kprobes.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374
  1. /*
  2. * Kernel Probes (KProbes)
  3. * kernel/kprobes.c
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. *
  19. * Copyright (C) IBM Corporation, 2002, 2004
  20. *
  21. * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  22. * Probes initial implementation (includes suggestions from
  23. * Rusty Russell).
  24. * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  25. * hlists and exceptions notifier as suggested by Andi Kleen.
  26. * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  27. * interface to access function arguments.
  28. * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  29. * exceptions notifier to be first on the priority list.
  30. * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  31. * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  32. * <prasanna@in.ibm.com> added function-return probes.
  33. */
  34. #include <linux/kprobes.h>
  35. #include <linux/hash.h>
  36. #include <linux/init.h>
  37. #include <linux/slab.h>
  38. #include <linux/stddef.h>
  39. #include <linux/module.h>
  40. #include <linux/moduleloader.h>
  41. #include <linux/kallsyms.h>
  42. #include <linux/freezer.h>
  43. #include <linux/seq_file.h>
  44. #include <linux/debugfs.h>
  45. #include <linux/kdebug.h>
  46. #include <asm-generic/sections.h>
  47. #include <asm/cacheflush.h>
  48. #include <asm/errno.h>
  49. #include <asm/uaccess.h>
  50. #define KPROBE_HASH_BITS 6
  51. #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  52. /*
  53. * Some oddball architectures like 64bit powerpc have function descriptors
  54. * so this must be overridable.
  55. */
  56. #ifndef kprobe_lookup_name
  57. #define kprobe_lookup_name(name, addr) \
  58. addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
  59. #endif
  60. static int kprobes_initialized;
  61. static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  62. static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  63. /* NOTE: change this value only with kprobe_mutex held */
  64. static bool kprobe_enabled;
  65. static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
  66. static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  67. static struct {
  68. spinlock_t lock ____cacheline_aligned_in_smp;
  69. } kretprobe_table_locks[KPROBE_TABLE_SIZE];
  70. static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
  71. {
  72. return &(kretprobe_table_locks[hash].lock);
  73. }
  74. /*
  75. * Normally, functions that we'd want to prohibit kprobes in, are marked
  76. * __kprobes. But, there are cases where such functions already belong to
  77. * a different section (__sched for preempt_schedule)
  78. *
  79. * For such cases, we now have a blacklist
  80. */
  81. static struct kprobe_blackpoint kprobe_blacklist[] = {
  82. {"preempt_schedule",},
  83. {NULL} /* Terminator */
  84. };
  85. #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  86. /*
  87. * kprobe->ainsn.insn points to the copy of the instruction to be
  88. * single-stepped. x86_64, POWER4 and above have no-exec support and
  89. * stepping on the instruction on a vmalloced/kmalloced/data page
  90. * is a recipe for disaster
  91. */
  92. #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
  93. struct kprobe_insn_page {
  94. struct hlist_node hlist;
  95. kprobe_opcode_t *insns; /* Page of instruction slots */
  96. char slot_used[INSNS_PER_PAGE];
  97. int nused;
  98. int ngarbage;
  99. };
  100. enum kprobe_slot_state {
  101. SLOT_CLEAN = 0,
  102. SLOT_DIRTY = 1,
  103. SLOT_USED = 2,
  104. };
  105. static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */
  106. static struct hlist_head kprobe_insn_pages;
  107. static int kprobe_garbage_slots;
  108. static int collect_garbage_slots(void);
  109. static int __kprobes check_safety(void)
  110. {
  111. int ret = 0;
  112. #if defined(CONFIG_PREEMPT) && defined(CONFIG_PM)
  113. ret = freeze_processes();
  114. if (ret == 0) {
  115. struct task_struct *p, *q;
  116. do_each_thread(p, q) {
  117. if (p != current && p->state == TASK_RUNNING &&
  118. p->pid != 0) {
  119. printk("Check failed: %s is running\n",p->comm);
  120. ret = -1;
  121. goto loop_end;
  122. }
  123. } while_each_thread(p, q);
  124. }
  125. loop_end:
  126. thaw_processes();
  127. #else
  128. synchronize_sched();
  129. #endif
  130. return ret;
  131. }
  132. /**
  133. * __get_insn_slot() - Find a slot on an executable page for an instruction.
  134. * We allocate an executable page if there's no room on existing ones.
  135. */
  136. static kprobe_opcode_t __kprobes *__get_insn_slot(void)
  137. {
  138. struct kprobe_insn_page *kip;
  139. struct hlist_node *pos;
  140. retry:
  141. hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
  142. if (kip->nused < INSNS_PER_PAGE) {
  143. int i;
  144. for (i = 0; i < INSNS_PER_PAGE; i++) {
  145. if (kip->slot_used[i] == SLOT_CLEAN) {
  146. kip->slot_used[i] = SLOT_USED;
  147. kip->nused++;
  148. return kip->insns + (i * MAX_INSN_SIZE);
  149. }
  150. }
  151. /* Surprise! No unused slots. Fix kip->nused. */
  152. kip->nused = INSNS_PER_PAGE;
  153. }
  154. }
  155. /* If there are any garbage slots, collect it and try again. */
  156. if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
  157. goto retry;
  158. }
  159. /* All out of space. Need to allocate a new page. Use slot 0. */
  160. kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
  161. if (!kip)
  162. return NULL;
  163. /*
  164. * Use module_alloc so this page is within +/- 2GB of where the
  165. * kernel image and loaded module images reside. This is required
  166. * so x86_64 can correctly handle the %rip-relative fixups.
