nouveau_hw.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819
  1. /*
  2. * Copyright 2006 Dave Airlie
  3. * Copyright 2007 Maarten Maathuis
  4. * Copyright 2007-2009 Stuart Bennett
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a
  7. * copy of this software and associated documentation files (the "Software"),
  8. * to deal in the Software without restriction, including without limitation
  9. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10. * and/or sell copies of the Software, and to permit persons to whom the
  11. * Software is furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
  20. * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
  21. * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  22. * SOFTWARE.
  23. */
  24. #include "drmP.h"
  25. #include "nouveau_drv.h"
  26. #include "nouveau_hw.h"
  27. #include <subdev/bios/pll.h>
  28. #define CHIPSET_NFORCE 0x01a0
  29. #define CHIPSET_NFORCE2 0x01f0
  30. /*
  31. * misc hw access wrappers/control functions
  32. */
  33. void
  34. NVWriteVgaSeq(struct drm_device *dev, int head, uint8_t index, uint8_t value)
  35. {
  36. NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index);
  37. NVWritePRMVIO(dev, head, NV_PRMVIO_SR, value);
  38. }
  39. uint8_t
  40. NVReadVgaSeq(struct drm_device *dev, int head, uint8_t index)
  41. {
  42. NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index);
  43. return NVReadPRMVIO(dev, head, NV_PRMVIO_SR);
  44. }
  45. void
  46. NVWriteVgaGr(struct drm_device *dev, int head, uint8_t index, uint8_t value)
  47. {
  48. NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index);
  49. NVWritePRMVIO(dev, head, NV_PRMVIO_GX, value);
  50. }
  51. uint8_t
  52. NVReadVgaGr(struct drm_device *dev, int head, uint8_t index)
  53. {
  54. NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index);
  55. return NVReadPRMVIO(dev, head, NV_PRMVIO_GX);
  56. }
  57. /* CR44 takes values 0 (head A), 3 (head B) and 4 (heads tied)
  58. * it affects only the 8 bit vga io regs, which we access using mmio at
  59. * 0xc{0,2}3c*, 0x60{1,3}3*, and 0x68{1,3}3d*
  60. * in general, the set value of cr44 does not matter: reg access works as
  61. * expected and values can be set for the appropriate head by using a 0x2000
  62. * offset as required
  63. * however:
  64. * a) pre nv40, the head B range of PRMVIO regs at 0xc23c* was not exposed and
  65. * cr44 must be set to 0 or 3 for accessing values on the correct head
  66. * through the common 0xc03c* addresses
  67. * b) in tied mode (4) head B is programmed to the values set on head A, and
  68. * access using the head B addresses can have strange results, ergo we leave
  69. * tied mode in init once we know to what cr44 should be restored on exit
  70. *
  71. * the owner parameter is slightly abused:
  72. * 0 and 1 are treated as head values and so the set value is (owner * 3)
  73. * other values are treated as literal values to set
  74. */
  75. void
  76. NVSetOwner(struct drm_device *dev, int owner)
  77. {
  78. struct drm_nouveau_private *dev_priv = dev->dev_private;
  79. if (owner == 1)
  80. owner *= 3;
  81. if (dev_priv->chipset == 0x11) {
  82. /* This might seem stupid, but the blob does it and
  83. * omitting it often locks the system up.
