ctree.c 113 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  43. return path;
  44. }
  45. /*
  46. * set all locked nodes in the path to blocking locks. This should
  47. * be done before scheduling
  48. */
  49. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  50. {
  51. int i;
  52. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  53. if (!p->nodes[i] || !p->locks[i])
  54. continue;
  55. btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  56. if (p->locks[i] == BTRFS_READ_LOCK)
  57. p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  58. else if (p->locks[i] == BTRFS_WRITE_LOCK)
  59. p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  60. }
  61. }
  62. /*
  63. * reset all the locked nodes in the patch to spinning locks.
  64. *
  65. * held is used to keep lockdep happy, when lockdep is enabled
  66. * we set held to a blocking lock before we go around and
  67. * retake all the spinlocks in the path. You can safely use NULL
  68. * for held
  69. */
  70. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  71. struct extent_buffer *held, int held_rw)
  72. {
  73. int i;
  74. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  75. /* lockdep really cares that we take all of these spinlocks
  76. * in the right order. If any of the locks in the path are not
  77. * currently blocking, it is going to complain. So, make really
  78. * really sure by forcing the path to blocking before we clear
  79. * the path blocking.
  80. */
  81. if (held) {
  82. btrfs_set_lock_blocking_rw(held, held_rw);
  83. if (held_rw == BTRFS_WRITE_LOCK)
  84. held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  85. else if (held_rw == BTRFS_READ_LOCK)
  86. held_rw = BTRFS_READ_LOCK_BLOCKING;
  87. }
  88. btrfs_set_path_blocking(p);
  89. #endif
  90. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  91. if (p->nodes[i] && p->locks[i]) {
  92. btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  93. if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  94. p->locks[i] = BTRFS_WRITE_LOCK;
  95. else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  96. p->locks[i] = BTRFS_READ_LOCK;
  97. }
  98. }
  99. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  100. if (held)
  101. btrfs_clear_lock_blocking_rw(held, held_rw);
  102. #endif
  103. }
  104. /* this also releases the path */
  105. void btrfs_free_path(struct btrfs_path *p)
  106. {
  107. if (!p)
  108. return;
  109. btrfs_release_path(p);
  110. kmem_cache_free(btrfs_path_cachep, p);
  111. }
  112. /*
  113. * path release drops references on the extent buffers in the path
  114. * and it drops any locks held by this path
  115. *
  116. * It is safe to call this on paths that no locks or extent buffers held.
  117. */
  118. noinline void btrfs_release_path(struct btrfs_path *p)
  119. {
  120. int i;
  121. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  122. p->slots[i] = 0;
  123. if (!p->nodes[i])
  124. continue;
  125. if (p->locks[i]) {
  126. btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
  127. p->locks[i] = 0;
  128. }
  129. free_extent_buffer(p->nodes[i]);
  130. p->nodes[i] = NULL;
  131. }
  132. }
  133. /*
  134. * safely gets a reference on the root node of a tree. A lock
  135. * is not taken, so a concurrent writer may put a different node
  136. * at the root of the tree. See btrfs_lock_root_node for the
  137. * looping required.
  138. *
  139. * The extent buffer returned by this has a reference taken, so
  140. * it won't disappear. It may stop being the root of the tree
  141. * at any time because there are no locks held.
  142. */
  143. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  144. {
  145. struct extent_buffer *eb;
  146. while (1) {
  147. rcu_read_lock();
  148. eb = rcu_dereference(root->node);
  149. /*
  150. * RCU really hurts here, we could free up the root node because
  151. * it was cow'ed but we may not get the new root node yet so do
  152. * the inc_not_zero dance and if it doesn't work then
  153. * synchronize_rcu and try again.
  154. */
  155. if (atomic_inc_not_zero(&eb->refs)) {
  156. rcu_read_unlock();
  157. break;
  158. }
  159. rcu_read_unlock();
  160. synchronize_rcu();
  161. }
  162. return eb;
  163. }
  164. /* loop around taking references on and locking the root node of the
  165. * tree until you end up with a lock on the root. A locked buffer
  166. * is returned, with a reference held.
  167. */
  168. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  169. {
  170. struct extent_buffer *eb;
  171. while (1) {
  172. eb = btrfs_root_node(root);
  173. btrfs_tree_lock(eb);
  174. if (eb == root->node)
  175. break;
  176. btrfs_tree_unlock(eb);
  177. free_extent_buffer(eb);
  178. }
  179. return eb;
  180. }
  181. /* loop around taking references on and locking the root node of the
  182. * tree until you end up with a lock on the root. A locked buffer
  183. * is returned, with a reference held.
  184. */
  185. struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
  186. {
  187. struct extent_buffer *eb;
  188. while (1) {
  189. eb = btrfs_root_node(root);
  190. btrfs_tree_read_lock(eb);
  191. if (eb == root->node)
  192. break;
  193. btrfs_tree_read_unlock(eb);
  194. free_extent_buffer(eb);
  195. }
  196. return eb;
  197. }
  198. /* cowonly root (everything not a reference counted cow subvolume), just get
  199. * put onto a simple dirty list. transaction.c walks this to make sure they
  200. * get properly updated on disk.
  201. */
  202. static void add_root_to_dirty_list(struct btrfs_root *root)
  203. {
  204. spin_lock(&root->fs_info->trans_lock);
  205. if (root->track_dirty && list_empty(&root->dirty_list)) {
  206. list_add(&root->dirty_list,
  207. &root->fs_info->dirty_cowonly_roots);
  208. }
  209. spin_unlock(&root->fs_info->trans_lock);
  210. }
  211. /*
  212. * used by snapshot creation to make a copy of a root for a tree with
  213. * a given objectid. The buffer with the new root node is returned in
  214. * cow_ret, and this func returns zero on success or a negative error code.
  215. */
  216. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  217. struct btrfs_root *root,
  218. struct extent_buffer *buf,
  219. struct extent_buffer **cow_ret, u64 new_root_objectid)
  220. {
  221. struct extent_buffer *cow;
  222. int ret = 0;
  223. int level;
  224. struct btrfs_disk_key disk_key;
  225. WARN_ON(root->ref_cows && trans->transid !=
  226. root->fs_info->running_transaction->transid);
  227. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  228. level = btrfs_header_level(buf);
  229. if (level == 0)
  230. btrfs_item_key(buf, &disk_key, 0);
  231. else
  232. btrfs_node_key(buf, &disk_key, 0);
  233. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  234. new_root_objectid, &disk_key, level,
  235. buf->start, 0, 1);
  236. if (IS_ERR(cow))
  237. return PTR_ERR(cow);
  238. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  239. btrfs_set_header_bytenr(cow, cow->start);
  240. btrfs_set_header_generation(cow, trans->transid);
  241. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  242. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  243. BTRFS_HEADER_FLAG_RELOC);
  244. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  245. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  246. else
  247. btrfs_set_header_owner(cow, new_root_objectid);
  248. write_extent_buffer(cow, root->fs_info->fsid,
  249. (unsigned long)btrfs_header_fsid(cow),
  250. BTRFS_FSID_SIZE);
  251. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  252. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  253. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  254. else
  255. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  256. if (ret)
  257. return ret;
  258. btrfs_mark_buffer_dirty(cow);
  259. *cow_ret = cow;
  260. return 0;
  261. }
  262. /*
  263. * check if the tree block can be shared by multiple trees
  264. */
  265. int btrfs_block_can_be_shared(struct btrfs_root *root,
  266. struct extent_buffer *buf)
  267. {
  268. /*
  269. * Tree blocks not in refernece counted trees and tree roots
  270. * are never shared. If a block was allocated after the last
  271. * snapshot and the block was not allocated by tree relocation,
  272. * we know the block is not shared.
  273. */
  274. if (root->ref_cows &&
  275. buf != root->node && buf != root->commit_root &&
  276. (btrfs_header_generation(buf) <=
  277. btrfs_root_last_snapshot(&root->root_item) ||
  278. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  279. return 1;
  280. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  281. if (root->ref_cows &&
  282. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  283. return 1;
  284. #endif
  285. return 0;
  286. }
  287. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  288. struct btrfs_root *root,
  289. struct extent_buffer *buf,
  290. struct extent_buffer *cow,
  291. int *last_ref)
  292. {
  293. u64 refs;
  294. u64 owner;
  295. u64 flags;
  296. u64 new_flags = 0;
  297. int ret;
  298. /*
  299. * Backrefs update rules:
  300. *
  301. * Always use full backrefs for extent pointers in tree block
  302. * allocated by tree relocation.
  303. *
  304. * If a shared tree block is no longer referenced by its owner
  305. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  306. * use full backrefs for extent pointers in tree block.
  307. *
  308. * If a tree block is been relocating
  309. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  310. * use full backrefs for extent pointers in tree block.
  311. * The reason for this is some operations (such as drop tree)
  312. * are only allowed for blocks use full backrefs.
  313. */
  314. if (btrfs_block_can_be_shared(root, buf)) {
  315. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  316. buf->len, &refs, &flags);
  317. if (ret)
  318. return ret;
  319. if (refs == 0) {
  320. ret = -EROFS;
  321. btrfs_std_error(root->fs_info, ret);
  322. return ret;
  323. }
  324. } else {
  325. refs = 1;
  326. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  327. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  328. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  329. else
  330. flags = 0;
  331. }
  332. owner = btrfs_header_owner(buf);
  333. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  334. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  335. if (refs > 1) {
  336. if ((owner == root->root_key.objectid ||
  337. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  338. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  339. ret = btrfs_inc_ref(trans, root, buf, 1, 1);
  340. BUG_ON(ret); /* -ENOMEM */
  341. if (root->root_key.objectid ==
  342. BTRFS_TREE_RELOC_OBJECTID) {
  343. ret = btrfs_dec_ref(trans, root, buf, 0, 1);
  344. BUG_ON(ret); /* -ENOMEM */
  345. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  346. BUG_ON(ret); /* -ENOMEM */
  347. }
  348. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  349. } else {
  350. if (root->root_key.objectid ==
  351. BTRFS_TREE_RELOC_OBJECTID)
  352. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  353. else
  354. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  355. BUG_ON(ret); /* -ENOMEM */
  356. }
  357. if (new_flags != 0) {
  358. ret = btrfs_set_disk_extent_flags(trans, root,
  359. buf->start,
  360. buf->len,
  361. new_flags, 0);
  362. if (ret)
  363. return ret;
  364. }
  365. } else {
  366. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  367. if (root->root_key.objectid ==
  368. BTRFS_TREE_RELOC_OBJECTID)
  369. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  370. else
  371. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  372. BUG_ON(ret); /* -ENOMEM */
  373. ret = btrfs_dec_ref(trans, root, buf, 1, 1);
  374. BUG_ON(ret); /* -ENOMEM */
  375. }
  376. clean_tree_block(trans, root, buf);
  377. *last_ref = 1;
  378. }
  379. return 0;
  380. }
  381. /*
  382. * does the dirty work in cow of a single block. The parent block (if
  383. * supplied) is updated to point to the new cow copy. The new buffer is marked
  384. * dirty and returned locked. If you modify the block it needs to be marked
  385. * dirty again.
  386. *
  387. * search_start -- an allocation hint for the new block
  388. *
  389. * empty_size -- a hint that you plan on doing more cow. This is the size in
  390. * bytes the allocator should try to find free next to the block it returns.
  391. * This is just a hint and may be ignored by the allocator.
  392. */
  393. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  394. struct btrfs_root *root,
  395. struct extent_buffer *buf,
  396. struct extent_buffer *parent, int parent_slot,
  397. struct extent_buffer **cow_ret,
  398. u64 search_start, u64 empty_size)
  399. {
  400. struct btrfs_disk_key disk_key;
  401. struct extent_buffer *cow;
  402. int level, ret;
  403. int last_ref = 0;
  404. int unlock_orig = 0;
  405. u64 parent_start;
  406. if (*cow_ret == buf)
  407. unlock_orig = 1;
  408. btrfs_assert_tree_locked(buf);
  409. WARN_ON(root->ref_cows && trans->transid !=
  410. root->fs_info->running_transaction->transid);
  411. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  412. level = btrfs_header_level(buf);
  413. if (level == 0)
  414. btrfs_item_key(buf, &disk_key, 0);
  415. else
  416. btrfs_node_key(buf, &disk_key, 0);
  417. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  418. if (parent)
  419. parent_start = parent->start;
  420. else
  421. parent_start = 0;
  422. } else
  423. parent_start = 0;
  424. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  425. root->root_key.objectid, &disk_key,
  426. level, search_start, empty_size, 1);
  427. if (IS_ERR(cow))
  428. return PTR_ERR(cow);
  429. /* cow is set to blocking by btrfs_init_new_buffer */
  430. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  431. btrfs_set_header_bytenr(cow, cow->start);
  432. btrfs_set_header_generation(cow, trans->transid);
  433. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  434. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  435. BTRFS_HEADER_FLAG_RELOC);
  436. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  437. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  438. else
  439. btrfs_set_header_owner(cow, root->root_key.objectid);
  440. write_extent_buffer(cow, root->fs_info->fsid,
  441. (unsigned long)btrfs_header_fsid(cow),
  442. BTRFS_FSID_SIZE);
  443. ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
  444. if (ret) {
  445. btrfs_abort_transaction(trans, root, ret);
  446. return ret;
  447. }
  448. if (root->ref_cows)
  449. btrfs_reloc_cow_block(trans, root, buf, cow);
  450. if (buf == root->node) {
  451. WARN_ON(parent && parent != buf);
  452. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  453. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  454. parent_start = buf->start;
  455. else
  456. parent_start = 0;
  457. extent_buffer_get(cow);
  458. rcu_assign_pointer(root->node, cow);
  459. btrfs_free_tree_block(trans, root, buf, parent_start,
  460. last_ref, 1);
  461. free_extent_buffer(buf);
  462. add_root_to_dirty_list(root);
  463. } else {
  464. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  465. parent_start = parent->start;
  466. else
  467. parent_start = 0;
  468. WARN_ON(trans->transid != btrfs_header_generation(parent));
  469. btrfs_set_node_blockptr(parent, parent_slot,
  470. cow->start);
  471. btrfs_set_node_ptr_generation(parent, parent_slot,
  472. trans->transid);
  473. btrfs_mark_buffer_dirty(parent);
  474. btrfs_free_tree_block(trans, root, buf, parent_start,
  475. last_ref, 1);
  476. }
  477. if (unlock_orig)
  478. btrfs_tree_unlock(buf);
  479. free_extent_buffer_stale(buf);
  480. btrfs_mark_buffer_dirty(cow);
  481. *cow_ret = cow;
  482. return 0;
  483. }
  484. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  485. struct btrfs_root *root,
  486. struct extent_buffer *buf)
  487. {
  488. /* ensure we can see the force_cow */
  489. smp_rmb();
  490. /*
  491. * We do not need to cow a block if
  492. * 1) this block is not created or changed in this transaction;
  493. * 2) this block does not belong to TREE_RELOC tree;
  494. * 3) the root is not forced COW.
  495. *
  496. * What is forced COW:
  497. * when we create snapshot during commiting the transaction,
  498. * after we've finished coping src root, we must COW the shared
  499. * block to ensure the metadata consistency.
  500. */
  501. if (btrfs_header_generation(buf) == trans->transid &&
  502. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  503. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  504. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
  505. !root->force_cow)
  506. return 0;
  507. return 1;
  508. }
  509. /*
  510. * cows a single block, see __btrfs_cow_block for the real work.