  167. */
  168. kip->insns = module_alloc(PAGE_SIZE);
  169. if (!kip->insns) {
  170. kfree(kip);
  171. return NULL;
  172. }
  173. INIT_HLIST_NODE(&kip->hlist);
  174. hlist_add_head(&kip->hlist, &kprobe_insn_pages);
  175. memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
  176. kip->slot_used[0] = SLOT_USED;
  177. kip->nused = 1;
  178. kip->ngarbage = 0;
  179. return kip->insns;
  180. }
  181. kprobe_opcode_t __kprobes *get_insn_slot(void)
  182. {
  183. kprobe_opcode_t *ret;
  184. mutex_lock(&kprobe_insn_mutex);
  185. ret = __get_insn_slot();
  186. mutex_unlock(&kprobe_insn_mutex);
  187. return ret;
  188. }
  189. /* Return 1 if all garbages are collected, otherwise 0. */
  190. static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
  191. {
  192. kip->slot_used[idx] = SLOT_CLEAN;
  193. kip->nused--;
  194. if (kip->nused == 0) {
  195. /*
  196. * Page is no longer in use. Free it unless
  197. * it's the last one. We keep the last one
  198. * so as not to have to set it up again the
  199. * next time somebody inserts a probe.
  200. */
  201. hlist_del(&kip->hlist);
  202. if (hlist_empty(&kprobe_insn_pages)) {
  203. INIT_HLIST_NODE(&kip->hlist);
  204. hlist_add_head(&kip->hlist,
  205. &kprobe_insn_pages);
  206. } else {
  207. module_free(NULL, kip->insns);
  208. kfree(kip);
  209. }
  210. return 1;
  211. }
  212. return 0;
  213. }
  214. static int __kprobes collect_garbage_slots(void)
  215. {
  216. struct kprobe_insn_page *kip;
  217. struct hlist_node *pos, *next;
  218. int safety;
  219. /* Ensure no-one is preepmted on the garbages */
  220. mutex_unlock(&kprobe_insn_mutex);
  221. safety = check_safety();
  222. mutex_lock(&kprobe_insn_mutex);
  223. if (safety != 0)
  224. return -EAGAIN;
  225. hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
  226. int i;
  227. if (kip->ngarbage == 0)
  228. continue;
  229. kip->ngarbage = 0; /* we will collect all garbages */
  230. for (i = 0; i < INSNS_PER_PAGE; i++) {
  231. if (kip->slot_used[i] == SLOT_DIRTY &&
  232. collect_one_slot(kip, i))
  233. break;
  234. }
  235. }
  236. kprobe_garbage_slots = 0;
  237. return 0;
  238. }
  239. void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
  240. {
  241. struct kprobe_insn_page *kip;
  242. struct hlist_node *pos;
  243. mutex_lock(&kprobe_insn_mutex);
  244. hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
  245. if (kip->insns <= slot &&
  246. slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
  247. int i = (slot - kip->insns) / MAX_INSN_SIZE;
  248. if (dirty) {
  249. kip->slot_used[i] = SLOT_DIRTY;
  250. kip->ngarbage++;
  251. } else {
  252. collect_one_slot(kip, i);
  253. }
  254. break;
  255. }
  256. }
  257. if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
  258. collect_garbage_slots();
  259. mutex_unlock(&kprobe_insn_mutex);
  260. }
  261. #endif
  262. /* We have preemption disabled.. so it is safe to use __ versions */
  263. static inline void set_kprobe_instance(struct kprobe *kp)
  264. {
  265. __get_cpu_var(kprobe_instance) = kp;
  266. }
  267. static inline void reset_kprobe_instance(void)
  268. {
  269. __get_cpu_var(kprobe_instance) = NULL;
  270. }
  271. /*
  272. * This routine is called either:
  273. * - under the kprobe_mutex - during kprobe_[un]register()
  274. * OR
  275. * - with preemption disabled - from arch/xxx/kernel/kprobes.c
  276. */
  277. struct kprobe __kprobes *get_kprobe(void *addr)
  278. {
  279. struct hlist_head *head;
  280. struct hlist_node *node;
  281. struct kprobe *p;
  282. head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
  283. hlist_for_each_entry_rcu(p, node, head, hlist) {
  284. if (p->addr == addr)
  285. return p;
  286. }
  287. return NULL;
  288. }
  289. /*
  290. * Aggregate handlers for multiple kprobes support - these handlers
  291. * take care of invoking the individual kprobe handlers on p->list
  292. */
  293. static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
  294. {
  295. struct kprobe *kp;
  296. list_for_each_entry_rcu(kp, &p->list, list) {
  297. if (kp->pre_handler) {
  298. set_kprobe_instance(kp);
  299. if (kp->pre_handler(kp, regs))
  300. return 1;
  301. }
  302. reset_kprobe_instance();
  303. }
  304. return 0;
  305. }
  306. static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
  307. unsigned long flags)
  308. {
  309. struct kprobe *kp;
  310. list_for_each_entry_rcu(kp, &p->list, list) {
  311. if (kp->post_handler) {
  312. set_kprobe_instance(kp);
  313. kp->post_handler(kp, regs, flags);
  314. reset_kprobe_instance();
  315. }
  316. }
  317. }
  318. static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
  319. int trapnr)
  320. {
  321. struct kprobe *cur = __get_cpu_var(kprobe_instance);
  322. /*
  323. * if we faulted "during" the execution of a user specified
  324. * probe handler, invoke just that probe's fault handler
  325. */
  326. if (cur && cur->fault_handler) {
  327. if (cur->fault_handler(cur, regs, trapnr))
  328. return 1;
  329. }
  330. return 0;
  331. }
  332. static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
