futex.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/module.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <asm/futex.h>
  63. #include "rtmutex_common.h"
  64. int __read_mostly futex_cmpxchg_enabled;
  65. #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  66. /*
  67. * Futex flags used to encode options to functions and preserve them across
  68. * restarts.
  69. */
  70. #define FLAGS_SHARED 0x01
  71. #define FLAGS_CLOCKRT 0x02
  72. #define FLAGS_HAS_TIMEOUT 0x04
  73. /*
  74. * Priority Inheritance state:
  75. */
  76. struct futex_pi_state {
  77. /*
  78. * list of 'owned' pi_state instances - these have to be
  79. * cleaned up in do_exit() if the task exits prematurely:
  80. */
  81. struct list_head list;
  82. /*
  83. * The PI object:
  84. */
  85. struct rt_mutex pi_mutex;
  86. struct task_struct *owner;
  87. atomic_t refcount;
  88. union futex_key key;
  89. };
  90. /**
  91. * struct futex_q - The hashed futex queue entry, one per waiting task
  92. * @list: priority-sorted list of tasks waiting on this futex
  93. * @task: the task waiting on the futex
  94. * @lock_ptr: the hash bucket lock
  95. * @key: the key the futex is hashed on
  96. * @pi_state: optional priority inheritance state
  97. * @rt_waiter: rt_waiter storage for use with requeue_pi
  98. * @requeue_pi_key: the requeue_pi target futex key
  99. * @bitset: bitset for the optional bitmasked wakeup
  100. *
  101. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  102. * we can wake only the relevant ones (hashed queues may be shared).
  103. *
  104. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  105. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  106. * The order of wakeup is always to make the first condition true, then
  107. * the second.
  108. *
  109. * PI futexes are typically woken before they are removed from the hash list via
  110. * the rt_mutex code. See unqueue_me_pi().
  111. */
  112. struct futex_q {
  113. struct plist_node list;
  114. struct task_struct *task;
  115. spinlock_t *lock_ptr;
  116. union futex_key key;
  117. struct futex_pi_state *pi_state;
  118. struct rt_mutex_waiter *rt_waiter;
  119. union futex_key *requeue_pi_key;
  120. u32 bitset;
  121. };
  122. static const struct futex_q futex_q_init = {
  123. /* list gets initialized in queue_me()*/
  124. .key = FUTEX_KEY_INIT,
  125. .bitset = FUTEX_BITSET_MATCH_ANY
  126. };
  127. /*
  128. * Hash buckets are shared by all the futex_keys that hash to the same
  129. * location. Each key may have multiple futex_q structures, one for each task
  130. * waiting on a futex.
  131. */
  132. struct futex_hash_bucket {
  133. spinlock_t lock;
  134. struct plist_head chain;
  135. };
  136. static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
  137. /*
  138. * We hash on the keys returned from get_futex_key (see below).
  139. */
  140. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  141. {
  142. u32 hash = jhash2((u32*)&key->both.word,
  143. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  144. key->both.offset);
  145. return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
  146. }
  147. /*
  148. * Return 1 if two futex_keys are equal, 0 otherwise.
  149. */
  150. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  151. {
  152. return (key1 && key2
  153. && key1->both.word == key2->both.word
  154. && key1->both.ptr == key2->both.ptr
  155. && key1->both.offset == key2->both.offset);
  156. }
  157. /*
  158. * Take a reference to the resource addressed by a key.
  159. * Can be called while holding spinlocks.
  160. *
  161. */
  162. static void get_futex_key_refs(union futex_key *key)
  163. {
  164. if (!key->both.ptr)
  165. return;
  166. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  167. case FUT_OFF_INODE:
  168. ihold(key->shared.inode);
  169. break;
  170. case FUT_OFF_MMSHARED:
  171. atomic_inc(&key->private.mm->mm_count);
  172. break;
  173. }
  174. }
  175. /*
  176. * Drop a reference to the resource addressed by a key.
  177. * The hash bucket spinlock must not be held.
  178. */
  179. static void drop_futex_key_refs(union futex_key *key)
  180. {
  181. if (!key->both.ptr) {
  182. /* If we're here then we tried to put a key we failed to get */
  183. WARN_ON_ONCE(1);
  184. return;
  185. }
  186. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  187. case FUT_OFF_INODE:
  188. iput(key->shared.inode);
  189. break;
  190. case FUT_OFF_MMSHARED:
  191. mmdrop(key->private.mm);
  192. break;
  193. }
  194. }
  195. /**
  196. * get_futex_key() - Get parameters which are the keys for a futex
  197. * @uaddr: virtual address of the futex
  198. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  199. * @key: address where result is stored.
  200. *
  201. * Returns a negative error code or 0
  202. * The key words are stored in *key on success.
  203. *
  204. * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
  205. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  206. * We can usually work out the index without swapping in the page.
  207. *
  208. * lock_page() might sleep, the caller should not hold a spinlock.
  209. */
  210. static int
  211. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
  212. {
  213. unsigned long address = (unsigned long)uaddr;
  214. struct mm_struct *mm = current->mm;
  215. struct page *page, *page_head;
  216. int err;
  217. /*
  218. * The futex address must be "naturally" aligned.
  219. */
  220. key->both.offset = address % PAGE_SIZE;
  221. if (unlikely((address % sizeof(u32)) != 0))
  222. return -EINVAL;
  223. address -= key->both.offset;
  224. /*
  225. * PROCESS_PRIVATE futexes are fast.
  226. * As the mm cannot disappear under us and the 'key' only needs
  227. * virtual address, we dont even have to find the underlying vma.
  228. * Note : We do have to check 'uaddr' is a valid user address,
  229. * but access_ok() should be faster than find_vma()
  230. */
  231. if (!fshared) {
  232. if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
  233. return -EFAULT;
  234. key->private.mm = mm;
  235. key->private.address = address;
  236. get_futex_key_refs(key);
  237. return 0;
  238. }
  239. again:
  240. err = get_user_pages_fast(address, 1, 1, &page);
  241. if (err < 0)
  242. return err;
  243. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  244. page_head = page;
  245. if (unlikely(PageTail(page))) {
  246. put_page(page);
  247. /* serialize against __split_huge_page_splitting() */
  248. local_irq_disable();
  249. if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
  250. page_head = compound_head(page);
  251. /*
  252. * page_head is valid pointer but we must pin
  253. * it before taking the PG_lock and/or
  254. * PG_compound_lock. The moment we re-enable
  255. * irqs __split_huge_page_splitting() can
  256. * return and the head page can be freed from
  257. * under us. We can't take the PG_lock and/or
  258. * PG_compound_lock on a page that could be
  259. * freed from under us.
  260. */
  261. if (page != page_head) {
  262. get_page(page_head);
  263. put_page(page);
  264. }
  265. local_irq_enable();
  266. } else {
  267. local_irq_enable();
  268. goto again;
  269. }
  270. }
  271. #else
  272. page_head = compound_head(page);
  273. if (page != page_head) {
  274. get_page(page_head);
  275. put_page(page);
  276. }
  277. #endif
  278. lock_page(page_head);
  279. if (!page_head->mapping) {
  280. unlock_page(page_head);
  281. put_page(page_head);
  282. goto again;
  283. }
  284. /*
  285. * Private mappings are handled in a simple way.
  286. *
  287. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  288. * it's a read-only handle, it's expected that futexes attach to
  289. * the object not the particular process.
  290. */
  291. if (PageAnon(page_head)) {
  292. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  293. key->private.mm = mm;
  294. key->private.address = address;
  295. } else {
  296. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  297. key->shared.inode = page_head->mapping->host;
  298. key->shared.pgoff = page_head->index;
  299. }
  300. get_futex_key_refs(key);
  301. unlock_page(page_head);
  302. put_page(page_head);
  303. return 0;
  304. }
  305. static inline void put_futex_key(union futex_key *key)
  306. {
  307. drop_futex_key_refs(key);
  308. }
  309. /**
  310. * fault_in_user_writeable() - Fault in user address and verify RW access
  311. * @uaddr: pointer to faulting user space address
  312. *
  313. * Slow path to fixup the fault we just took in the atomic write
  314. * access to @uaddr.
  315. *
  316. * We have no generic implementation of a non-destructive write to the
  317. * user address. We know that we faulted in the atomic pagefault
  318. * disabled section so we can as well avoid the #PF overhead by
  319. * calling get_user_pages() right away.
  320. */
  321. static int fault_in_user_writeable(u32 __user *uaddr)
  322. {
  323. struct mm_struct *mm = current->mm;
  324. int ret;
  325. down_read(&mm->mmap_sem);
  326. ret = get_user_pages(current, mm, (unsigned long)uaddr,
  327. 1, 1, 0, NULL, NULL);
  328. up_read(&mm->mmap_sem);
  329. return ret < 0 ? ret : 0;
  330. }
  331. /**
  332. * futex_top_waiter() - Return the highest priority waiter on a futex
  333. * @hb: the hash bucket the futex_q's reside in
  334. * @key: the futex key (to distinguish it from other futex futex_q's)
  335. *
  336. * Must be called with the hb lock held.
