bitmap.c 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. /*
  2. * linux/fs/minix/bitmap.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * Modified for 680x0 by Hamish Macdonald
  8. * Fixed for 680x0 by Andreas Schwab
  9. */
  10. /* bitmap.c contains the code that handles the inode and block bitmaps */
  11. #include "minix.h"
  12. #include <linux/buffer_head.h>
  13. #include <linux/bitops.h>
  14. #include <linux/sched.h>
  15. static const int nibblemap[] = { 4,3,3,2,3,2,2,1,3,2,2,1,2,1,1,0 };
  16. static DEFINE_SPINLOCK(bitmap_lock);
  17. static unsigned long count_free(struct buffer_head *map[], unsigned blocksize, __u32 numbits)
  18. {
  19. unsigned i, j, sum = 0;
  20. struct buffer_head *bh;
  21. unsigned numblocks = minix_blocks_needed(numbits, blocksize);
  22. for (i=0; i<numblocks-1; i++) {
  23. if (!(bh=map[i]))
  24. return(0);
  25. for (j=0; j<bh->b_size; j++)
  26. sum += nibblemap[bh->b_data[j] & 0xf]
  27. + nibblemap[(bh->b_data[j]>>4) & 0xf];
  28. }
  29. if (numblocks==0 || !(bh=map[numblocks-1]))
  30. return(0);
  31. i = ((numbits - (numblocks-1) * bh->b_size * 8) / 16) * 2;
  32. for (j=0; j<i; j++) {
  33. sum += nibblemap[bh->b_data[j] & 0xf]
  34. + nibblemap[(bh->b_data[j]>>4) & 0xf];
  35. }
  36. i = numbits%16;
  37. if (i!=0) {
  38. i = *(__u16 *)(&bh->b_data[j]) | ~((1<<i) - 1);
  39. sum += nibblemap[i & 0xf] + nibblemap[(i>>4) & 0xf];
  40. sum += nibblemap[(i>>8) & 0xf] + nibblemap[(i>>12) & 0xf];
  41. }
  42. return(sum);
  43. }
  44. void minix_free_block(struct inode *inode, unsigned long block)
  45. {
  46. struct super_block *sb = inode->i_sb;
  47. struct minix_sb_info *sbi = minix_sb(sb);
  48. struct buffer_head *bh;
  49. int k = sb->s_blocksize_bits + 3;
  50. unsigned long bit, zone;
  51. if (block < sbi->s_firstdatazone || block >= sbi->s_nzones) {
  52. printk("Trying to free block not in datazone\n");
  53. return;
  54. }
  55. zone = block - sbi->s_firstdatazone + 1;
  56. bit = zone & ((1<<k) - 1);
  57. zone >>= k;
  58. if (zone >= sbi->s_zmap_blocks) {
  59. printk("minix_free_block: nonexistent bitmap buffer\n");
  60. return;
  61. }
  62. bh = sbi->s_zmap[zone];
  63. spin_lock(&bitmap_lock);
  64. if (!minix_test_and_clear_bit(bit, bh->b_data))
  65. printk("minix_free_block (%s:%lu): bit already cleared\n",
  66. sb->s_id, block);
  67. spin_unlock(&bitmap_lock);
  68. mark_buffer_dirty(bh);
  69. return;
  70. }
  71. int minix_new_block(struct inode * inode)
  72. {
  73. struct minix_sb_info *sbi = minix_sb(inode->i_sb);
  74. int bits_per_zone = 8 * inode->i_sb->s_blocksize;
  75. int i;
  76. for (i = 0; i < sbi->s_zmap_blocks; i++) {
  77. struct buffer_head *bh = sbi->s_zmap[i];
  78. int j;
  79. spin_lock(&bitmap_lock);
  80. j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
  81. if (j < bits_per_zone) {
  82. minix_set_bit(j, bh->b_data);
  83. spin_unlock(&bitmap_lock);
  84. mark_buffer_dirty(bh);
  85. j += i * bits_per_zone + sbi->s_firstdatazone-1;
  86. if (j < sbi->s_firstdatazone || j >= sbi->s_nzones)
  87. break;
  88. return j;
  89. }
  90. spin_unlock(&bitmap_lock);
  91. }
  92. return 0;
  93. }
  94. unsigned long minix_count_free_blocks(struct super_block *sb)
  95. {
  96. struct minix_sb_info *sbi = minix_sb(sb);
  97. u32 bits = sbi->s_nzones - (sbi->s_firstdatazone + 1);
  98. return (count_free(sbi->s_zmap, sb->s_blocksize, bits)
  99. << sbi->s_log_zone_size);
  100. }
  101. struct minix_inode *
  102. minix_V1_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
  103. {
  104. int block;
  105. struct minix_sb_info *sbi = minix_sb(sb);
  106. struct minix_inode *p;
  107. if (!ino || ino > sbi->s_ninodes) {
  108. printk("Bad inode number on dev %s: %ld is out of range\n",
  109. sb->s_id, (long)ino);
  110. return NULL;
  111. }
  112. ino--;
  113. block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
  114. ino / MINIX_INODES_PER_BLOCK;
  115. *bh = sb_bread(sb, block);
  116. if (!*bh) {
  117. printk("Unable to read inode block\n");
  118. return NULL;
  119. }
  120. p = (void *)(*bh)->b_data;
  121. return p + ino % MINIX_INODES_PER_BLOCK;
  122. }
  123. struct minix2_inode *
