
  177. * Unpin any mmu pages first.
  178. */
  179. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  180. if (kvm->vcpus[i])
  181. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  182. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  183. if (kvm->vcpus[i]) {
  184. kvm_arch_vcpu_free(kvm->vcpus[i]);
  185. kvm->vcpus[i] = NULL;
  186. }
  187. }
  188. }
  189. static void kvm_destroy_vm(struct kvm *kvm)
  190. {
  191. spin_lock(&kvm_lock);
  192. list_del(&kvm->vm_list);
  193. spin_unlock(&kvm_lock);
  194. kvm_io_bus_destroy(&kvm->pio_bus);
  195. kvm_io_bus_destroy(&kvm->mmio_bus);
  196. kfree(kvm->vpic);
  197. kfree(kvm->vioapic);
  198. kvm_free_vcpus(kvm);
  199. kvm_free_physmem(kvm);
  200. kfree(kvm);
  201. }
  202. static int kvm_vm_release(struct inode *inode, struct file *filp)
  203. {
  204. struct kvm *kvm = filp->private_data;
  205. kvm_destroy_vm(kvm);
  206. return 0;
  207. }
  208. /*
  209. * Allocate some memory and give it an address in the guest physical address
  210. * space.
  211. *
  212. * Discontiguous memory is allowed, mostly for framebuffers.
  213. *
  214. * Must be called holding kvm->lock.
  215. */
  216. int __kvm_set_memory_region(struct kvm *kvm,
  217. struct kvm_userspace_memory_region *mem,
  218. int user_alloc)
  219. {
  220. int r;
  221. gfn_t base_gfn;
  222. unsigned long npages;
  223. unsigned long i;
  224. struct kvm_memory_slot *memslot;
  225. struct kvm_memory_slot old, new;
  226. r = -EINVAL;
  227. /* General sanity checks */
  228. if (mem->memory_size & (PAGE_SIZE - 1))
  229. goto out;
  230. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  231. goto out;
  232. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  233. goto out;
  234. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  235. goto out;
  236. memslot = &kvm->memslots[mem->slot];
  237. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  238. npages = mem->memory_size >> PAGE_SHIFT;
  239. if (!npages)
  240. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  241. new = old = *memslot;
  242. new.base_gfn = base_gfn;
  243. new.npages = npages;
  244. new.flags = mem->flags;
  245. /* Disallow changing a memory slot's size. */
  246. r = -EINVAL;
  247. if (npages && old.npages && npages != old.npages)
  248. goto out_free;
  249. /* Check for overlaps */
  250. r = -EEXIST;
  251. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  252. struct kvm_memory_slot *s = &kvm->memslots[i];
  253. if (s == memslot)
  254. continue;
  255. if (!((base_gfn + npages <= s->base_gfn) ||
  256. (base_gfn >= s->base_gfn + s->npages)))
  257. goto out_free;
  258. }
  259. /* Free page dirty bitmap if unneeded */
  260. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  261. new.dirty_bitmap = NULL;
  262. r = -ENOMEM;
  263. /* Allocate if a slot is being created */
  264. if (npages && !new.rmap) {
  265. new.rmap = vmalloc(npages * sizeof(struct page *));
  266. if (!new.rmap)
  267. goto out_free;
  268. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  269. new.user_alloc = user_alloc;
  270. if (user_alloc)
  271. new.userspace_addr = mem->userspace_addr;
  272. else {
  273. down_write(&current->mm->mmap_sem);
  274. new.userspace_addr = do_mmap(NULL, 0,
  275. npages * PAGE_SIZE,
  276. PROT_READ | PROT_WRITE,
  277. MAP_SHARED | MAP_ANONYMOUS,
  278. 0);
  279. up_write(&current->mm->mmap_sem);
  280. if (IS_ERR((void *)new.userspace_addr))
  281. goto out_free;
  282. }
  283. } else {
  284. if (!old.user_alloc && old.rmap) {
  285. int ret;
  286. down_write(&current->mm->mmap_sem);
  287. ret = do_munmap(current->mm, old.userspace_addr,
  288. old.npages * PAGE_SIZE);
  289. up_write(&current->mm->mmap_sem);
  290. if (ret < 0)
  291. printk(KERN_WARNING
  292. "kvm_vm_ioctl_set_memory_region: "
  293. "failed to munmap memory\n");
  294. }
  295. }
  296. /* Allocate page dirty bitmap if needed */
  297. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  298. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  299. new.dirty_bitmap = vmalloc(dirty_bytes);
  300. if (!new.dirty_bitmap)
  301. goto out_free;
  302. memset(new.dirty_bitmap, 0, dirty_bytes);
  303. }
  304. if (mem->slot >= kvm->nmemslots)
  305. kvm->nmemslots = mem->slot + 1;
  306. if (!kvm->n_requested_mmu_pages) {
  307. unsigned int n_pages;
  308. if (npages) {
  309. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  310. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  311. n_pages);
  312. } else {
  313. unsigned int nr_mmu_pages;
  314. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  315. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  316. nr_mmu_pages = max(nr_mmu_pages,