  337. */
  338. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  339. union futex_key *key)
  340. {
  341. struct futex_q *this;
  342. plist_for_each_entry(this, &hb->chain, list) {
  343. if (match_futex(&this->key, key))
  344. return this;
  345. }
  346. return NULL;
  347. }
  348. static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
  349. {
  350. u32 curval;
  351. pagefault_disable();
  352. curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
  353. pagefault_enable();
  354. return curval;
  355. }
  356. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  357. {
  358. int ret;
  359. pagefault_disable();
  360. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  361. pagefault_enable();
  362. return ret ? -EFAULT : 0;
  363. }
  364. /*
  365. * PI code:
  366. */
  367. static int refill_pi_state_cache(void)
  368. {
  369. struct futex_pi_state *pi_state;
  370. if (likely(current->pi_state_cache))
  371. return 0;
  372. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  373. if (!pi_state)
  374. return -ENOMEM;
  375. INIT_LIST_HEAD(&pi_state->list);
  376. /* pi_mutex gets initialized later */
  377. pi_state->owner = NULL;
  378. atomic_set(&pi_state->refcount, 1);
  379. pi_state->key = FUTEX_KEY_INIT;
  380. current->pi_state_cache = pi_state;
  381. return 0;
  382. }
  383. static struct futex_pi_state * alloc_pi_state(void)
  384. {
  385. struct futex_pi_state *pi_state = current->pi_state_cache;
  386. WARN_ON(!pi_state);
  387. current->pi_state_cache = NULL;
  388. return pi_state;
  389. }
  390. static void free_pi_state(struct futex_pi_state *pi_state)
  391. {
  392. if (!atomic_dec_and_test(&pi_state->refcount))
  393. return;
  394. /*
  395. * If pi_state->owner is NULL, the owner is most probably dying
  396. * and has cleaned up the pi_state already
  397. */
  398. if (pi_state->owner) {
  399. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  400. list_del_init(&pi_state->list);
  401. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  402. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  403. }
  404. if (current->pi_state_cache)
  405. kfree(pi_state);
  406. else {
  407. /*
  408. * pi_state->list is already empty.
  409. * clear pi_state->owner.
  410. * refcount is at 0 - put it back to 1.
  411. */
  412. pi_state->owner = NULL;
  413. atomic_set(&pi_state->refcount, 1);
  414. current->pi_state_cache = pi_state;
  415. }
  416. }
  417. /*
  418. * Look up the task based on what TID userspace gave us.
  419. * We dont trust it.
  420. */
  421. static struct task_struct * futex_find_get_task(pid_t pid)
  422. {
  423. struct task_struct *p;
  424. rcu_read_lock();
  425. p = find_task_by_vpid(pid);
  426. if (p)
  427. get_task_struct(p);
  428. rcu_read_unlock();
  429. return p;
  430. }
  431. /*
  432. * This task is holding PI mutexes at exit time => bad.
  433. * Kernel cleans up PI-state, but userspace is likely hosed.
  434. * (Robust-futex cleanup is separate and might save the day for userspace.)
  435. */
  436. void exit_pi_state_list(struct task_struct *curr)
  437. {
  438. struct list_head *next, *head = &curr->pi_state_list;
  439. struct futex_pi_state *pi_state;
  440. struct futex_hash_bucket *hb;
  441. union futex_key key = FUTEX_KEY_INIT;
  442. if (!futex_cmpxchg_enabled)
  443. return;
  444. /*
  445. * We are a ZOMBIE and nobody can enqueue itself on
  446. * pi_state_list anymore, but we have to be careful
  447. * versus waiters unqueueing themselves:
  448. */
  449. raw_spin_lock_irq(&curr->pi_lock);
  450. while (!list_empty(head)) {
  451. next = head->next;
  452. pi_state = list_entry(next, struct futex_pi_state, list);
  453. key = pi_state->key;
  454. hb = hash_futex(&key);
  455. raw_spin_unlock_irq(&curr->pi_lock);
  456. spin_lock(&hb->lock);
  457. raw_spin_lock_irq(&curr->pi_lock);
  458. /*
  459. * We dropped the pi-lock, so re-check whether this
  460. * task still owns the PI-state:
  461. */
  462. if (head->next != next) {
  463. spin_unlock(&hb->lock);
  464. continue;
  465. }
  466. WARN_ON(pi_state->owner != curr);
  467. WARN_ON(list_empty(&pi_state->list));
  468. list_del_init(&pi_state->list);
  469. pi_state->owner = NULL;
  470. raw_spin_unlock_irq(&curr->pi_lock);
  471. rt_mutex_unlock(&pi_state->pi_mutex);
  472. spin_unlock(&hb->lock);
  473. raw_spin_lock_irq(&curr->pi_lock);
  474. }
  475. raw_spin_unlock_irq(&curr->pi_lock);
  476. }
  477. static int
  478. lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  479. union futex_key *key, struct futex_pi_state **ps)
  480. {
  481. struct futex_pi_state *pi_state = NULL;
  482. struct futex_q *this, *next;
  483. struct plist_head *head;
  484. struct task_struct *p;
  485. pid_t pid = uval & FUTEX_TID_MASK;
  486. head = &hb->chain;
  487. plist_for_each_entry_safe(this, next, head, list) {
  488. if (match_futex(&this->key, key)) {
  489. /*
  490. * Another waiter already exists - bump up
  491. * the refcount and return its pi_state:
  492. */
  493. pi_state = this->pi_state;
  494. /*
  495. * Userspace might have messed up non-PI and PI futexes
  496. */
  497. if (unlikely(!pi_state))
  498. return -EINVAL;
  499. WARN_ON(!atomic_read(&pi_state->refcount));
  500. /*
  501. * When pi_state->owner is NULL then the owner died
  502. * and another waiter is on the fly. pi_state->owner
  503. * is fixed up by the task which acquires
  504. * pi_state->rt_mutex.
  505. *
  506. * We do not check for pid == 0 which can happen when
  507. * the owner died and robust_list_exit() cleared the
  508. * TID.
  509. */
  510. if (pid && pi_state->owner) {
  511. /*
  512. * Bail out if user space manipulated the
  513. * futex value.
  514. */
  515. if (pid != task_pid_vnr(pi_state->owner))
  516. return -EINVAL;
  517. }
  518. atomic_inc(&pi_state->refcount);
  519. *ps = pi_state;
  520. return 0;
  521. }
  522. }
  523. /*
  524. * We are the first waiter - try to look up the real owner and attach
  525. * the new pi_state to it, but bail out when TID = 0
  526. */
  527. if (!pid)
  528. return -ESRCH;
  529. p = futex_find_get_task(pid);
  530. if (!p)
  531. return -ESRCH;
  532. /*
  533. * We need to look at the task state flags to figure out,
  534. * whether the task is exiting. To protect against the do_exit
  535. * change of the task flags, we do this protected by
  536. * p->pi_lock:
  537. */
  538. raw_spin_lock_irq(&p->pi_lock);
  539. if (unlikely(p->flags & PF_EXITING)) {
  540. /*
  541. * The task is on the way out. When PF_EXITPIDONE is
  542. * set, we know that the task has finished the
  543. * cleanup:
  544. */
  545. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  546. raw_spin_unlock_irq(&p->pi_lock);
  547. put_task_struct(p);
  548. return ret;
  549. }
  550. pi_state = alloc_pi_state();
  551. /*
  552. * Initialize the pi_mutex in locked state and make 'p'
  553. * the owner of it:
  554. */
  555. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  556. /* Store the key for possible exit cleanups: */
  557. pi_state->key = *key;
  558. WARN_ON(!list_empty(&pi_state->list));
  559. list_add(&pi_state->list, &p->pi_state_list);
  560. pi_state->owner = p;
  561. raw_spin_unlock_irq(&p->pi_lock);
  562. put_task_struct(p);
  563. *ps = pi_state;
  564. return 0;
  565. }
  566. /**
  567. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  568. * @uaddr: the pi futex user address
  569. * @hb: the pi futex hash bucket
  570. * @key: the futex key associated with uaddr and hb
  571. * @ps: the pi_state pointer where we store the result of the
  572. * lookup
  573. * @task: the task to perform the atomic lock work for. This will
  574. * be "current" except in the case of requeue pi.
  575. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  576. *
  577. * Returns:
  578. * 0 - ready to wait
  579. * 1 - acquired the lock
  580. * <0 - error
  581. *
  582. * The hb->lock and futex_key refs shall be held by the caller.
  583. */
  584. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  585. union futex_key *key,
  586. struct futex_pi_state **ps,
  587. struct task_struct *task, int set_waiters)
  588. {
  589. int lock_taken, ret, ownerdied = 0;
  590. u32 uval, newval, curval;
  591. retry:
  592. ret = lock_taken = 0;
  593. /*
  594. * To avoid races, we attempt to take the lock here again
  595. * (by doing a 0 -> TID atomic cmpxchg), while holding all
  596. * the locks. It will most likely not succeed.
  597. */
  598. newval = task_pid_vnr(task);
  599. if (set_waiters)
  600. newval |= FUTEX_WAITERS;
  601. curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
  602. if (unlikely(curval == -EFAULT))
  603. return -EFAULT;
  604. /*
  605. * Detect deadlocks.
  606. */
  607. if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
  608. return -EDEADLK;
  609. /*
  610. * Surprise - we got the lock. Just return to userspace:
  611. */
  612. if (unlikely(!curval))
  613. return 1;
  614. uval = curval;
  615. /*
  616. * Set the FUTEX_WAITERS flag, so the owner will know it has someone
  617. * to wake at the next unlock.
  618. */
  619. newval = curval | FUTEX_WAITERS;
  620. /*
  621. * There are two cases, where a futex might have no owner (the
  622. * owner TID is 0): OWNER_DIED. We take over the futex in this
  623. * case. We also do an unconditional take over, when the owner
  624. * of the futex died.
  625. *
  626. * This is safe as we are protected by the hash bucket lock !
  627. */
  628. if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
  629. /* Keep the OWNER_DIED bit */
  630. newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
  631. ownerdied = 0;
  632. lock_taken = 1;
  633. }
  634. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  635. if (unlikely(curval == -EFAULT))
  636. return -EFAULT;
  637. if (unlikely(curval != uval))
  638. goto retry;
  639. /*
  640. * We took the lock due to owner died take over.
  641. */
  642. if (unlikely(lock_taken))
  643. return 1;
  644. /*
  645. * We dont have the lock. Look up the PI state (or create it if
  646. * we are the first waiter):
  647. */
  648. ret = lookup_pi_state(uval, hb, key, ps);
  649. if (unlikely(ret)) {
  650. switch (ret) {
  651. case -ESRCH:
  652. /*
  653. * No owner found for this futex. Check if the
  654. * OWNER_DIED bit is set to figure out whether
  655. * this is a robust futex or not.