  333. {
  334. struct kprobe *cur = __get_cpu_var(kprobe_instance);
  335. int ret = 0;
  336. if (cur && cur->break_handler) {
  337. if (cur->break_handler(cur, regs))
  338. ret = 1;
  339. }
  340. reset_kprobe_instance();
  341. return ret;
  342. }
  343. /* Walks the list and increments nmissed count for multiprobe case */
  344. void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
  345. {
  346. struct kprobe *kp;
  347. if (p->pre_handler != aggr_pre_handler) {
  348. p->nmissed++;
  349. } else {
  350. list_for_each_entry_rcu(kp, &p->list, list)
  351. kp->nmissed++;
  352. }
  353. return;
  354. }
  355. void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
  356. struct hlist_head *head)
  357. {
  358. struct kretprobe *rp = ri->rp;
  359. /* remove rp inst off the rprobe_inst_table */
  360. hlist_del(&ri->hlist);
  361. INIT_HLIST_NODE(&ri->hlist);
  362. if (likely(rp)) {
  363. spin_lock(&rp->lock);
  364. hlist_add_head(&ri->hlist, &rp->free_instances);
  365. spin_unlock(&rp->lock);
  366. } else
  367. /* Unregistering */
  368. hlist_add_head(&ri->hlist, head);
  369. }
  370. void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
  371. struct hlist_head **head, unsigned long *flags)
  372. {
  373. unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
  374. spinlock_t *hlist_lock;
  375. *head = &kretprobe_inst_table[hash];
  376. hlist_lock = kretprobe_table_lock_ptr(hash);
  377. spin_lock_irqsave(hlist_lock, *flags);
  378. }
  379. static void __kprobes kretprobe_table_lock(unsigned long hash,
  380. unsigned long *flags)
  381. {
  382. spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
  383. spin_lock_irqsave(hlist_lock, *flags);
  384. }
  385. void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
  386. unsigned long *flags)
  387. {
  388. unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
  389. spinlock_t *hlist_lock;
  390. hlist_lock = kretprobe_table_lock_ptr(hash);
  391. spin_unlock_irqrestore(hlist_lock, *flags);
  392. }
  393. void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
  394. {
  395. spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
  396. spin_unlock_irqrestore(hlist_lock, *flags);
  397. }
  398. /*
  399. * This function is called from finish_task_switch when task tk becomes dead,
  400. * so that we can recycle any function-return probe instances associated
  401. * with this task. These left over instances represent probed functions
  402. * that have been called but will never return.
  403. */
  404. void __kprobes kprobe_flush_task(struct task_struct *tk)
  405. {
  406. struct kretprobe_instance *ri;
  407. struct hlist_head *head, empty_rp;
  408. struct hlist_node *node, *tmp;
  409. unsigned long hash, flags = 0;
  410. if (unlikely(!kprobes_initialized))
  411. /* Early boot. kretprobe_table_locks not yet initialized. */
  412. return;
  413. hash = hash_ptr(tk, KPROBE_HASH_BITS);
  414. head = &kretprobe_inst_table[hash];
  415. kretprobe_table_lock(hash, &flags);
  416. hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
  417. if (ri->task == tk)
  418. recycle_rp_inst(ri, &empty_rp);
  419. }
  420. kretprobe_table_unlock(hash, &flags);
  421. INIT_HLIST_HEAD(&empty_rp);
  422. hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
  423. hlist_del(&ri->hlist);
  424. kfree(ri);
  425. }
  426. }
  427. static inline void free_rp_inst(struct kretprobe *rp)
  428. {
  429. struct kretprobe_instance *ri;
  430. struct hlist_node *pos, *next;
  431. hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
  432. hlist_del(&ri->hlist);
  433. kfree(ri);
  434. }
  435. }
  436. static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
  437. {
  438. unsigned long flags, hash;
  439. struct kretprobe_instance *ri;
  440. struct hlist_node *pos, *next;
  441. struct hlist_head *head;
  442. /* No race here */
  443. for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
  444. kretprobe_table_lock(hash, &flags);
  445. head = &kretprobe_inst_table[hash];
  446. hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
  447. if (ri->rp == rp)
  448. ri->rp = NULL;
  449. }
  450. kretprobe_table_unlock(hash, &flags);
  451. }
  452. free_rp_inst(rp);
  453. }
  454. /*
  455. * Keep all fields in the kprobe consistent
  456. */
  457. static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
  458. {
  459. memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
  460. memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
  461. }
  462. /*
  463. * Add the new probe to old_p->list. Fail if this is the
  464. * second jprobe at the address - two jprobes can't coexist
  465. */
  466. static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
  467. {
  468. if (p->break_handler) {
  469. if (old_p->break_handler)
  470. return -EEXIST;
  471. list_add_tail_rcu(&p->list, &old_p->list);
  472. old_p->break_handler = aggr_break_handler;
  473. } else
  474. list_add_rcu(&p->list, &old_p->list);
  475. if (p->post_handler && !old_p->post_handler)
  476. old_p->post_handler = aggr_post_handler;
  477. return 0;