  84. */
  85. NVReadVgaCrtc(dev, 0, NV_CIO_SR_LOCK_INDEX);
  86. NVReadVgaCrtc(dev, 1, NV_CIO_SR_LOCK_INDEX);
  87. }
  88. /* CR44 is always changed on CRTC0 */
  89. NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_44, owner);
  90. if (dev_priv->chipset == 0x11) { /* set me harder */
  91. NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner);
  92. NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner);
  93. }
  94. }
  95. void
  96. NVBlankScreen(struct drm_device *dev, int head, bool blank)
  97. {
  98. unsigned char seq1;
  99. if (nv_two_heads(dev))
  100. NVSetOwner(dev, head);
  101. seq1 = NVReadVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX);
  102. NVVgaSeqReset(dev, head, true);
  103. if (blank)
  104. NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 | 0x20);
  105. else
  106. NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 & ~0x20);
  107. NVVgaSeqReset(dev, head, false);
  108. }
  109. /*
  110. * PLL getting
  111. */
  112. static void
  113. nouveau_hw_decode_pll(struct drm_device *dev, uint32_t reg1, uint32_t pll1,
  114. uint32_t pll2, struct nouveau_pll_vals *pllvals)
  115. {
  116. struct drm_nouveau_private *dev_priv = dev->dev_private;
  117. /* to force parsing as single stage (i.e. nv40 vplls) pass pll2 as 0 */
  118. /* log2P is & 0x7 as never more than 7, and nv30/35 only uses 3 bits */
  119. pllvals->log2P = (pll1 >> 16) & 0x7;
  120. pllvals->N2 = pllvals->M2 = 1;
  121. if (reg1 <= 0x405c) {
  122. pllvals->NM1 = pll2 & 0xffff;
  123. /* single stage NVPLL and VPLLs use 1 << 8, MPLL uses 1 << 12 */
  124. if (!(pll1 & 0x1100))
  125. pllvals->NM2 = pll2 >> 16;
  126. } else {
  127. pllvals->NM1 = pll1 & 0xffff;
  128. if (nv_two_reg_pll(dev) && pll2 & NV31_RAMDAC_ENABLE_VCO2)
  129. pllvals->NM2 = pll2 & 0xffff;
  130. else if (dev_priv->chipset == 0x30 || dev_priv->chipset == 0x35) {
  131. pllvals->M1 &= 0xf; /* only 4 bits */
  132. if (pll1 & NV30_RAMDAC_ENABLE_VCO2) {
  133. pllvals->M2 = (pll1 >> 4) & 0x7;
  134. pllvals->N2 = ((pll1 >> 21) & 0x18) |
  135. ((pll1 >> 19) & 0x7);
  136. }
  137. }
  138. }
  139. }
  140. int
  141. nouveau_hw_get_pllvals(struct drm_device *dev, enum nvbios_pll_type plltype,
  142. struct nouveau_pll_vals *pllvals)
  143. {
  144. struct drm_nouveau_private *dev_priv = dev->dev_private;
  145. uint32_t reg1 = get_pll_register(dev, plltype), pll1, pll2 = 0;
  146. struct nvbios_pll pll_lim;
  147. int ret;
  148. if (reg1 == 0)
  149. return -ENOENT;
  150. pll1 = nvReadMC(dev, reg1);
  151. if (reg1 <= 0x405c)
  152. pll2 = nvReadMC(dev, reg1 + 4);
  153. else if (nv_two_reg_pll(dev)) {
  154. uint32_t reg2 = reg1 + (reg1 == NV_RAMDAC_VPLL2 ? 0x5c : 0x70);
  155. pll2 = nvReadMC(dev, reg2);
  156. }
  157. if (dev_priv->card_type == 0x40 && reg1 >= NV_PRAMDAC_VPLL_COEFF) {
  158. uint32_t ramdac580 = NVReadRAMDAC(dev, 0, NV_PRAMDAC_580);
  159. /* check whether vpll has been forced into single stage mode */
  160. if (reg1 == NV_PRAMDAC_VPLL_COEFF) {
  161. if (ramdac580 & NV_RAMDAC_580_VPLL1_ACTIVE)
  162. pll2 = 0;
  163. } else
  164. if (ramdac580 & NV_RAMDAC_580_VPLL2_ACTIVE)
  165. pll2 = 0;
  166. }
  167. nouveau_hw_decode_pll(dev, reg1, pll1, pll2, pllvals);
  168. ret = get_pll_limits(dev, plltype, &pll_lim);
  169. if (ret)
  170. return ret;
  171. pllvals->refclk = pll_lim.refclk;
  172. return 0;
  173. }
  174. int
  175. nouveau_hw_pllvals_to_clk(struct nouveau_pll_vals *pv)
  176. {
  177. /* Avoid divide by zero if called at an inappropriate time */
  178. if (!pv->M1 || !pv->M2)
  179. return 0;
  180. return pv->N1 * pv->N2 * pv->refclk / (pv->M1 * pv->M2) >> pv->log2P;
  181. }
  182. int
  183. nouveau_hw_get_clock(struct drm_device *dev, enum nvbios_pll_type plltype)
  184. {
  185. struct nouveau_pll_vals pllvals;
  186. int ret;
  187. if (plltype == PLL_MEMORY &&