  656. */
  657. if (get_futex_value_locked(&curval, uaddr))
  658. return -EFAULT;
  659. /*
  660. * We simply start over in case of a robust
  661. * futex. The code above will take the futex
  662. * and return happy.
  663. */
  664. if (curval & FUTEX_OWNER_DIED) {
  665. ownerdied = 1;
  666. goto retry;
  667. }
  668. default:
  669. break;
  670. }
  671. }
  672. return ret;
  673. }
  674. /**
  675. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  676. * @q: The futex_q to unqueue
  677. *
  678. * The q->lock_ptr must not be NULL and must be held by the caller.
  679. */
  680. static void __unqueue_futex(struct futex_q *q)
  681. {
  682. struct futex_hash_bucket *hb;
  683. if (WARN_ON(!q->lock_ptr || !spin_is_locked(q->lock_ptr)
  684. || plist_node_empty(&q->list)))
  685. return;
  686. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  687. plist_del(&q->list, &hb->chain);
  688. }
  689. /*
  690. * The hash bucket lock must be held when this is called.
  691. * Afterwards, the futex_q must not be accessed.
  692. */
  693. static void wake_futex(struct futex_q *q)
  694. {
  695. struct task_struct *p = q->task;
  696. /*
  697. * We set q->lock_ptr = NULL _before_ we wake up the task. If
  698. * a non-futex wake up happens on another CPU then the task
  699. * might exit and p would dereference a non-existing task
  700. * struct. Prevent this by holding a reference on p across the
  701. * wake up.
  702. */
  703. get_task_struct(p);
  704. __unqueue_futex(q);
  705. /*
  706. * The waiting task can free the futex_q as soon as
  707. * q->lock_ptr = NULL is written, without taking any locks. A
  708. * memory barrier is required here to prevent the following
  709. * store to lock_ptr from getting ahead of the plist_del.
  710. */
  711. smp_wmb();
  712. q->lock_ptr = NULL;
  713. wake_up_state(p, TASK_NORMAL);
  714. put_task_struct(p);
  715. }
  716. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  717. {
  718. struct task_struct *new_owner;
  719. struct futex_pi_state *pi_state = this->pi_state;
  720. u32 curval, newval;
  721. if (!pi_state)
  722. return -EINVAL;
  723. /*
  724. * If current does not own the pi_state then the futex is
  725. * inconsistent and user space fiddled with the futex value.
  726. */
  727. if (pi_state->owner != current)
  728. return -EINVAL;
  729. raw_spin_lock(&pi_state->pi_mutex.wait_lock);
  730. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  731. /*
  732. * It is possible that the next waiter (the one that brought
  733. * this owner to the kernel) timed out and is no longer
  734. * waiting on the lock.
  735. */
  736. if (!new_owner)
  737. new_owner = this->task;
  738. /*
  739. * We pass it to the next owner. (The WAITERS bit is always
  740. * kept enabled while there is PI state around. We must also
  741. * preserve the owner died bit.)
  742. */
  743. if (!(uval & FUTEX_OWNER_DIED)) {
  744. int ret = 0;
  745. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  746. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  747. if (curval == -EFAULT)
  748. ret = -EFAULT;
  749. else if (curval != uval)
  750. ret = -EINVAL;
  751. if (ret) {
  752. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  753. return ret;
  754. }
  755. }
  756. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  757. WARN_ON(list_empty(&pi_state->list));
  758. list_del_init(&pi_state->list);
  759. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  760. raw_spin_lock_irq(&new_owner->pi_lock);
  761. WARN_ON(!list_empty(&pi_state->list));
  762. list_add(&pi_state->list, &new_owner->pi_state_list);
  763. pi_state->owner = new_owner;
  764. raw_spin_unlock_irq(&new_owner->pi_lock);
  765. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  766. rt_mutex_unlock(&pi_state->pi_mutex);
  767. return 0;
  768. }
  769. static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  770. {
  771. u32 oldval;
  772. /*
  773. * There is no waiter, so we unlock the futex. The owner died
  774. * bit has not to be preserved here. We are the owner:
  775. */
  776. oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
  777. if (oldval == -EFAULT)
  778. return oldval;
  779. if (oldval != uval)
  780. return -EAGAIN;
  781. return 0;
  782. }
  783. /*
  784. * Express the locking dependencies for lockdep:
  785. */
  786. static inline void
  787. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  788. {
  789. if (hb1 <= hb2) {
  790. spin_lock(&hb1->lock);
  791. if (hb1 < hb2)
  792. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  793. } else { /* hb1 > hb2 */
  794. spin_lock(&hb2->lock);
  795. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  796. }
  797. }
  798. static inline void
  799. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  800. {
  801. spin_unlock(&hb1->lock);
  802. if (hb1 != hb2)
  803. spin_unlock(&hb2->lock);
  804. }
  805. /*
  806. * Wake up waiters matching bitset queued on this futex (uaddr).
  807. */
  808. static int
  809. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  810. {
  811. struct futex_hash_bucket *hb;
  812. struct futex_q *this, *next;
  813. struct plist_head *head;
  814. union futex_key key = FUTEX_KEY_INIT;
  815. int ret;
  816. if (!bitset)
  817. return -EINVAL;
  818. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
  819. if (unlikely(ret != 0))
  820. goto out;
  821. hb = hash_futex(&key);
  822. spin_lock(&hb->lock);
  823. head = &hb->chain;
  824. plist_for_each_entry_safe(this, next, head, list) {
  825. if (match_futex (&this->key, &key)) {
  826. if (this->pi_state || this->rt_waiter) {
  827. ret = -EINVAL;
  828. break;
  829. }
  830. /* Check if one of the bits is set in both bitsets */
  831. if (!(this->bitset & bitset))
  832. continue;
  833. wake_futex(this);
  834. if (++ret >= nr_wake)
  835. break;
  836. }
  837. }
  838. spin_unlock(&hb->lock);
  839. put_futex_key(&key);
  840. out:
  841. return ret;
  842. }
  843. /*
  844. * Wake up all waiters hashed on the physical page that is mapped
  845. * to this virtual address:
  846. */
  847. static int
  848. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  849. int nr_wake, int nr_wake2, int op)
  850. {
  851. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  852. struct futex_hash_bucket *hb1, *hb2;
  853. struct plist_head *head;
  854. struct futex_q *this, *next;
  855. int ret, op_ret;
  856. retry:
  857. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
  858. if (unlikely(ret != 0))
  859. goto out;
  860. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
  861. if (unlikely(ret != 0))
  862. goto out_put_key1;
  863. hb1 = hash_futex(&key1);
  864. hb2 = hash_futex(&key2);
  865. retry_private:
  866. double_lock_hb(hb1, hb2);
  867. op_ret = futex_atomic_op_inuser(op, uaddr2);
  868. if (unlikely(op_ret < 0)) {
  869. double_unlock_hb(hb1, hb2);
  870. #ifndef CONFIG_MMU
  871. /*
  872. * we don't get EFAULT from MMU faults if we don't have an MMU,
  873. * but we might get them from range checking
  874. */
  875. ret = op_ret;
  876. goto out_put_keys;
  877. #endif
  878. if (unlikely(op_ret != -EFAULT)) {
  879. ret = op_ret;
  880. goto out_put_keys;
  881. }
  882. ret = fault_in_user_writeable(uaddr2);
  883. if (ret)
  884. goto out_put_keys;
  885. if (!(flags & FLAGS_SHARED))
  886. goto retry_private;
  887. put_futex_key(&key2);
  888. put_futex_key(&key1);
  889. goto retry;
  890. }
  891. head = &hb1->chain;
  892. plist_for_each_entry_safe(this, next, head, list) {
  893. if (match_futex (&this->key, &key1)) {
  894. wake_futex(this);
  895. if (++ret >= nr_wake)
  896. break;
  897. }
  898. }
  899. if (op_ret > 0) {
  900. head = &hb2->chain;
  901. op_ret = 0;
  902. plist_for_each_entry_safe(this, next, head, list) {
  903. if (match_futex (&this->key, &key2)) {
  904. wake_futex(this);
  905. if (++op_ret >= nr_wake2)
  906. break;
  907. }
  908. }
  909. ret += op_ret;
  910. }
  911. double_unlock_hb(hb1, hb2);
  912. out_put_keys:
  913. put_futex_key(&key2);
  914. out_put_key1:
  915. put_futex_key(&key1);
  916. out:
  917. return ret;
  918. }
  919. /**
  920. * requeue_futex() - Requeue a futex_q from one hb to another
  921. * @q: the futex_q to requeue
  922. * @hb1: the source hash_bucket
  923. * @hb2: the target hash_bucket
  924. * @key2: the new key for the requeued futex_q
  925. */
  926. static inline
  927. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  928. struct futex_hash_bucket *hb2, union futex_key *key2)
  929. {
  930. /*
  931. * If key1 and key2 hash to the same bucket, no need to
  932. * requeue.
  933. */
  934. if (likely(&hb1->chain != &hb2->chain)) {
  935. plist_del(&q->list, &hb1->chain);
  936. plist_add(&q->list, &hb2->chain);
  937. q->lock_ptr = &hb2->lock;
  938. }
  939. get_futex_key_refs(key2);
  940. q->key = *key2;
  941. }
  942. /**
  943. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  944. * @q: the futex_q
  945. * @key: the key of the requeue target futex
  946. * @hb: the hash_bucket of the requeue target futex
  947. *
  948. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  949. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  950. * to the requeue target futex so the waiter can detect the wakeup on the right
  951. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  952. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  953. * to protect access to the pi_state to fixup the owner later. Must be called
  954. * with both q->lock_ptr and hb->lock held.