  478. }
  479. /*
  480. * Fill in the required fields of the "manager kprobe". Replace the
  481. * earlier kprobe in the hlist with the manager kprobe
  482. */
  483. static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
  484. {
  485. copy_kprobe(p, ap);
  486. flush_insn_slot(ap);
  487. ap->addr = p->addr;
  488. ap->pre_handler = aggr_pre_handler;
  489. ap->fault_handler = aggr_fault_handler;
  490. if (p->post_handler)
  491. ap->post_handler = aggr_post_handler;
  492. if (p->break_handler)
  493. ap->break_handler = aggr_break_handler;
  494. INIT_LIST_HEAD(&ap->list);
  495. list_add_rcu(&p->list, &ap->list);
  496. hlist_replace_rcu(&p->hlist, &ap->hlist);
  497. }
  498. /*
  499. * This is the second or subsequent kprobe at the address - handle
  500. * the intricacies
  501. */
  502. static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
  503. struct kprobe *p)
  504. {
  505. int ret = 0;
  506. struct kprobe *ap;
  507. if (old_p->pre_handler == aggr_pre_handler) {
  508. copy_kprobe(old_p, p);
  509. ret = add_new_kprobe(old_p, p);
  510. } else {
  511. ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
  512. if (!ap)
  513. return -ENOMEM;
  514. add_aggr_kprobe(ap, old_p);
  515. copy_kprobe(ap, p);
  516. ret = add_new_kprobe(ap, p);
  517. }
  518. return ret;
  519. }
  520. static int __kprobes in_kprobes_functions(unsigned long addr)
  521. {
  522. struct kprobe_blackpoint *kb;
  523. if (addr >= (unsigned long)__kprobes_text_start &&
  524. addr < (unsigned long)__kprobes_text_end)
  525. return -EINVAL;
  526. /*
  527. * If there exists a kprobe_blacklist, verify and
  528. * fail any probe registration in the prohibited area
  529. */
  530. for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
  531. if (kb->start_addr) {
  532. if (addr >= kb->start_addr &&
  533. addr < (kb->start_addr + kb->range))
  534. return -EINVAL;
  535. }
  536. }
  537. return 0;
  538. }
  539. /*
  540. * If we have a symbol_name argument, look it up and add the offset field
  541. * to it. This way, we can specify a relative address to a symbol.
  542. */
  543. static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
  544. {
  545. kprobe_opcode_t *addr = p->addr;
  546. if (p->symbol_name) {
  547. if (addr)
  548. return NULL;
  549. kprobe_lookup_name(p->symbol_name, addr);
  550. }
  551. if (!addr)
  552. return NULL;
  553. return (kprobe_opcode_t *)(((char *)addr) + p->offset);
  554. }
  555. static int __kprobes __register_kprobe(struct kprobe *p,
  556. unsigned long called_from)
  557. {
  558. int ret = 0;
  559. struct kprobe *old_p;
  560. struct module *probed_mod;
  561. kprobe_opcode_t *addr;
  562. addr = kprobe_addr(p);
  563. if (!addr)
  564. return -EINVAL;
  565. p->addr = addr;
  566. preempt_disable();
  567. if (!__kernel_text_address((unsigned long) p->addr) ||
  568. in_kprobes_functions((unsigned long) p->addr)) {
  569. preempt_enable();
  570. return -EINVAL;
  571. }
  572. p->mod_refcounted = 0;
  573. /*
  574. * Check if are we probing a module.
  575. */
  576. probed_mod = __module_text_address((unsigned long) p->addr);
  577. if (probed_mod) {
  578. struct module *calling_mod;
  579. calling_mod = __module_text_address(called_from);
  580. /*
  581. * We must allow modules to probe themself and in this case
  582. * avoid incrementing the module refcount, so as to allow
  583. * unloading of self probing modules.
  584. */
  585. if (calling_mod != probed_mod) {
  586. if (unlikely(!try_module_get(probed_mod))) {
  587. preempt_enable();
  588. return -EINVAL;
  589. }
  590. p->mod_refcounted = 1;
  591. } else
  592. probed_mod = NULL;
  593. }
  594. preempt_enable();
  595. p->nmissed = 0;
  596. INIT_LIST_HEAD(&p->list);
  597. mutex_lock(&kprobe_mutex);
  598. old_p = get_kprobe(p->addr);
  599. if (old_p) {
  600. ret = register_aggr_kprobe(old_p, p);
  601. goto out;
  602. }
  603. ret = arch_prepare_kprobe(p);
  604. if (ret)
  605. goto out;
  606. INIT_HLIST_NODE(&p->hlist);
  607. hlist_add_head_rcu(&p->hlist,
  608. &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
  609. if (kprobe_enabled)
  610. arch_arm_kprobe(p);
  611. out:
  612. mutex_unlock(&kprobe_mutex);
  613. if (ret && probed_mod)
  614. module_put(probed_mod);
  615. return ret;
  616. }
  617. /*
  618. * Unregister a kprobe without a scheduler synchronization.
  619. */
  620. static int __kprobes __unregister_kprobe_top(struct kprobe *p)
  621. {
  622. struct kprobe *old_p, *list_p;
  623. old_p = get_kprobe(p->addr);
  624. if (unlikely(!old_p))
  625. return -EINVAL;
  626. if (p != old_p) {
  627. list_for_each_entry_rcu(list_p, &old_p->list, list)
  628. if (list_p == p)
  629. /* kprobe p is a valid probe */
  630. goto valid_p;
  631. return -EINVAL;
  632. }
  633. valid_p:
  634. if (old_p == p ||
  635. (old_p->pre_handler == aggr_pre_handler &&
  636. list_is_singular(&old_p->list))) {
  637. /*
  638. * Only probe on the hash list. Disarm only if kprobes are
  639. * enabled - otherwise, the breakpoint would already have
  640. * been removed. We save on flushing icache.