  188. (dev->pci_device & 0x0ff0) == CHIPSET_NFORCE) {
  189. uint32_t mpllP;
  190. pci_read_config_dword(pci_get_bus_and_slot(0, 3), 0x6c, &mpllP);
  191. if (!mpllP)
  192. mpllP = 4;
  193. return 400000 / mpllP;
  194. } else
  195. if (plltype == PLL_MEMORY &&
  196. (dev->pci_device & 0xff0) == CHIPSET_NFORCE2) {
  197. uint32_t clock;
  198. pci_read_config_dword(pci_get_bus_and_slot(0, 5), 0x4c, &clock);
  199. return clock;
  200. }
  201. ret = nouveau_hw_get_pllvals(dev, plltype, &pllvals);
  202. if (ret)
  203. return ret;
  204. return nouveau_hw_pllvals_to_clk(&pllvals);
  205. }
  206. static void
  207. nouveau_hw_fix_bad_vpll(struct drm_device *dev, int head)
  208. {
  209. /* the vpll on an unused head can come up with a random value, way
  210. * beyond the pll limits. for some reason this causes the chip to
  211. * lock up when reading the dac palette regs, so set a valid pll here
  212. * when such a condition detected. only seen on nv11 to date
  213. */
  214. struct nvbios_pll pll_lim;
  215. struct nouveau_pll_vals pv;
  216. enum nvbios_pll_type pll = head ? PLL_VPLL1 : PLL_VPLL0;
  217. if (get_pll_limits(dev, pll, &pll_lim))
  218. return;
  219. nouveau_hw_get_pllvals(dev, pll, &pv);
  220. if (pv.M1 >= pll_lim.vco1.min_m && pv.M1 <= pll_lim.vco1.max_m &&
  221. pv.N1 >= pll_lim.vco1.min_n && pv.N1 <= pll_lim.vco1.max_n &&
  222. pv.log2P <= pll_lim.max_p)
  223. return;
  224. NV_WARN(dev, "VPLL %d outwith limits, attempting to fix\n", head + 1);
  225. /* set lowest clock within static limits */
  226. pv.M1 = pll_lim.vco1.max_m;
  227. pv.N1 = pll_lim.vco1.min_n;
  228. pv.log2P = pll_lim.max_p_usable;
  229. nouveau_hw_setpll(dev, pll_lim.reg, &pv);
  230. }
  231. /*
  232. * vga font save/restore
  233. */
  234. static void nouveau_vga_font_io(struct drm_device *dev,
  235. void __iomem *iovram,
  236. bool save, unsigned plane)
  237. {
  238. unsigned i;
  239. NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, 1 << plane);
  240. NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, plane);
  241. for (i = 0; i < 16384; i++) {
  242. if (save) {
  243. nv04_display(dev)->saved_vga_font[plane][i] =
  244. ioread32_native(iovram + i * 4);
  245. } else {
  246. iowrite32_native(nv04_display(dev)->saved_vga_font[plane][i],
  247. iovram + i * 4);
  248. }
  249. }
  250. }
  251. void
  252. nouveau_hw_save_vga_fonts(struct drm_device *dev, bool save)
  253. {
  254. uint8_t misc, gr4, gr5, gr6, seq2, seq4;
  255. bool graphicsmode;
  256. unsigned plane;
  257. void __iomem *iovram;
  258. if (nv_two_heads(dev))
  259. NVSetOwner(dev, 0);
  260. NVSetEnablePalette(dev, 0, true);
  261. graphicsmode = NVReadVgaAttr(dev, 0, NV_CIO_AR_MODE_INDEX) & 1;
  262. NVSetEnablePalette(dev, 0, false);
  263. if (graphicsmode) /* graphics mode => framebuffer => no need to save */
  264. return;
  265. NV_INFO(dev, "%sing VGA fonts\n", save ? "Sav" : "Restor");
  266. /* map first 64KiB of VRAM, holds VGA fonts etc */
  267. iovram = ioremap(pci_resource_start(dev->pdev, 1), 65536);
  268. if (!iovram) {
  269. NV_ERROR(dev, "Failed to map VRAM, "
  270. "cannot save/restore VGA fonts.\n");
  271. return;
  272. }
  273. if (nv_two_heads(dev))
  274. NVBlankScreen(dev, 1, true);
  275. NVBlankScreen(dev, 0, true);
  276. /* save control regs */
  277. misc = NVReadPRMVIO(dev, 0, NV_PRMVIO_MISC__READ);
  278. seq2 = NVReadVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX);
  279. seq4 = NVReadVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX);
  280. gr4 = NVReadVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX);
  281. gr5 = NVReadVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX);
  282. gr6 = NVReadVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX);
  283. NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, 0x67);