  955. */
  956. static inline
  957. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  958. struct futex_hash_bucket *hb)
  959. {
  960. get_futex_key_refs(key);
  961. q->key = *key;
  962. __unqueue_futex(q);
  963. WARN_ON(!q->rt_waiter);
  964. q->rt_waiter = NULL;
  965. q->lock_ptr = &hb->lock;
  966. wake_up_state(q->task, TASK_NORMAL);
  967. }
  968. /**
  969. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  970. * @pifutex: the user address of the to futex
  971. * @hb1: the from futex hash bucket, must be locked by the caller
  972. * @hb2: the to futex hash bucket, must be locked by the caller
  973. * @key1: the from futex key
  974. * @key2: the to futex key
  975. * @ps: address to store the pi_state pointer
  976. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  977. *
  978. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  979. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  980. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  981. * hb1 and hb2 must be held by the caller.
  982. *
  983. * Returns:
  984. * 0 - failed to acquire the lock atomicly
  985. * 1 - acquired the lock
  986. * <0 - error
  987. */
  988. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  989. struct futex_hash_bucket *hb1,
  990. struct futex_hash_bucket *hb2,
  991. union futex_key *key1, union futex_key *key2,
  992. struct futex_pi_state **ps, int set_waiters)
  993. {
  994. struct futex_q *top_waiter = NULL;
  995. u32 curval;
  996. int ret;
  997. if (get_futex_value_locked(&curval, pifutex))
  998. return -EFAULT;
  999. /*
  1000. * Find the top_waiter and determine if there are additional waiters.
  1001. * If the caller intends to requeue more than 1 waiter to pifutex,
  1002. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1003. * as we have means to handle the possible fault. If not, don't set
  1004. * the bit unecessarily as it will force the subsequent unlock to enter
  1005. * the kernel.
  1006. */
  1007. top_waiter = futex_top_waiter(hb1, key1);
  1008. /* There are no waiters, nothing for us to do. */
  1009. if (!top_waiter)
  1010. return 0;
  1011. /* Ensure we requeue to the expected futex. */
  1012. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1013. return -EINVAL;
  1014. /*
  1015. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1016. * the contended case or if set_waiters is 1. The pi_state is returned
  1017. * in ps in contended cases.
  1018. */
  1019. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1020. set_waiters);
  1021. if (ret == 1)
  1022. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1023. return ret;
  1024. }
  1025. /**
  1026. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1027. * @uaddr1: source futex user address
  1028. * @flags: futex flags (FLAGS_SHARED, etc.)
  1029. * @uaddr2: target futex user address
  1030. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1031. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1032. * @cmpval: @uaddr1 expected value (or %NULL)
  1033. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1034. * pi futex (pi to pi requeue is not supported)
  1035. *
  1036. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1037. * uaddr2 atomically on behalf of the top waiter.
  1038. *
  1039. * Returns:
  1040. * >=0 - on success, the number of tasks requeued or woken
  1041. * <0 - on error
  1042. */
  1043. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1044. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1045. u32 *cmpval, int requeue_pi)
  1046. {
  1047. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1048. int drop_count = 0, task_count = 0, ret;
  1049. struct futex_pi_state *pi_state = NULL;
  1050. struct futex_hash_bucket *hb1, *hb2;
  1051. struct plist_head *head1;
  1052. struct futex_q *this, *next;
  1053. u32 curval2;
  1054. if (requeue_pi) {
  1055. /*
  1056. * requeue_pi requires a pi_state, try to allocate it now
  1057. * without any locks in case it fails.
  1058. */
  1059. if (refill_pi_state_cache())
  1060. return -ENOMEM;
  1061. /*
  1062. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1063. * + nr_requeue, since it acquires the rt_mutex prior to
  1064. * returning to userspace, so as to not leave the rt_mutex with
  1065. * waiters and no owner. However, second and third wake-ups
  1066. * cannot be predicted as they involve race conditions with the
  1067. * first wake and a fault while looking up the pi_state. Both
  1068. * pthread_cond_signal() and pthread_cond_broadcast() should
  1069. * use nr_wake=1.
  1070. */
  1071. if (nr_wake != 1)
  1072. return -EINVAL;
  1073. }
  1074. retry:
  1075. if (pi_state != NULL) {
  1076. /*
  1077. * We will have to lookup the pi_state again, so free this one
  1078. * to keep the accounting correct.
  1079. */
  1080. free_pi_state(pi_state);
  1081. pi_state = NULL;
  1082. }
  1083. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
  1084. if (unlikely(ret != 0))
  1085. goto out;
  1086. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
  1087. if (unlikely(ret != 0))
  1088. goto out_put_key1;
  1089. hb1 = hash_futex(&key1);
  1090. hb2 = hash_futex(&key2);
  1091. retry_private:
  1092. double_lock_hb(hb1, hb2);
  1093. if (likely(cmpval != NULL)) {
  1094. u32 curval;
  1095. ret = get_futex_value_locked(&curval, uaddr1);
  1096. if (unlikely(ret)) {
  1097. double_unlock_hb(hb1, hb2);
  1098. ret = get_user(curval, uaddr1);
  1099. if (ret)
  1100. goto out_put_keys;
  1101. if (!(flags & FLAGS_SHARED))
  1102. goto retry_private;
  1103. put_futex_key(&key2);
  1104. put_futex_key(&key1);
  1105. goto retry;
  1106. }
  1107. if (curval != *cmpval) {
  1108. ret = -EAGAIN;
  1109. goto out_unlock;
  1110. }
  1111. }
  1112. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1113. /*
  1114. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1115. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1116. * bit. We force this here where we are able to easily handle
  1117. * faults rather in the requeue loop below.
  1118. */
  1119. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1120. &key2, &pi_state, nr_requeue);
  1121. /*
  1122. * At this point the top_waiter has either taken uaddr2 or is
  1123. * waiting on it. If the former, then the pi_state will not
  1124. * exist yet, look it up one more time to ensure we have a
  1125. * reference to it.
  1126. */
  1127. if (ret == 1) {
  1128. WARN_ON(pi_state);
  1129. drop_count++;
  1130. task_count++;
  1131. ret = get_futex_value_locked(&curval2, uaddr2);
  1132. if (!ret)
  1133. ret = lookup_pi_state(curval2, hb2, &key2,
  1134. &pi_state);
  1135. }
  1136. switch (ret) {
  1137. case 0:
  1138. break;
  1139. case -EFAULT:
  1140. double_unlock_hb(hb1, hb2);
  1141. put_futex_key(&key2);
  1142. put_futex_key(&key1);
  1143. ret = fault_in_user_writeable(uaddr2);
  1144. if (!ret)
  1145. goto retry;
  1146. goto out;
  1147. case -EAGAIN:
  1148. /* The owner was exiting, try again. */
  1149. double_unlock_hb(hb1, hb2);
  1150. put_futex_key(&key2);
  1151. put_futex_key(&key1);
  1152. cond_resched();
  1153. goto retry;
  1154. default:
  1155. goto out_unlock;
  1156. }
  1157. }
  1158. head1 = &hb1->chain;
  1159. plist_for_each_entry_safe(this, next, head1, list) {
  1160. if (task_count - nr_wake >= nr_requeue)
  1161. break;
  1162. if (!match_futex(&this->key, &key1))
  1163. continue;
  1164. /*
  1165. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1166. * be paired with each other and no other futex ops.
  1167. */
  1168. if ((requeue_pi && !this->rt_waiter) ||
  1169. (!requeue_pi && this->rt_waiter)) {
  1170. ret = -EINVAL;
  1171. break;
  1172. }
  1173. /*
  1174. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1175. * lock, we already woke the top_waiter. If not, it will be
  1176. * woken by futex_unlock_pi().
  1177. */
  1178. if (++task_count <= nr_wake && !requeue_pi) {
  1179. wake_futex(this);
  1180. continue;
  1181. }
  1182. /* Ensure we requeue to the expected futex for requeue_pi. */
  1183. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1184. ret = -EINVAL;
  1185. break;
  1186. }
  1187. /*
  1188. * Requeue nr_requeue waiters and possibly one more in the case
  1189. * of requeue_pi if we couldn't acquire the lock atomically.
  1190. */
  1191. if (requeue_pi) {
  1192. /* Prepare the waiter to take the rt_mutex. */
  1193. atomic_inc(&pi_state->refcount);
  1194. this->pi_state = pi_state;
  1195. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1196. this->rt_waiter,
  1197. this->task, 1);
  1198. if (ret == 1) {
  1199. /* We got the lock. */
  1200. requeue_pi_wake_futex(this, &key2, hb2);
  1201. drop_count++;
  1202. continue;
  1203. } else if (ret) {
  1204. /* -EDEADLK */
  1205. this->pi_state = NULL;
  1206. free_pi_state(pi_state);
  1207. goto out_unlock;
  1208. }
  1209. }
  1210. requeue_futex(this, hb1, hb2, &key2);
  1211. drop_count++;
  1212. }
  1213. out_unlock:
  1214. double_unlock_hb(hb1, hb2);
  1215. /*
  1216. * drop_futex_key_refs() must be called outside the spinlocks. During
  1217. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1218. * one at key2 and updated their key pointer. We no longer need to
  1219. * hold the references to key1.
  1220. */
  1221. while (--drop_count >= 0)
  1222. drop_futex_key_refs(&key1);
  1223. out_put_keys:
  1224. put_futex_key(&key2);
  1225. out_put_key1:
  1226. put_futex_key(&key1);
  1227. out:
  1228. if (pi_state != NULL)
  1229. free_pi_state(pi_state);
  1230. return ret ? ret : task_count;
  1231. }
  1232. /* The key must be already stored in q->key. */
  1233. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1234. __acquires(&hb->lock)
  1235. {
  1236. struct futex_hash_bucket *hb;
  1237. hb = hash_futex(&q->key);
  1238. q->lock_ptr = &hb->lock;
  1239. spin_lock(&hb->lock);
  1240. return hb;
  1241. }
  1242. static inline void
  1243. queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
  1244. __releases(&hb->lock)
  1245. {
  1246. spin_unlock(&hb->lock);
  1247. }
  1248. /**
  1249. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1250. * @q: The futex_q to enqueue
  1251. * @hb: The destination hash bucket
  1252. *
  1253. * The hb->lock must be held by the caller, and is released here. A call to
  1254. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1255. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1256. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1257. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1258. * an example).