  511. * This version of it has extra checks so that a block isn't cow'd more than
  512. * once per transaction, as long as it hasn't been written yet
  513. */
  514. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  515. struct btrfs_root *root, struct extent_buffer *buf,
  516. struct extent_buffer *parent, int parent_slot,
  517. struct extent_buffer **cow_ret)
  518. {
  519. u64 search_start;
  520. int ret;
  521. if (trans->transaction != root->fs_info->running_transaction) {
  522. printk(KERN_CRIT "trans %llu running %llu\n",
  523. (unsigned long long)trans->transid,
  524. (unsigned long long)
  525. root->fs_info->running_transaction->transid);
  526. WARN_ON(1);
  527. }
  528. if (trans->transid != root->fs_info->generation) {
  529. printk(KERN_CRIT "trans %llu running %llu\n",
  530. (unsigned long long)trans->transid,
  531. (unsigned long long)root->fs_info->generation);
  532. WARN_ON(1);
  533. }
  534. if (!should_cow_block(trans, root, buf)) {
  535. *cow_ret = buf;
  536. return 0;
  537. }
  538. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  539. if (parent)
  540. btrfs_set_lock_blocking(parent);
  541. btrfs_set_lock_blocking(buf);
  542. ret = __btrfs_cow_block(trans, root, buf, parent,
  543. parent_slot, cow_ret, search_start, 0);
  544. trace_btrfs_cow_block(root, buf, *cow_ret);
  545. return ret;
  546. }
  547. /*
  548. * helper function for defrag to decide if two blocks pointed to by a
  549. * node are actually close by
  550. */
  551. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  552. {
  553. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  554. return 1;
  555. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  556. return 1;
  557. return 0;
  558. }
  559. /*
  560. * compare two keys in a memcmp fashion
  561. */
  562. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  563. {
  564. struct btrfs_key k1;
  565. btrfs_disk_key_to_cpu(&k1, disk);
  566. return btrfs_comp_cpu_keys(&k1, k2);
  567. }
  568. /*
  569. * same as comp_keys only with two btrfs_key's
  570. */
  571. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  572. {
  573. if (k1->objectid > k2->objectid)
  574. return 1;
  575. if (k1->objectid < k2->objectid)
  576. return -1;
  577. if (k1->type > k2->type)
  578. return 1;
  579. if (k1->type < k2->type)
  580. return -1;
  581. if (k1->offset > k2->offset)
  582. return 1;
  583. if (k1->offset < k2->offset)
  584. return -1;
  585. return 0;
  586. }
  587. /*
  588. * this is used by the defrag code to go through all the
  589. * leaves pointed to by a node and reallocate them so that
  590. * disk order is close to key order
  591. */
  592. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  593. struct btrfs_root *root, struct extent_buffer *parent,
  594. int start_slot, int cache_only, u64 *last_ret,
  595. struct btrfs_key *progress)
  596. {
  597. struct extent_buffer *cur;
  598. u64 blocknr;
  599. u64 gen;
  600. u64 search_start = *last_ret;
  601. u64 last_block = 0;
  602. u64 other;
  603. u32 parent_nritems;
  604. int end_slot;
  605. int i;
  606. int err = 0;
  607. int parent_level;
  608. int uptodate;
  609. u32 blocksize;
  610. int progress_passed = 0;
  611. struct btrfs_disk_key disk_key;
  612. parent_level = btrfs_header_level(parent);
  613. if (cache_only && parent_level != 1)
  614. return 0;
  615. if (trans->transaction != root->fs_info->running_transaction)
  616. WARN_ON(1);
  617. if (trans->transid != root->fs_info->generation)
  618. WARN_ON(1);
  619. parent_nritems = btrfs_header_nritems(parent);
  620. blocksize = btrfs_level_size(root, parent_level - 1);
  621. end_slot = parent_nritems;
  622. if (parent_nritems == 1)
  623. return 0;
  624. btrfs_set_lock_blocking(parent);
  625. for (i = start_slot; i < end_slot; i++) {
  626. int close = 1;
  627. btrfs_node_key(parent, &disk_key, i);
  628. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  629. continue;
  630. progress_passed = 1;
  631. blocknr = btrfs_node_blockptr(parent, i);
  632. gen = btrfs_node_ptr_generation(parent, i);
  633. if (last_block == 0)
  634. last_block = blocknr;
  635. if (i > 0) {
  636. other = btrfs_node_blockptr(parent, i - 1);
  637. close = close_blocks(blocknr, other, blocksize);
  638. }
  639. if (!close && i < end_slot - 2) {
  640. other = btrfs_node_blockptr(parent, i + 1);
  641. close = close_blocks(blocknr, other, blocksize);
  642. }
  643. if (close) {
  644. last_block = blocknr;
  645. continue;
  646. }
  647. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  648. if (cur)
  649. uptodate = btrfs_buffer_uptodate(cur, gen, 0);
  650. else
  651. uptodate = 0;
  652. if (!cur || !uptodate) {
  653. if (cache_only) {
  654. free_extent_buffer(cur);
  655. continue;
  656. }
  657. if (!cur) {
  658. cur = read_tree_block(root, blocknr,
  659. blocksize, gen);
  660. if (!cur)
  661. return -EIO;
  662. } else if (!uptodate) {
  663. err = btrfs_read_buffer(cur, gen);
  664. if (err) {
  665. free_extent_buffer(cur);
  666. return err;
  667. }
  668. }
  669. }
  670. if (search_start == 0)
  671. search_start = last_block;
  672. btrfs_tree_lock(cur);
  673. btrfs_set_lock_blocking(cur);
  674. err = __btrfs_cow_block(trans, root, cur, parent, i,
  675. &cur, search_start,
  676. min(16 * blocksize,
  677. (end_slot - i) * blocksize));
  678. if (err) {
  679. btrfs_tree_unlock(cur);
  680. free_extent_buffer(cur);
  681. break;
  682. }
  683. search_start = cur->start;
  684. last_block = cur->start;
  685. *last_ret = search_start;
  686. btrfs_tree_unlock(cur);
  687. free_extent_buffer(cur);
  688. }
  689. return err;
  690. }
  691. /*
  692. * The leaf data grows from end-to-front in the node.
  693. * this returns the address of the start of the last item,
  694. * which is the stop of the leaf data stack
  695. */
  696. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  697. struct extent_buffer *leaf)
  698. {
  699. u32 nr = btrfs_header_nritems(leaf);
  700. if (nr == 0)
  701. return BTRFS_LEAF_DATA_SIZE(root);
  702. return btrfs_item_offset_nr(leaf, nr - 1);
  703. }
  704. /*
  705. * search for key in the extent_buffer. The items start at offset p,
  706. * and they are item_size apart. There are 'max' items in p.
  707. *
  708. * the slot in the array is returned via slot, and it points to
  709. * the place where you would insert key if it is not found in
  710. * the array.
  711. *
  712. * slot may point to max if the key is bigger than all of the keys
  713. */
  714. static noinline int generic_bin_search(struct extent_buffer *eb,
  715. unsigned long p,
  716. int item_size, struct btrfs_key *key,
  717. int max, int *slot)
  718. {
  719. int low = 0;
  720. int high = max;
  721. int mid;
  722. int ret;
  723. struct btrfs_disk_key *tmp = NULL;
  724. struct btrfs_disk_key unaligned;
  725. unsigned long offset;
  726. char *kaddr = NULL;
  727. unsigned long map_start = 0;
  728. unsigned long map_len = 0;
  729. int err;
  730. while (low < high) {
  731. mid = (low + high) / 2;
  732. offset = p + mid * item_size;
  733. if (!kaddr || offset < map_start ||
  734. (offset + sizeof(struct btrfs_disk_key)) >
  735. map_start + map_len) {
  736. err = map_private_extent_buffer(eb, offset,
  737. sizeof(struct btrfs_disk_key),
  738. &kaddr, &map_start, &map_len);
  739. if (!err) {
  740. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  741. map_start);
  742. } else {
  743. read_extent_buffer(eb, &unaligned,
  744. offset, sizeof(unaligned));
  745. tmp = &unaligned;
  746. }
  747. } else {
  748. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  749. map_start);
  750. }
  751. ret = comp_keys(tmp, key);
  752. if (ret < 0)
  753. low = mid + 1;
  754. else if (ret > 0)
  755. high = mid;
  756. else {
  757. *slot = mid;
  758. return 0;
  759. }
  760. }
  761. *slot = low;
  762. return 1;
  763. }
  764. /*
  765. * simple bin_search frontend that does the right thing for
  766. * leaves vs nodes
  767. */
  768. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  769. int level, int *slot)
  770. {
  771. if (level == 0)
  772. return generic_bin_search(eb,
  773. offsetof(struct btrfs_leaf, items),
  774. sizeof(struct btrfs_item),
  775. key, btrfs_header_nritems(eb),
  776. slot);
  777. else
  778. return generic_bin_search(eb,
  779. offsetof(struct btrfs_node, ptrs),
  780. sizeof(struct btrfs_key_ptr),
  781. key, btrfs_header_nritems(eb),
  782. slot);
  783. }
  784. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  785. int level, int *slot)
  786. {
  787. return bin_search(eb, key, level, slot);
  788. }
  789. static void root_add_used(struct btrfs_root *root, u32 size)
  790. {
  791. spin_lock(&root->accounting_lock);
  792. btrfs_set_root_used(&root->root_item,
  793. btrfs_root_used(&root->root_item) + size);
  794. spin_unlock(&root->accounting_lock);
  795. }
  796. static void root_sub_used(struct btrfs_root *root, u32 size)
  797. {
  798. spin_lock(&root->accounting_lock);
  799. btrfs_set_root_used(&root->root_item,
  800. btrfs_root_used(&root->root_item) - size);
  801. spin_unlock(&root->accounting_lock);
  802. }
  803. /* given a node and slot number, this reads the blocks it points to. The
  804. * extent buffer is returned with a reference taken (but unlocked).
  805. * NULL is returned on error.
  806. */
  807. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  808. struct extent_buffer *parent, int slot)
  809. {
  810. int level = btrfs_header_level(parent);
  811. if (slot < 0)
  812. return NULL;
  813. if (slot >= btrfs_header_nritems(parent))
  814. return NULL;
  815. BUG_ON(level == 0);
  816. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  817. btrfs_level_size(root, level - 1),
  818. btrfs_node_ptr_generation(parent, slot));
  819. }
  820. /*
  821. * node level balancing, used to make sure nodes are in proper order for
  822. * item deletion. We balance from the top down, so we have to make sure
  823. * that a deletion won't leave an node completely empty later on.
  824. */
  825. static noinline int balance_level(struct btrfs_trans_handle *trans,
  826. struct btrfs_root *root,
  827. struct btrfs_path *path, int level)
  828. {
  829. struct extent_buffer *right = NULL;
  830. struct extent_buffer *mid;
  831. struct extent_buffer *left = NULL;
  832. struct extent_buffer *parent = NULL;
  833. int ret = 0;
  834. int wret;
  835. int pslot;
  836. int orig_slot = path->slots[level];
  837. u64 orig_ptr;
  838. if (level == 0)
  839. return 0;
  840. mid = path->nodes[level];
  841. WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
  842. path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
  843. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  844. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  845. if (level < BTRFS_MAX_LEVEL - 1) {
  846. parent = path->nodes[level + 1];
  847. pslot = path->slots[level + 1];
  848. }
  849. /*
  850. * deal with the case where there is only one pointer in the root
  851. * by promoting the node below to a root
  852. */
  853. if (!parent) {
  854. struct extent_buffer *child;
  855. if (btrfs_header_nritems(mid) != 1)
  856. return 0;
  857. /* promote the child to a root */
  858. child = read_node_slot(root, mid, 0);
  859. if (!child) {
  860. ret = -EROFS;
  861. btrfs_std_error(root->fs_info, ret);
  862. goto enospc;
  863. }
  864. btrfs_tree_lock(child);
  865. btrfs_set_lock_blocking(child);
  866. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  867. if (ret) {
  868. btrfs_tree_unlock(child);
  869. free_extent_buffer(child);
  870. goto enospc;
  871. }
  872. rcu_assign_pointer(root->node, child);
  873. add_root_to_dirty_list(root);
  874. btrfs_tree_unlock(child);
  875. path->locks[level] = 0;
  876. path->nodes[level] = NULL;
  877. clean_tree_block(trans, root, mid);
  878. btrfs_tree_unlock(mid);
  879. /* once for the path */
  880. free_extent_buffer(mid);
  881. root_sub_used(root, mid->len);
  882. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  883. /* once for the root ptr */
  884. free_extent_buffer_stale(mid);
  885. return 0;
  886. }
  887. if (btrfs_header_nritems(mid) >
  888. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  889. return 0;
  890. btrfs_header_nritems(mid);
  891. left = read_node_slot(root, parent, pslot - 1);
  892. if (left) {
  893. btrfs_tree_lock(left);
  894. btrfs_set_lock_blocking(left);
  895. wret = btrfs_cow_block(trans, root, left,
  896. parent, pslot - 1, &left);
  897. if (wret) {
  898. ret = wret;
  899. goto enospc;
  900. }
  901. }
  902. right = read_node_slot(root, parent, pslot + 1);
  903. if (right) {
  904. btrfs_tree_lock(right);
  905. btrfs_set_lock_blocking(right);
  906. wret = btrfs_cow_block(trans, root, right,
  907. parent, pslot + 1, &right);
  908. if (wret) {
  909. ret = wret;
  910. goto enospc;
  911. }
  912. }
  913. /* first, try to make some room in the middle buffer */
  914. if (left) {
  915. orig_slot += btrfs_header_nritems(left);
  916. wret = push_node_left(trans, root, left, mid, 1);
  917. if (wret < 0)
  918. ret = wret;
  919. btrfs_header_nritems(mid);
  920. }
  921. /*
  922. * then try to empty the right most buffer into the middle
  923. */
  924. if (right) {
  925. wret = push_node_left(trans, root, mid, right, 1);
  926. if (wret < 0 && wret != -ENOSPC)
  927. ret = wret;
  928. if (btrfs_header_nritems(right) == 0) {
  929. clean_tree_block(trans, root, right);
  930. btrfs_tree_unlock(right);
  931. del_ptr(trans, root, path, level + 1, pslot + 1);
  932. root_sub_used(root, right->len);
  933. btrfs_free_tree_block(trans, root, right, 0, 1, 0);
  934. free_extent_buffer_stale(right);
  935. right = NULL;
  936. } else {
  937. struct btrfs_disk_key right_key;
  938. btrfs_node_key(right, &right_key, 0);
  939. btrfs_set_node_key(parent, &right_key, pslot + 1);
  940. btrfs_mark_buffer_dirty(parent);
  941. }
  942. }
  943. if (btrfs_header_nritems(mid) == 1) {
  944. /*
  945. * we're not allowed to leave a node with one item in the
  946. * tree during a delete. A deletion from lower in the tree
  947. * could try to delete the only pointer in this node.
  948. * So, pull some keys from the left.
  949. * There has to be a left pointer at this point because
  950. * otherwise we would have pulled some pointers from the
  951. * right
  952. */
  953. if (!left) {
  954. ret = -EROFS;
  955. btrfs_std_error(root->fs_info, ret);
  956. goto enospc;
  957. }
  958. wret = balance_node_right(trans, root, mid, left);
  959. if (wret < 0) {
  960. ret = wret;
  961. goto enospc;
  962. }
  963. if (wret == 1) {
  964. wret = push_node_left(trans, root, left, mid, 1);
  965. if (wret < 0)
  966. ret = wret;
  967. }
  968. BUG_ON(wret == 1);
  969. }
  970. if (btrfs_header_nritems(mid) == 0) {
  971. clean_tree_block(trans, root, mid);
  972. btrfs_tree_unlock(mid);
  973. del_ptr(trans, root, path, level + 1, pslot);
  974. root_sub_used(root, mid->len);
  975. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  976. free_extent_buffer_stale(mid);
  977. mid = NULL;
  978. } else {
  979. /* update the parent key to reflect our changes */
  980. struct btrfs_disk_key mid_key;
  981. btrfs_node_key(mid, &mid_key, 0);
  982. btrfs_set_node_key(parent, &mid_key, pslot);
  983. btrfs_mark_buffer_dirty(parent);
  984. }
  985. /* update the path */
  986. if (left) {
  987. if (btrfs_header_nritems(left) > orig_slot) {
  988. extent_buffer_get(left);
  989. /* left was locked after cow */
  990. path->nodes[level] = left;
  991. path->slots[level + 1] -= 1;
  992. path->slots[level] = orig_slot;
  993. if (mid) {
  994. btrfs_tree_unlock(mid);
  995. free_extent_buffer(mid);
  996. }
  997. } else {
  998. orig_slot -= btrfs_header_nritems(left);
  999. path->slots[level] = orig_slot;
  1000. }
  1001. }
  1002. /* double check we haven't messed things up */
  1003. if (orig_ptr !=
  1004. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  1005. BUG();
  1006. enospc:
  1007. if (right) {
  1008. btrfs_tree_unlock(right);
  1009. free_extent_buffer(right);
  1010. }
  1011. if (left) {
  1012. if (path->nodes[level] != left)
  1013. btrfs_tree_unlock(left);
  1014. free_extent_buffer(left);
  1015. }
  1016. return ret;
  1017. }
  1018. /* Node balancing for insertion. Here we only split or push nodes around
  1019. * when they are completely full. This is also done top down, so we
  1020. * have to be pessimistic.