  317. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  318. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  319. }
  320. }
  321. *memslot = new;
  322. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  323. kvm_flush_remote_tlbs(kvm);
  324. kvm_free_physmem_slot(&old, &new);
  325. return 0;
  326. out_free:
  327. kvm_free_physmem_slot(&new, &old);
  328. out:
  329. return r;
  330. }
  331. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  332. int kvm_set_memory_region(struct kvm *kvm,
  333. struct kvm_userspace_memory_region *mem,
  334. int user_alloc)
  335. {
  336. int r;
  337. mutex_lock(&kvm->lock);
  338. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  339. mutex_unlock(&kvm->lock);
  340. return r;
  341. }
  342. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  343. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  344. struct
  345. kvm_userspace_memory_region *mem,
  346. int user_alloc)
  347. {
  348. if (mem->slot >= KVM_MEMORY_SLOTS)
  349. return -EINVAL;
  350. return kvm_set_memory_region(kvm, mem, user_alloc);
  351. }
  352. /*
  353. * Get (and clear) the dirty memory log for a memory slot.
  354. */
  355. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  356. struct kvm_dirty_log *log)
  357. {
  358. struct kvm_memory_slot *memslot;
  359. int r, i;
  360. int n;
  361. unsigned long any = 0;
  362. mutex_lock(&kvm->lock);
  363. r = -EINVAL;
  364. if (log->slot >= KVM_MEMORY_SLOTS)
  365. goto out;
  366. memslot = &kvm->memslots[log->slot];
  367. r = -ENOENT;
  368. if (!memslot->dirty_bitmap)
  369. goto out;
  370. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  371. for (i = 0; !any && i < n/sizeof(long); ++i)
  372. any = memslot->dirty_bitmap[i];
  373. r = -EFAULT;
  374. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  375. goto out;
  376. /* If nothing is dirty, don't bother messing with page tables. */
  377. if (any) {
  378. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  379. kvm_flush_remote_tlbs(kvm);
  380. memset(memslot->dirty_bitmap, 0, n);
  381. }
  382. r = 0;
  383. out:
  384. mutex_unlock(&kvm->lock);
  385. return r;
  386. }
  387. int is_error_page(struct page *page)
  388. {
  389. return page == bad_page;
  390. }
  391. EXPORT_SYMBOL_GPL(is_error_page);
  392. static inline unsigned long bad_hva(void)
  393. {
  394. return PAGE_OFFSET;
  395. }
  396. int kvm_is_error_hva(unsigned long addr)
  397. {
  398. return addr == bad_hva();
  399. }
  400. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  401. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  402. {
  403. int i;
  404. struct kvm_mem_alias *alias;
  405. for (i = 0; i < kvm->naliases; ++i) {
  406. alias = &kvm->aliases[i];
  407. if (gfn >= alias->base_gfn
  408. && gfn < alias->base_gfn + alias->npages)
  409. return alias->target_gfn + gfn - alias->base_gfn;
  410. }
  411. return gfn;
  412. }
  413. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  414. {
  415. int i;
  416. for (i = 0; i < kvm->nmemslots; ++i) {
  417. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  418. if (gfn >= memslot->base_gfn
  419. && gfn < memslot->base_gfn + memslot->npages)
  420. return memslot;
  421. }
  422. return NULL;
  423. }
  424. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  425. {
  426. gfn = unalias_gfn(kvm, gfn);
  427. return __gfn_to_memslot(kvm, gfn);
  428. }
  429. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  430. {
  431. int i;
  432. gfn = unalias_gfn(kvm, gfn);
  433. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  434. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  435. if (gfn >= memslot->base_gfn
  436. && gfn < memslot->base_gfn + memslot->npages)
  437. return 1;
  438. }
  439. return 0;
  440. }
  441. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  442. static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  443. {
  444. struct kvm_memory_slot *slot;
  445. gfn = unalias_gfn(kvm, gfn);
  446. slot = __gfn_to_memslot(kvm, gfn);
  447. if (!slot)
  448. return bad_hva();
  449. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  450. }
  451. /*
  452. * Requires current->mm->mmap_sem to be held
  453. */
  454. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  455. {
  456. struct page *page[1];
  457. unsigned long addr;
  458. int npages;
  459. might_sleep();
  460. addr = gfn_to_hva(kvm, gfn);
  461. if (kvm_is_error_hva(addr)) {
  462. get_page(bad_page);
  463. return bad_page;
  464. }
  465. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  466. NULL);
  467. if (npages != 1) {
  468. get_page(bad_page);
  469. return bad_page;
  470. }
  471. return page[0];
  472. }
  473. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  474. {
  475. struct page *page;
  476. down_read(&current->mm->mmap_sem);