  1259. */
  1260. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1261. __releases(&hb->lock)
  1262. {
  1263. int prio;
  1264. /*
  1265. * The priority used to register this element is
  1266. * - either the real thread-priority for the real-time threads
  1267. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1268. * - or MAX_RT_PRIO for non-RT threads.
  1269. * Thus, all RT-threads are woken first in priority order, and
  1270. * the others are woken last, in FIFO order.
  1271. */
  1272. prio = min(current->normal_prio, MAX_RT_PRIO);
  1273. plist_node_init(&q->list, prio);
  1274. plist_add(&q->list, &hb->chain);
  1275. q->task = current;
  1276. spin_unlock(&hb->lock);
  1277. }
  1278. /**
  1279. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1280. * @q: The futex_q to unqueue
  1281. *
  1282. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1283. * be paired with exactly one earlier call to queue_me().
  1284. *
  1285. * Returns:
  1286. * 1 - if the futex_q was still queued (and we removed unqueued it)
  1287. * 0 - if the futex_q was already removed by the waking thread
  1288. */
  1289. static int unqueue_me(struct futex_q *q)
  1290. {
  1291. spinlock_t *lock_ptr;
  1292. int ret = 0;
  1293. /* In the common case we don't take the spinlock, which is nice. */
  1294. retry:
  1295. lock_ptr = q->lock_ptr;
  1296. barrier();
  1297. if (lock_ptr != NULL) {
  1298. spin_lock(lock_ptr);
  1299. /*
  1300. * q->lock_ptr can change between reading it and
  1301. * spin_lock(), causing us to take the wrong lock. This
  1302. * corrects the race condition.
  1303. *
  1304. * Reasoning goes like this: if we have the wrong lock,
  1305. * q->lock_ptr must have changed (maybe several times)
  1306. * between reading it and the spin_lock(). It can
  1307. * change again after the spin_lock() but only if it was
  1308. * already changed before the spin_lock(). It cannot,
  1309. * however, change back to the original value. Therefore
  1310. * we can detect whether we acquired the correct lock.
  1311. */
  1312. if (unlikely(lock_ptr != q->lock_ptr)) {
  1313. spin_unlock(lock_ptr);
  1314. goto retry;
  1315. }
  1316. __unqueue_futex(q);
  1317. BUG_ON(q->pi_state);
  1318. spin_unlock(lock_ptr);
  1319. ret = 1;
  1320. }
  1321. drop_futex_key_refs(&q->key);
  1322. return ret;
  1323. }
  1324. /*
  1325. * PI futexes can not be requeued and must remove themself from the
  1326. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1327. * and dropped here.
  1328. */
  1329. static void unqueue_me_pi(struct futex_q *q)
  1330. __releases(q->lock_ptr)
  1331. {
  1332. __unqueue_futex(q);
  1333. BUG_ON(!q->pi_state);
  1334. free_pi_state(q->pi_state);
  1335. q->pi_state = NULL;
  1336. spin_unlock(q->lock_ptr);
  1337. }
  1338. /*
  1339. * Fixup the pi_state owner with the new owner.
  1340. *
  1341. * Must be called with hash bucket lock held and mm->sem held for non
  1342. * private futexes.
  1343. */
  1344. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1345. struct task_struct *newowner)
  1346. {
  1347. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1348. struct futex_pi_state *pi_state = q->pi_state;
  1349. struct task_struct *oldowner = pi_state->owner;
  1350. u32 uval, curval, newval;
  1351. int ret;
  1352. /* Owner died? */
  1353. if (!pi_state->owner)
  1354. newtid |= FUTEX_OWNER_DIED;
  1355. /*
  1356. * We are here either because we stole the rtmutex from the
  1357. * pending owner or we are the pending owner which failed to
  1358. * get the rtmutex. We have to replace the pending owner TID
  1359. * in the user space variable. This must be atomic as we have
  1360. * to preserve the owner died bit here.
  1361. *
  1362. * Note: We write the user space value _before_ changing the pi_state
  1363. * because we can fault here. Imagine swapped out pages or a fork
  1364. * that marked all the anonymous memory readonly for cow.
  1365. *
  1366. * Modifying pi_state _before_ the user space value would
  1367. * leave the pi_state in an inconsistent state when we fault
  1368. * here, because we need to drop the hash bucket lock to
  1369. * handle the fault. This might be observed in the PID check
  1370. * in lookup_pi_state.
  1371. */
  1372. retry:
  1373. if (get_futex_value_locked(&uval, uaddr))
  1374. goto handle_fault;
  1375. while (1) {
  1376. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1377. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  1378. if (curval == -EFAULT)
  1379. goto handle_fault;
  1380. if (curval == uval)
  1381. break;
  1382. uval = curval;
  1383. }
  1384. /*
  1385. * We fixed up user space. Now we need to fix the pi_state
  1386. * itself.
  1387. */
  1388. if (pi_state->owner != NULL) {
  1389. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1390. WARN_ON(list_empty(&pi_state->list));
  1391. list_del_init(&pi_state->list);
  1392. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1393. }
  1394. pi_state->owner = newowner;
  1395. raw_spin_lock_irq(&newowner->pi_lock);
  1396. WARN_ON(!list_empty(&pi_state->list));
  1397. list_add(&pi_state->list, &newowner->pi_state_list);
  1398. raw_spin_unlock_irq(&newowner->pi_lock);
  1399. return 0;
  1400. /*
  1401. * To handle the page fault we need to drop the hash bucket
  1402. * lock here. That gives the other task (either the pending
  1403. * owner itself or the task which stole the rtmutex) the
  1404. * chance to try the fixup of the pi_state. So once we are
  1405. * back from handling the fault we need to check the pi_state
  1406. * after reacquiring the hash bucket lock and before trying to
  1407. * do another fixup. When the fixup has been done already we
  1408. * simply return.
  1409. */
  1410. handle_fault:
  1411. spin_unlock(q->lock_ptr);
  1412. ret = fault_in_user_writeable(uaddr);
  1413. spin_lock(q->lock_ptr);
  1414. /*
  1415. * Check if someone else fixed it for us:
  1416. */
  1417. if (pi_state->owner != oldowner)
  1418. return 0;
  1419. if (ret)
  1420. return ret;
  1421. goto retry;
  1422. }
  1423. static long futex_wait_restart(struct restart_block *restart);
  1424. /**
  1425. * fixup_owner() - Post lock pi_state and corner case management
  1426. * @uaddr: user address of the futex
  1427. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1428. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1429. *
  1430. * After attempting to lock an rt_mutex, this function is called to cleanup
  1431. * the pi_state owner as well as handle race conditions that may allow us to
  1432. * acquire the lock. Must be called with the hb lock held.
  1433. *
  1434. * Returns:
  1435. * 1 - success, lock taken
  1436. * 0 - success, lock not taken
  1437. * <0 - on error (-EFAULT)
  1438. */
  1439. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  1440. {
  1441. struct task_struct *owner;
  1442. int ret = 0;
  1443. if (locked) {
  1444. /*
  1445. * Got the lock. We might not be the anticipated owner if we
  1446. * did a lock-steal - fix up the PI-state in that case:
  1447. */
  1448. if (q->pi_state->owner != current)
  1449. ret = fixup_pi_state_owner(uaddr, q, current);
  1450. goto out;
  1451. }
  1452. /*
  1453. * Catch the rare case, where the lock was released when we were on the
  1454. * way back before we locked the hash bucket.
  1455. */
  1456. if (q->pi_state->owner == current) {
  1457. /*
  1458. * Try to get the rt_mutex now. This might fail as some other
  1459. * task acquired the rt_mutex after we removed ourself from the
  1460. * rt_mutex waiters list.
  1461. */
  1462. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1463. locked = 1;
  1464. goto out;
  1465. }
  1466. /*
  1467. * pi_state is incorrect, some other task did a lock steal and
  1468. * we returned due to timeout or signal without taking the
  1469. * rt_mutex. Too late. We can access the rt_mutex_owner without
  1470. * locking, as the other task is now blocked on the hash bucket
  1471. * lock. Fix the state up.
  1472. */
  1473. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  1474. ret = fixup_pi_state_owner(uaddr, q, owner);
  1475. goto out;
  1476. }
  1477. /*
  1478. * Paranoia check. If we did not take the lock, then we should not be
  1479. * the owner, nor the pending owner, of the rt_mutex.
  1480. */
  1481. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  1482. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  1483. "pi-state %p\n", ret,
  1484. q->pi_state->pi_mutex.owner,
  1485. q->pi_state->owner);
  1486. out:
  1487. return ret ? ret : locked;
  1488. }
  1489. /**
  1490. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  1491. * @hb: the futex hash bucket, must be locked by the caller
  1492. * @q: the futex_q to queue up on
  1493. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  1494. */
  1495. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  1496. struct hrtimer_sleeper *timeout)
  1497. {
  1498. /*
  1499. * The task state is guaranteed to be set before another task can
  1500. * wake it. set_current_state() is implemented using set_mb() and
  1501. * queue_me() calls spin_unlock() upon completion, both serializing
  1502. * access to the hash list and forcing another memory barrier.
  1503. */
  1504. set_current_state(TASK_INTERRUPTIBLE);
  1505. queue_me(q, hb);
  1506. /* Arm the timer */
  1507. if (timeout) {
  1508. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  1509. if (!hrtimer_active(&timeout->timer))
  1510. timeout->task = NULL;
  1511. }
  1512. /*
  1513. * If we have been removed from the hash list, then another task
  1514. * has tried to wake us, and we can skip the call to schedule().