  1021. */
  1022. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1023. struct btrfs_root *root,
  1024. struct btrfs_path *path, int level)
  1025. {
  1026. struct extent_buffer *right = NULL;
  1027. struct extent_buffer *mid;
  1028. struct extent_buffer *left = NULL;
  1029. struct extent_buffer *parent = NULL;
  1030. int ret = 0;
  1031. int wret;
  1032. int pslot;
  1033. int orig_slot = path->slots[level];
  1034. if (level == 0)
  1035. return 1;
  1036. mid = path->nodes[level];
  1037. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1038. if (level < BTRFS_MAX_LEVEL - 1) {
  1039. parent = path->nodes[level + 1];
  1040. pslot = path->slots[level + 1];
  1041. }
  1042. if (!parent)
  1043. return 1;
  1044. left = read_node_slot(root, parent, pslot - 1);
  1045. /* first, try to make some room in the middle buffer */
  1046. if (left) {
  1047. u32 left_nr;
  1048. btrfs_tree_lock(left);
  1049. btrfs_set_lock_blocking(left);
  1050. left_nr = btrfs_header_nritems(left);
  1051. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1052. wret = 1;
  1053. } else {
  1054. ret = btrfs_cow_block(trans, root, left, parent,
  1055. pslot - 1, &left);
  1056. if (ret)
  1057. wret = 1;
  1058. else {
  1059. wret = push_node_left(trans, root,
  1060. left, mid, 0);
  1061. }
  1062. }
  1063. if (wret < 0)
  1064. ret = wret;
  1065. if (wret == 0) {
  1066. struct btrfs_disk_key disk_key;
  1067. orig_slot += left_nr;
  1068. btrfs_node_key(mid, &disk_key, 0);
  1069. btrfs_set_node_key(parent, &disk_key, pslot);
  1070. btrfs_mark_buffer_dirty(parent);
  1071. if (btrfs_header_nritems(left) > orig_slot) {
  1072. path->nodes[level] = left;
  1073. path->slots[level + 1] -= 1;
  1074. path->slots[level] = orig_slot;
  1075. btrfs_tree_unlock(mid);
  1076. free_extent_buffer(mid);
  1077. } else {
  1078. orig_slot -=
  1079. btrfs_header_nritems(left);
  1080. path->slots[level] = orig_slot;
  1081. btrfs_tree_unlock(left);
  1082. free_extent_buffer(left);
  1083. }
  1084. return 0;
  1085. }
  1086. btrfs_tree_unlock(left);
  1087. free_extent_buffer(left);
  1088. }
  1089. right = read_node_slot(root, parent, pslot + 1);
  1090. /*
  1091. * then try to empty the right most buffer into the middle
  1092. */
  1093. if (right) {
  1094. u32 right_nr;
  1095. btrfs_tree_lock(right);
  1096. btrfs_set_lock_blocking(right);
  1097. right_nr = btrfs_header_nritems(right);
  1098. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1099. wret = 1;
  1100. } else {
  1101. ret = btrfs_cow_block(trans, root, right,
  1102. parent, pslot + 1,
  1103. &right);
  1104. if (ret)
  1105. wret = 1;
  1106. else {
  1107. wret = balance_node_right(trans, root,
  1108. right, mid);
  1109. }
  1110. }
  1111. if (wret < 0)
  1112. ret = wret;
  1113. if (wret == 0) {
  1114. struct btrfs_disk_key disk_key;
  1115. btrfs_node_key(right, &disk_key, 0);
  1116. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1117. btrfs_mark_buffer_dirty(parent);
  1118. if (btrfs_header_nritems(mid) <= orig_slot) {
  1119. path->nodes[level] = right;
  1120. path->slots[level + 1] += 1;
  1121. path->slots[level] = orig_slot -
  1122. btrfs_header_nritems(mid);
  1123. btrfs_tree_unlock(mid);
  1124. free_extent_buffer(mid);
  1125. } else {
  1126. btrfs_tree_unlock(right);
  1127. free_extent_buffer(right);
  1128. }
  1129. return 0;
  1130. }
  1131. btrfs_tree_unlock(right);
  1132. free_extent_buffer(right);
  1133. }
  1134. return 1;
  1135. }
  1136. /*
  1137. * readahead one full node of leaves, finding things that are close
  1138. * to the block in 'slot', and triggering ra on them.
  1139. */
  1140. static void reada_for_search(struct btrfs_root *root,
  1141. struct btrfs_path *path,
  1142. int level, int slot, u64 objectid)
  1143. {
  1144. struct extent_buffer *node;
  1145. struct btrfs_disk_key disk_key;
  1146. u32 nritems;
  1147. u64 search;
  1148. u64 target;
  1149. u64 nread = 0;
  1150. u64 gen;
  1151. int direction = path->reada;
  1152. struct extent_buffer *eb;
  1153. u32 nr;
  1154. u32 blocksize;
  1155. u32 nscan = 0;
  1156. if (level != 1)
  1157. return;
  1158. if (!path->nodes[level])
  1159. return;
  1160. node = path->nodes[level];
  1161. search = btrfs_node_blockptr(node, slot);
  1162. blocksize = btrfs_level_size(root, level - 1);
  1163. eb = btrfs_find_tree_block(root, search, blocksize);
  1164. if (eb) {
  1165. free_extent_buffer(eb);
  1166. return;
  1167. }
  1168. target = search;
  1169. nritems = btrfs_header_nritems(node);
  1170. nr = slot;
  1171. while (1) {
  1172. if (direction < 0) {
  1173. if (nr == 0)
  1174. break;
  1175. nr--;
  1176. } else if (direction > 0) {
  1177. nr++;
  1178. if (nr >= nritems)
  1179. break;
  1180. }
  1181. if (path->reada < 0 && objectid) {
  1182. btrfs_node_key(node, &disk_key, nr);
  1183. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1184. break;
  1185. }
  1186. search = btrfs_node_blockptr(node, nr);
  1187. if ((search <= target && target - search <= 65536) ||
  1188. (search > target && search - target <= 65536)) {
  1189. gen = btrfs_node_ptr_generation(node, nr);
  1190. readahead_tree_block(root, search, blocksize, gen);
  1191. nread += blocksize;
  1192. }
  1193. nscan++;
  1194. if ((nread > 65536 || nscan > 32))
  1195. break;
  1196. }
  1197. }
  1198. /*
  1199. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1200. * cache
  1201. */
  1202. static noinline int reada_for_balance(struct btrfs_root *root,
  1203. struct btrfs_path *path, int level)
  1204. {
  1205. int slot;
  1206. int nritems;
  1207. struct extent_buffer *parent;
  1208. struct extent_buffer *eb;
  1209. u64 gen;
  1210. u64 block1 = 0;
  1211. u64 block2 = 0;
  1212. int ret = 0;
  1213. int blocksize;
  1214. parent = path->nodes[level + 1];
  1215. if (!parent)
  1216. return 0;
  1217. nritems = btrfs_header_nritems(parent);
  1218. slot = path->slots[level + 1];
  1219. blocksize = btrfs_level_size(root, level);
  1220. if (slot > 0) {
  1221. block1 = btrfs_node_blockptr(parent, slot - 1);
  1222. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1223. eb = btrfs_find_tree_block(root, block1, blocksize);
  1224. /*
  1225. * if we get -eagain from btrfs_buffer_uptodate, we
  1226. * don't want to return eagain here. That will loop
  1227. * forever
  1228. */
  1229. if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
  1230. block1 = 0;
  1231. free_extent_buffer(eb);
  1232. }
  1233. if (slot + 1 < nritems) {
  1234. block2 = btrfs_node_blockptr(parent, slot + 1);
  1235. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1236. eb = btrfs_find_tree_block(root, block2, blocksize);
  1237. if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
  1238. block2 = 0;
  1239. free_extent_buffer(eb);
  1240. }
  1241. if (block1 || block2) {
  1242. ret = -EAGAIN;
  1243. /* release the whole path */
  1244. btrfs_release_path(path);
  1245. /* read the blocks */
  1246. if (block1)
  1247. readahead_tree_block(root, block1, blocksize, 0);
  1248. if (block2)
  1249. readahead_tree_block(root, block2, blocksize, 0);
  1250. if (block1) {
  1251. eb = read_tree_block(root, block1, blocksize, 0);
  1252. free_extent_buffer(eb);
  1253. }
  1254. if (block2) {
  1255. eb = read_tree_block(root, block2, blocksize, 0);
  1256. free_extent_buffer(eb);
  1257. }
  1258. }
  1259. return ret;
  1260. }
  1261. /*
  1262. * when we walk down the tree, it is usually safe to unlock the higher layers
  1263. * in the tree. The exceptions are when our path goes through slot 0, because
  1264. * operations on the tree might require changing key pointers higher up in the
  1265. * tree.
  1266. *
  1267. * callers might also have set path->keep_locks, which tells this code to keep
  1268. * the lock if the path points to the last slot in the block. This is part of
  1269. * walking through the tree, and selecting the next slot in the higher block.
  1270. *
  1271. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1272. * if lowest_unlock is 1, level 0 won't be unlocked
  1273. */
  1274. static noinline void unlock_up(struct btrfs_path *path, int level,
  1275. int lowest_unlock, int min_write_lock_level,
  1276. int *write_lock_level)
  1277. {
  1278. int i;
  1279. int skip_level = level;
  1280. int no_skips = 0;
  1281. struct extent_buffer *t;
  1282. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1283. if (!path->nodes[i])
  1284. break;
  1285. if (!path->locks[i])
  1286. break;
  1287. if (!no_skips && path->slots[i] == 0) {
  1288. skip_level = i + 1;
  1289. continue;
  1290. }
  1291. if (!no_skips && path->keep_locks) {
  1292. u32 nritems;
  1293. t = path->nodes[i];
  1294. nritems = btrfs_header_nritems(t);
  1295. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1296. skip_level = i + 1;
  1297. continue;
  1298. }
  1299. }
  1300. if (skip_level < i && i >= lowest_unlock)
  1301. no_skips = 1;
  1302. t = path->nodes[i];
  1303. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1304. btrfs_tree_unlock_rw(t, path->locks[i]);
  1305. path->locks[i] = 0;
  1306. if (write_lock_level &&
  1307. i > min_write_lock_level &&
  1308. i <= *write_lock_level) {
  1309. *write_lock_level = i - 1;
  1310. }
  1311. }
  1312. }
  1313. }
  1314. /*
  1315. * This releases any locks held in the path starting at level and
  1316. * going all the way up to the root.
  1317. *
  1318. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1319. * corner cases, such as COW of the block at slot zero in the node. This
  1320. * ignores those rules, and it should only be called when there are no
  1321. * more updates to be done higher up in the tree.
  1322. */
  1323. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1324. {
  1325. int i;
  1326. if (path->keep_locks)
  1327. return;
  1328. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1329. if (!path->nodes[i])
  1330. continue;
  1331. if (!path->locks[i])
  1332. continue;
  1333. btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
  1334. path->locks[i] = 0;
  1335. }
  1336. }
  1337. /*
  1338. * helper function for btrfs_search_slot. The goal is to find a block
  1339. * in cache without setting the path to blocking. If we find the block
  1340. * we return zero and the path is unchanged.
  1341. *
  1342. * If we can't find the block, we set the path blocking and do some
  1343. * reada. -EAGAIN is returned and the search must be repeated.
  1344. */
  1345. static int
  1346. read_block_for_search(struct btrfs_trans_handle *trans,
  1347. struct btrfs_root *root, struct btrfs_path *p,
  1348. struct extent_buffer **eb_ret, int level, int slot,
  1349. struct btrfs_key *key)
  1350. {
  1351. u64 blocknr;
  1352. u64 gen;
  1353. u32 blocksize;
  1354. struct extent_buffer *b = *eb_ret;
  1355. struct extent_buffer *tmp;
  1356. int ret;
  1357. blocknr = btrfs_node_blockptr(b, slot);
  1358. gen = btrfs_node_ptr_generation(b, slot);
  1359. blocksize = btrfs_level_size(root, level - 1);
  1360. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1361. if (tmp) {
  1362. /* first we do an atomic uptodate check */
  1363. if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
  1364. if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
  1365. /*
  1366. * we found an up to date block without
  1367. * sleeping, return
  1368. * right away
  1369. */
  1370. *eb_ret = tmp;
  1371. return 0;
  1372. }
  1373. /* the pages were up to date, but we failed
  1374. * the generation number check. Do a full
  1375. * read for the generation number that is correct.
  1376. * We must do this without dropping locks so
  1377. * we can trust our generation number
  1378. */
  1379. free_extent_buffer(tmp);
  1380. btrfs_set_path_blocking(p);
  1381. /* now we're allowed to do a blocking uptodate check */
  1382. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1383. if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
  1384. *eb_ret = tmp;
  1385. return 0;
  1386. }
  1387. free_extent_buffer(tmp);
  1388. btrfs_release_path(p);
  1389. return -EIO;
  1390. }
  1391. }
  1392. /*
  1393. * reduce lock contention at high levels
  1394. * of the btree by dropping locks before
  1395. * we read. Don't release the lock on the current
  1396. * level because we need to walk this node to figure
  1397. * out which blocks to read.
  1398. */
  1399. btrfs_unlock_up_safe(p, level + 1);
  1400. btrfs_set_path_blocking(p);
  1401. free_extent_buffer(tmp);
  1402. if (p->reada)
  1403. reada_for_search(root, p, level, slot, key->objectid);
  1404. btrfs_release_path(p);
  1405. ret = -EAGAIN;
  1406. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1407. if (tmp) {
  1408. /*
  1409. * If the read above didn't mark this buffer up to date,
  1410. * it will never end up being up to date. Set ret to EIO now
  1411. * and give up so that our caller doesn't loop forever
  1412. * on our EAGAINs.
  1413. */
  1414. if (!btrfs_buffer_uptodate(tmp, 0, 0))
  1415. ret = -EIO;
  1416. free_extent_buffer(tmp);
  1417. }
  1418. return ret;
  1419. }
  1420. /*
  1421. * helper function for btrfs_search_slot. This does all of the checks
  1422. * for node-level blocks and does any balancing required based on
  1423. * the ins_len.
  1424. *
  1425. * If no extra work was required, zero is returned. If we had to
  1426. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1427. * start over
  1428. */
  1429. static int
  1430. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1431. struct btrfs_root *root, struct btrfs_path *p,
  1432. struct extent_buffer *b, int level, int ins_len,
  1433. int *write_lock_level)
  1434. {
  1435. int ret;
  1436. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1437. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1438. int sret;
  1439. if (*write_lock_level < level + 1) {
  1440. *write_lock_level = level + 1;
  1441. btrfs_release_path(p);
  1442. goto again;
  1443. }
  1444. sret = reada_for_balance(root, p, level);
  1445. if (sret)
  1446. goto again;
  1447. btrfs_set_path_blocking(p);
  1448. sret = split_node(trans, root, p, level);
  1449. btrfs_clear_path_blocking(p, NULL, 0);
  1450. BUG_ON(sret > 0);
  1451. if (sret) {
  1452. ret = sret;
  1453. goto done;
  1454. }
  1455. b = p->nodes[level];
  1456. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1457. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1458. int sret;
  1459. if (*write_lock_level < level + 1) {
  1460. *write_lock_level = level + 1;
  1461. btrfs_release_path(p);
  1462. goto again;
  1463. }
  1464. sret = reada_for_balance(root, p, level);
  1465. if (sret)
  1466. goto again;
  1467. btrfs_set_path_blocking(p);
  1468. sret = balance_level(trans, root, p, level);
  1469. btrfs_clear_path_blocking(p, NULL, 0);
  1470. if (sret) {
  1471. ret = sret;
  1472. goto done;
  1473. }
  1474. b = p->nodes[level];
  1475. if (!b) {
  1476. btrfs_release_path(p);
  1477. goto again;
  1478. }
  1479. BUG_ON(btrfs_header_nritems(b) == 1);
  1480. }
  1481. return 0;
  1482. again:
  1483. ret = -EAGAIN;
  1484. done:
  1485. return ret;
  1486. }
  1487. /*
  1488. * look for key in the tree. path is filled in with nodes along the way
  1489. * if key is found, we return zero and you can find the item in the leaf
  1490. * level of the path (level 0)
  1491. *
  1492. * If the key isn't found, the path points to the slot where it should
  1493. * be inserted, and 1 is returned. If there are other errors during the
  1494. * search a negative error number is returned.