  477. page = __gfn_to_page(kvm, gfn);
  478. up_read(&current->mm->mmap_sem);
  479. return page;
  480. }
  481. EXPORT_SYMBOL_GPL(gfn_to_page);
  482. void kvm_release_page(struct page *page)
  483. {
  484. if (!PageReserved(page))
  485. SetPageDirty(page);
  486. put_page(page);
  487. }
  488. EXPORT_SYMBOL_GPL(kvm_release_page);
  489. static int next_segment(unsigned long len, int offset)
  490. {
  491. if (len > PAGE_SIZE - offset)
  492. return PAGE_SIZE - offset;
  493. else
  494. return len;
  495. }
  496. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  497. int len)
  498. {
  499. int r;
  500. unsigned long addr;
  501. addr = gfn_to_hva(kvm, gfn);
  502. if (kvm_is_error_hva(addr))
  503. return -EFAULT;
  504. r = copy_from_user(data, (void __user *)addr + offset, len);
  505. if (r)
  506. return -EFAULT;
  507. return 0;
  508. }
  509. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  510. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  511. {
  512. gfn_t gfn = gpa >> PAGE_SHIFT;
  513. int seg;
  514. int offset = offset_in_page(gpa);
  515. int ret;
  516. while ((seg = next_segment(len, offset)) != 0) {
  517. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  518. if (ret < 0)
  519. return ret;
  520. offset = 0;
  521. len -= seg;
  522. data += seg;
  523. ++gfn;
  524. }
  525. return 0;
  526. }
  527. EXPORT_SYMBOL_GPL(kvm_read_guest);
  528. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  529. int offset, int len)
  530. {
  531. int r;
  532. unsigned long addr;
  533. addr = gfn_to_hva(kvm, gfn);
  534. if (kvm_is_error_hva(addr))
  535. return -EFAULT;
  536. r = copy_to_user((void __user *)addr + offset, data, len);
  537. if (r)
  538. return -EFAULT;
  539. mark_page_dirty(kvm, gfn);
  540. return 0;
  541. }
  542. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  543. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  544. unsigned long len)
  545. {
  546. gfn_t gfn = gpa >> PAGE_SHIFT;
  547. int seg;
  548. int offset = offset_in_page(gpa);
  549. int ret;
  550. while ((seg = next_segment(len, offset)) != 0) {
  551. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  552. if (ret < 0)
  553. return ret;
  554. offset = 0;
  555. len -= seg;
  556. data += seg;
  557. ++gfn;
  558. }
  559. return 0;
  560. }
  561. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  562. {
  563. void *page_virt;
  564. struct page *page;
  565. page = gfn_to_page(kvm, gfn);
  566. if (is_error_page(page)) {
  567. kvm_release_page(page);
  568. return -EFAULT;
  569. }
  570. page_virt = kmap_atomic(page, KM_USER0);
  571. memset(page_virt + offset, 0, len);
  572. kunmap_atomic(page_virt, KM_USER0);
  573. kvm_release_page(page);
  574. mark_page_dirty(kvm, gfn);
  575. return 0;
  576. }
  577. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  578. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  579. {
  580. gfn_t gfn = gpa >> PAGE_SHIFT;
  581. int seg;
  582. int offset = offset_in_page(gpa);
  583. int ret;
  584. while ((seg = next_segment(len, offset)) != 0) {
  585. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  586. if (ret < 0)
  587. return ret;
  588. offset = 0;
  589. len -= seg;
  590. ++gfn;
  591. }
  592. return 0;
  593. }
  594. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  595. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  596. {
  597. struct kvm_memory_slot *memslot;
  598. gfn = unalias_gfn(kvm, gfn);
  599. memslot = __gfn_to_memslot(kvm, gfn);
  600. if (memslot && memslot->dirty_bitmap) {
  601. unsigned long rel_gfn = gfn - memslot->base_gfn;
  602. /* avoid RMW */
  603. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  604. set_bit(rel_gfn, memslot->dirty_bitmap);
  605. }
  606. }
  607. /*
  608. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  609. */
  610. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  611. {
  612. DECLARE_WAITQUEUE(wait, current);
  613. add_wait_queue(&vcpu->wq, &wait);
  614. /*
  615. * We will block until either an interrupt or a signal wakes us up
  616. */
  617. while (!kvm_cpu_has_interrupt(vcpu)
  618. && !signal_pending(current)
  619. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  620. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  621. set_current_state(TASK_INTERRUPTIBLE);
  622. vcpu_put(vcpu);
  623. schedule();
  624. vcpu_load(vcpu);
  625. }
  626. __set_current_state(TASK_RUNNING);
  627. remove_wait_queue(&vcpu->wq, &wait);
  628. }
  629. void kvm_resched(struct kvm_vcpu *vcpu)
  630. {
  631. if (!need_resched())
  632. return;
  633. cond_resched();
  634. }
  635. EXPORT_SYMBOL_GPL(kvm_resched);
  636. /*
  637. * Translate a guest virtual address to a guest physical address.