  1515. */
  1516. if (likely(!plist_node_empty(&q->list))) {
  1517. /*
  1518. * If the timer has already expired, current will already be
  1519. * flagged for rescheduling. Only call schedule if there
  1520. * is no timeout, or if it has yet to expire.
  1521. */
  1522. if (!timeout || timeout->task)
  1523. schedule();
  1524. }
  1525. __set_current_state(TASK_RUNNING);
  1526. }
  1527. /**
  1528. * futex_wait_setup() - Prepare to wait on a futex
  1529. * @uaddr: the futex userspace address
  1530. * @val: the expected value
  1531. * @flags: futex flags (FLAGS_SHARED, etc.)
  1532. * @q: the associated futex_q
  1533. * @hb: storage for hash_bucket pointer to be returned to caller
  1534. *
  1535. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  1536. * compare it with the expected value. Handle atomic faults internally.
  1537. * Return with the hb lock held and a q.key reference on success, and unlocked
  1538. * with no q.key reference on failure.
  1539. *
  1540. * Returns:
  1541. * 0 - uaddr contains val and hb has been locked
  1542. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
  1543. */
  1544. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  1545. struct futex_q *q, struct futex_hash_bucket **hb)
  1546. {
  1547. u32 uval;
  1548. int ret;
  1549. /*
  1550. * Access the page AFTER the hash-bucket is locked.
  1551. * Order is important:
  1552. *
  1553. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  1554. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  1555. *
  1556. * The basic logical guarantee of a futex is that it blocks ONLY
  1557. * if cond(var) is known to be true at the time of blocking, for
  1558. * any cond. If we queued after testing *uaddr, that would open
  1559. * a race condition where we could block indefinitely with
  1560. * cond(var) false, which would violate the guarantee.
  1561. *
  1562. * A consequence is that futex_wait() can return zero and absorb
  1563. * a wakeup when *uaddr != val on entry to the syscall. This is
  1564. * rare, but normal.
  1565. */
  1566. retry:
  1567. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
  1568. if (unlikely(ret != 0))
  1569. return ret;
  1570. retry_private:
  1571. *hb = queue_lock(q);
  1572. ret = get_futex_value_locked(&uval, uaddr);
  1573. if (ret) {
  1574. queue_unlock(q, *hb);
  1575. ret = get_user(uval, uaddr);
  1576. if (ret)
  1577. goto out;
  1578. if (!(flags & FLAGS_SHARED))
  1579. goto retry_private;
  1580. put_futex_key(&q->key);
  1581. goto retry;
  1582. }
  1583. if (uval != val) {
  1584. queue_unlock(q, *hb);
  1585. ret = -EWOULDBLOCK;
  1586. }
  1587. out:
  1588. if (ret)
  1589. put_futex_key(&q->key);
  1590. return ret;
  1591. }
  1592. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  1593. ktime_t *abs_time, u32 bitset)
  1594. {
  1595. struct hrtimer_sleeper timeout, *to = NULL;
  1596. struct restart_block *restart;
  1597. struct futex_hash_bucket *hb;
  1598. struct futex_q q = futex_q_init;
  1599. int ret;
  1600. if (!bitset)
  1601. return -EINVAL;
  1602. q.bitset = bitset;
  1603. if (abs_time) {
  1604. to = &timeout;
  1605. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  1606. CLOCK_REALTIME : CLOCK_MONOTONIC,
  1607. HRTIMER_MODE_ABS);
  1608. hrtimer_init_sleeper(to, current);
  1609. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1610. current->timer_slack_ns);
  1611. }
  1612. retry:
  1613. /*
  1614. * Prepare to wait on uaddr. On success, holds hb lock and increments
  1615. * q.key refs.
  1616. */
  1617. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  1618. if (ret)
  1619. goto out;
  1620. /* queue_me and wait for wakeup, timeout, or a signal. */
  1621. futex_wait_queue_me(hb, &q, to);
  1622. /* If we were woken (and unqueued), we succeeded, whatever. */
  1623. ret = 0;
  1624. /* unqueue_me() drops q.key ref */
  1625. if (!unqueue_me(&q))
  1626. goto out;
  1627. ret = -ETIMEDOUT;
  1628. if (to && !to->task)
  1629. goto out;
  1630. /*
  1631. * We expect signal_pending(current), but we might be the
  1632. * victim of a spurious wakeup as well.
  1633. */
  1634. if (!signal_pending(current))
  1635. goto retry;
  1636. ret = -ERESTARTSYS;
  1637. if (!abs_time)
  1638. goto out;
  1639. restart = &current_thread_info()->restart_block;
  1640. restart->fn = futex_wait_restart;
  1641. restart->futex.uaddr = uaddr;
  1642. restart->futex.val = val;
  1643. restart->futex.time = abs_time->tv64;
  1644. restart->futex.bitset = bitset;
  1645. restart->futex.flags = flags;
  1646. ret = -ERESTART_RESTARTBLOCK;
  1647. out:
  1648. if (to) {
  1649. hrtimer_cancel(&to->timer);
  1650. destroy_hrtimer_on_stack(&to->timer);
  1651. }
  1652. return ret;
  1653. }
  1654. static long futex_wait_restart(struct restart_block *restart)
  1655. {
  1656. u32 __user *uaddr = restart->futex.uaddr;
  1657. ktime_t t, *tp = NULL;
  1658. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  1659. t.tv64 = restart->futex.time;
  1660. tp = &t;
  1661. }
  1662. restart->fn = do_no_restart_syscall;
  1663. return (long)futex_wait(uaddr, restart->futex.flags,
  1664. restart->futex.val, tp, restart->futex.bitset);
  1665. }
  1666. /*
  1667. * Userspace tried a 0 -> TID atomic transition of the futex value
  1668. * and failed. The kernel side here does the whole locking operation:
  1669. * if there are waiters then it will block, it does PI, etc. (Due to
  1670. * races the kernel might see a 0 value of the futex too.)
  1671. */
  1672. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
  1673. ktime_t *time, int trylock)
  1674. {
  1675. struct hrtimer_sleeper timeout, *to = NULL;
  1676. struct futex_hash_bucket *hb;
  1677. struct futex_q q = futex_q_init;
  1678. int res, ret;
  1679. if (refill_pi_state_cache())
  1680. return -ENOMEM;
  1681. if (time) {
  1682. to = &timeout;
  1683. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  1684. HRTIMER_MODE_ABS);
  1685. hrtimer_init_sleeper(to, current);
  1686. hrtimer_set_expires(&to->timer, *time);
  1687. }
  1688. retry:
  1689. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
  1690. if (unlikely(ret != 0))
  1691. goto out;
  1692. retry_private:
  1693. hb = queue_lock(&q);
  1694. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  1695. if (unlikely(ret)) {
  1696. switch (ret) {
  1697. case 1:
  1698. /* We got the lock. */
  1699. ret = 0;
  1700. goto out_unlock_put_key;
  1701. case -EFAULT:
  1702. goto uaddr_faulted;
  1703. case -EAGAIN:
  1704. /*
  1705. * Task is exiting and we just wait for the
  1706. * exit to complete.
  1707. */
  1708. queue_unlock(&q, hb);
  1709. put_futex_key(&q.key);
  1710. cond_resched();
  1711. goto retry;
  1712. default:
  1713. goto out_unlock_put_key;
  1714. }
  1715. }
  1716. /*
  1717. * Only actually queue now that the atomic ops are done:
  1718. */
  1719. queue_me(&q, hb);
  1720. WARN_ON(!q.pi_state);
  1721. /*
  1722. * Block on the PI mutex:
  1723. */
  1724. if (!trylock)
  1725. ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
  1726. else {
  1727. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  1728. /* Fixup the trylock return value: */
  1729. ret = ret ? 0 : -EWOULDBLOCK;
  1730. }
  1731. spin_lock(q.lock_ptr);
  1732. /*
  1733. * Fixup the pi_state owner and possibly acquire the lock if we
  1734. * haven't already.
  1735. */
  1736. res = fixup_owner(uaddr, &q, !ret);
  1737. /*
  1738. * If fixup_owner() returned an error, proprogate that. If it acquired
  1739. * the lock, clear our -ETIMEDOUT or -EINTR.
  1740. */
  1741. if (res)
  1742. ret = (res < 0) ? res : 0;
  1743. /*
  1744. * If fixup_owner() faulted and was unable to handle the fault, unlock
  1745. * it and return the fault to userspace.
  1746. */
  1747. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  1748. rt_mutex_unlock(&q.pi_state->pi_mutex);
  1749. /* Unqueue and drop the lock */
  1750. unqueue_me_pi(&q);
  1751. goto out_put_key;
  1752. out_unlock_put_key:
  1753. queue_unlock(&q, hb);
  1754. out_put_key:
  1755. put_futex_key(&q.key);
  1756. out:
  1757. if (to)
  1758. destroy_hrtimer_on_stack(&to->timer);
  1759. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  1760. uaddr_faulted:
  1761. queue_unlock(&q, hb);
  1762. ret = fault_in_user_writeable(uaddr);
  1763. if (ret)
  1764. goto out_put_key;
  1765. if (!(flags & FLAGS_SHARED))
  1766. goto retry_private;
  1767. put_futex_key(&q.key);
  1768. goto retry;
  1769. }
  1770. /*
  1771. * Userspace attempted a TID -> 0 atomic transition, and failed.
  1772. * This is the in-kernel slowpath: we look up the PI state (if any),
  1773. * and do the rt-mutex unlock.