  284. NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, 0x6);
  285. NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, 0x0);
  286. NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, 0x5);
  287. /* store font in planes 0..3 */
  288. for (plane = 0; plane < 4; plane++)
  289. nouveau_vga_font_io(dev, iovram, save, plane);
  290. /* restore control regs */
  291. NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, misc);
  292. NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, gr4);
  293. NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, gr5);
  294. NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, gr6);
  295. NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, seq2);
  296. NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, seq4);
  297. if (nv_two_heads(dev))
  298. NVBlankScreen(dev, 1, false);
  299. NVBlankScreen(dev, 0, false);
  300. iounmap(iovram);
  301. }
  302. /*
  303. * mode state save/load
  304. */
  305. static void
  306. rd_cio_state(struct drm_device *dev, int head,
  307. struct nv04_crtc_reg *crtcstate, int index)
  308. {
  309. crtcstate->CRTC[index] = NVReadVgaCrtc(dev, head, index);
  310. }
  311. static void
  312. wr_cio_state(struct drm_device *dev, int head,
  313. struct nv04_crtc_reg *crtcstate, int index)
  314. {
  315. NVWriteVgaCrtc(dev, head, index, crtcstate->CRTC[index]);
  316. }
  317. static void
  318. nv_save_state_ramdac(struct drm_device *dev, int head,
  319. struct nv04_mode_state *state)
  320. {
  321. struct drm_nouveau_private *dev_priv = dev->dev_private;
  322. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  323. int i;
  324. if (dev_priv->card_type >= NV_10)
  325. regp->nv10_cursync = NVReadRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC);
  326. nouveau_hw_get_pllvals(dev, head ? PLL_VPLL1 : PLL_VPLL0, &regp->pllvals);
  327. state->pllsel = NVReadRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT);
  328. if (nv_two_heads(dev))
  329. state->sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
  330. if (dev_priv->chipset == 0x11)
  331. regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11);
  332. regp->ramdac_gen_ctrl = NVReadRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL);
  333. if (nv_gf4_disp_arch(dev))
  334. regp->ramdac_630 = NVReadRAMDAC(dev, head, NV_PRAMDAC_630);
  335. if (dev_priv->chipset >= 0x30)
  336. regp->ramdac_634 = NVReadRAMDAC(dev, head, NV_PRAMDAC_634);
  337. regp->tv_setup = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP);
  338. regp->tv_vtotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL);
  339. regp->tv_vskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW);
  340. regp->tv_vsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY);
  341. regp->tv_htotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL);
  342. regp->tv_hskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW);
  343. regp->tv_hsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY);
  344. regp->tv_hsync_delay2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2);
  345. for (i = 0; i < 7; i++) {
  346. uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4);
  347. regp->fp_vert_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg);
  348. regp->fp_horiz_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg + 0x20);
  349. }
  350. if (nv_gf4_disp_arch(dev)) {
  351. regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_FP_DITHER);
  352. for (i = 0; i < 3; i++) {
  353. regp->dither_regs[i] = NVReadRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4);
  354. regp->dither_regs[i + 3] = NVReadRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4);
  355. }
  356. }
  357. regp->fp_control = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
  358. regp->fp_debug_0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0);