  1495. *
  1496. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1497. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1498. * possible)
  1499. */
  1500. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1501. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1502. ins_len, int cow)
  1503. {
  1504. struct extent_buffer *b;
  1505. int slot;
  1506. int ret;
  1507. int err;
  1508. int level;
  1509. int lowest_unlock = 1;
  1510. int root_lock;
  1511. /* everything at write_lock_level or lower must be write locked */
  1512. int write_lock_level = 0;
  1513. u8 lowest_level = 0;
  1514. int min_write_lock_level;
  1515. lowest_level = p->lowest_level;
  1516. WARN_ON(lowest_level && ins_len > 0);
  1517. WARN_ON(p->nodes[0] != NULL);
  1518. if (ins_len < 0) {
  1519. lowest_unlock = 2;
  1520. /* when we are removing items, we might have to go up to level
  1521. * two as we update tree pointers Make sure we keep write
  1522. * for those levels as well
  1523. */
  1524. write_lock_level = 2;
  1525. } else if (ins_len > 0) {
  1526. /*
  1527. * for inserting items, make sure we have a write lock on
  1528. * level 1 so we can update keys
  1529. */
  1530. write_lock_level = 1;
  1531. }
  1532. if (!cow)
  1533. write_lock_level = -1;
  1534. if (cow && (p->keep_locks || p->lowest_level))
  1535. write_lock_level = BTRFS_MAX_LEVEL;
  1536. min_write_lock_level = write_lock_level;
  1537. again:
  1538. /*
  1539. * we try very hard to do read locks on the root
  1540. */
  1541. root_lock = BTRFS_READ_LOCK;
  1542. level = 0;
  1543. if (p->search_commit_root) {
  1544. /*
  1545. * the commit roots are read only
  1546. * so we always do read locks
  1547. */
  1548. b = root->commit_root;
  1549. extent_buffer_get(b);
  1550. level = btrfs_header_level(b);
  1551. if (!p->skip_locking)
  1552. btrfs_tree_read_lock(b);
  1553. } else {
  1554. if (p->skip_locking) {
  1555. b = btrfs_root_node(root);
  1556. level = btrfs_header_level(b);
  1557. } else {
  1558. /* we don't know the level of the root node
  1559. * until we actually have it read locked
  1560. */
  1561. b = btrfs_read_lock_root_node(root);
  1562. level = btrfs_header_level(b);
  1563. if (level <= write_lock_level) {
  1564. /* whoops, must trade for write lock */
  1565. btrfs_tree_read_unlock(b);
  1566. free_extent_buffer(b);
  1567. b = btrfs_lock_root_node(root);
  1568. root_lock = BTRFS_WRITE_LOCK;
  1569. /* the level might have changed, check again */
  1570. level = btrfs_header_level(b);
  1571. }
  1572. }
  1573. }
  1574. p->nodes[level] = b;
  1575. if (!p->skip_locking)
  1576. p->locks[level] = root_lock;
  1577. while (b) {
  1578. level = btrfs_header_level(b);
  1579. /*
  1580. * setup the path here so we can release it under lock
  1581. * contention with the cow code
  1582. */
  1583. if (cow) {
  1584. /*
  1585. * if we don't really need to cow this block
  1586. * then we don't want to set the path blocking,
  1587. * so we test it here
  1588. */
  1589. if (!should_cow_block(trans, root, b))
  1590. goto cow_done;
  1591. btrfs_set_path_blocking(p);
  1592. /*
  1593. * must have write locks on this node and the
  1594. * parent
  1595. */
  1596. if (level + 1 > write_lock_level) {
  1597. write_lock_level = level + 1;
  1598. btrfs_release_path(p);
  1599. goto again;
  1600. }
  1601. err = btrfs_cow_block(trans, root, b,
  1602. p->nodes[level + 1],
  1603. p->slots[level + 1], &b);
  1604. if (err) {
  1605. ret = err;
  1606. goto done;
  1607. }
  1608. }
  1609. cow_done:
  1610. BUG_ON(!cow && ins_len);
  1611. p->nodes[level] = b;
  1612. btrfs_clear_path_blocking(p, NULL, 0);
  1613. /*
  1614. * we have a lock on b and as long as we aren't changing
  1615. * the tree, there is no way to for the items in b to change.
  1616. * It is safe to drop the lock on our parent before we
  1617. * go through the expensive btree search on b.
  1618. *
  1619. * If cow is true, then we might be changing slot zero,
  1620. * which may require changing the parent. So, we can't
  1621. * drop the lock until after we know which slot we're
  1622. * operating on.
  1623. */
  1624. if (!cow)
  1625. btrfs_unlock_up_safe(p, level + 1);
  1626. ret = bin_search(b, key, level, &slot);
  1627. if (level != 0) {
  1628. int dec = 0;
  1629. if (ret && slot > 0) {
  1630. dec = 1;
  1631. slot -= 1;
  1632. }
  1633. p->slots[level] = slot;
  1634. err = setup_nodes_for_search(trans, root, p, b, level,
  1635. ins_len, &write_lock_level);
  1636. if (err == -EAGAIN)
  1637. goto again;
  1638. if (err) {
  1639. ret = err;
  1640. goto done;
  1641. }
  1642. b = p->nodes[level];
  1643. slot = p->slots[level];
  1644. /*
  1645. * slot 0 is special, if we change the key
  1646. * we have to update the parent pointer
  1647. * which means we must have a write lock
  1648. * on the parent
  1649. */
  1650. if (slot == 0 && cow &&
  1651. write_lock_level < level + 1) {
  1652. write_lock_level = level + 1;
  1653. btrfs_release_path(p);
  1654. goto again;
  1655. }
  1656. unlock_up(p, level, lowest_unlock,
  1657. min_write_lock_level, &write_lock_level);
  1658. if (level == lowest_level) {
  1659. if (dec)
  1660. p->slots[level]++;
  1661. goto done;
  1662. }
  1663. err = read_block_for_search(trans, root, p,
  1664. &b, level, slot, key);
  1665. if (err == -EAGAIN)
  1666. goto again;
  1667. if (err) {
  1668. ret = err;
  1669. goto done;
  1670. }
  1671. if (!p->skip_locking) {
  1672. level = btrfs_header_level(b);
  1673. if (level <= write_lock_level) {
  1674. err = btrfs_try_tree_write_lock(b);
  1675. if (!err) {
  1676. btrfs_set_path_blocking(p);
  1677. btrfs_tree_lock(b);
  1678. btrfs_clear_path_blocking(p, b,
  1679. BTRFS_WRITE_LOCK);
  1680. }
  1681. p->locks[level] = BTRFS_WRITE_LOCK;
  1682. } else {
  1683. err = btrfs_try_tree_read_lock(b);
  1684. if (!err) {
  1685. btrfs_set_path_blocking(p);
  1686. btrfs_tree_read_lock(b);
  1687. btrfs_clear_path_blocking(p, b,
  1688. BTRFS_READ_LOCK);
  1689. }
  1690. p->locks[level] = BTRFS_READ_LOCK;
  1691. }
  1692. p->nodes[level] = b;
  1693. }
  1694. } else {
  1695. p->slots[level] = slot;
  1696. if (ins_len > 0 &&
  1697. btrfs_leaf_free_space(root, b) < ins_len) {
  1698. if (write_lock_level < 1) {
  1699. write_lock_level = 1;
  1700. btrfs_release_path(p);
  1701. goto again;
  1702. }
  1703. btrfs_set_path_blocking(p);
  1704. err = split_leaf(trans, root, key,
  1705. p, ins_len, ret == 0);
  1706. btrfs_clear_path_blocking(p, NULL, 0);
  1707. BUG_ON(err > 0);
  1708. if (err) {
  1709. ret = err;
  1710. goto done;
  1711. }
  1712. }
  1713. if (!p->search_for_split)
  1714. unlock_up(p, level, lowest_unlock,
  1715. min_write_lock_level, &write_lock_level);
  1716. goto done;
  1717. }
  1718. }
  1719. ret = 1;
  1720. done:
  1721. /*
  1722. * we don't really know what they plan on doing with the path
  1723. * from here on, so for now just mark it as blocking
  1724. */
  1725. if (!p->leave_spinning)
  1726. btrfs_set_path_blocking(p);
  1727. if (ret < 0)
  1728. btrfs_release_path(p);
  1729. return ret;
  1730. }
  1731. /*
  1732. * adjust the pointers going up the tree, starting at level
  1733. * making sure the right key of each node is points to 'key'.
  1734. * This is used after shifting pointers to the left, so it stops
  1735. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1736. * higher levels
  1737. *
  1738. */
  1739. static void fixup_low_keys(struct btrfs_trans_handle *trans,
  1740. struct btrfs_root *root, struct btrfs_path *path,
  1741. struct btrfs_disk_key *key, int level)
  1742. {
  1743. int i;
  1744. struct extent_buffer *t;
  1745. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1746. int tslot = path->slots[i];
  1747. if (!path->nodes[i])
  1748. break;
  1749. t = path->nodes[i];
  1750. btrfs_set_node_key(t, key, tslot);
  1751. btrfs_mark_buffer_dirty(path->nodes[i]);
  1752. if (tslot != 0)
  1753. break;
  1754. }
  1755. }
  1756. /*
  1757. * update item key.
  1758. *
  1759. * This function isn't completely safe. It's the caller's responsibility
  1760. * that the new key won't break the order
  1761. */
  1762. void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1763. struct btrfs_root *root, struct btrfs_path *path,
  1764. struct btrfs_key *new_key)
  1765. {
  1766. struct btrfs_disk_key disk_key;
  1767. struct extent_buffer *eb;
  1768. int slot;
  1769. eb = path->nodes[0];
  1770. slot = path->slots[0];
  1771. if (slot > 0) {
  1772. btrfs_item_key(eb, &disk_key, slot - 1);
  1773. BUG_ON(comp_keys(&disk_key, new_key) >= 0);
  1774. }
  1775. if (slot < btrfs_header_nritems(eb) - 1) {
  1776. btrfs_item_key(eb, &disk_key, slot + 1);
  1777. BUG_ON(comp_keys(&disk_key, new_key) <= 0);
  1778. }
  1779. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1780. btrfs_set_item_key(eb, &disk_key, slot);
  1781. btrfs_mark_buffer_dirty(eb);
  1782. if (slot == 0)
  1783. fixup_low_keys(trans, root, path, &disk_key, 1);
  1784. }
  1785. /*
  1786. * try to push data from one node into the next node left in the
  1787. * tree.
  1788. *
  1789. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1790. * error, and > 0 if there was no room in the left hand block.
  1791. */
  1792. static int push_node_left(struct btrfs_trans_handle *trans,
  1793. struct btrfs_root *root, struct extent_buffer *dst,
  1794. struct extent_buffer *src, int empty)
  1795. {
  1796. int push_items = 0;
  1797. int src_nritems;
  1798. int dst_nritems;
  1799. int ret = 0;
  1800. src_nritems = btrfs_header_nritems(src);
  1801. dst_nritems = btrfs_header_nritems(dst);
  1802. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1803. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1804. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1805. if (!empty && src_nritems <= 8)
  1806. return 1;
  1807. if (push_items <= 0)
  1808. return 1;
  1809. if (empty) {
  1810. push_items = min(src_nritems, push_items);
  1811. if (push_items < src_nritems) {
  1812. /* leave at least 8 pointers in the node if
  1813. * we aren't going to empty it
  1814. */
  1815. if (src_nritems - push_items < 8) {
  1816. if (push_items <= 8)
  1817. return 1;
  1818. push_items -= 8;
  1819. }
  1820. }
  1821. } else
  1822. push_items = min(src_nritems - 8, push_items);
  1823. copy_extent_buffer(dst, src,
  1824. btrfs_node_key_ptr_offset(dst_nritems),
  1825. btrfs_node_key_ptr_offset(0),
  1826. push_items * sizeof(struct btrfs_key_ptr));
  1827. if (push_items < src_nritems) {
  1828. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1829. btrfs_node_key_ptr_offset(push_items),
  1830. (src_nritems - push_items) *
  1831. sizeof(struct btrfs_key_ptr));
  1832. }
  1833. btrfs_set_header_nritems(src, src_nritems - push_items);
  1834. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1835. btrfs_mark_buffer_dirty(src);
  1836. btrfs_mark_buffer_dirty(dst);
  1837. return ret;
  1838. }
  1839. /*
  1840. * try to push data from one node into the next node right in the
  1841. * tree.
  1842. *
  1843. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1844. * error, and > 0 if there was no room in the right hand block.
  1845. *
  1846. * this will only push up to 1/2 the contents of the left node over
  1847. */
  1848. static int balance_node_right(struct btrfs_trans_handle *trans,
  1849. struct btrfs_root *root,
  1850. struct extent_buffer *dst,
  1851. struct extent_buffer *src)
  1852. {
  1853. int push_items = 0;
  1854. int max_push;
  1855. int src_nritems;
  1856. int dst_nritems;
  1857. int ret = 0;
  1858. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1859. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1860. src_nritems = btrfs_header_nritems(src);
  1861. dst_nritems = btrfs_header_nritems(dst);
  1862. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1863. if (push_items <= 0)
  1864. return 1;
  1865. if (src_nritems < 4)
  1866. return 1;
  1867. max_push = src_nritems / 2 + 1;
  1868. /* don't try to empty the node */
  1869. if (max_push >= src_nritems)
  1870. return 1;
  1871. if (max_push < push_items)
  1872. push_items = max_push;
  1873. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1874. btrfs_node_key_ptr_offset(0),
  1875. (dst_nritems) *
  1876. sizeof(struct btrfs_key_ptr));
  1877. copy_extent_buffer(dst, src,
  1878. btrfs_node_key_ptr_offset(0),
  1879. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1880. push_items * sizeof(struct btrfs_key_ptr));
  1881. btrfs_set_header_nritems(src, src_nritems - push_items);
  1882. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1883. btrfs_mark_buffer_dirty(src);
  1884. btrfs_mark_buffer_dirty(dst);
  1885. return ret;
  1886. }
  1887. /*
  1888. * helper function to insert a new root level in the tree.
  1889. * A new node is allocated, and a single item is inserted to
  1890. * point to the existing root
  1891. *
  1892. * returns zero on success or < 0 on failure.
  1893. */
  1894. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1895. struct btrfs_root *root,
  1896. struct btrfs_path *path, int level)
  1897. {
  1898. u64 lower_gen;
  1899. struct extent_buffer *lower;
  1900. struct extent_buffer *c;
  1901. struct extent_buffer *old;
  1902. struct btrfs_disk_key lower_key;
  1903. BUG_ON(path->nodes[level]);
  1904. BUG_ON(path->nodes[level-1] != root->node);
  1905. lower = path->nodes[level-1];
  1906. if (level == 1)
  1907. btrfs_item_key(lower, &lower_key, 0);
  1908. else
  1909. btrfs_node_key(lower, &lower_key, 0);
  1910. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1911. root->root_key.objectid, &lower_key,
  1912. level, root->node->start, 0, 0);
  1913. if (IS_ERR(c))
  1914. return PTR_ERR(c);
  1915. root_add_used(root, root->nodesize);
  1916. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1917. btrfs_set_header_nritems(c, 1);
  1918. btrfs_set_header_level(c, level);
  1919. btrfs_set_header_bytenr(c, c->start);
  1920. btrfs_set_header_generation(c, trans->transid);
  1921. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1922. btrfs_set_header_owner(c, root->root_key.objectid);
  1923. write_extent_buffer(c, root->fs_info->fsid,
  1924. (unsigned long)btrfs_header_fsid(c),
  1925. BTRFS_FSID_SIZE);
  1926. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1927. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1928. BTRFS_UUID_SIZE);
  1929. btrfs_set_node_key(c, &lower_key, 0);
  1930. btrfs_set_node_blockptr(c, 0, lower->start);
  1931. lower_gen = btrfs_header_generation(lower);
  1932. WARN_ON(lower_gen != trans->transid);
  1933. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1934. btrfs_mark_buffer_dirty(c);
  1935. old = root->node;
  1936. rcu_assign_pointer(root->node, c);
  1937. /* the super has an extra ref to root->node */
  1938. free_extent_buffer(old);
  1939. add_root_to_dirty_list(root);
  1940. extent_buffer_get(c);
  1941. path->nodes[level] = c;
  1942. path->locks[level] = BTRFS_WRITE_LOCK;
  1943. path->slots[level] = 0;
  1944. return 0;
  1945. }
  1946. /*
  1947. * worker function to insert a single pointer in a node.
  1948. * the node should have enough room for the pointer already
  1949. *
  1950. * slot and level indicate where you want the key to go, and
  1951. * blocknr is the block the key points to.
  1952. */
  1953. static void insert_ptr(struct btrfs_trans_handle *trans,
  1954. struct btrfs_root *root, struct btrfs_path *path,
  1955. struct btrfs_disk_key *key, u64 bytenr,
  1956. int slot, int level)
  1957. {
  1958. struct extent_buffer *lower;
  1959. int nritems;
  1960. BUG_ON(!path->nodes[level]);
  1961. btrfs_assert_tree_locked(path->nodes[level]);
  1962. lower = path->nodes[level];
  1963. nritems = btrfs_header_nritems(lower);
  1964. BUG_ON(slot > nritems);
  1965. BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
  1966. if (slot != nritems) {
  1967. memmove_extent_buffer(lower,
  1968. btrfs_node_key_ptr_offset(slot + 1),
  1969. btrfs_node_key_ptr_offset(slot),
  1970. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1971. }
  1972. btrfs_set_node_key(lower, key, slot);
  1973. btrfs_set_node_blockptr(lower, slot, bytenr);
  1974. WARN_ON(trans->transid == 0);
  1975. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1976. btrfs_set_header_nritems(lower, nritems + 1);
  1977. btrfs_mark_buffer_dirty(lower);
  1978. }
  1979. /*
  1980. * split the node at the specified level in path in two.
  1981. * The path is corrected to point to the appropriate node after the split
  1982. *
  1983. * Before splitting this tries to make some room in the node by pushing
  1984. * left and right, if either one works, it returns right away.