  1774. */
  1775. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  1776. {
  1777. struct futex_hash_bucket *hb;
  1778. struct futex_q *this, *next;
  1779. u32 uval;
  1780. struct plist_head *head;
  1781. union futex_key key = FUTEX_KEY_INIT;
  1782. int ret;
  1783. retry:
  1784. if (get_user(uval, uaddr))
  1785. return -EFAULT;
  1786. /*
  1787. * We release only a lock we actually own:
  1788. */
  1789. if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
  1790. return -EPERM;
  1791. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
  1792. if (unlikely(ret != 0))
  1793. goto out;
  1794. hb = hash_futex(&key);
  1795. spin_lock(&hb->lock);
  1796. /*
  1797. * To avoid races, try to do the TID -> 0 atomic transition
  1798. * again. If it succeeds then we can return without waking
  1799. * anyone else up:
  1800. */
  1801. if (!(uval & FUTEX_OWNER_DIED))
  1802. uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
  1803. if (unlikely(uval == -EFAULT))
  1804. goto pi_faulted;
  1805. /*
  1806. * Rare case: we managed to release the lock atomically,
  1807. * no need to wake anyone else up:
  1808. */
  1809. if (unlikely(uval == task_pid_vnr(current)))
  1810. goto out_unlock;
  1811. /*
  1812. * Ok, other tasks may need to be woken up - check waiters
  1813. * and do the wakeup if necessary:
  1814. */
  1815. head = &hb->chain;
  1816. plist_for_each_entry_safe(this, next, head, list) {
  1817. if (!match_futex (&this->key, &key))
  1818. continue;
  1819. ret = wake_futex_pi(uaddr, uval, this);
  1820. /*
  1821. * The atomic access to the futex value
  1822. * generated a pagefault, so retry the
  1823. * user-access and the wakeup:
  1824. */
  1825. if (ret == -EFAULT)
  1826. goto pi_faulted;
  1827. goto out_unlock;
  1828. }
  1829. /*
  1830. * No waiters - kernel unlocks the futex:
  1831. */
  1832. if (!(uval & FUTEX_OWNER_DIED)) {
  1833. ret = unlock_futex_pi(uaddr, uval);
  1834. if (ret == -EFAULT)
  1835. goto pi_faulted;
  1836. }
  1837. out_unlock:
  1838. spin_unlock(&hb->lock);
  1839. put_futex_key(&key);
  1840. out:
  1841. return ret;
  1842. pi_faulted:
  1843. spin_unlock(&hb->lock);
  1844. put_futex_key(&key);
  1845. ret = fault_in_user_writeable(uaddr);
  1846. if (!ret)
  1847. goto retry;
  1848. return ret;
  1849. }
  1850. /**
  1851. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  1852. * @hb: the hash_bucket futex_q was original enqueued on
  1853. * @q: the futex_q woken while waiting to be requeued
  1854. * @key2: the futex_key of the requeue target futex
  1855. * @timeout: the timeout associated with the wait (NULL if none)
  1856. *
  1857. * Detect if the task was woken on the initial futex as opposed to the requeue
  1858. * target futex. If so, determine if it was a timeout or a signal that caused
  1859. * the wakeup and return the appropriate error code to the caller. Must be
  1860. * called with the hb lock held.
  1861. *
  1862. * Returns
  1863. * 0 - no early wakeup detected
  1864. * <0 - -ETIMEDOUT or -ERESTARTNOINTR
  1865. */
  1866. static inline
  1867. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  1868. struct futex_q *q, union futex_key *key2,
  1869. struct hrtimer_sleeper *timeout)
  1870. {
  1871. int ret = 0;
  1872. /*
  1873. * With the hb lock held, we avoid races while we process the wakeup.
  1874. * We only need to hold hb (and not hb2) to ensure atomicity as the
  1875. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  1876. * It can't be requeued from uaddr2 to something else since we don't
  1877. * support a PI aware source futex for requeue.
  1878. */
  1879. if (!match_futex(&q->key, key2)) {
  1880. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  1881. /*
  1882. * We were woken prior to requeue by a timeout or a signal.
  1883. * Unqueue the futex_q and determine which it was.
  1884. */
  1885. plist_del(&q->list, &hb->chain);
  1886. /* Handle spurious wakeups gracefully */
  1887. ret = -EWOULDBLOCK;
  1888. if (timeout && !timeout->task)
  1889. ret = -ETIMEDOUT;
  1890. else if (signal_pending(current))
  1891. ret = -ERESTARTNOINTR;
  1892. }
  1893. return ret;
  1894. }
  1895. /**
  1896. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  1897. * @uaddr: the futex we initially wait on (non-pi)
  1898. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  1899. * the same type, no requeueing from private to shared, etc.
  1900. * @val: the expected value of uaddr
  1901. * @abs_time: absolute timeout
  1902. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  1903. * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
  1904. * @uaddr2: the pi futex we will take prior to returning to user-space
  1905. *
  1906. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  1907. * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
  1908. * complete the acquisition of the rt_mutex prior to returning to userspace.
  1909. * This ensures the rt_mutex maintains an owner when it has waiters; without
  1910. * one, the pi logic wouldn't know which task to boost/deboost, if there was a
  1911. * need to.
  1912. *
  1913. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  1914. * via the following:
  1915. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  1916. * 2) wakeup on uaddr2 after a requeue
  1917. * 3) signal
  1918. * 4) timeout
  1919. *
  1920. * If 3, cleanup and return -ERESTARTNOINTR.
  1921. *
  1922. * If 2, we may then block on trying to take the rt_mutex and return via:
  1923. * 5) successful lock
  1924. * 6) signal
  1925. * 7) timeout
  1926. * 8) other lock acquisition failure
  1927. *
  1928. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  1929. *
  1930. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  1931. *
  1932. * Returns:
  1933. * 0 - On success
  1934. * <0 - On error
  1935. */
  1936. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  1937. u32 val, ktime_t *abs_time, u32 bitset,
  1938. u32 __user *uaddr2)
  1939. {
  1940. struct hrtimer_sleeper timeout, *to = NULL;
  1941. struct rt_mutex_waiter rt_waiter;
  1942. struct rt_mutex *pi_mutex = NULL;
  1943. struct futex_hash_bucket *hb;
  1944. union futex_key key2 = FUTEX_KEY_INIT;
  1945. struct futex_q q = futex_q_init;
  1946. int res, ret;
  1947. if (!bitset)
  1948. return -EINVAL;
  1949. if (abs_time) {
  1950. to = &timeout;
  1951. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  1952. CLOCK_REALTIME : CLOCK_MONOTONIC,
  1953. HRTIMER_MODE_ABS);
  1954. hrtimer_init_sleeper(to, current);
  1955. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1956. current->timer_slack_ns);
  1957. }
  1958. /*
  1959. * The waiter is allocated on our stack, manipulated by the requeue
  1960. * code while we sleep on uaddr.
  1961. */
  1962. debug_rt_mutex_init_waiter(&rt_waiter);
  1963. rt_waiter.task = NULL;
  1964. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
  1965. if (unlikely(ret != 0))
  1966. goto out;
  1967. q.bitset = bitset;
  1968. q.rt_waiter = &rt_waiter;
  1969. q.requeue_pi_key = &key2;
  1970. /*
  1971. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  1972. * count.
  1973. */
  1974. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  1975. if (ret)
  1976. goto out_key2;
  1977. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  1978. futex_wait_queue_me(hb, &q, to);
  1979. spin_lock(&hb->lock);
  1980. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  1981. spin_unlock(&hb->lock);
  1982. if (ret)
  1983. goto out_put_keys;
  1984. /*
  1985. * In order for us to be here, we know our q.key == key2, and since
  1986. * we took the hb->lock above, we also know that futex_requeue() has
  1987. * completed and we no longer have to concern ourselves with a wakeup
  1988. * race with the atomic proxy lock acquisition by the requeue code. The
  1989. * futex_requeue dropped our key1 reference and incremented our key2
  1990. * reference count.
  1991. */
  1992. /* Check if the requeue code acquired the second futex for us. */
  1993. if (!q.rt_waiter) {
  1994. /*
  1995. * Got the lock. We might not be the anticipated owner if we
  1996. * did a lock-steal - fix up the PI-state in that case.
  1997. */
  1998. if (q.pi_state && (q.pi_state->owner != current)) {
  1999. spin_lock(q.lock_ptr);
  2000. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2001. spin_unlock(q.lock_ptr);
  2002. }
  2003. } else {
  2004. /*
  2005. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2006. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2007. * the pi_state.
  2008. */
  2009. WARN_ON(!&q.pi_state);
  2010. pi_mutex = &q.pi_state->pi_mutex;
  2011. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
  2012. debug_rt_mutex_free_waiter(&rt_waiter);
  2013. spin_lock(q.lock_ptr);
  2014. /*
  2015. * Fixup the pi_state owner and possibly acquire the lock if we
  2016. * haven't already.
  2017. */
  2018. res = fixup_owner(uaddr2, &q, !ret);
  2019. /*
  2020. * If fixup_owner() returned an error, proprogate that. If it
  2021. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2022. */
  2023. if (res)
  2024. ret = (res < 0) ? res : 0;
  2025. /* Unqueue and drop the lock. */
  2026. unqueue_me_pi(&q);
  2027. }
  2028. /*
  2029. * If fixup_pi_state_owner() faulted and was unable to handle the
  2030. * fault, unlock the rt_mutex and return the fault to userspace.
  2031. */
  2032. if (ret == -EFAULT) {
  2033. if (rt_mutex_owner(pi_mutex) == current)
  2034. rt_mutex_unlock(pi_mutex);
  2035. } else if (ret == -EINTR) {
  2036. /*
  2037. * We've already been requeued, but cannot restart by calling
  2038. * futex_lock_pi() directly. We could restart this syscall, but
  2039. * it would detect that the user space "val" changed and return
  2040. * -EWOULDBLOCK. Save the overhead of the restart and return
  2041. * -EWOULDBLOCK directly.
  2042. */
  2043. ret = -EWOULDBLOCK;
  2044. }
  2045. out_put_keys:
  2046. put_futex_key(&q.key);
  2047. out_key2:
  2048. put_futex_key(&key2);
  2049. out:
  2050. if (to) {
  2051. hrtimer_cancel(&to->timer);
  2052. destroy_hrtimer_on_stack(&to->timer);
  2053. }
  2054. return ret;
  2055. }
  2056. /*
  2057. * Support for robust futexes: the kernel cleans up held futexes at
  2058. * thread exit time.