  638. */
  639. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  640. struct kvm_translation *tr)
  641. {
  642. unsigned long vaddr = tr->linear_address;
  643. gpa_t gpa;
  644. vcpu_load(vcpu);
  645. mutex_lock(&vcpu->kvm->lock);
  646. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  647. tr->physical_address = gpa;
  648. tr->valid = gpa != UNMAPPED_GVA;
  649. tr->writeable = 1;
  650. tr->usermode = 0;
  651. mutex_unlock(&vcpu->kvm->lock);
  652. vcpu_put(vcpu);
  653. return 0;
  654. }
  655. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  656. struct kvm_interrupt *irq)
  657. {
  658. if (irq->irq < 0 || irq->irq >= 256)
  659. return -EINVAL;
  660. if (irqchip_in_kernel(vcpu->kvm))
  661. return -ENXIO;
  662. vcpu_load(vcpu);
  663. set_bit(irq->irq, vcpu->irq_pending);
  664. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  665. vcpu_put(vcpu);
  666. return 0;
  667. }
  668. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  669. unsigned long address,
  670. int *type)
  671. {
  672. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  673. unsigned long pgoff;
  674. struct page *page;
  675. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  676. if (pgoff == 0)
  677. page = virt_to_page(vcpu->run);
  678. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  679. page = virt_to_page(vcpu->pio_data);
  680. else
  681. return NOPAGE_SIGBUS;
  682. get_page(page);
  683. if (type != NULL)
  684. *type = VM_FAULT_MINOR;
  685. return page;
  686. }
  687. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  688. .nopage = kvm_vcpu_nopage,
  689. };
  690. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  691. {
  692. vma->vm_ops = &kvm_vcpu_vm_ops;
  693. return 0;
  694. }
  695. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  696. {
  697. struct kvm_vcpu *vcpu = filp->private_data;
  698. fput(vcpu->kvm->filp);
  699. return 0;
  700. }
  701. static struct file_operations kvm_vcpu_fops = {
  702. .release = kvm_vcpu_release,
  703. .unlocked_ioctl = kvm_vcpu_ioctl,
  704. .compat_ioctl = kvm_vcpu_ioctl,
  705. .mmap = kvm_vcpu_mmap,
  706. };
  707. /*
  708. * Allocates an inode for the vcpu.
  709. */
  710. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  711. {
  712. int fd, r;
  713. struct inode *inode;
  714. struct file *file;
  715. r = anon_inode_getfd(&fd, &inode, &file,
  716. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  717. if (r)
  718. return r;
  719. atomic_inc(&vcpu->kvm->filp->f_count);
  720. return fd;
  721. }
  722. /*
  723. * Creates some virtual cpus. Good luck creating more than one.