  359. if (!nv_gf4_disp_arch(dev) && head == 0) {
  360. /* early chips don't allow access to PRAMDAC_TMDS_* without
  361. * the head A FPCLK on (nv11 even locks up) */
  362. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0 &
  363. ~NV_PRAMDAC_FP_DEBUG_0_PWRDOWN_FPCLK);
  364. }
  365. regp->fp_debug_1 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1);
  366. regp->fp_debug_2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2);
  367. regp->fp_margin_color = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR);
  368. if (nv_gf4_disp_arch(dev))
  369. regp->ramdac_8c0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_8C0);
  370. if (dev_priv->card_type == NV_40) {
  371. regp->ramdac_a20 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A20);
  372. regp->ramdac_a24 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A24);
  373. regp->ramdac_a34 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A34);
  374. for (i = 0; i < 38; i++)
  375. regp->ctv_regs[i] = NVReadRAMDAC(dev, head,
  376. NV_PRAMDAC_CTV + 4*i);
  377. }
  378. }
  379. static void
  380. nv_load_state_ramdac(struct drm_device *dev, int head,
  381. struct nv04_mode_state *state)
  382. {
  383. struct drm_nouveau_private *dev_priv = dev->dev_private;
  384. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  385. uint32_t pllreg = head ? NV_RAMDAC_VPLL2 : NV_PRAMDAC_VPLL_COEFF;
  386. int i;
  387. if (dev_priv->card_type >= NV_10)
  388. NVWriteRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC, regp->nv10_cursync);
  389. nouveau_hw_setpll(dev, pllreg, &regp->pllvals);
  390. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT, state->pllsel);
  391. if (nv_two_heads(dev))
  392. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, state->sel_clk);
  393. if (dev_priv->chipset == 0x11)
  394. NVWriteRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11, regp->dither);
  395. NVWriteRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL, regp->ramdac_gen_ctrl);
  396. if (nv_gf4_disp_arch(dev))
  397. NVWriteRAMDAC(dev, head, NV_PRAMDAC_630, regp->ramdac_630);
  398. if (dev_priv->chipset >= 0x30)
  399. NVWriteRAMDAC(dev, head, NV_PRAMDAC_634, regp->ramdac_634);
  400. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP, regp->tv_setup);
  401. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL, regp->tv_vtotal);
  402. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW, regp->tv_vskew);
  403. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY, regp->tv_vsync_delay);
  404. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL, regp->tv_htotal);
  405. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW, regp->tv_hskew);
  406. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY, regp->tv_hsync_delay);
  407. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2, regp->tv_hsync_delay2);
  408. for (i = 0; i < 7; i++) {
  409. uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4);
  410. NVWriteRAMDAC(dev, head, ramdac_reg, regp->fp_vert_regs[i]);
  411. NVWriteRAMDAC(dev, head, ramdac_reg + 0x20, regp->fp_horiz_regs[i]);
  412. }
  413. if (nv_gf4_disp_arch(dev)) {
  414. NVWriteRAMDAC(dev, head, NV_RAMDAC_FP_DITHER, regp->dither);
  415. for (i = 0; i < 3; i++) {
  416. NVWriteRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4, regp->dither_regs[i]);
  417. NVWriteRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4, regp->dither_regs[i + 3]);
  418. }
  419. }
  420. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, regp->fp_control);
  421. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0);
  422. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1, regp->fp_debug_1);
  423. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2, regp->fp_debug_2);
  424. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR, regp->fp_margin_color);
  425. if (nv_gf4_disp_arch(dev))