  641. */
  642. if (kprobe_enabled)
  643. arch_disarm_kprobe(p);
  644. hlist_del_rcu(&old_p->hlist);
  645. } else {
  646. if (p->break_handler)
  647. old_p->break_handler = NULL;
  648. if (p->post_handler) {
  649. list_for_each_entry_rcu(list_p, &old_p->list, list) {
  650. if ((list_p != p) && (list_p->post_handler))
  651. goto noclean;
  652. }
  653. old_p->post_handler = NULL;
  654. }
  655. noclean:
  656. list_del_rcu(&p->list);
  657. }
  658. return 0;
  659. }
  660. static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
  661. {
  662. struct module *mod;
  663. struct kprobe *old_p;
  664. if (p->mod_refcounted) {
  665. /*
  666. * Since we've already incremented refcount,
  667. * we don't need to disable preemption.
  668. */
  669. mod = module_text_address((unsigned long)p->addr);
  670. if (mod)
  671. module_put(mod);
  672. }
  673. if (list_empty(&p->list) || list_is_singular(&p->list)) {
  674. if (!list_empty(&p->list)) {
  675. /* "p" is the last child of an aggr_kprobe */
  676. old_p = list_entry(p->list.next, struct kprobe, list);
  677. list_del(&p->list);
  678. kfree(old_p);
  679. }
  680. arch_remove_kprobe(p);
  681. }
  682. }
  683. static int __kprobes __register_kprobes(struct kprobe **kps, int num,
  684. unsigned long called_from)
  685. {
  686. int i, ret = 0;
  687. if (num <= 0)
  688. return -EINVAL;
  689. for (i = 0; i < num; i++) {
  690. ret = __register_kprobe(kps[i], called_from);
  691. if (ret < 0) {
  692. if (i > 0)
  693. unregister_kprobes(kps, i);
  694. break;
  695. }
  696. }
  697. return ret;
  698. }
  699. /*
  700. * Registration and unregistration functions for kprobe.
  701. */
  702. int __kprobes register_kprobe(struct kprobe *p)
  703. {
  704. return __register_kprobes(&p, 1,
  705. (unsigned long)__builtin_return_address(0));
  706. }
  707. void __kprobes unregister_kprobe(struct kprobe *p)
  708. {
  709. unregister_kprobes(&p, 1);
  710. }
  711. int __kprobes register_kprobes(struct kprobe **kps, int num)
  712. {
  713. return __register_kprobes(kps, num,
  714. (unsigned long)__builtin_return_address(0));
  715. }
  716. void __kprobes unregister_kprobes(struct kprobe **kps, int num)
  717. {
  718. int i;
  719. if (num <= 0)
  720. return;
  721. mutex_lock(&kprobe_mutex);
  722. for (i = 0; i < num; i++)
  723. if (__unregister_kprobe_top(kps[i]) < 0)
  724. kps[i]->addr = NULL;
  725. mutex_unlock(&kprobe_mutex);
  726. synchronize_sched();
  727. for (i = 0; i < num; i++)
  728. if (kps[i]->addr)
  729. __unregister_kprobe_bottom(kps[i]);
  730. }
  731. static struct notifier_block kprobe_exceptions_nb = {
  732. .notifier_call = kprobe_exceptions_notify,
  733. .priority = 0x7fffffff /* we need to be notified first */
  734. };
  735. unsigned long __weak arch_deref_entry_point(void *entry)
  736. {
  737. return (unsigned long)entry;
  738. }
  739. static int __kprobes __register_jprobes(struct jprobe **jps, int num,
  740. unsigned long called_from)
  741. {
  742. struct jprobe *jp;
  743. int ret = 0, i;
  744. if (num <= 0)
  745. return -EINVAL;
  746. for (i = 0; i < num; i++) {
  747. unsigned long addr;
  748. jp = jps[i];
  749. addr = arch_deref_entry_point(jp->entry);
  750. if (!kernel_text_address(addr))
  751. ret = -EINVAL;
  752. else {
  753. /* Todo: Verify probepoint is a function entry point */
  754. jp->kp.pre_handler = setjmp_pre_handler;
  755. jp->kp.break_handler = longjmp_break_handler;
  756. ret = __register_kprobe(&jp->kp, called_from);
  757. }
  758. if (ret < 0) {
  759. if (i > 0)
  760. unregister_jprobes(jps, i);
  761. break;
  762. }
  763. }
  764. return ret;
  765. }
  766. int __kprobes register_jprobe(struct jprobe *jp)
  767. {
  768. return __register_jprobes(&jp, 1,
  769. (unsigned long)__builtin_return_address(0));
  770. }
  771. void __kprobes unregister_jprobe(struct jprobe *jp)
  772. {
  773. unregister_jprobes(&jp, 1);
  774. }
  775. int __kprobes register_jprobes(struct jprobe **jps, int num)
  776. {
  777. return __register_jprobes(jps, num,
  778. (unsigned long)__builtin_return_address(0));
  779. }
  780. void __kprobes unregister_jprobes(struct jprobe **jps, int num)
  781. {
  782. int i;
  783. if (num <= 0)
  784. return;
  785. mutex_lock(&kprobe_mutex);
  786. for (i = 0; i < num; i++)
  787. if (__unregister_kprobe_top(&jps[i]->kp) < 0)
  788. jps[i]->kp.addr = NULL;
  789. mutex_unlock(&kprobe_mutex);
  790. synchronize_sched();
  791. for (i = 0; i < num; i++) {
  792. if (jps[i]->kp.addr)
  793. __unregister_kprobe_bottom(&jps[i]->kp);
  794. }
  795. }
  796. #ifdef CONFIG_KRETPROBES
  797. /*
  798. * This kprobe pre_handler is registered with every kretprobe. When probe
  799. * hits it will set up the return probe.