  724. */
  725. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  726. {
  727. int r;
  728. struct kvm_vcpu *vcpu;
  729. if (!valid_vcpu(n))
  730. return -EINVAL;
  731. vcpu = kvm_arch_vcpu_create(kvm, n);
  732. if (IS_ERR(vcpu))
  733. return PTR_ERR(vcpu);
  734. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  735. mutex_lock(&kvm->lock);
  736. if (kvm->vcpus[n]) {
  737. r = -EEXIST;
  738. mutex_unlock(&kvm->lock);
  739. goto vcpu_destroy;
  740. }
  741. kvm->vcpus[n] = vcpu;
  742. mutex_unlock(&kvm->lock);
  743. /* Now it's all set up, let userspace reach it */
  744. r = create_vcpu_fd(vcpu);
  745. if (r < 0)
  746. goto unlink;
  747. return r;
  748. unlink:
  749. mutex_lock(&kvm->lock);
  750. kvm->vcpus[n] = NULL;
  751. mutex_unlock(&kvm->lock);
  752. vcpu_destroy:
  753. kvm_arch_vcpu_destory(vcpu);
  754. return r;
  755. }
  756. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  757. {
  758. if (sigset) {
  759. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  760. vcpu->sigset_active = 1;
  761. vcpu->sigset = *sigset;
  762. } else
  763. vcpu->sigset_active = 0;
  764. return 0;
  765. }
  766. static long kvm_vcpu_ioctl(struct file *filp,
  767. unsigned int ioctl, unsigned long arg)
  768. {
  769. struct kvm_vcpu *vcpu = filp->private_data;
  770. void __user *argp = (void __user *)arg;
  771. int r;
  772. switch (ioctl) {
  773. case KVM_RUN:
  774. r = -EINVAL;
  775. if (arg)
  776. goto out;
  777. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  778. break;
  779. case KVM_GET_REGS: {
  780. struct kvm_regs kvm_regs;
  781. memset(&kvm_regs, 0, sizeof kvm_regs);
  782. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  783. if (r)
  784. goto out;
  785. r = -EFAULT;
  786. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  787. goto out;
  788. r = 0;
  789. break;
  790. }
  791. case KVM_SET_REGS: {
  792. struct kvm_regs kvm_regs;
  793. r = -EFAULT;
  794. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  795. goto out;
  796. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  797. if (r)
  798. goto out;
  799. r = 0;
  800. break;
  801. }
  802. case KVM_GET_SREGS: {
  803. struct kvm_sregs kvm_sregs;
  804. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  805. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  806. if (r)
  807. goto out;
  808. r = -EFAULT;
  809. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  810. goto out;
  811. r = 0;
  812. break;
  813. }
  814. case KVM_SET_SREGS: {
  815. struct kvm_sregs kvm_sregs;
  816. r = -EFAULT;
  817. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  818. goto out;
  819. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  820. if (r)
  821. goto out;
  822. r = 0;
  823. break;
  824. }
  825. case KVM_TRANSLATE: {
  826. struct kvm_translation tr;
  827. r = -EFAULT;
  828. if (copy_from_user(&tr, argp, sizeof tr))
  829. goto out;
  830. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  831. if (r)
  832. goto out;
  833. r = -EFAULT;
  834. if (copy_to_user(argp, &tr, sizeof tr))
  835. goto out;
  836. r = 0;
  837. break;
  838. }
  839. case KVM_INTERRUPT: {
  840. struct kvm_interrupt irq;
  841. r = -EFAULT;
  842. if (copy_from_user(&irq, argp, sizeof irq))
  843. goto out;
  844. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  845. if (r)
  846. goto out;
  847. r = 0;
  848. break;
  849. }
  850. case KVM_DEBUG_GUEST: {
  851. struct kvm_debug_guest dbg;
  852. r = -EFAULT;
  853. if (copy_from_user(&dbg, argp, sizeof dbg))
  854. goto out;
  855. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  856. if (r)
  857. goto out;
  858. r = 0;
  859. break;
  860. }
  861. case KVM_SET_SIGNAL_MASK: {
  862. struct kvm_signal_mask __user *sigmask_arg = argp;
  863. struct kvm_signal_mask kvm_sigmask;
  864. sigset_t sigset, *p;
  865. p = NULL;
  866. if (argp) {
  867. r = -EFAULT;
  868. if (copy_from_user(&kvm_sigmask, argp,
  869. sizeof kvm_sigmask))
  870. goto out;
  871. r = -EINVAL;
  872. if (kvm_sigmask.len != sizeof sigset)
  873. goto out;
  874. r = -EFAULT;