  426. NVWriteRAMDAC(dev, head, NV_PRAMDAC_8C0, regp->ramdac_8c0);
  427. if (dev_priv->card_type == NV_40) {
  428. NVWriteRAMDAC(dev, head, NV_PRAMDAC_A20, regp->ramdac_a20);
  429. NVWriteRAMDAC(dev, head, NV_PRAMDAC_A24, regp->ramdac_a24);
  430. NVWriteRAMDAC(dev, head, NV_PRAMDAC_A34, regp->ramdac_a34);
  431. for (i = 0; i < 38; i++)
  432. NVWriteRAMDAC(dev, head,
  433. NV_PRAMDAC_CTV + 4*i, regp->ctv_regs[i]);
  434. }
  435. }
  436. static void
  437. nv_save_state_vga(struct drm_device *dev, int head,
  438. struct nv04_mode_state *state)
  439. {
  440. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  441. int i;
  442. regp->MiscOutReg = NVReadPRMVIO(dev, head, NV_PRMVIO_MISC__READ);
  443. for (i = 0; i < 25; i++)
  444. rd_cio_state(dev, head, regp, i);
  445. NVSetEnablePalette(dev, head, true);
  446. for (i = 0; i < 21; i++)
  447. regp->Attribute[i] = NVReadVgaAttr(dev, head, i);
  448. NVSetEnablePalette(dev, head, false);
  449. for (i = 0; i < 9; i++)
  450. regp->Graphics[i] = NVReadVgaGr(dev, head, i);
  451. for (i = 0; i < 5; i++)
  452. regp->Sequencer[i] = NVReadVgaSeq(dev, head, i);
  453. }
  454. static void
  455. nv_load_state_vga(struct drm_device *dev, int head,
  456. struct nv04_mode_state *state)
  457. {
  458. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  459. int i;
  460. NVWritePRMVIO(dev, head, NV_PRMVIO_MISC__WRITE, regp->MiscOutReg);
  461. for (i = 0; i < 5; i++)
  462. NVWriteVgaSeq(dev, head, i, regp->Sequencer[i]);
  463. nv_lock_vga_crtc_base(dev, head, false);
  464. for (i = 0; i < 25; i++)
  465. wr_cio_state(dev, head, regp, i);
  466. nv_lock_vga_crtc_base(dev, head, true);
  467. for (i = 0; i < 9; i++)
  468. NVWriteVgaGr(dev, head, i, regp->Graphics[i]);
  469. NVSetEnablePalette(dev, head, true);
  470. for (i = 0; i < 21; i++)
  471. NVWriteVgaAttr(dev, head, i, regp->Attribute[i]);
  472. NVSetEnablePalette(dev, head, false);
  473. }
  474. static void
  475. nv_save_state_ext(struct drm_device *dev, int head,
  476. struct nv04_mode_state *state)
  477. {
  478. struct drm_nouveau_private *dev_priv = dev->dev_private;
  479. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  480. int i;
  481. rd_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX);
  482. rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX);
  483. rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX);
  484. rd_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX);
  485. rd_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX);
  486. rd_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX);
  487. rd_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX);
  488. rd_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX);
  489. rd_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX);
  490. rd_cio_state(dev, head, regp, NV_CIO_CRE_21);
  491. if (dev_priv->card_type >= NV_20)
  492. rd_cio_state(dev, head, regp, NV_CIO_CRE_47);
  493. if (dev_priv->card_type >= NV_30)
  494. rd_cio_state(dev, head, regp, 0x9f);
  495. rd_cio_state(dev, head, regp, NV_CIO_CRE_49);
  496. rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX);
  497. rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX);
  498. rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX);
  499. rd_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX);
  500. if (dev_priv->card_type >= NV_10) {
  501. regp->crtc_830 = NVReadCRTC(dev, head, NV_PCRTC_830);
  502. regp->crtc_834 = NVReadCRTC(dev, head, NV_PCRTC_834);
  503. if (dev_priv->card_type >= NV_30)
  504. regp->gpio_ext = NVReadCRTC(dev, head, NV_PCRTC_GPIO_EXT);
  505. if (dev_priv->card_type == NV_40)
  506. regp->crtc_850 = NVReadCRTC(dev, head, NV_PCRTC_850);
  507. if (nv_two_heads(dev))
  508. regp->crtc_eng_ctrl = NVReadCRTC(dev, head, NV_PCRTC_ENGINE_CTRL);