  124. minix_V2_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
  125. {
  126. int block;
  127. struct minix_sb_info *sbi = minix_sb(sb);
  128. struct minix2_inode *p;
  129. int minix2_inodes_per_block = sb->s_blocksize / sizeof(struct minix2_inode);
  130. *bh = NULL;
  131. if (!ino || ino > sbi->s_ninodes) {
  132. printk("Bad inode number on dev %s: %ld is out of range\n",
  133. sb->s_id, (long)ino);
  134. return NULL;
  135. }
  136. ino--;
  137. block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
  138. ino / minix2_inodes_per_block;
  139. *bh = sb_bread(sb, block);
  140. if (!*bh) {
  141. printk("Unable to read inode block\n");
  142. return NULL;
  143. }
  144. p = (void *)(*bh)->b_data;
  145. return p + ino % minix2_inodes_per_block;
  146. }
  147. /* Clear the link count and mode of a deleted inode on disk. */
  148. static void minix_clear_inode(struct inode *inode)
  149. {
  150. struct buffer_head *bh = NULL;
  151. if (INODE_VERSION(inode) == MINIX_V1) {
  152. struct minix_inode *raw_inode;
  153. raw_inode = minix_V1_raw_inode(inode->i_sb, inode->i_ino, &bh);
  154. if (raw_inode) {
  155. raw_inode->i_nlinks = 0;
  156. raw_inode->i_mode = 0;
  157. }
  158. } else {
  159. struct minix2_inode *raw_inode;
  160. raw_inode = minix_V2_raw_inode(inode->i_sb, inode->i_ino, &bh);
  161. if (raw_inode) {
  162. raw_inode->i_nlinks = 0;
  163. raw_inode->i_mode = 0;
  164. }
  165. }
  166. if (bh) {
  167. mark_buffer_dirty(bh);
  168. brelse (bh);
  169. }
  170. }
  171. void minix_free_inode(struct inode * inode)
  172. {
  173. struct super_block *sb = inode->i_sb;
  174. struct minix_sb_info *sbi = minix_sb(inode->i_sb);
  175. struct buffer_head *bh;
  176. int k = sb->s_blocksize_bits + 3;
  177. unsigned long ino, bit;
  178. ino = inode->i_ino;
  179. if (ino < 1 || ino > sbi->s_ninodes) {
  180. printk("minix_free_inode: inode 0 or nonexistent inode\n");
  181. return;
  182. }
  183. bit = ino & ((1<<k) - 1);
  184. ino >>= k;
  185. if (ino >= sbi->s_imap_blocks) {
  186. printk("minix_free_inode: nonexistent imap in superblock\n");
  187. return;
  188. }
  189. minix_clear_inode(inode); /* clear on-disk copy */
  190. bh = sbi->s_imap[ino];
  191. spin_lock(&bitmap_lock);
  192. if (!minix_test_and_clear_bit(bit, bh->b_data))
  193. printk("minix_free_inode: bit %lu already cleared\n", bit);
  194. spin_unlock(&bitmap_lock);
  195. mark_buffer_dirty(bh);
  196. }
  197. struct inode *minix_new_inode(const struct inode *dir, int mode, int *error)
  198. {
  199. struct super_block *sb = dir->i_sb;
  200. struct minix_sb_info *sbi = minix_sb(sb);
  201. struct inode *inode = new_inode(sb);
  202. struct buffer_head * bh;
  203. int bits_per_zone = 8 * sb->s_blocksize;
  204. unsigned long j;
  205. int i;
  206. if (!inode) {
  207. *error = -ENOMEM;
  208. return NULL;
  209. }
  210. j = bits_per_zone;
  211. bh = NULL;
  212. *error = -ENOSPC;
  213. spin_lock(&bitmap_lock);
  214. for (i = 0; i < sbi->s_imap_blocks; i++) {
  215. bh = sbi->s_imap[i];
  216. j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
  217. if (j < bits_per_zone)
  218. break;
  219. }
  220. if (!bh || j >= bits_per_zone) {
  221. spin_unlock(&bitmap_lock);
  222. iput(inode);
  223. return NULL;
  224. }
  225. if (minix_test_and_set_bit(j, bh->b_data)) { /* shouldn't happen */
  226. spin_unlock(&bitmap_lock);
  227. printk("minix_new_inode: bit already set\n");
  228. iput(inode);
  229. return NULL;
  230. }
  231. spin_unlock(&bitmap_lock);
  232. mark_buffer_dirty(bh);
  233. j += i * bits_per_zone;
  234. if (!j || j > sbi->s_ninodes) {
  235. iput(inode);
  236. return NULL;
  237. }
  238. inode_init_owner(inode, dir, mode);
  239. inode->i_ino = j;
  240. inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
  241. inode->i_blocks = 0;
  242. memset(&minix_i(inode)->u, 0, sizeof(minix_i(inode)->u));
  243. insert_inode_hash(inode);
  244. mark_inode_dirty(inode);
  245. *error = 0;
  246. return inode;
  247. }
  248. unsigned long minix_count_free_inodes(struct super_block *sb)
  249. {
  250. struct minix_sb_info *sbi = minix_sb(sb);
  251. u32 bits = sbi->s_ninodes + 1;
  252. return count_free(sbi->s_imap, sb->s_blocksize, bits);
  253. }