  2059. *
  2060. * Implementation: user-space maintains a per-thread list of locks it
  2061. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2062. * and marks all locks that are owned by this thread with the
  2063. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2064. * always manipulated with the lock held, so the list is private and
  2065. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2066. * field, to allow the kernel to clean up if the thread dies after
  2067. * acquiring the lock, but just before it could have added itself to
  2068. * the list. There can only be one such pending lock.
  2069. */
  2070. /**
  2071. * sys_set_robust_list() - Set the robust-futex list head of a task
  2072. * @head: pointer to the list-head
  2073. * @len: length of the list-head, as userspace expects
  2074. */
  2075. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2076. size_t, len)
  2077. {
  2078. if (!futex_cmpxchg_enabled)
  2079. return -ENOSYS;
  2080. /*
  2081. * The kernel knows only one size for now:
  2082. */
  2083. if (unlikely(len != sizeof(*head)))
  2084. return -EINVAL;
  2085. current->robust_list = head;
  2086. return 0;
  2087. }
  2088. /**
  2089. * sys_get_robust_list() - Get the robust-futex list head of a task
  2090. * @pid: pid of the process [zero for current task]
  2091. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2092. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2093. */
  2094. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2095. struct robust_list_head __user * __user *, head_ptr,
  2096. size_t __user *, len_ptr)
  2097. {
  2098. struct robust_list_head __user *head;
  2099. unsigned long ret;
  2100. const struct cred *cred = current_cred(), *pcred;
  2101. if (!futex_cmpxchg_enabled)
  2102. return -ENOSYS;
  2103. if (!pid)
  2104. head = current->robust_list;
  2105. else {
  2106. struct task_struct *p;
  2107. ret = -ESRCH;
  2108. rcu_read_lock();
  2109. p = find_task_by_vpid(pid);
  2110. if (!p)
  2111. goto err_unlock;
  2112. ret = -EPERM;
  2113. pcred = __task_cred(p);
  2114. if (cred->euid != pcred->euid &&
  2115. cred->euid != pcred->uid &&
  2116. !capable(CAP_SYS_PTRACE))
  2117. goto err_unlock;
  2118. head = p->robust_list;
  2119. rcu_read_unlock();
  2120. }
  2121. if (put_user(sizeof(*head), len_ptr))
  2122. return -EFAULT;
  2123. return put_user(head, head_ptr);
  2124. err_unlock:
  2125. rcu_read_unlock();
  2126. return ret;
  2127. }
  2128. /*
  2129. * Process a futex-list entry, check whether it's owned by the
  2130. * dying task, and do notification if so:
  2131. */
  2132. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2133. {
  2134. u32 uval, nval, mval;
  2135. retry:
  2136. if (get_user(uval, uaddr))
  2137. return -1;
  2138. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2139. /*
  2140. * Ok, this dying thread is truly holding a futex
  2141. * of interest. Set the OWNER_DIED bit atomically
  2142. * via cmpxchg, and if the value had FUTEX_WAITERS
  2143. * set, wake up a waiter (if any). (We have to do a
  2144. * futex_wake() even if OWNER_DIED is already set -
  2145. * to handle the rare but possible case of recursive
  2146. * thread-death.) The rest of the cleanup is done in
  2147. * userspace.
  2148. */
  2149. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2150. nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
  2151. if (nval == -EFAULT)
  2152. return -1;
  2153. if (nval != uval)
  2154. goto retry;
  2155. /*
  2156. * Wake robust non-PI futexes here. The wakeup of
  2157. * PI futexes happens in exit_pi_state():
  2158. */
  2159. if (!pi && (uval & FUTEX_WAITERS))
  2160. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2161. }
  2162. return 0;
  2163. }
  2164. /*
  2165. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2166. */
  2167. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2168. struct robust_list __user * __user *head,
  2169. unsigned int *pi)
  2170. {
  2171. unsigned long uentry;
  2172. if (get_user(uentry, (unsigned long __user *)head))
  2173. return -EFAULT;
  2174. *entry = (void __user *)(uentry & ~1UL);
  2175. *pi = uentry & 1;
  2176. return 0;
  2177. }
  2178. /*
  2179. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2180. * and mark any locks found there dead, and notify any waiters.
  2181. *
  2182. * We silently return on any sign of list-walking problem.
  2183. */
  2184. void exit_robust_list(struct task_struct *curr)
  2185. {
  2186. struct robust_list_head __user *head = curr->robust_list;
  2187. struct robust_list __user *entry, *next_entry, *pending;
  2188. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2189. unsigned int uninitialized_var(next_pi);
  2190. unsigned long futex_offset;
  2191. int rc;
  2192. if (!futex_cmpxchg_enabled)
  2193. return;
  2194. /*
  2195. * Fetch the list head (which was registered earlier, via
  2196. * sys_set_robust_list()):
  2197. */
  2198. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2199. return;
  2200. /*
  2201. * Fetch the relative futex offset:
  2202. */
  2203. if (get_user(futex_offset, &head->futex_offset))
  2204. return;
  2205. /*
  2206. * Fetch any possibly pending lock-add first, and handle it
  2207. * if it exists:
  2208. */
  2209. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2210. return;
  2211. next_entry = NULL; /* avoid warning with gcc */
  2212. while (entry != &head->list) {
  2213. /*
  2214. * Fetch the next entry in the list before calling
  2215. * handle_futex_death:
  2216. */
  2217. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2218. /*
  2219. * A pending lock might already be on the list, so
  2220. * don't process it twice:
  2221. */
  2222. if (entry != pending)
  2223. if (handle_futex_death((void __user *)entry + futex_offset,
  2224. curr, pi))
  2225. return;
  2226. if (rc)
  2227. return;
  2228. entry = next_entry;
  2229. pi = next_pi;
  2230. /*
  2231. * Avoid excessively long or circular lists:
  2232. */
  2233. if (!--limit)
  2234. break;
  2235. cond_resched();
  2236. }
  2237. if (pending)
  2238. handle_futex_death((void __user *)pending + futex_offset,
  2239. curr, pip);
  2240. }
  2241. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2242. u32 __user *uaddr2, u32 val2, u32 val3)
  2243. {
  2244. int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
  2245. unsigned int flags = 0;
  2246. if (!(op & FUTEX_PRIVATE_FLAG))
  2247. flags |= FLAGS_SHARED;
  2248. if (op & FUTEX_CLOCK_REALTIME) {
  2249. flags |= FLAGS_CLOCKRT;
  2250. if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
  2251. return -ENOSYS;
  2252. }
  2253. switch (cmd) {
  2254. case FUTEX_WAIT:
  2255. val3 = FUTEX_BITSET_MATCH_ANY;
  2256. case FUTEX_WAIT_BITSET:
  2257. ret = futex_wait(uaddr, flags, val, timeout, val3);
  2258. break;
  2259. case FUTEX_WAKE:
  2260. val3 = FUTEX_BITSET_MATCH_ANY;
  2261. case FUTEX_WAKE_BITSET:
  2262. ret = futex_wake(uaddr, flags, val, val3);
  2263. break;
  2264. case FUTEX_REQUEUE:
  2265. ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  2266. break;
  2267. case FUTEX_CMP_REQUEUE:
  2268. ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  2269. break;
  2270. case FUTEX_WAKE_OP:
  2271. ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  2272. break;
  2273. case FUTEX_LOCK_PI:
  2274. if (futex_cmpxchg_enabled)
  2275. ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
  2276. break;
  2277. case FUTEX_UNLOCK_PI:
  2278. if (futex_cmpxchg_enabled)
  2279. ret = futex_unlock_pi(uaddr, flags);
  2280. break;
  2281. case FUTEX_TRYLOCK_PI:
  2282. if (futex_cmpxchg_enabled)
  2283. ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
  2284. break;
  2285. case FUTEX_WAIT_REQUEUE_PI:
  2286. val3 = FUTEX_BITSET_MATCH_ANY;
  2287. ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  2288. uaddr2);
  2289. break;
  2290. case FUTEX_CMP_REQUEUE_PI:
  2291. ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  2292. break;
  2293. default:
  2294. ret = -ENOSYS;
  2295. }
  2296. return ret;
  2297. }
  2298. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2299. struct timespec __user *, utime, u32 __user *, uaddr2,
  2300. u32, val3)
  2301. {
  2302. struct timespec ts;
  2303. ktime_t t, *tp = NULL;
  2304. u32 val2 = 0;
  2305. int cmd = op & FUTEX_CMD_MASK;
  2306. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2307. cmd == FUTEX_WAIT_BITSET ||
  2308. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2309. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2310. return -EFAULT;
  2311. if (!timespec_valid(&ts))
  2312. return -EINVAL;
  2313. t = timespec_to_ktime(ts);
  2314. if (cmd == FUTEX_WAIT)
  2315. t = ktime_add_safe(ktime_get(), t);
  2316. tp = &t;
  2317. }
  2318. /*
  2319. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2320. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2321. */
  2322. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2323. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2324. val2 = (u32) (unsigned long) utime;
  2325. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2326. }
  2327. static int __init futex_init(void)
  2328. {
  2329. u32 curval;
  2330. int i;
  2331. /*
  2332. * This will fail and we want it. Some arch implementations do
  2333. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2334. * functionality. We want to know that before we call in any
  2335. * of the complex code paths. Also we want to prevent
  2336. * registration of robust lists in that case. NULL is
  2337. * guaranteed to fault and we get -EFAULT on functional
  2338. * implementation, the non-functional ones will return
  2339. * -ENOSYS.
  2340. */
  2341. curval = cmpxchg_futex_value_locked(NULL, 0, 0);
  2342. if (curval == -EFAULT)
  2343. futex_cmpxchg_enabled = 1;
  2344. for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
  2345. plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
  2346. spin_lock_init(&futex_queues[i].lock);
  2347. }
  2348. return 0;
  2349. }
  2350. __initcall(futex_init);