  800. */
  801. static int __kprobes pre_handler_kretprobe(struct kprobe *p,
  802. struct pt_regs *regs)
  803. {
  804. struct kretprobe *rp = container_of(p, struct kretprobe, kp);
  805. unsigned long hash, flags = 0;
  806. struct kretprobe_instance *ri;
  807. /*TODO: consider to only swap the RA after the last pre_handler fired */
  808. hash = hash_ptr(current, KPROBE_HASH_BITS);
  809. spin_lock_irqsave(&rp->lock, flags);
  810. if (!hlist_empty(&rp->free_instances)) {
  811. ri = hlist_entry(rp->free_instances.first,
  812. struct kretprobe_instance, hlist);
  813. hlist_del(&ri->hlist);
  814. spin_unlock_irqrestore(&rp->lock, flags);
  815. ri->rp = rp;
  816. ri->task = current;
  817. if (rp->entry_handler && rp->entry_handler(ri, regs)) {
  818. spin_unlock_irqrestore(&rp->lock, flags);
  819. return 0;
  820. }
  821. arch_prepare_kretprobe(ri, regs);
  822. /* XXX(hch): why is there no hlist_move_head? */
  823. INIT_HLIST_NODE(&ri->hlist);
  824. kretprobe_table_lock(hash, &flags);
  825. hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
  826. kretprobe_table_unlock(hash, &flags);
  827. } else {
  828. rp->nmissed++;
  829. spin_unlock_irqrestore(&rp->lock, flags);
  830. }
  831. return 0;
  832. }
  833. static int __kprobes __register_kretprobe(struct kretprobe *rp,
  834. unsigned long called_from)
  835. {
  836. int ret = 0;
  837. struct kretprobe_instance *inst;
  838. int i;
  839. void *addr;
  840. if (kretprobe_blacklist_size) {
  841. addr = kprobe_addr(&rp->kp);
  842. if (!addr)
  843. return -EINVAL;
  844. for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
  845. if (kretprobe_blacklist[i].addr == addr)
  846. return -EINVAL;
  847. }
  848. }
  849. rp->kp.pre_handler = pre_handler_kretprobe;
  850. rp->kp.post_handler = NULL;
  851. rp->kp.fault_handler = NULL;
  852. rp->kp.break_handler = NULL;
  853. /* Pre-allocate memory for max kretprobe instances */
  854. if (rp->maxactive <= 0) {
  855. #ifdef CONFIG_PREEMPT
  856. rp->maxactive = max(10, 2 * NR_CPUS);
  857. #else
  858. rp->maxactive = NR_CPUS;
  859. #endif
  860. }
  861. spin_lock_init(&rp->lock);
  862. INIT_HLIST_HEAD(&rp->free_instances);
  863. for (i = 0; i < rp->maxactive; i++) {
  864. inst = kmalloc(sizeof(struct kretprobe_instance) +
  865. rp->data_size, GFP_KERNEL);
  866. if (inst == NULL) {
  867. free_rp_inst(rp);
  868. return -ENOMEM;
  869. }
  870. INIT_HLIST_NODE(&inst->hlist);
  871. hlist_add_head(&inst->hlist, &rp->free_instances);
  872. }
  873. rp->nmissed = 0;
  874. /* Establish function entry probe point */
  875. ret = __register_kprobe(&rp->kp, called_from);
  876. if (ret != 0)
  877. free_rp_inst(rp);
  878. return ret;
  879. }
  880. static int __kprobes __register_kretprobes(struct kretprobe **rps, int num,
  881. unsigned long called_from)
  882. {
  883. int ret = 0, i;
  884. if (num <= 0)
  885. return -EINVAL;
  886. for (i = 0; i < num; i++) {
  887. ret = __register_kretprobe(rps[i], called_from);
  888. if (ret < 0) {
  889. if (i > 0)
  890. unregister_kretprobes(rps, i);
  891. break;
  892. }
  893. }
  894. return ret;
  895. }
  896. int __kprobes register_kretprobe(struct kretprobe *rp)
  897. {
  898. return __register_kretprobes(&rp, 1,
  899. (unsigned long)__builtin_return_address(0));
  900. }
  901. void __kprobes unregister_kretprobe(struct kretprobe *rp)
  902. {
  903. unregister_kretprobes(&rp, 1);
  904. }
  905. int __kprobes register_kretprobes(struct kretprobe **rps, int num)
  906. {
  907. return __register_kretprobes(rps, num,
  908. (unsigned long)__builtin_return_address(0));
  909. }
  910. void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
  911. {
  912. int i;
  913. if (num <= 0)
  914. return;
  915. mutex_lock(&kprobe_mutex);
  916. for (i = 0; i < num; i++)
  917. if (__unregister_kprobe_top(&rps[i]->kp) < 0)
  918. rps[i]->kp.addr = NULL;
  919. mutex_unlock(&kprobe_mutex);
  920. synchronize_sched();
  921. for (i = 0; i < num; i++) {
  922. if (rps[i]->kp.addr) {
  923. __unregister_kprobe_bottom(&rps[i]->kp);
  924. cleanup_rp_inst(rps[i]);
  925. }
  926. }
  927. }
  928. #else /* CONFIG_KRETPROBES */
  929. int __kprobes register_kretprobe(struct kretprobe *rp)
  930. {
  931. return -ENOSYS;
  932. }
  933. int __kprobes register_kretprobes(struct kretprobe **rps, int num)
  934. {
  935. return -ENOSYS;
  936. }
  937. void __kprobes unregister_kretprobe(struct kretprobe *rp)
  938. {
  939. }
  940. void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
  941. {
  942. }
  943. static int __kprobes pre_handler_kretprobe(struct kprobe *p,
  944. struct pt_regs *regs)
  945. {
  946. return 0;
  947. }
  948. #endif /* CONFIG_KRETPROBES */
  949. static int __init init_kprobes(void)
  950. {
  951. int i, err = 0;
  952. unsigned long offset = 0, size = 0;
  953. char *modname, namebuf[128];
  954. const char *symbol_name;
  955. void *addr;
  956. struct kprobe_blackpoint *kb;
  957. /* FIXME allocate the probe table, currently defined statically */
  958. /* initialize all list heads */
  959. for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
  960. INIT_HLIST_HEAD(&kprobe_table[i]);
  961. INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
  962. spin_lock_init(&(kretprobe_table_locks[i].lock));
  963. }
  964. /*
  965. * Lookup and populate the kprobe_blacklist.