  1985. *
  1986. * returns 0 on success and < 0 on failure
  1987. */
  1988. static noinline int split_node(struct btrfs_trans_handle *trans,
  1989. struct btrfs_root *root,
  1990. struct btrfs_path *path, int level)
  1991. {
  1992. struct extent_buffer *c;
  1993. struct extent_buffer *split;
  1994. struct btrfs_disk_key disk_key;
  1995. int mid;
  1996. int ret;
  1997. u32 c_nritems;
  1998. c = path->nodes[level];
  1999. WARN_ON(btrfs_header_generation(c) != trans->transid);
  2000. if (c == root->node) {
  2001. /* trying to split the root, lets make a new one */
  2002. ret = insert_new_root(trans, root, path, level + 1);
  2003. if (ret)
  2004. return ret;
  2005. } else {
  2006. ret = push_nodes_for_insert(trans, root, path, level);
  2007. c = path->nodes[level];
  2008. if (!ret && btrfs_header_nritems(c) <
  2009. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  2010. return 0;
  2011. if (ret < 0)
  2012. return ret;
  2013. }
  2014. c_nritems = btrfs_header_nritems(c);
  2015. mid = (c_nritems + 1) / 2;
  2016. btrfs_node_key(c, &disk_key, mid);
  2017. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  2018. root->root_key.objectid,
  2019. &disk_key, level, c->start, 0, 0);
  2020. if (IS_ERR(split))
  2021. return PTR_ERR(split);
  2022. root_add_used(root, root->nodesize);
  2023. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  2024. btrfs_set_header_level(split, btrfs_header_level(c));
  2025. btrfs_set_header_bytenr(split, split->start);
  2026. btrfs_set_header_generation(split, trans->transid);
  2027. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  2028. btrfs_set_header_owner(split, root->root_key.objectid);
  2029. write_extent_buffer(split, root->fs_info->fsid,
  2030. (unsigned long)btrfs_header_fsid(split),
  2031. BTRFS_FSID_SIZE);
  2032. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  2033. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  2034. BTRFS_UUID_SIZE);
  2035. copy_extent_buffer(split, c,
  2036. btrfs_node_key_ptr_offset(0),
  2037. btrfs_node_key_ptr_offset(mid),
  2038. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  2039. btrfs_set_header_nritems(split, c_nritems - mid);
  2040. btrfs_set_header_nritems(c, mid);
  2041. ret = 0;
  2042. btrfs_mark_buffer_dirty(c);
  2043. btrfs_mark_buffer_dirty(split);
  2044. insert_ptr(trans, root, path, &disk_key, split->start,
  2045. path->slots[level + 1] + 1, level + 1);
  2046. if (path->slots[level] >= mid) {
  2047. path->slots[level] -= mid;
  2048. btrfs_tree_unlock(c);
  2049. free_extent_buffer(c);
  2050. path->nodes[level] = split;
  2051. path->slots[level + 1] += 1;
  2052. } else {
  2053. btrfs_tree_unlock(split);
  2054. free_extent_buffer(split);
  2055. }
  2056. return ret;
  2057. }
  2058. /*
  2059. * how many bytes are required to store the items in a leaf. start
  2060. * and nr indicate which items in the leaf to check. This totals up the
  2061. * space used both by the item structs and the item data
  2062. */
  2063. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2064. {
  2065. int data_len;
  2066. int nritems = btrfs_header_nritems(l);
  2067. int end = min(nritems, start + nr) - 1;
  2068. if (!nr)
  2069. return 0;
  2070. data_len = btrfs_item_end_nr(l, start);
  2071. data_len = data_len - btrfs_item_offset_nr(l, end);
  2072. data_len += sizeof(struct btrfs_item) * nr;
  2073. WARN_ON(data_len < 0);
  2074. return data_len;
  2075. }
  2076. /*
  2077. * The space between the end of the leaf items and
  2078. * the start of the leaf data. IOW, how much room
  2079. * the leaf has left for both items and data
  2080. */
  2081. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2082. struct extent_buffer *leaf)
  2083. {
  2084. int nritems = btrfs_header_nritems(leaf);
  2085. int ret;
  2086. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2087. if (ret < 0) {
  2088. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2089. "used %d nritems %d\n",
  2090. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2091. leaf_space_used(leaf, 0, nritems), nritems);
  2092. }
  2093. return ret;
  2094. }
  2095. /*
  2096. * min slot controls the lowest index we're willing to push to the
  2097. * right. We'll push up to and including min_slot, but no lower
  2098. */
  2099. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2100. struct btrfs_root *root,
  2101. struct btrfs_path *path,
  2102. int data_size, int empty,
  2103. struct extent_buffer *right,
  2104. int free_space, u32 left_nritems,
  2105. u32 min_slot)
  2106. {
  2107. struct extent_buffer *left = path->nodes[0];
  2108. struct extent_buffer *upper = path->nodes[1];
  2109. struct btrfs_map_token token;
  2110. struct btrfs_disk_key disk_key;
  2111. int slot;
  2112. u32 i;
  2113. int push_space = 0;
  2114. int push_items = 0;
  2115. struct btrfs_item *item;
  2116. u32 nr;
  2117. u32 right_nritems;
  2118. u32 data_end;
  2119. u32 this_item_size;
  2120. btrfs_init_map_token(&token);
  2121. if (empty)
  2122. nr = 0;
  2123. else
  2124. nr = max_t(u32, 1, min_slot);
  2125. if (path->slots[0] >= left_nritems)
  2126. push_space += data_size;
  2127. slot = path->slots[1];
  2128. i = left_nritems - 1;
  2129. while (i >= nr) {
  2130. item = btrfs_item_nr(left, i);
  2131. if (!empty && push_items > 0) {
  2132. if (path->slots[0] > i)
  2133. break;
  2134. if (path->slots[0] == i) {
  2135. int space = btrfs_leaf_free_space(root, left);
  2136. if (space + push_space * 2 > free_space)
  2137. break;
  2138. }
  2139. }
  2140. if (path->slots[0] == i)
  2141. push_space += data_size;
  2142. this_item_size = btrfs_item_size(left, item);
  2143. if (this_item_size + sizeof(*item) + push_space > free_space)
  2144. break;
  2145. push_items++;
  2146. push_space += this_item_size + sizeof(*item);
  2147. if (i == 0)
  2148. break;
  2149. i--;
  2150. }
  2151. if (push_items == 0)
  2152. goto out_unlock;
  2153. if (!empty && push_items == left_nritems)
  2154. WARN_ON(1);
  2155. /* push left to right */
  2156. right_nritems = btrfs_header_nritems(right);
  2157. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2158. push_space -= leaf_data_end(root, left);
  2159. /* make room in the right data area */
  2160. data_end = leaf_data_end(root, right);
  2161. memmove_extent_buffer(right,
  2162. btrfs_leaf_data(right) + data_end - push_space,
  2163. btrfs_leaf_data(right) + data_end,
  2164. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2165. /* copy from the left data area */
  2166. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2167. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2168. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2169. push_space);
  2170. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2171. btrfs_item_nr_offset(0),
  2172. right_nritems * sizeof(struct btrfs_item));
  2173. /* copy the items from left to right */
  2174. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2175. btrfs_item_nr_offset(left_nritems - push_items),
  2176. push_items * sizeof(struct btrfs_item));
  2177. /* update the item pointers */
  2178. right_nritems += push_items;
  2179. btrfs_set_header_nritems(right, right_nritems);
  2180. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2181. for (i = 0; i < right_nritems; i++) {
  2182. item = btrfs_item_nr(right, i);
  2183. push_space -= btrfs_token_item_size(right, item, &token);
  2184. btrfs_set_token_item_offset(right, item, push_space, &token);
  2185. }
  2186. left_nritems -= push_items;
  2187. btrfs_set_header_nritems(left, left_nritems);
  2188. if (left_nritems)
  2189. btrfs_mark_buffer_dirty(left);
  2190. else
  2191. clean_tree_block(trans, root, left);
  2192. btrfs_mark_buffer_dirty(right);
  2193. btrfs_item_key(right, &disk_key, 0);
  2194. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2195. btrfs_mark_buffer_dirty(upper);
  2196. /* then fixup the leaf pointer in the path */
  2197. if (path->slots[0] >= left_nritems) {
  2198. path->slots[0] -= left_nritems;
  2199. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2200. clean_tree_block(trans, root, path->nodes[0]);
  2201. btrfs_tree_unlock(path->nodes[0]);
  2202. free_extent_buffer(path->nodes[0]);
  2203. path->nodes[0] = right;
  2204. path->slots[1] += 1;
  2205. } else {
  2206. btrfs_tree_unlock(right);
  2207. free_extent_buffer(right);
  2208. }
  2209. return 0;
  2210. out_unlock:
  2211. btrfs_tree_unlock(right);
  2212. free_extent_buffer(right);
  2213. return 1;
  2214. }
  2215. /*
  2216. * push some data in the path leaf to the right, trying to free up at
  2217. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2218. *
  2219. * returns 1 if the push failed because the other node didn't have enough
  2220. * room, 0 if everything worked out and < 0 if there were major errors.
  2221. *
  2222. * this will push starting from min_slot to the end of the leaf. It won't
  2223. * push any slot lower than min_slot
  2224. */
  2225. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2226. *root, struct btrfs_path *path,
  2227. int min_data_size, int data_size,
  2228. int empty, u32 min_slot)
  2229. {
  2230. struct extent_buffer *left = path->nodes[0];
  2231. struct extent_buffer *right;
  2232. struct extent_buffer *upper;
  2233. int slot;
  2234. int free_space;
  2235. u32 left_nritems;
  2236. int ret;
  2237. if (!path->nodes[1])
  2238. return 1;
  2239. slot = path->slots[1];
  2240. upper = path->nodes[1];
  2241. if (slot >= btrfs_header_nritems(upper) - 1)
  2242. return 1;
  2243. btrfs_assert_tree_locked(path->nodes[1]);
  2244. right = read_node_slot(root, upper, slot + 1);
  2245. if (right == NULL)
  2246. return 1;
  2247. btrfs_tree_lock(right);
  2248. btrfs_set_lock_blocking(right);
  2249. free_space = btrfs_leaf_free_space(root, right);
  2250. if (free_space < data_size)
  2251. goto out_unlock;
  2252. /* cow and double check */
  2253. ret = btrfs_cow_block(trans, root, right, upper,
  2254. slot + 1, &right);
  2255. if (ret)
  2256. goto out_unlock;
  2257. free_space = btrfs_leaf_free_space(root, right);
  2258. if (free_space < data_size)
  2259. goto out_unlock;
  2260. left_nritems = btrfs_header_nritems(left);
  2261. if (left_nritems == 0)
  2262. goto out_unlock;
  2263. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2264. right, free_space, left_nritems, min_slot);
  2265. out_unlock:
  2266. btrfs_tree_unlock(right);
  2267. free_extent_buffer(right);
  2268. return 1;
  2269. }
  2270. /*
  2271. * push some data in the path leaf to the left, trying to free up at
  2272. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2273. *
  2274. * max_slot can put a limit on how far into the leaf we'll push items. The
  2275. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2276. * items
  2277. */
  2278. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2279. struct btrfs_root *root,
  2280. struct btrfs_path *path, int data_size,
  2281. int empty, struct extent_buffer *left,
  2282. int free_space, u32 right_nritems,
  2283. u32 max_slot)
  2284. {
  2285. struct btrfs_disk_key disk_key;
  2286. struct extent_buffer *right = path->nodes[0];
  2287. int i;
  2288. int push_space = 0;
  2289. int push_items = 0;
  2290. struct btrfs_item *item;
  2291. u32 old_left_nritems;
  2292. u32 nr;
  2293. int ret = 0;
  2294. u32 this_item_size;
  2295. u32 old_left_item_size;
  2296. struct btrfs_map_token token;
  2297. btrfs_init_map_token(&token);
  2298. if (empty)
  2299. nr = min(right_nritems, max_slot);
  2300. else
  2301. nr = min(right_nritems - 1, max_slot);
  2302. for (i = 0; i < nr; i++) {
  2303. item = btrfs_item_nr(right, i);
  2304. if (!empty && push_items > 0) {
  2305. if (path->slots[0] < i)
  2306. break;
  2307. if (path->slots[0] == i) {
  2308. int space = btrfs_leaf_free_space(root, right);
  2309. if (space + push_space * 2 > free_space)
  2310. break;
  2311. }
  2312. }
  2313. if (path->slots[0] == i)
  2314. push_space += data_size;
  2315. this_item_size = btrfs_item_size(right, item);
  2316. if (this_item_size + sizeof(*item) + push_space > free_space)
  2317. break;
  2318. push_items++;
  2319. push_space += this_item_size + sizeof(*item);
  2320. }
  2321. if (push_items == 0) {
  2322. ret = 1;
  2323. goto out;
  2324. }
  2325. if (!empty && push_items == btrfs_header_nritems(right))
  2326. WARN_ON(1);
  2327. /* push data from right to left */
  2328. copy_extent_buffer(left, right,
  2329. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2330. btrfs_item_nr_offset(0),
  2331. push_items * sizeof(struct btrfs_item));
  2332. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2333. btrfs_item_offset_nr(right, push_items - 1);
  2334. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2335. leaf_data_end(root, left) - push_space,
  2336. btrfs_leaf_data(right) +
  2337. btrfs_item_offset_nr(right, push_items - 1),
  2338. push_space);
  2339. old_left_nritems = btrfs_header_nritems(left);
  2340. BUG_ON(old_left_nritems <= 0);
  2341. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2342. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2343. u32 ioff;
  2344. item = btrfs_item_nr(left, i);
  2345. ioff = btrfs_token_item_offset(left, item, &token);
  2346. btrfs_set_token_item_offset(left, item,
  2347. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
  2348. &token);
  2349. }
  2350. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2351. /* fixup right node */
  2352. if (push_items > right_nritems) {
  2353. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2354. right_nritems);
  2355. WARN_ON(1);
  2356. }
  2357. if (push_items < right_nritems) {
  2358. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2359. leaf_data_end(root, right);
  2360. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2361. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2362. btrfs_leaf_data(right) +
  2363. leaf_data_end(root, right), push_space);
  2364. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2365. btrfs_item_nr_offset(push_items),
  2366. (btrfs_header_nritems(right) - push_items) *
  2367. sizeof(struct btrfs_item));
  2368. }
  2369. right_nritems -= push_items;
  2370. btrfs_set_header_nritems(right, right_nritems);
  2371. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2372. for (i = 0; i < right_nritems; i++) {
  2373. item = btrfs_item_nr(right, i);
  2374. push_space = push_space - btrfs_token_item_size(right,
  2375. item, &token);
  2376. btrfs_set_token_item_offset(right, item, push_space, &token);
  2377. }
  2378. btrfs_mark_buffer_dirty(left);
  2379. if (right_nritems)
  2380. btrfs_mark_buffer_dirty(right);
  2381. else
  2382. clean_tree_block(trans, root, right);
  2383. btrfs_item_key(right, &disk_key, 0);
  2384. fixup_low_keys(trans, root, path, &disk_key, 1);
  2385. /* then fixup the leaf pointer in the path */
  2386. if (path->slots[0] < push_items) {
  2387. path->slots[0] += old_left_nritems;
  2388. btrfs_tree_unlock(path->nodes[0]);
  2389. free_extent_buffer(path->nodes[0]);
  2390. path->nodes[0] = left;
  2391. path->slots[1] -= 1;
  2392. } else {
  2393. btrfs_tree_unlock(left);
  2394. free_extent_buffer(left);
  2395. path->slots[0] -= push_items;
  2396. }
  2397. BUG_ON(path->slots[0] < 0);
  2398. return ret;
  2399. out:
  2400. btrfs_tree_unlock(left);
  2401. free_extent_buffer(left);
  2402. return ret;
  2403. }
  2404. /*
  2405. * push some data in the path leaf to the left, trying to free up at
  2406. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2407. *
  2408. * max_slot can put a limit on how far into the leaf we'll push items. The
  2409. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2410. * items
  2411. */
  2412. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2413. *root, struct btrfs_path *path, int min_data_size,
  2414. int data_size, int empty, u32 max_slot)
  2415. {
  2416. struct extent_buffer *right = path->nodes[0];
  2417. struct extent_buffer *left;
  2418. int slot;
  2419. int free_space;
  2420. u32 right_nritems;
  2421. int ret = 0;
  2422. slot = path->slots[1];
  2423. if (slot == 0)
  2424. return 1;
  2425. if (!path->nodes[1])
  2426. return 1;
  2427. right_nritems = btrfs_header_nritems(right);
  2428. if (right_nritems == 0)
  2429. return 1;
  2430. btrfs_assert_tree_locked(path->nodes[1]);
  2431. left = read_node_slot(root, path->nodes[1], slot - 1);
  2432. if (left == NULL)
  2433. return 1;
  2434. btrfs_tree_lock(left);
  2435. btrfs_set_lock_blocking(left);
  2436. free_space = btrfs_leaf_free_space(root, left);
  2437. if (free_space < data_size) {
  2438. ret = 1;
  2439. goto out;
  2440. }
  2441. /* cow and double check */
  2442. ret = btrfs_cow_block(trans, root, left,
  2443. path->nodes[1], slot - 1, &left);
  2444. if (ret) {
  2445. /* we hit -ENOSPC, but it isn't fatal here */
  2446. if (ret == -ENOSPC)
  2447. ret = 1;
  2448. goto out;
  2449. }
  2450. free_space = btrfs_leaf_free_space(root, left);
  2451. if (free_space < data_size) {
  2452. ret = 1;
  2453. goto out;
  2454. }
  2455. return __push_leaf_left(trans, root, path, min_data_size,
  2456. empty, left, free_space, right_nritems,
  2457. max_slot);
  2458. out:
  2459. btrfs_tree_unlock(left);
  2460. free_extent_buffer(left);
  2461. return ret;
  2462. }
  2463. /*
  2464. * split the path's leaf in two, making sure there is at least data_size
  2465. * available for the resulting leaf level of the path.