  875. if (copy_from_user(&sigset, sigmask_arg->sigset,
  876. sizeof sigset))
  877. goto out;
  878. p = &sigset;
  879. }
  880. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  881. break;
  882. }
  883. case KVM_GET_FPU: {
  884. struct kvm_fpu fpu;
  885. memset(&fpu, 0, sizeof fpu);
  886. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  887. if (r)
  888. goto out;
  889. r = -EFAULT;
  890. if (copy_to_user(argp, &fpu, sizeof fpu))
  891. goto out;
  892. r = 0;
  893. break;
  894. }
  895. case KVM_SET_FPU: {
  896. struct kvm_fpu fpu;
  897. r = -EFAULT;
  898. if (copy_from_user(&fpu, argp, sizeof fpu))
  899. goto out;
  900. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  901. if (r)
  902. goto out;
  903. r = 0;
  904. break;
  905. }
  906. default:
  907. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  908. }
  909. out:
  910. return r;
  911. }
  912. static long kvm_vm_ioctl(struct file *filp,
  913. unsigned int ioctl, unsigned long arg)
  914. {
  915. struct kvm *kvm = filp->private_data;
  916. void __user *argp = (void __user *)arg;
  917. int r;
  918. switch (ioctl) {
  919. case KVM_CREATE_VCPU:
  920. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  921. if (r < 0)
  922. goto out;
  923. break;
  924. case KVM_SET_USER_MEMORY_REGION: {
  925. struct kvm_userspace_memory_region kvm_userspace_mem;
  926. r = -EFAULT;
  927. if (copy_from_user(&kvm_userspace_mem, argp,
  928. sizeof kvm_userspace_mem))
  929. goto out;
  930. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  931. if (r)
  932. goto out;
  933. break;
  934. }
  935. case KVM_GET_DIRTY_LOG: {
  936. struct kvm_dirty_log log;
  937. r = -EFAULT;
  938. if (copy_from_user(&log, argp, sizeof log))
  939. goto out;
  940. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  941. if (r)
  942. goto out;
  943. break;
  944. }
  945. default:
  946. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  947. }
  948. out:
  949. return r;
  950. }
  951. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  952. unsigned long address,
  953. int *type)
  954. {
  955. struct kvm *kvm = vma->vm_file->private_data;
  956. unsigned long pgoff;
  957. struct page *page;
  958. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  959. if (!kvm_is_visible_gfn(kvm, pgoff))
  960. return NOPAGE_SIGBUS;
  961. /* current->mm->mmap_sem is already held so call lockless version */
  962. page = __gfn_to_page(kvm, pgoff);
  963. if (is_error_page(page)) {
  964. kvm_release_page(page);
  965. return NOPAGE_SIGBUS;
  966. }
  967. if (type != NULL)
  968. *type = VM_FAULT_MINOR;
  969. return page;
  970. }
  971. static struct vm_operations_struct kvm_vm_vm_ops = {
  972. .nopage = kvm_vm_nopage,
  973. };
  974. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  975. {
  976. vma->vm_ops = &kvm_vm_vm_ops;
  977. return 0;
  978. }
  979. static struct file_operations kvm_vm_fops = {
  980. .release = kvm_vm_release,
  981. .unlocked_ioctl = kvm_vm_ioctl,
  982. .compat_ioctl = kvm_vm_ioctl,
  983. .mmap = kvm_vm_mmap,
  984. };
  985. static int kvm_dev_ioctl_create_vm(void)
  986. {
  987. int fd, r;
  988. struct inode *inode;
  989. struct file *file;
  990. struct kvm *kvm;
  991. kvm = kvm_create_vm();
  992. if (IS_ERR(kvm))
  993. return PTR_ERR(kvm);
  994. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  995. if (r) {
  996. kvm_destroy_vm(kvm);
  997. return r;
  998. }
  999. kvm->filp = file;
  1000. return fd;
  1001. }
  1002. static long kvm_dev_ioctl(struct file *filp,
  1003. unsigned int ioctl, unsigned long arg)
  1004. {
  1005. void __user *argp = (void __user *)arg;
  1006. long r = -EINVAL;
  1007. switch (ioctl) {
  1008. case KVM_GET_API_VERSION:
  1009. r = -EINVAL;
  1010. if (arg)
  1011. goto out;
  1012. r = KVM_API_VERSION;
  1013. break;
  1014. case KVM_CREATE_VM:
  1015. r = -EINVAL;
  1016. if (arg)
  1017. goto out;
  1018. r = kvm_dev_ioctl_create_vm();
  1019. break;
  1020. case KVM_CHECK_EXTENSION:
  1021. r = kvm_dev_ioctl_check_extension((long)argp);
  1022. break;
  1023. case KVM_GET_VCPU_MMAP_SIZE:
  1024. r = -EINVAL;
  1025. if (arg)