  509. regp->cursor_cfg = NVReadCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG);
  510. }
  511. regp->crtc_cfg = NVReadCRTC(dev, head, NV_PCRTC_CONFIG);
  512. rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX);
  513. rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX);
  514. if (dev_priv->card_type >= NV_10) {
  515. rd_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX);
  516. rd_cio_state(dev, head, regp, NV_CIO_CRE_CSB);
  517. rd_cio_state(dev, head, regp, NV_CIO_CRE_4B);
  518. rd_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY);
  519. }
  520. /* NV11 and NV20 don't have this, they stop at 0x52. */
  521. if (nv_gf4_disp_arch(dev)) {
  522. rd_cio_state(dev, head, regp, NV_CIO_CRE_42);
  523. rd_cio_state(dev, head, regp, NV_CIO_CRE_53);
  524. rd_cio_state(dev, head, regp, NV_CIO_CRE_54);
  525. for (i = 0; i < 0x10; i++)
  526. regp->CR58[i] = NVReadVgaCrtc5758(dev, head, i);
  527. rd_cio_state(dev, head, regp, NV_CIO_CRE_59);
  528. rd_cio_state(dev, head, regp, NV_CIO_CRE_5B);
  529. rd_cio_state(dev, head, regp, NV_CIO_CRE_85);
  530. rd_cio_state(dev, head, regp, NV_CIO_CRE_86);
  531. }
  532. regp->fb_start = NVReadCRTC(dev, head, NV_PCRTC_START);
  533. }
  534. static void
  535. nv_load_state_ext(struct drm_device *dev, int head,
  536. struct nv04_mode_state *state)
  537. {
  538. struct drm_nouveau_private *dev_priv = dev->dev_private;
  539. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  540. uint32_t reg900;
  541. int i;
  542. if (dev_priv->card_type >= NV_10) {
  543. if (nv_two_heads(dev))
  544. /* setting ENGINE_CTRL (EC) *must* come before
  545. * CIO_CRE_LCD, as writing CRE_LCD sets bits 16 & 17 in
  546. * EC that should not be overwritten by writing stale EC
  547. */
  548. NVWriteCRTC(dev, head, NV_PCRTC_ENGINE_CTRL, regp->crtc_eng_ctrl);
  549. nvWriteVIDEO(dev, NV_PVIDEO_STOP, 1);
  550. nvWriteVIDEO(dev, NV_PVIDEO_INTR_EN, 0);
  551. nvWriteVIDEO(dev, NV_PVIDEO_OFFSET_BUFF(0), 0);
  552. nvWriteVIDEO(dev, NV_PVIDEO_OFFSET_BUFF(1), 0);
  553. nvWriteVIDEO(dev, NV_PVIDEO_LIMIT(0), dev_priv->fb_available_size - 1);
  554. nvWriteVIDEO(dev, NV_PVIDEO_LIMIT(1), dev_priv->fb_available_size - 1);
  555. nvWriteVIDEO(dev, NV_PVIDEO_UVPLANE_LIMIT(0), dev_priv->fb_available_size - 1);
  556. nvWriteVIDEO(dev, NV_PVIDEO_UVPLANE_LIMIT(1), dev_priv->fb_available_size - 1);
  557. nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0);
  558. NVWriteCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG, regp->cursor_cfg);
  559. NVWriteCRTC(dev, head, NV_PCRTC_830, regp->crtc_830);
  560. NVWriteCRTC(dev, head, NV_PCRTC_834, regp->crtc_834);
  561. if (dev_priv->card_type >= NV_30)
  562. NVWriteCRTC(dev, head, NV_PCRTC_GPIO_EXT, regp->gpio_ext);
  563. if (dev_priv->card_type == NV_40) {
  564. NVWriteCRTC(dev, head, NV_PCRTC_850, regp->crtc_850);
  565. reg900 = NVReadRAMDAC(dev, head, NV_PRAMDAC_900);
  566. if (regp->crtc_cfg == NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC)
  567. NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 | 0x10000);
  568. else
  569. NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 & ~0x10000);
  570. }
  571. }
  572. NVWriteCRTC(dev, head, NV_PCRTC_CONFIG, regp->crtc_cfg);
  573. wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX);
  574. wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX);
  575. wr_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX);
  576. wr_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX);
  577. wr_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX);
  578. wr_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX);
  579. wr_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX);
  580. wr_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX);
  581. wr_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX);
  582. if (dev_priv->card_type >= NV_20)