  966. *
  967. * Unlike the kretprobe blacklist, we'll need to determine
  968. * the range of addresses that belong to the said functions,
  969. * since a kprobe need not necessarily be at the beginning
  970. * of a function.
  971. */
  972. for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
  973. kprobe_lookup_name(kb->name, addr);
  974. if (!addr)
  975. continue;
  976. kb->start_addr = (unsigned long)addr;
  977. symbol_name = kallsyms_lookup(kb->start_addr,
  978. &size, &offset, &modname, namebuf);
  979. if (!symbol_name)
  980. kb->range = 0;
  981. else
  982. kb->range = size;
  983. }
  984. if (kretprobe_blacklist_size) {
  985. /* lookup the function address from its name */
  986. for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
  987. kprobe_lookup_name(kretprobe_blacklist[i].name,
  988. kretprobe_blacklist[i].addr);
  989. if (!kretprobe_blacklist[i].addr)
  990. printk("kretprobe: lookup failed: %s\n",
  991. kretprobe_blacklist[i].name);
  992. }
  993. }
  994. /* By default, kprobes are enabled */
  995. kprobe_enabled = true;
  996. err = arch_init_kprobes();
  997. if (!err)
  998. err = register_die_notifier(&kprobe_exceptions_nb);
  999. kprobes_initialized = (err == 0);
  1000. if (!err)
  1001. init_test_probes();
  1002. return err;
  1003. }
  1004. #ifdef CONFIG_DEBUG_FS
  1005. static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
  1006. const char *sym, int offset,char *modname)
  1007. {
  1008. char *kprobe_type;
  1009. if (p->pre_handler == pre_handler_kretprobe)
  1010. kprobe_type = "r";
  1011. else if (p->pre_handler == setjmp_pre_handler)
  1012. kprobe_type = "j";
  1013. else
  1014. kprobe_type = "k";
  1015. if (sym)
  1016. seq_printf(pi, "%p %s %s+0x%x %s\n", p->addr, kprobe_type,
  1017. sym, offset, (modname ? modname : " "));
  1018. else
  1019. seq_printf(pi, "%p %s %p\n", p->addr, kprobe_type, p->addr);
  1020. }
  1021. static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
  1022. {
  1023. return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
  1024. }
  1025. static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
  1026. {
  1027. (*pos)++;
  1028. if (*pos >= KPROBE_TABLE_SIZE)
  1029. return NULL;
  1030. return pos;
  1031. }
  1032. static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
  1033. {
  1034. /* Nothing to do */
  1035. }
  1036. static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
  1037. {
  1038. struct hlist_head *head;
  1039. struct hlist_node *node;
  1040. struct kprobe *p, *kp;
  1041. const char *sym = NULL;
  1042. unsigned int i = *(loff_t *) v;
  1043. unsigned long offset = 0;
  1044. char *modname, namebuf[128];
  1045. head = &kprobe_table[i];
  1046. preempt_disable();
  1047. hlist_for_each_entry_rcu(p, node, head, hlist) {
  1048. sym = kallsyms_lookup((unsigned long)p->addr, NULL,
  1049. &offset, &modname, namebuf);
  1050. if (p->pre_handler == aggr_pre_handler) {
  1051. list_for_each_entry_rcu(kp, &p->list, list)
  1052. report_probe(pi, kp, sym, offset, modname);
  1053. } else
  1054. report_probe(pi, p, sym, offset, modname);
  1055. }
  1056. preempt_enable();
  1057. return 0;
  1058. }
  1059. static struct seq_operations kprobes_seq_ops = {
  1060. .start = kprobe_seq_start,
  1061. .next = kprobe_seq_next,
  1062. .stop = kprobe_seq_stop,
  1063. .show = show_kprobe_addr
  1064. };
  1065. static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
  1066. {
  1067. return seq_open(filp, &kprobes_seq_ops);
  1068. }
  1069. static struct file_operations debugfs_kprobes_operations = {
  1070. .open = kprobes_open,
  1071. .read = seq_read,
  1072. .llseek = seq_lseek,
  1073. .release = seq_release,
  1074. };
  1075. static void __kprobes enable_all_kprobes(void)
  1076. {
  1077. struct hlist_head *head;
  1078. struct hlist_node *node;
  1079. struct kprobe *p;
  1080. unsigned int i;
  1081. mutex_lock(&kprobe_mutex);