  1026. goto out;
  1027. r = 2 * PAGE_SIZE;
  1028. break;
  1029. default:
  1030. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1031. }
  1032. out:
  1033. return r;
  1034. }
  1035. static struct file_operations kvm_chardev_ops = {
  1036. .unlocked_ioctl = kvm_dev_ioctl,
  1037. .compat_ioctl = kvm_dev_ioctl,
  1038. };
  1039. static struct miscdevice kvm_dev = {
  1040. KVM_MINOR,
  1041. "kvm",
  1042. &kvm_chardev_ops,
  1043. };
  1044. static void hardware_enable(void *junk)
  1045. {
  1046. int cpu = raw_smp_processor_id();
  1047. if (cpu_isset(cpu, cpus_hardware_enabled))
  1048. return;
  1049. cpu_set(cpu, cpus_hardware_enabled);
  1050. kvm_arch_hardware_enable(NULL);
  1051. }
  1052. static void hardware_disable(void *junk)
  1053. {
  1054. int cpu = raw_smp_processor_id();
  1055. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1056. return;
  1057. cpu_clear(cpu, cpus_hardware_enabled);
  1058. decache_vcpus_on_cpu(cpu);
  1059. kvm_arch_hardware_disable(NULL);
  1060. }
  1061. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1062. void *v)
  1063. {
  1064. int cpu = (long)v;
  1065. val &= ~CPU_TASKS_FROZEN;
  1066. switch (val) {
  1067. case CPU_DYING:
  1068. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1069. cpu);
  1070. hardware_disable(NULL);
  1071. break;
  1072. case CPU_UP_CANCELED:
  1073. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1074. cpu);
  1075. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1076. break;
  1077. case CPU_ONLINE:
  1078. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1079. cpu);
  1080. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1081. break;
  1082. }
  1083. return NOTIFY_OK;
  1084. }
  1085. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1086. void *v)
  1087. {
  1088. if (val == SYS_RESTART) {
  1089. /*
  1090. * Some (well, at least mine) BIOSes hang on reboot if
  1091. * in vmx root mode.
  1092. */
  1093. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1094. on_each_cpu(hardware_disable, NULL, 0, 1);
  1095. }
  1096. return NOTIFY_OK;
  1097. }
  1098. static struct notifier_block kvm_reboot_notifier = {
  1099. .notifier_call = kvm_reboot,
  1100. .priority = 0,
  1101. };
  1102. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1103. {
  1104. memset(bus, 0, sizeof(*bus));
  1105. }
  1106. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1107. {
  1108. int i;
  1109. for (i = 0; i < bus->dev_count; i++) {
  1110. struct kvm_io_device *pos = bus->devs[i];
  1111. kvm_iodevice_destructor(pos);
  1112. }
  1113. }
  1114. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1115. {
  1116. int i;
  1117. for (i = 0; i < bus->dev_count; i++) {
  1118. struct kvm_io_device *pos = bus->devs[i];
  1119. if (pos->in_range(pos, addr))
  1120. return pos;
  1121. }
  1122. return NULL;
  1123. }
  1124. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1125. {
  1126. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1127. bus->devs[bus->dev_count++] = dev;
  1128. }
  1129. static struct notifier_block kvm_cpu_notifier = {
  1130. .notifier_call = kvm_cpu_hotplug,
  1131. .priority = 20, /* must be > scheduler priority */
  1132. };
  1133. static u64 stat_get(void *_offset)
  1134. {
  1135. unsigned offset = (long)_offset;
  1136. u64 total = 0;
  1137. struct kvm *kvm;
  1138. struct kvm_vcpu *vcpu;
  1139. int i;
  1140. spin_lock(&kvm_lock);
  1141. list_for_each_entry(kvm, &vm_list, vm_list)
  1142. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1143. vcpu = kvm->vcpus[i];
  1144. if (vcpu)
  1145. total += *(u32 *)((void *)vcpu + offset);
  1146. }
  1147. spin_unlock(&kvm_lock);
  1148. return total;
  1149. }
  1150. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  1151. static __init void kvm_init_debug(void)
  1152. {
  1153. struct kvm_stats_debugfs_item *p;
  1154. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1155. for (p = debugfs_entries; p->name; ++p)
  1156. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1157. (void *)(long)p->offset,
  1158. &stat_fops);
  1159. }
  1160. static void kvm_exit_debug(void)