  583. wr_cio_state(dev, head, regp, NV_CIO_CRE_47);
  584. if (dev_priv->card_type >= NV_30)
  585. wr_cio_state(dev, head, regp, 0x9f);
  586. wr_cio_state(dev, head, regp, NV_CIO_CRE_49);
  587. wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX);
  588. wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX);
  589. wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX);
  590. if (dev_priv->card_type == NV_40)
  591. nv_fix_nv40_hw_cursor(dev, head);
  592. wr_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX);
  593. wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX);
  594. wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX);
  595. if (dev_priv->card_type >= NV_10) {
  596. wr_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX);
  597. wr_cio_state(dev, head, regp, NV_CIO_CRE_CSB);
  598. wr_cio_state(dev, head, regp, NV_CIO_CRE_4B);
  599. wr_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY);
  600. }
  601. /* NV11 and NV20 stop at 0x52. */
  602. if (nv_gf4_disp_arch(dev)) {
  603. if (dev_priv->card_type == NV_10) {
  604. /* Not waiting for vertical retrace before modifying
  605. CRE_53/CRE_54 causes lockups. */
  606. nouveau_wait_eq(dev, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x8);
  607. nouveau_wait_eq(dev, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x0);
  608. }
  609. wr_cio_state(dev, head, regp, NV_CIO_CRE_42);
  610. wr_cio_state(dev, head, regp, NV_CIO_CRE_53);
  611. wr_cio_state(dev, head, regp, NV_CIO_CRE_54);
  612. for (i = 0; i < 0x10; i++)
  613. NVWriteVgaCrtc5758(dev, head, i, regp->CR58[i]);
  614. wr_cio_state(dev, head, regp, NV_CIO_CRE_59);
  615. wr_cio_state(dev, head, regp, NV_CIO_CRE_5B);
  616. wr_cio_state(dev, head, regp, NV_CIO_CRE_85);
  617. wr_cio_state(dev, head, regp, NV_CIO_CRE_86);
  618. }
  619. NVWriteCRTC(dev, head, NV_PCRTC_START, regp->fb_start);
  620. }
  621. static void
  622. nv_save_state_palette(struct drm_device *dev, int head,
  623. struct nv04_mode_state *state)
  624. {
  625. int head_offset = head * NV_PRMDIO_SIZE, i;
  626. nv_wr08(dev, NV_PRMDIO_PIXEL_MASK + head_offset,
  627. NV_PRMDIO_PIXEL_MASK_MASK);
  628. nv_wr08(dev, NV_PRMDIO_READ_MODE_ADDRESS + head_offset, 0x0);
  629. for (i = 0; i < 768; i++) {
  630. state->crtc_reg[head].DAC[i] = nv_rd08(dev,
  631. NV_PRMDIO_PALETTE_DATA + head_offset);
  632. }
  633. NVSetEnablePalette(dev, head, false);
  634. }
  635. void
  636. nouveau_hw_load_state_palette(struct drm_device *dev, int head,
  637. struct nv04_mode_state *state)
  638. {
  639. int head_offset = head * NV_PRMDIO_SIZE, i;
  640. nv_wr08(dev, NV_PRMDIO_PIXEL_MASK + head_offset,
  641. NV_PRMDIO_PIXEL_MASK_MASK);
  642. nv_wr08(dev, NV_PRMDIO_WRITE_MODE_ADDRESS + head_offset, 0x0);
  643. for (i = 0; i < 768; i++) {
  644. nv_wr08(dev, NV_PRMDIO_PALETTE_DATA + head_offset,
  645. state->crtc_reg[head].DAC[i]);
  646. }
  647. NVSetEnablePalette(dev, head, false);
  648. }
  649. void nouveau_hw_save_state(struct drm_device *dev, int head,
  650. struct nv04_mode_state *state)
  651. {
  652. struct drm_nouveau_private *dev_priv = dev->dev_private;
  653. if (dev_priv->chipset == 0x11)
  654. /* NB: no attempt is made to restore the bad pll later on */
  655. nouveau_hw_fix_bad_vpll(dev, head);
  656. nv_save_state_ramdac(dev, head, state);
  657. nv_save_state_vga(dev, head, state);
  658. nv_save_state_palette(dev, head, state);
  659. nv_save_state_ext(dev, head, state);
  660. }
  661. void nouveau_hw_load_state(struct drm_device *dev, int head,
  662. struct nv04_mode_state *state)
  663. {
  664. NVVgaProtect(dev, head, true);
  665. nv_load_state_ramdac(dev, head, state);
  666. nv_load_state_ext(dev, head, state);
  667. nouveau_hw_load_state_palette(dev, head, state);
  668. nv_load_state_vga(dev, head, state);
  669. NVVgaProtect(dev, head, false);
  670. }