  1082. /* If kprobes are already enabled, just return */
  1083. if (kprobe_enabled)
  1084. goto already_enabled;
  1085. for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
  1086. head = &kprobe_table[i];
  1087. hlist_for_each_entry_rcu(p, node, head, hlist)
  1088. arch_arm_kprobe(p);
  1089. }
  1090. kprobe_enabled = true;
  1091. printk(KERN_INFO "Kprobes globally enabled\n");
  1092. already_enabled:
  1093. mutex_unlock(&kprobe_mutex);
  1094. return;
  1095. }
  1096. static void __kprobes disable_all_kprobes(void)
  1097. {
  1098. struct hlist_head *head;
  1099. struct hlist_node *node;
  1100. struct kprobe *p;
  1101. unsigned int i;
  1102. mutex_lock(&kprobe_mutex);
  1103. /* If kprobes are already disabled, just return */
  1104. if (!kprobe_enabled)
  1105. goto already_disabled;
  1106. kprobe_enabled = false;
  1107. printk(KERN_INFO "Kprobes globally disabled\n");
  1108. for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
  1109. head = &kprobe_table[i];
  1110. hlist_for_each_entry_rcu(p, node, head, hlist) {
  1111. if (!arch_trampoline_kprobe(p))
  1112. arch_disarm_kprobe(p);
  1113. }
  1114. }
  1115. mutex_unlock(&kprobe_mutex);
  1116. /* Allow all currently running kprobes to complete */
  1117. synchronize_sched();
  1118. return;
  1119. already_disabled:
  1120. mutex_unlock(&kprobe_mutex);
  1121. return;
  1122. }
  1123. /*
  1124. * XXX: The debugfs bool file interface doesn't allow for callbacks
  1125. * when the bool state is switched. We can reuse that facility when
  1126. * available
  1127. */
  1128. static ssize_t read_enabled_file_bool(struct file *file,
  1129. char __user *user_buf, size_t count, loff_t *ppos)
  1130. {
  1131. char buf[3];
  1132. if (kprobe_enabled)
  1133. buf[0] = '1';
  1134. else
  1135. buf[0] = '0';
  1136. buf[1] = '\n';
  1137. buf[2] = 0x00;
  1138. return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  1139. }
  1140. static ssize_t write_enabled_file_bool(struct file *file,
  1141. const char __user *user_buf, size_t count, loff_t *ppos)
  1142. {
  1143. char buf[32];
  1144. int buf_size;
  1145. buf_size = min(count, (sizeof(buf)-1));
  1146. if (copy_from_user(buf, user_buf, buf_size))
  1147. return -EFAULT;
  1148. switch (buf[0]) {
  1149. case 'y':
  1150. case 'Y':
  1151. case '1':
  1152. enable_all_kprobes();
  1153. break;
  1154. case 'n':
  1155. case 'N':
  1156. case '0':
  1157. disable_all_kprobes();
  1158. break;
  1159. }
  1160. return count;
  1161. }
  1162. static struct file_operations fops_kp = {
  1163. .read = read_enabled_file_bool,
  1164. .write = write_enabled_file_bool,
  1165. };
  1166. static int __kprobes debugfs_kprobe_init(void)
  1167. {
  1168. struct dentry *dir, *file;
  1169. unsigned int value = 1;
  1170. dir = debugfs_create_dir("kprobes", NULL);
  1171. if (!dir)
  1172. return -ENOMEM;
  1173. file = debugfs_create_file("list", 0444, dir, NULL,
  1174. &debugfs_kprobes_operations);
  1175. if (!file) {
  1176. debugfs_remove(dir);
  1177. return -ENOMEM;
  1178. }
  1179. file = debugfs_create_file("enabled", 0600, dir,
  1180. &value, &fops_kp);
  1181. if (!file) {
  1182. debugfs_remove(dir);
  1183. return -ENOMEM;
  1184. }
  1185. return 0;
  1186. }
  1187. late_initcall(debugfs_kprobe_init);
  1188. #endif /* CONFIG_DEBUG_FS */
  1189. module_init(init_kprobes);
  1190. EXPORT_SYMBOL_GPL(register_kprobe);
  1191. EXPORT_SYMBOL_GPL(unregister_kprobe);
  1192. EXPORT_SYMBOL_GPL(register_kprobes);
  1193. EXPORT_SYMBOL_GPL(unregister_kprobes);
  1194. EXPORT_SYMBOL_GPL(register_jprobe);
  1195. EXPORT_SYMBOL_GPL(unregister_jprobe);
  1196. EXPORT_SYMBOL_GPL(register_jprobes);
  1197. EXPORT_SYMBOL_GPL(unregister_jprobes);
  1198. EXPORT_SYMBOL_GPL(jprobe_return);
  1199. EXPORT_SYMBOL_GPL(register_kretprobe);
  1200. EXPORT_SYMBOL_GPL(unregister_kretprobe);
  1201. EXPORT_SYMBOL_GPL(register_kretprobes);
  1202. EXPORT_SYMBOL_GPL(unregister_kretprobes);