  1161. {
  1162. struct kvm_stats_debugfs_item *p;
  1163. for (p = debugfs_entries; p->name; ++p)
  1164. debugfs_remove(p->dentry);
  1165. debugfs_remove(debugfs_dir);
  1166. }
  1167. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1168. {
  1169. hardware_disable(NULL);
  1170. return 0;
  1171. }
  1172. static int kvm_resume(struct sys_device *dev)
  1173. {
  1174. hardware_enable(NULL);
  1175. return 0;
  1176. }
  1177. static struct sysdev_class kvm_sysdev_class = {
  1178. .name = "kvm",
  1179. .suspend = kvm_suspend,
  1180. .resume = kvm_resume,
  1181. };
  1182. static struct sys_device kvm_sysdev = {
  1183. .id = 0,
  1184. .cls = &kvm_sysdev_class,
  1185. };
  1186. struct page *bad_page;
  1187. static inline
  1188. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1189. {
  1190. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1191. }
  1192. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1193. {
  1194. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1195. kvm_arch_vcpu_load(vcpu, cpu);
  1196. }
  1197. static void kvm_sched_out(struct preempt_notifier *pn,
  1198. struct task_struct *next)
  1199. {
  1200. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1201. kvm_arch_vcpu_put(vcpu);
  1202. }
  1203. int kvm_init(void *opaque, unsigned int vcpu_size,
  1204. struct module *module)
  1205. {
  1206. int r;
  1207. int cpu;
  1208. r = kvm_mmu_module_init();
  1209. if (r)
  1210. goto out4;
  1211. kvm_init_debug();
  1212. r = kvm_arch_init(opaque);
  1213. if (r)
  1214. goto out4;
  1215. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1216. if (bad_page == NULL) {
  1217. r = -ENOMEM;
  1218. goto out;
  1219. }
  1220. r = kvm_arch_hardware_setup();
  1221. if (r < 0)
  1222. goto out;
  1223. for_each_online_cpu(cpu) {
  1224. smp_call_function_single(cpu,
  1225. kvm_arch_check_processor_compat,
  1226. &r, 0, 1);
  1227. if (r < 0)
  1228. goto out_free_0;
  1229. }
  1230. on_each_cpu(hardware_enable, NULL, 0, 1);
  1231. r = register_cpu_notifier(&kvm_cpu_notifier);
  1232. if (r)
  1233. goto out_free_1;
  1234. register_reboot_notifier(&kvm_reboot_notifier);
  1235. r = sysdev_class_register(&kvm_sysdev_class);
  1236. if (r)
  1237. goto out_free_2;
  1238. r = sysdev_register(&kvm_sysdev);
  1239. if (r)
  1240. goto out_free_3;
  1241. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1242. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1243. __alignof__(struct kvm_vcpu), 0, 0);
  1244. if (!kvm_vcpu_cache) {
  1245. r = -ENOMEM;
  1246. goto out_free_4;
  1247. }
  1248. kvm_chardev_ops.owner = module;
  1249. r = misc_register(&kvm_dev);
  1250. if (r) {
  1251. printk(KERN_ERR "kvm: misc device register failed\n");
  1252. goto out_free;
  1253. }
  1254. kvm_preempt_ops.sched_in = kvm_sched_in;
  1255. kvm_preempt_ops.sched_out = kvm_sched_out;
  1256. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  1257. return 0;
  1258. out_free:
  1259. kmem_cache_destroy(kvm_vcpu_cache);
  1260. out_free_4:
  1261. sysdev_unregister(&kvm_sysdev);
  1262. out_free_3:
  1263. sysdev_class_unregister(&kvm_sysdev_class);
  1264. out_free_2:
  1265. unregister_reboot_notifier(&kvm_reboot_notifier);
  1266. unregister_cpu_notifier(&kvm_cpu_notifier);
  1267. out_free_1:
  1268. on_each_cpu(hardware_disable, NULL, 0, 1);
  1269. out_free_0:
  1270. kvm_arch_hardware_unsetup();
  1271. out:
  1272. kvm_arch_exit();
  1273. kvm_exit_debug();
  1274. kvm_mmu_module_exit();
  1275. out4:
  1276. return r;
  1277. }
  1278. EXPORT_SYMBOL_GPL(kvm_init);
  1279. void kvm_exit(void)
  1280. {
  1281. misc_deregister(&kvm_dev);
  1282. kmem_cache_destroy(kvm_vcpu_cache);
  1283. sysdev_unregister(&kvm_sysdev);
  1284. sysdev_class_unregister(&kvm_sysdev_class);
  1285. unregister_reboot_notifier(&kvm_reboot_notifier);
  1286. unregister_cpu_notifier(&kvm_cpu_notifier);
  1287. on_each_cpu(hardware_disable, NULL, 0, 1);
  1288. kvm_arch_hardware_unsetup();
  1289. kvm_arch_exit();
  1290. kvm_exit_debug();
  1291. __free_page(bad_page);
  1292. kvm_mmu_module_exit();
  1293. }
  1294. EXPORT_SYMBOL_GPL(kvm_exit);