  2466. */
  2467. static noinline void copy_for_split(struct btrfs_trans_handle *trans,
  2468. struct btrfs_root *root,
  2469. struct btrfs_path *path,
  2470. struct extent_buffer *l,
  2471. struct extent_buffer *right,
  2472. int slot, int mid, int nritems)
  2473. {
  2474. int data_copy_size;
  2475. int rt_data_off;
  2476. int i;
  2477. struct btrfs_disk_key disk_key;
  2478. struct btrfs_map_token token;
  2479. btrfs_init_map_token(&token);
  2480. nritems = nritems - mid;
  2481. btrfs_set_header_nritems(right, nritems);
  2482. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2483. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2484. btrfs_item_nr_offset(mid),
  2485. nritems * sizeof(struct btrfs_item));
  2486. copy_extent_buffer(right, l,
  2487. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2488. data_copy_size, btrfs_leaf_data(l) +
  2489. leaf_data_end(root, l), data_copy_size);
  2490. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2491. btrfs_item_end_nr(l, mid);
  2492. for (i = 0; i < nritems; i++) {
  2493. struct btrfs_item *item = btrfs_item_nr(right, i);
  2494. u32 ioff;
  2495. ioff = btrfs_token_item_offset(right, item, &token);
  2496. btrfs_set_token_item_offset(right, item,
  2497. ioff + rt_data_off, &token);
  2498. }
  2499. btrfs_set_header_nritems(l, mid);
  2500. btrfs_item_key(right, &disk_key, 0);
  2501. insert_ptr(trans, root, path, &disk_key, right->start,
  2502. path->slots[1] + 1, 1);
  2503. btrfs_mark_buffer_dirty(right);
  2504. btrfs_mark_buffer_dirty(l);
  2505. BUG_ON(path->slots[0] != slot);
  2506. if (mid <= slot) {
  2507. btrfs_tree_unlock(path->nodes[0]);
  2508. free_extent_buffer(path->nodes[0]);
  2509. path->nodes[0] = right;
  2510. path->slots[0] -= mid;
  2511. path->slots[1] += 1;
  2512. } else {
  2513. btrfs_tree_unlock(right);
  2514. free_extent_buffer(right);
  2515. }
  2516. BUG_ON(path->slots[0] < 0);
  2517. }
  2518. /*
  2519. * double splits happen when we need to insert a big item in the middle
  2520. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2521. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2522. * A B C
  2523. *
  2524. * We avoid this by trying to push the items on either side of our target
  2525. * into the adjacent leaves. If all goes well we can avoid the double split
  2526. * completely.
  2527. */
  2528. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2529. struct btrfs_root *root,
  2530. struct btrfs_path *path,
  2531. int data_size)
  2532. {
  2533. int ret;
  2534. int progress = 0;
  2535. int slot;
  2536. u32 nritems;
  2537. slot = path->slots[0];
  2538. /*
  2539. * try to push all the items after our slot into the
  2540. * right leaf
  2541. */
  2542. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2543. if (ret < 0)
  2544. return ret;
  2545. if (ret == 0)
  2546. progress++;
  2547. nritems = btrfs_header_nritems(path->nodes[0]);
  2548. /*
  2549. * our goal is to get our slot at the start or end of a leaf. If
  2550. * we've done so we're done
  2551. */
  2552. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2553. return 0;
  2554. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2555. return 0;
  2556. /* try to push all the items before our slot into the next leaf */
  2557. slot = path->slots[0];
  2558. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2559. if (ret < 0)
  2560. return ret;
  2561. if (ret == 0)
  2562. progress++;
  2563. if (progress)
  2564. return 0;
  2565. return 1;
  2566. }
  2567. /*
  2568. * split the path's leaf in two, making sure there is at least data_size
  2569. * available for the resulting leaf level of the path.
  2570. *
  2571. * returns 0 if all went well and < 0 on failure.
  2572. */
  2573. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2574. struct btrfs_root *root,
  2575. struct btrfs_key *ins_key,
  2576. struct btrfs_path *path, int data_size,
  2577. int extend)
  2578. {
  2579. struct btrfs_disk_key disk_key;
  2580. struct extent_buffer *l;
  2581. u32 nritems;
  2582. int mid;
  2583. int slot;
  2584. struct extent_buffer *right;
  2585. int ret = 0;
  2586. int wret;
  2587. int split;
  2588. int num_doubles = 0;
  2589. int tried_avoid_double = 0;
  2590. l = path->nodes[0];
  2591. slot = path->slots[0];
  2592. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2593. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2594. return -EOVERFLOW;
  2595. /* first try to make some room by pushing left and right */
  2596. if (data_size) {
  2597. wret = push_leaf_right(trans, root, path, data_size,
  2598. data_size, 0, 0);
  2599. if (wret < 0)
  2600. return wret;
  2601. if (wret) {
  2602. wret = push_leaf_left(trans, root, path, data_size,
  2603. data_size, 0, (u32)-1);
  2604. if (wret < 0)
  2605. return wret;
  2606. }
  2607. l = path->nodes[0];
  2608. /* did the pushes work? */
  2609. if (btrfs_leaf_free_space(root, l) >= data_size)
  2610. return 0;
  2611. }
  2612. if (!path->nodes[1]) {
  2613. ret = insert_new_root(trans, root, path, 1);
  2614. if (ret)
  2615. return ret;
  2616. }
  2617. again:
  2618. split = 1;
  2619. l = path->nodes[0];
  2620. slot = path->slots[0];
  2621. nritems = btrfs_header_nritems(l);
  2622. mid = (nritems + 1) / 2;
  2623. if (mid <= slot) {
  2624. if (nritems == 1 ||
  2625. leaf_space_used(l, mid, nritems - mid) + data_size >
  2626. BTRFS_LEAF_DATA_SIZE(root)) {
  2627. if (slot >= nritems) {
  2628. split = 0;
  2629. } else {
  2630. mid = slot;
  2631. if (mid != nritems &&
  2632. leaf_space_used(l, mid, nritems - mid) +
  2633. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2634. if (data_size && !tried_avoid_double)
  2635. goto push_for_double;
  2636. split = 2;
  2637. }
  2638. }
  2639. }
  2640. } else {
  2641. if (leaf_space_used(l, 0, mid) + data_size >
  2642. BTRFS_LEAF_DATA_SIZE(root)) {
  2643. if (!extend && data_size && slot == 0) {
  2644. split = 0;
  2645. } else if ((extend || !data_size) && slot == 0) {
  2646. mid = 1;
  2647. } else {
  2648. mid = slot;
  2649. if (mid != nritems &&
  2650. leaf_space_used(l, mid, nritems - mid) +
  2651. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2652. if (data_size && !tried_avoid_double)
  2653. goto push_for_double;
  2654. split = 2 ;
  2655. }
  2656. }
  2657. }
  2658. }
  2659. if (split == 0)
  2660. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2661. else
  2662. btrfs_item_key(l, &disk_key, mid);
  2663. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2664. root->root_key.objectid,
  2665. &disk_key, 0, l->start, 0, 0);
  2666. if (IS_ERR(right))
  2667. return PTR_ERR(right);
  2668. root_add_used(root, root->leafsize);
  2669. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2670. btrfs_set_header_bytenr(right, right->start);
  2671. btrfs_set_header_generation(right, trans->transid);
  2672. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2673. btrfs_set_header_owner(right, root->root_key.objectid);
  2674. btrfs_set_header_level(right, 0);
  2675. write_extent_buffer(right, root->fs_info->fsid,
  2676. (unsigned long)btrfs_header_fsid(right),
  2677. BTRFS_FSID_SIZE);
  2678. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2679. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2680. BTRFS_UUID_SIZE);
  2681. if (split == 0) {
  2682. if (mid <= slot) {
  2683. btrfs_set_header_nritems(right, 0);
  2684. insert_ptr(trans, root, path, &disk_key, right->start,
  2685. path->slots[1] + 1, 1);
  2686. btrfs_tree_unlock(path->nodes[0]);
  2687. free_extent_buffer(path->nodes[0]);
  2688. path->nodes[0] = right;
  2689. path->slots[0] = 0;
  2690. path->slots[1] += 1;
  2691. } else {
  2692. btrfs_set_header_nritems(right, 0);
  2693. insert_ptr(trans, root, path, &disk_key, right->start,
  2694. path->slots[1], 1);
  2695. btrfs_tree_unlock(path->nodes[0]);
  2696. free_extent_buffer(path->nodes[0]);
  2697. path->nodes[0] = right;
  2698. path->slots[0] = 0;
  2699. if (path->slots[1] == 0)
  2700. fixup_low_keys(trans, root, path,
  2701. &disk_key, 1);
  2702. }
  2703. btrfs_mark_buffer_dirty(right);
  2704. return ret;
  2705. }
  2706. copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2707. if (split == 2) {
  2708. BUG_ON(num_doubles != 0);
  2709. num_doubles++;
  2710. goto again;
  2711. }
  2712. return 0;
  2713. push_for_double:
  2714. push_for_double_split(trans, root, path, data_size);
  2715. tried_avoid_double = 1;
  2716. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2717. return 0;
  2718. goto again;
  2719. }
  2720. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2721. struct btrfs_root *root,
  2722. struct btrfs_path *path, int ins_len)
  2723. {
  2724. struct btrfs_key key;
  2725. struct extent_buffer *leaf;
  2726. struct btrfs_file_extent_item *fi;
  2727. u64 extent_len = 0;
  2728. u32 item_size;
  2729. int ret;
  2730. leaf = path->nodes[0];
  2731. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2732. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2733. key.type != BTRFS_EXTENT_CSUM_KEY);
  2734. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2735. return 0;
  2736. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2737. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2738. fi = btrfs_item_ptr(leaf, path->slots[0],
  2739. struct btrfs_file_extent_item);
  2740. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2741. }
  2742. btrfs_release_path(path);
  2743. path->keep_locks = 1;
  2744. path->search_for_split = 1;
  2745. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2746. path->search_for_split = 0;
  2747. if (ret < 0)
  2748. goto err;
  2749. ret = -EAGAIN;
  2750. leaf = path->nodes[0];
  2751. /* if our item isn't there or got smaller, return now */
  2752. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2753. goto err;
  2754. /* the leaf has changed, it now has room. return now */
  2755. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2756. goto err;
  2757. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2758. fi = btrfs_item_ptr(leaf, path->slots[0],
  2759. struct btrfs_file_extent_item);
  2760. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2761. goto err;
  2762. }
  2763. btrfs_set_path_blocking(path);
  2764. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2765. if (ret)
  2766. goto err;
  2767. path->keep_locks = 0;
  2768. btrfs_unlock_up_safe(path, 1);
  2769. return 0;
  2770. err:
  2771. path->keep_locks = 0;
  2772. return ret;
  2773. }
  2774. static noinline int split_item(struct btrfs_trans_handle *trans,
  2775. struct btrfs_root *root,
  2776. struct btrfs_path *path,
  2777. struct btrfs_key *new_key,
  2778. unsigned long split_offset)
  2779. {
  2780. struct extent_buffer *leaf;
  2781. struct btrfs_item *item;
  2782. struct btrfs_item *new_item;
  2783. int slot;
  2784. char *buf;
  2785. u32 nritems;
  2786. u32 item_size;
  2787. u32 orig_offset;
  2788. struct btrfs_disk_key disk_key;
  2789. leaf = path->nodes[0];
  2790. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2791. btrfs_set_path_blocking(path);
  2792. item = btrfs_item_nr(leaf, path->slots[0]);
  2793. orig_offset = btrfs_item_offset(leaf, item);
  2794. item_size = btrfs_item_size(leaf, item);
  2795. buf = kmalloc(item_size, GFP_NOFS);
  2796. if (!buf)
  2797. return -ENOMEM;
  2798. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2799. path->slots[0]), item_size);
  2800. slot = path->slots[0] + 1;
  2801. nritems = btrfs_header_nritems(leaf);
  2802. if (slot != nritems) {
  2803. /* shift the items */
  2804. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2805. btrfs_item_nr_offset(slot),
  2806. (nritems - slot) * sizeof(struct btrfs_item));
  2807. }
  2808. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2809. btrfs_set_item_key(leaf, &disk_key, slot);
  2810. new_item = btrfs_item_nr(leaf, slot);
  2811. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2812. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2813. btrfs_set_item_offset(leaf, item,
  2814. orig_offset + item_size - split_offset);
  2815. btrfs_set_item_size(leaf, item, split_offset);
  2816. btrfs_set_header_nritems(leaf, nritems + 1);
  2817. /* write the data for the start of the original item */
  2818. write_extent_buffer(leaf, buf,
  2819. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2820. split_offset);
  2821. /* write the data for the new item */
  2822. write_extent_buffer(leaf, buf + split_offset,
  2823. btrfs_item_ptr_offset(leaf, slot),
  2824. item_size - split_offset);
  2825. btrfs_mark_buffer_dirty(leaf);
  2826. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2827. kfree(buf);
  2828. return 0;
  2829. }
  2830. /*
  2831. * This function splits a single item into two items,
  2832. * giving 'new_key' to the new item and splitting the
  2833. * old one at split_offset (from the start of the item).
  2834. *
  2835. * The path may be released by this operation. After
  2836. * the split, the path is pointing to the old item. The
  2837. * new item is going to be in the same node as the old one.
  2838. *
  2839. * Note, the item being split must be smaller enough to live alone on
  2840. * a tree block with room for one extra struct btrfs_item
  2841. *
  2842. * This allows us to split the item in place, keeping a lock on the
  2843. * leaf the entire time.
  2844. */
  2845. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2846. struct btrfs_root *root,
  2847. struct btrfs_path *path,
  2848. struct btrfs_key *new_key,
  2849. unsigned long split_offset)
  2850. {
  2851. int ret;
  2852. ret = setup_leaf_for_split(trans, root, path,
  2853. sizeof(struct btrfs_item));
  2854. if (ret)
  2855. return ret;
  2856. ret = split_item(trans, root, path, new_key, split_offset);
  2857. return ret;
  2858. }
  2859. /*
  2860. * This function duplicate a item, giving 'new_key' to the new item.
  2861. * It guarantees both items live in the same tree leaf and the new item
  2862. * is contiguous with the original item.
  2863. *
  2864. * This allows us to split file extent in place, keeping a lock on the
  2865. * leaf the entire time.
  2866. */
  2867. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2868. struct btrfs_root *root,
  2869. struct btrfs_path *path,
  2870. struct btrfs_key *new_key)
  2871. {
  2872. struct extent_buffer *leaf;
  2873. int ret;
  2874. u32 item_size;
  2875. leaf = path->nodes[0];
  2876. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2877. ret = setup_leaf_for_split(trans, root, path,
  2878. item_size + sizeof(struct btrfs_item));
  2879. if (ret)
  2880. return ret;
  2881. path->slots[0]++;
  2882. setup_items_for_insert(trans, root, path, new_key, &item_size,
  2883. item_size, item_size +
  2884. sizeof(struct btrfs_item), 1);
  2885. leaf = path->nodes[0];
  2886. memcpy_extent_buffer(leaf,
  2887. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2888. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2889. item_size);
  2890. return 0;
  2891. }
  2892. /*
  2893. * make the item pointed to by the path smaller. new_size indicates
  2894. * how small to make it, and from_end tells us if we just chop bytes
  2895. * off the end of the item or if we shift the item to chop bytes off
  2896. * the front.
  2897. */
  2898. void btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2899. struct btrfs_root *root,
  2900. struct btrfs_path *path,
  2901. u32 new_size, int from_end)
  2902. {
  2903. int slot;
  2904. struct extent_buffer *leaf;
  2905. struct btrfs_item *item;
  2906. u32 nritems;
  2907. unsigned int data_end;
  2908. unsigned int old_data_start;
  2909. unsigned int old_size;
  2910. unsigned int size_diff;
  2911. int i;
  2912. struct btrfs_map_token token;
  2913. btrfs_init_map_token(&token);
  2914. leaf = path->nodes[0];
  2915. slot = path->slots[0];
  2916. old_size = btrfs_item_size_nr(leaf, slot);
  2917. if (old_size == new_size)
  2918. return;
  2919. nritems = btrfs_header_nritems(leaf);
  2920. data_end = leaf_data_end(root, leaf);
  2921. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2922. size_diff = old_size - new_size;
  2923. BUG_ON(slot < 0);
  2924. BUG_ON(slot >= nritems);
  2925. /*
  2926. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2927. */
  2928. /* first correct the data pointers */
  2929. for (i = slot; i < nritems; i++) {
  2930. u32 ioff;
  2931. item = btrfs_item_nr(leaf, i);
  2932. ioff = btrfs_token_item_offset(leaf, item, &token);
  2933. btrfs_set_token_item_offset(leaf, item,
  2934. ioff + size_diff, &token);
  2935. }
  2936. /* shift the data */
  2937. if (from_end) {
  2938. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2939. data_end + size_diff, btrfs_leaf_data(leaf) +
  2940. data_end, old_data_start + new_size - data_end);
  2941. } else {
  2942. struct btrfs_disk_key disk_key;
  2943. u64 offset;
  2944. btrfs_item_key(leaf, &disk_key, slot);
  2945. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2946. unsigned long ptr;
  2947. struct btrfs_file_extent_item *fi;
  2948. fi = btrfs_item_ptr(leaf, slot,
  2949. struct btrfs_file_extent_item);
  2950. fi = (struct btrfs_file_extent_item *)(
  2951. (unsigned long)fi - size_diff);
  2952. if (btrfs_file_extent_type(leaf, fi) ==
  2953. BTRFS_FILE_EXTENT_INLINE) {
  2954. ptr = btrfs_item_ptr_offset(leaf, slot);
  2955. memmove_extent_buffer(leaf, ptr,
  2956. (unsigned long)fi,
  2957. offsetof(struct btrfs_file_extent_item,
  2958. disk_bytenr));
  2959. }
  2960. }
  2961. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2962. data_end + size_diff, btrfs_leaf_data(leaf) +
  2963. data_end, old_data_start - data_end);
  2964. offset = btrfs_disk_key_offset(&disk_key);
  2965. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2966. btrfs_set_item_key(leaf, &disk_key, slot);
  2967. if (slot == 0)
  2968. fixup_low_keys(trans, root, path, &disk_key, 1);
  2969. }
  2970. item = btrfs_item_nr(leaf, slot);
  2971. btrfs_set_item_size(leaf, item, new_size);
  2972. btrfs_mark_buffer_dirty(leaf);
  2973. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2974. btrfs_print_leaf(root, leaf);
  2975. BUG();
  2976. }
  2977. }
  2978. /*
  2979. * make the item pointed to by the path bigger, data_size is the new size.
  2980. */
  2981. void btrfs_extend_item(struct btrfs_trans_handle *trans,
  2982. struct btrfs_root *root, struct btrfs_path *path,
  2983. u32 data_size)
  2984. {
  2985. int slot;
  2986. struct extent_buffer *leaf;
  2987. struct btrfs_item *item;
  2988. u32 nritems;
  2989. unsigned int data_end;
  2990. unsigned int old_data;
  2991. unsigned int old_size;
  2992. int i;
  2993. struct btrfs_map_token token;
  2994. btrfs_init_map_token(&token);
  2995. leaf = path->nodes[0];
  2996. nritems = btrfs_header_nritems(leaf);
  2997. data_end = leaf_data_end(root, leaf);
  2998. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2999. btrfs_print_leaf(root, leaf);
  3000. BUG();
  3001. }
  3002. slot = path->slots[0];
  3003. old_data = btrfs_item_end_nr(leaf, slot);
  3004. BUG_ON(slot < 0);
  3005. if (slot >= nritems) {
  3006. btrfs_print_leaf(root, leaf);
  3007. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  3008. slot, nritems);
  3009. BUG_ON(1);
  3010. }
  3011. /*
  3012. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3013. */
  3014. /* first correct the data pointers */
  3015. for (i = slot; i < nritems; i++) {
  3016. u32 ioff;
  3017. item = btrfs_item_nr(leaf, i);
  3018. ioff = btrfs_token_item_offset(leaf, item, &token);
  3019. btrfs_set_token_item_offset(leaf, item,
  3020. ioff - data_size, &token);
  3021. }
  3022. /* shift the data */
  3023. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3024. data_end - data_size, btrfs_leaf_data(leaf) +
  3025. data_end, old_data - data_end);
  3026. data_end = old_data;
  3027. old_size = btrfs_item_size_nr(leaf, slot);
  3028. item = btrfs_item_nr(leaf, slot);
  3029. btrfs_set_item_size(leaf, item, old_size + data_size);
  3030. btrfs_mark_buffer_dirty(leaf);
  3031. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3032. btrfs_print_leaf(root, leaf);
  3033. BUG();
  3034. }
  3035. }
  3036. /*
  3037. * Given a key and some data, insert items into the tree.
  3038. * This does all the path init required, making room in the tree if needed.
  3039. * Returns the number of keys that were inserted.
  3040. */
  3041. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3042. struct btrfs_root *root,
  3043. struct btrfs_path *path,
  3044. struct btrfs_key *cpu_key, u32 *data_size,
  3045. int nr)
  3046. {
  3047. struct extent_buffer *leaf;
  3048. struct btrfs_item *item;
  3049. int ret = 0;
  3050. int slot;
  3051. int i;
  3052. u32 nritems;
  3053. u32 total_data = 0;
  3054. u32 total_size = 0;
  3055. unsigned int data_end;
  3056. struct btrfs_disk_key disk_key;
  3057. struct btrfs_key found_key;
  3058. struct btrfs_map_token token;
  3059. btrfs_init_map_token(&token);
  3060. for (i = 0; i < nr; i++) {
  3061. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3062. BTRFS_LEAF_DATA_SIZE(root)) {
  3063. break;
  3064. nr = i;
  3065. }
  3066. total_data += data_size[i];
  3067. total_size += data_size[i] + sizeof(struct btrfs_item);
  3068. }
  3069. BUG_ON(nr == 0);
  3070. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3071. if (ret == 0)
  3072. return -EEXIST;
  3073. if (ret < 0)
  3074. goto out;
  3075. leaf = path->nodes[0];
  3076. nritems = btrfs_header_nritems(leaf);
  3077. data_end = leaf_data_end(root, leaf);
  3078. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3079. for (i = nr; i >= 0; i--) {
  3080. total_data -= data_size[i];
  3081. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3082. if (total_size < btrfs_leaf_free_space(root, leaf))
  3083. break;
  3084. }
  3085. nr = i;
  3086. }
  3087. slot = path->slots[0];
  3088. BUG_ON(slot < 0);
  3089. if (slot != nritems) {
  3090. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3091. item = btrfs_item_nr(leaf, slot);
  3092. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3093. /* figure out how many keys we can insert in here */
  3094. total_data = data_size[0];
  3095. for (i = 1; i < nr; i++) {
  3096. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3097. break;
  3098. total_data += data_size[i];
  3099. }
  3100. nr = i;
  3101. if (old_data < data_end) {
  3102. btrfs_print_leaf(root, leaf);
  3103. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3104. slot, old_data, data_end);
  3105. BUG_ON(1);
  3106. }
  3107. /*
  3108. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3109. */
  3110. /* first correct the data pointers */
  3111. for (i = slot; i < nritems; i++) {
  3112. u32 ioff;
  3113. item = btrfs_item_nr(leaf, i);
  3114. ioff = btrfs_token_item_offset(leaf, item, &token);
  3115. btrfs_set_token_item_offset(leaf, item,
  3116. ioff - total_data, &token);
  3117. }
  3118. /* shift the items */
  3119. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3120. btrfs_item_nr_offset(slot),
  3121. (nritems - slot) * sizeof(struct btrfs_item));
  3122. /* shift the data */
  3123. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3124. data_end - total_data, btrfs_leaf_data(leaf) +
  3125. data_end, old_data - data_end);
  3126. data_end = old_data;
  3127. } else {
  3128. /*
  3129. * this sucks but it has to be done, if we are inserting at
  3130. * the end of the leaf only insert 1 of the items, since we
  3131. * have no way of knowing whats on the next leaf and we'd have
  3132. * to drop our current locks to figure it out
  3133. */
  3134. nr = 1;
  3135. }
  3136. /* setup the item for the new data */
  3137. for (i = 0; i < nr; i++) {
  3138. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3139. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3140. item = btrfs_item_nr(leaf, slot + i);
  3141. btrfs_set_token_item_offset(leaf, item,
  3142. data_end - data_size[i], &token);
  3143. data_end -= data_size[i];
  3144. btrfs_set_token_item_size(leaf, item, data_size[i], &token);
  3145. }
  3146. btrfs_set_header_nritems(leaf, nritems + nr);
  3147. btrfs_mark_buffer_dirty(leaf);
  3148. ret = 0;
  3149. if (slot == 0) {
  3150. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3151. fixup_low_keys(trans, root, path, &disk_key, 1);
  3152. }
  3153. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3154. btrfs_print_leaf(root, leaf);
  3155. BUG();
  3156. }
  3157. out:
  3158. if (!ret)
  3159. ret = nr;
  3160. return ret;
  3161. }
  3162. /*
  3163. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3164. * to save stack depth by doing the bulk of the work in a function
  3165. * that doesn't call btrfs_search_slot
  3166. */
  3167. void setup_items_for_insert(struct btrfs_trans_handle *trans,
  3168. struct btrfs_root *root, struct btrfs_path *path,
  3169. struct btrfs_key *cpu_key, u32 *data_size,
  3170. u32 total_data, u32 total_size, int nr)
  3171. {
  3172. struct btrfs_item *item;
  3173. int i;
  3174. u32 nritems;
  3175. unsigned int data_end;
  3176. struct btrfs_disk_key disk_key;
  3177. struct extent_buffer *leaf;
  3178. int slot;
  3179. struct btrfs_map_token token;
  3180. btrfs_init_map_token(&token);
  3181. leaf = path->nodes[0];
  3182. slot = path->slots[0];
  3183. nritems = btrfs_header_nritems(leaf);
  3184. data_end = leaf_data_end(root, leaf);
  3185. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3186. btrfs_print_leaf(root, leaf);
  3187. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3188. total_size, btrfs_leaf_free_space(root, leaf));
  3189. BUG();
  3190. }
  3191. if (slot != nritems) {
  3192. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3193. if (old_data < data_end) {
  3194. btrfs_print_leaf(root, leaf);
  3195. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3196. slot, old_data, data_end);
  3197. BUG_ON(1);
  3198. }
  3199. /*
  3200. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3201. */
  3202. /* first correct the data pointers */
  3203. for (i = slot; i < nritems; i++) {
  3204. u32 ioff;
  3205. item = btrfs_item_nr(leaf, i);
  3206. ioff = btrfs_token_item_offset(leaf, item, &token);
  3207. btrfs_set_token_item_offset(leaf, item,
  3208. ioff - total_data, &token);
  3209. }
  3210. /* shift the items */
  3211. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3212. btrfs_item_nr_offset(slot),
  3213. (nritems - slot) * sizeof(struct btrfs_item));
  3214. /* shift the data */
  3215. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3216. data_end - total_data, btrfs_leaf_data(leaf) +
  3217. data_end, old_data - data_end);
  3218. data_end = old_data;
  3219. }
  3220. /* setup the item for the new data */
  3221. for (i = 0; i < nr; i++) {
  3222. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3223. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3224. item = btrfs_item_nr(leaf, slot + i);
  3225. btrfs_set_token_item_offset(leaf, item,
  3226. data_end - data_size[i], &token);
  3227. data_end -= data_size[i];
  3228. btrfs_set_token_item_size(leaf, item, data_size[i], &token);
  3229. }
  3230. btrfs_set_header_nritems(leaf, nritems + nr);
  3231. if (slot == 0) {
  3232. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3233. fixup_low_keys(trans, root, path, &disk_key, 1);
  3234. }
  3235. btrfs_unlock_up_safe(path, 1);
  3236. btrfs_mark_buffer_dirty(leaf);
  3237. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3238. btrfs_print_leaf(root, leaf);
  3239. BUG();
  3240. }
  3241. }
  3242. /*
  3243. * Given a key and some data, insert items into the tree.
  3244. * This does all the path init required, making room in the tree if needed.
  3245. */
  3246. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3247. struct btrfs_root *root,
  3248. struct btrfs_path *path,
  3249. struct btrfs_key *cpu_key, u32 *data_size,
  3250. int nr)
  3251. {
  3252. int ret = 0;
  3253. int slot;
  3254. int i;
  3255. u32 total_size = 0;
  3256. u32 total_data = 0;
  3257. for (i = 0; i < nr; i++)
  3258. total_data += data_size[i];
  3259. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3260. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3261. if (ret == 0)
  3262. return -EEXIST;
  3263. if (ret < 0)
  3264. return ret;
  3265. slot = path->slots[0];
  3266. BUG_ON(slot < 0);
  3267. setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3268. total_data, total_size, nr);
  3269. return 0;
  3270. }
  3271. /*
  3272. * Given a key and some data, insert an item into the tree.
  3273. * This does all the path init required, making room in the tree if needed.
  3274. */
  3275. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3276. *root, struct btrfs_key *cpu_key, void *data, u32
  3277. data_size)
  3278. {
  3279. int ret = 0;
  3280. struct btrfs_path *path;
  3281. struct extent_buffer *leaf;
  3282. unsigned long ptr;
  3283. path = btrfs_alloc_path();
  3284. if (!path)
  3285. return -ENOMEM;
  3286. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3287. if (!ret) {
  3288. leaf = path->nodes[0];
  3289. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3290. write_extent_buffer(leaf, data, ptr, data_size);
  3291. btrfs_mark_buffer_dirty(leaf);
  3292. }
  3293. btrfs_free_path(path);
  3294. return ret;
  3295. }
  3296. /*
  3297. * delete the pointer from a given node.
  3298. *
  3299. * the tree should have been previously balanced so the deletion does not
  3300. * empty a node.
  3301. */
  3302. static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3303. struct btrfs_path *path, int level, int slot)
  3304. {
  3305. struct extent_buffer *parent = path->nodes[level];
  3306. u32 nritems;
  3307. nritems = btrfs_header_nritems(parent);
  3308. if (slot != nritems - 1) {
  3309. memmove_extent_buffer(parent,
  3310. btrfs_node_key_ptr_offset(slot),
  3311. btrfs_node_key_ptr_offset(slot + 1),
  3312. sizeof(struct btrfs_key_ptr) *
  3313. (nritems - slot - 1));
  3314. }
  3315. nritems--;
  3316. btrfs_set_header_nritems(parent, nritems);
  3317. if (nritems == 0 && parent == root->node) {
  3318. BUG_ON(btrfs_header_level(root->node) != 1);
  3319. /* just turn the root into a leaf and break */
  3320. btrfs_set_header_level(root->node, 0);
  3321. } else if (slot == 0) {
  3322. struct btrfs_disk_key disk_key;
  3323. btrfs_node_key(parent, &disk_key, 0);
  3324. fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3325. }
  3326. btrfs_mark_buffer_dirty(parent);
  3327. }
  3328. /*
  3329. * a helper function to delete the leaf pointed to by path->slots[1] and
  3330. * path->nodes[1].
  3331. *
  3332. * This deletes the pointer in path->nodes[1] and frees the leaf
  3333. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3334. *
  3335. * The path must have already been setup for deleting the leaf, including
  3336. * all the proper balancing. path->nodes[1] must be locked.
  3337. */
  3338. static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3339. struct btrfs_root *root,
  3340. struct btrfs_path *path,
  3341. struct extent_buffer *leaf)
  3342. {
  3343. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3344. del_ptr(trans, root, path, 1, path->slots[1]);
  3345. /*
  3346. * btrfs_free_extent is expensive, we want to make sure we
  3347. * aren't holding any locks when we call it
  3348. */
  3349. btrfs_unlock_up_safe(path, 0);
  3350. root_sub_used(root, leaf->len);
  3351. extent_buffer_get(leaf);
  3352. btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
  3353. free_extent_buffer_stale(leaf);
  3354. }
  3355. /*
  3356. * delete the item at the leaf level in path. If that empties
  3357. * the leaf, remove it from the tree
  3358. */
  3359. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3360. struct btrfs_path *path, int slot, int nr)
  3361. {
  3362. struct extent_buffer *leaf;
  3363. struct btrfs_item *item;
  3364. int last_off;
  3365. int dsize = 0;
  3366. int ret = 0;
  3367. int wret;
  3368. int i;
  3369. u32 nritems;
  3370. struct btrfs_map_token token;
  3371. btrfs_init_map_token(&token);
  3372. leaf = path->nodes[0];
  3373. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3374. for (i = 0; i < nr; i++)
  3375. dsize += btrfs_item_size_nr(leaf, slot + i);
  3376. nritems = btrfs_header_nritems(leaf);
  3377. if (slot + nr != nritems) {
  3378. int data_end = leaf_data_end(root, leaf);
  3379. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3380. data_end + dsize,
  3381. btrfs_leaf_data(leaf) + data_end,
  3382. last_off - data_end);
  3383. for (i = slot + nr; i < nritems; i++) {
  3384. u32 ioff;
  3385. item = btrfs_item_nr(leaf, i);
  3386. ioff = btrfs_token_item_offset(leaf, item, &token);
  3387. btrfs_set_token_item_offset(leaf, item,
  3388. ioff + dsize, &token);
  3389. }
  3390. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3391. btrfs_item_nr_offset(slot + nr),
  3392. sizeof(struct btrfs_item) *
  3393. (nritems - slot - nr));
  3394. }
  3395. btrfs_set_header_nritems(leaf, nritems - nr);
  3396. nritems -= nr;
  3397. /* delete the leaf if we've emptied it */
  3398. if (nritems == 0) {
  3399. if (leaf == root->node) {
  3400. btrfs_set_header_level(leaf, 0);
  3401. } else {
  3402. btrfs_set_path_blocking(path);
  3403. clean_tree_block(trans, root, leaf);
  3404. btrfs_del_leaf(trans, root, path, leaf);
  3405. }
  3406. } else {
  3407. int used = leaf_space_used(leaf, 0, nritems);
  3408. if (slot == 0) {
  3409. struct btrfs_disk_key disk_key;
  3410. btrfs_item_key(leaf, &disk_key, 0);
  3411. fixup_low_keys(trans, root, path, &disk_key, 1);
  3412. }
  3413. /* delete the leaf if it is mostly empty */
  3414. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3415. /* push_leaf_left fixes the path.
  3416. * make sure the path still points to our leaf
  3417. * for possible call to del_ptr below
  3418. */
  3419. slot = path->slots[1];
  3420. extent_buffer_get(leaf);
  3421. btrfs_set_path_blocking(path);
  3422. wret = push_leaf_left(trans, root, path, 1, 1,
  3423. 1, (u32)-1);
  3424. if (wret < 0 && wret != -ENOSPC)
  3425. ret = wret;
  3426. if (path->nodes[0] == leaf &&
  3427. btrfs_header_nritems(leaf)) {
  3428. wret = push_leaf_right(trans, root, path, 1,
  3429. 1, 1, 0);
  3430. if (wret < 0 && wret != -ENOSPC)
  3431. ret = wret;
  3432. }
  3433. if (btrfs_header_nritems(leaf) == 0) {
  3434. path->slots[1] = slot;
  3435. btrfs_del_leaf(trans, root, path, leaf);
  3436. free_extent_buffer(leaf);
  3437. ret = 0;
  3438. } else {
  3439. /* if we're still in the path, make sure
  3440. * we're dirty. Otherwise, one of the
  3441. * push_leaf functions must have already
  3442. * dirtied this buffer
  3443. */
  3444. if (path->nodes[0] == leaf)
  3445. btrfs_mark_buffer_dirty(leaf);
  3446. free_extent_buffer(leaf);
  3447. }
  3448. } else {
  3449. btrfs_mark_buffer_dirty(leaf);
  3450. }
  3451. }
  3452. return ret;
  3453. }
  3454. /*
  3455. * search the tree again to find a leaf with lesser keys
  3456. * returns 0 if it found something or 1 if there are no lesser leaves.
  3457. * returns < 0 on io errors.
  3458. *
  3459. * This may release the path, and so you may lose any locks held at the
  3460. * time you call it.
  3461. */
  3462. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3463. {
  3464. struct btrfs_key key;
  3465. struct btrfs_disk_key found_key;
  3466. int ret;
  3467. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3468. if (key.offset > 0)
  3469. key.offset--;
  3470. else if (key.type > 0)
  3471. key.type--;
  3472. else if (key.objectid > 0)
  3473. key.objectid--;
  3474. else
  3475. return 1;
  3476. btrfs_release_path(path);
  3477. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3478. if (ret < 0)
  3479. return ret;
  3480. btrfs_item_key(path->nodes[0], &found_key, 0);
  3481. ret = comp_keys(&found_key, &key);
  3482. if (ret < 0)
  3483. return 0;
  3484. return 1;
  3485. }
  3486. /*
  3487. * A helper function to walk down the tree starting at min_key, and looking
  3488. * for nodes or leaves that are either in cache or have a minimum
  3489. * transaction id. This is used by the btree defrag code, and tree logging
  3490. *
  3491. * This does not cow, but it does stuff the starting key it finds back
  3492. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3493. * key and get a writable path.
  3494. *
  3495. * This does lock as it descends, and path->keep_locks should be set
  3496. * to 1 by the caller.
  3497. *
  3498. * This honors path->lowest_level to prevent descent past a given level
  3499. * of the tree.
  3500. *
  3501. * min_trans indicates the oldest transaction that you are interested
  3502. * in walking through. Any nodes or leaves older than min_trans are
  3503. * skipped over (without reading them).
  3504. *
  3505. * returns zero if something useful was found, < 0 on error and 1 if there
  3506. * was nothing in the tree that matched the search criteria.
  3507. */
  3508. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3509. struct btrfs_key *max_key,
  3510. struct btrfs_path *path, int cache_only,
  3511. u64 min_trans)
  3512. {
  3513. struct extent_buffer *cur;
  3514. struct btrfs_key found_key;
  3515. int slot;
  3516. int sret;
  3517. u32 nritems;
  3518. int level;
  3519. int ret = 1;
  3520. WARN_ON(!path->keep_locks);
  3521. again:
  3522. cur = btrfs_read_lock_root_node(root);
  3523. level = btrfs_header_level(cur);
  3524. WARN_ON(path->nodes[level]);
  3525. path->nodes[level] = cur;
  3526. path->locks[level] = BTRFS_READ_LOCK;
  3527. if (btrfs_header_generation(cur) < min_trans) {
  3528. ret = 1;
  3529. goto out;
  3530. }
  3531. while (1) {
  3532. nritems = btrfs_header_nritems(cur);
  3533. level = btrfs_header_level(cur);
  3534. sret = bin_search(cur, min_key, level, &slot);
  3535. /* at the lowest level, we're done, setup the path and exit */
  3536. if (level == path->lowest_level) {
  3537. if (slot >= nritems)
  3538. goto find_next_key;
  3539. ret = 0;
  3540. path->slots[level] = slot;
  3541. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3542. goto out;
  3543. }
  3544. if (sret && slot > 0)
  3545. slot--;
  3546. /*
  3547. * check this node pointer against the cache_only and
  3548. * min_trans parameters. If it isn't in cache or is too
  3549. * old, skip to the next one.
  3550. */
  3551. while (slot < nritems) {
  3552. u64 blockptr;
  3553. u64 gen;
  3554. struct extent_buffer *tmp;
  3555. struct btrfs_disk_key disk_key;
  3556. blockptr = btrfs_node_blockptr(cur, slot);
  3557. gen = btrfs_node_ptr_generation(cur, slot);
  3558. if (gen < min_trans) {
  3559. slot++;
  3560. continue;
  3561. }
  3562. if (!cache_only)
  3563. break;
  3564. if (max_key) {
  3565. btrfs_node_key(cur, &disk_key, slot);
  3566. if (comp_keys(&disk_key, max_key) >= 0) {
  3567. ret = 1;
  3568. goto out;
  3569. }
  3570. }
  3571. tmp = btrfs_find_tree_block(root, blockptr,
  3572. btrfs_level_size(root, level - 1));
  3573. if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
  3574. free_extent_buffer(tmp);
  3575. break;
  3576. }
  3577. if (tmp)
  3578. free_extent_buffer(tmp);
  3579. slot++;
  3580. }
  3581. find_next_key:
  3582. /*
  3583. * we didn't find a candidate key in this node, walk forward
  3584. * and find another one
  3585. */
  3586. if (slot >= nritems) {
  3587. path->slots[level] = slot;
  3588. btrfs_set_path_blocking(path);
  3589. sret = btrfs_find_next_key(root, path, min_key, level,
  3590. cache_only, min_trans);
  3591. if (sret == 0) {
  3592. btrfs_release_path(path);
  3593. goto again;
  3594. } else {
  3595. goto out;
  3596. }
  3597. }
  3598. /* save our key for returning back */
  3599. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3600. path->slots[level] = slot;
  3601. if (level == path->lowest_level) {
  3602. ret = 0;
  3603. unlock_up(path, level, 1, 0, NULL);
  3604. goto out;
  3605. }
  3606. btrfs_set_path_blocking(path);
  3607. cur = read_node_slot(root, cur, slot);
  3608. BUG_ON(!cur); /* -ENOMEM */
  3609. btrfs_tree_read_lock(cur);
  3610. path->locks[level - 1] = BTRFS_READ_LOCK;
  3611. path->nodes[level - 1] = cur;
  3612. unlock_up(path, level, 1, 0, NULL);
  3613. btrfs_clear_path_blocking(path, NULL, 0);
  3614. }
  3615. out:
  3616. if (ret == 0)
  3617. memcpy(min_key, &found_key, sizeof(found_key));
  3618. btrfs_set_path_blocking(path);
  3619. return ret;
  3620. }
  3621. /*
  3622. * this is similar to btrfs_next_leaf, but does not try to preserve
  3623. * and fixup the path. It looks for and returns the next key in the
  3624. * tree based on the current path and the cache_only and min_trans
  3625. * parameters.
  3626. *
  3627. * 0 is returned if another key is found, < 0 if there are any errors
  3628. * and 1 is returned if there are no higher keys in the tree
  3629. *
  3630. * path->keep_locks should be set to 1 on the search made before
  3631. * calling this function.
  3632. */
  3633. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3634. struct btrfs_key *key, int level,
  3635. int cache_only, u64 min_trans)
  3636. {
  3637. int slot;
  3638. struct extent_buffer *c;
  3639. WARN_ON(!path->keep_locks);
  3640. while (level < BTRFS_MAX_LEVEL) {
  3641. if (!path->nodes[level])
  3642. return 1;
  3643. slot = path->slots[level] + 1;
  3644. c = path->nodes[level];
  3645. next:
  3646. if (slot >= btrfs_header_nritems(c)) {
  3647. int ret;
  3648. int orig_lowest;
  3649. struct btrfs_key cur_key;
  3650. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3651. !path->nodes[level + 1])
  3652. return 1;
  3653. if (path->locks[level + 1]) {
  3654. level++;
  3655. continue;
  3656. }
  3657. slot = btrfs_header_nritems(c) - 1;
  3658. if (level == 0)
  3659. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3660. else
  3661. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3662. orig_lowest = path->lowest_level;
  3663. btrfs_release_path(path);
  3664. path->lowest_level = level;
  3665. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3666. 0, 0);
  3667. path->lowest_level = orig_lowest;
  3668. if (ret < 0)
  3669. return ret;
  3670. c = path->nodes[level];
  3671. slot = path->slots[level];
  3672. if (ret == 0)
  3673. slot++;
  3674. goto next;
  3675. }
  3676. if (level == 0)
  3677. btrfs_item_key_to_cpu(c, key, slot);
  3678. else {
  3679. u64 blockptr = btrfs_node_blockptr(c, slot);
  3680. u64 gen = btrfs_node_ptr_generation(c, slot);
  3681. if (cache_only) {
  3682. struct extent_buffer *cur;
  3683. cur = btrfs_find_tree_block(root, blockptr,
  3684. btrfs_level_size(root, level - 1));
  3685. if (!cur ||
  3686. btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
  3687. slot++;
  3688. if (cur)
  3689. free_extent_buffer(cur);
  3690. goto next;
  3691. }
  3692. free_extent_buffer(cur);
  3693. }
  3694. if (gen < min_trans) {
  3695. slot++;
  3696. goto next;
  3697. }
  3698. btrfs_node_key_to_cpu(c, key, slot);
  3699. }
  3700. return 0;
  3701. }
  3702. return 1;
  3703. }
  3704. /*
  3705. * search the tree again to find a leaf with greater keys
  3706. * returns 0 if it found something or 1 if there are no greater leaves.
  3707. * returns < 0 on io errors.
  3708. */
  3709. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3710. {
  3711. int slot;
  3712. int level;
  3713. struct extent_buffer *c;
  3714. struct extent_buffer *next;
  3715. struct btrfs_key key;
  3716. u32 nritems;
  3717. int ret;
  3718. int old_spinning = path->leave_spinning;
  3719. int next_rw_lock = 0;
  3720. nritems = btrfs_header_nritems(path->nodes[0]);
  3721. if (nritems == 0)
  3722. return 1;
  3723. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3724. again:
  3725. level = 1;
  3726. next = NULL;
  3727. next_rw_lock = 0;
  3728. btrfs_release_path(path);
  3729. path->keep_locks = 1;
  3730. path->leave_spinning = 1;
  3731. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3732. path->keep_locks = 0;
  3733. if (ret < 0)
  3734. return ret;
  3735. nritems = btrfs_header_nritems(path->nodes[0]);
  3736. /*
  3737. * by releasing the path above we dropped all our locks. A balance
  3738. * could have added more items next to the key that used to be
  3739. * at the very end of the block. So, check again here and
  3740. * advance the path if there are now more items available.
  3741. */
  3742. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3743. if (ret == 0)
  3744. path->slots[0]++;
  3745. ret = 0;
  3746. goto done;
  3747. }
  3748. while (level < BTRFS_MAX_LEVEL) {
  3749. if (!path->nodes[level]) {
  3750. ret = 1;
  3751. goto done;
  3752. }
  3753. slot = path->slots[level] + 1;
  3754. c = path->nodes[level];
  3755. if (slot >= btrfs_header_nritems(c)) {
  3756. level++;
  3757. if (level == BTRFS_MAX_LEVEL) {
  3758. ret = 1;
  3759. goto done;
  3760. }
  3761. continue;
  3762. }
  3763. if (next) {
  3764. btrfs_tree_unlock_rw(next, next_rw_lock);
  3765. free_extent_buffer(next);
  3766. }
  3767. next = c;
  3768. next_rw_lock = path->locks[level];
  3769. ret = read_block_for_search(NULL, root, path, &next, level,
  3770. slot, &key);
  3771. if (ret == -EAGAIN)
  3772. goto again;
  3773. if (ret < 0) {
  3774. btrfs_release_path(path);
  3775. goto done;
  3776. }
  3777. if (!path->skip_locking) {
  3778. ret = btrfs_try_tree_read_lock(next);
  3779. if (!ret) {
  3780. btrfs_set_path_blocking(path);
  3781. btrfs_tree_read_lock(next);
  3782. btrfs_clear_path_blocking(path, next,
  3783. BTRFS_READ_LOCK);
  3784. }
  3785. next_rw_lock = BTRFS_READ_LOCK;
  3786. }
  3787. break;
  3788. }
  3789. path->slots[level] = slot;
  3790. while (1) {
  3791. level--;
  3792. c = path->nodes[level];
  3793. if (path->locks[level])
  3794. btrfs_tree_unlock_rw(c, path->locks[level]);
  3795. free_extent_buffer(c);
  3796. path->nodes[level] = next;
  3797. path->slots[level] = 0;
  3798. if (!path->skip_locking)
  3799. path->locks[level] = next_rw_lock;
  3800. if (!level)
  3801. break;
  3802. ret = read_block_for_search(NULL, root, path, &next, level,
  3803. 0, &key);
  3804. if (ret == -EAGAIN)
  3805. goto again;
  3806. if (ret < 0) {
  3807. btrfs_release_path(path);
  3808. goto done;
  3809. }
  3810. if (!path->skip_locking) {
  3811. ret = btrfs_try_tree_read_lock(next);
  3812. if (!ret) {
  3813. btrfs_set_path_blocking(path);
  3814. btrfs_tree_read_lock(next);
  3815. btrfs_clear_path_blocking(path, next,
  3816. BTRFS_READ_LOCK);
  3817. }
  3818. next_rw_lock = BTRFS_READ_LOCK;
  3819. }
  3820. }
  3821. ret = 0;
  3822. done:
  3823. unlock_up(path, 0, 1, 0, NULL);
  3824. path->leave_spinning = old_spinning;
  3825. if (!old_spinning)
  3826. btrfs_set_path_blocking(path);
  3827. return ret;
  3828. }
  3829. /*
  3830. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3831. * searching until it gets past min_objectid or finds an item of 'type'
  3832. *
  3833. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3834. */
  3835. int btrfs_previous_item(struct btrfs_root *root,
  3836. struct btrfs_path *path, u64 min_objectid,
  3837. int type)
  3838. {
  3839. struct btrfs_key found_key;
  3840. struct extent_buffer *leaf;
  3841. u32 nritems;
  3842. int ret;
  3843. while (1) {
  3844. if (path->slots[0] == 0) {
  3845. btrfs_set_path_blocking(path);
  3846. ret = btrfs_prev_leaf(root, path);
  3847. if (ret != 0)
  3848. return ret;
  3849. } else {
  3850. path->slots[0]--;
  3851. }
  3852. leaf = path->nodes[0];
  3853. nritems = btrfs_header_nritems(leaf);
  3854. if (nritems == 0)
  3855. return 1;
  3856. if (path->slots[0] == nritems)
  3857. path->slots[0]--;
  3858. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3859. if (found_key.objectid < min_objectid)
  3860. break;
  3861. if (found_key.type == type)
  3862. return 0;
  3863. if (found_key.objectid == min_objectid &&
  3864. found_key.type < type)
  3865. break;
  3866. }
  3867. return 1;
  3868. }