loop.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592
  1. /*
  2. * linux/drivers/block/loop.c
  3. *
  4. * Written by Theodore Ts'o, 3/29/93
  5. *
  6. * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
  7. * permitted under the GNU General Public License.
  8. *
  9. * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10. * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11. *
  12. * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13. * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14. *
  15. * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16. *
  17. * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18. *
  19. * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20. *
  21. * Loadable modules and other fixes by AK, 1998
  22. *
  23. * Make real block number available to downstream transfer functions, enables
  24. * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25. * Reed H. Petty, rhp@draper.net
  26. *
  27. * Maximum number of loop devices now dynamic via max_loop module parameter.
  28. * Russell Kroll <rkroll@exploits.org> 19990701
  29. *
  30. * Maximum number of loop devices when compiled-in now selectable by passing
  31. * max_loop=<1-255> to the kernel on boot.
  32. * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33. *
  34. * Completely rewrite request handling to be make_request_fn style and
  35. * non blocking, pushing work to a helper thread. Lots of fixes from
  36. * Al Viro too.
  37. * Jens Axboe <axboe@suse.de>, Nov 2000
  38. *
  39. * Support up to 256 loop devices
  40. * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41. *
  42. * Support for falling back on the write file operation when the address space
  43. * operations prepare_write and/or commit_write are not available on the
  44. * backing filesystem.
  45. * Anton Altaparmakov, 16 Feb 2005
  46. *
  47. * Still To Fix:
  48. * - Advisory locking is ignored here.
  49. * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  50. *
  51. */
  52. #include <linux/module.h>
  53. #include <linux/moduleparam.h>
  54. #include <linux/sched.h>
  55. #include <linux/fs.h>
  56. #include <linux/file.h>
  57. #include <linux/stat.h>
  58. #include <linux/errno.h>
  59. #include <linux/major.h>
  60. #include <linux/wait.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/blkpg.h>
  63. #include <linux/init.h>
  64. #include <linux/smp_lock.h>
  65. #include <linux/swap.h>
  66. #include <linux/slab.h>
  67. #include <linux/loop.h>
  68. #include <linux/compat.h>
  69. #include <linux/suspend.h>
  70. #include <linux/writeback.h>
  71. #include <linux/buffer_head.h> /* for invalidate_bdev() */
  72. #include <linux/completion.h>
  73. #include <linux/highmem.h>
  74. #include <linux/gfp.h>
  75. #include <linux/kthread.h>
  76. #include <linux/splice.h>
  77. #include <asm/uaccess.h>
  78. static LIST_HEAD(loop_devices);
  79. static DEFINE_MUTEX(loop_devices_mutex);
  80. /*
  81. * Transfer functions
  82. */
  83. static int transfer_none(struct loop_device *lo, int cmd,
  84. struct page *raw_page, unsigned raw_off,
  85. struct page *loop_page, unsigned loop_off,
  86. int size, sector_t real_block)
  87. {
  88. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  89. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  90. if (cmd == READ)
  91. memcpy(loop_buf, raw_buf, size);
  92. else
  93. memcpy(raw_buf, loop_buf, size);
  94. kunmap_atomic(raw_buf, KM_USER0);
  95. kunmap_atomic(loop_buf, KM_USER1);
  96. cond_resched();
  97. return 0;
  98. }
  99. static int transfer_xor(struct loop_device *lo, int cmd,
  100. struct page *raw_page, unsigned raw_off,
  101. struct page *loop_page, unsigned loop_off,
  102. int size, sector_t real_block)
  103. {
  104. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  105. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  106. char *in, *out, *key;
  107. int i, keysize;
  108. if (cmd == READ) {
  109. in = raw_buf;
  110. out = loop_buf;
  111. } else {
  112. in = loop_buf;
  113. out = raw_buf;
  114. }
  115. key = lo->lo_encrypt_key;
  116. keysize = lo->lo_encrypt_key_size;
  117. for (i = 0; i < size; i++)
  118. *out++ = *in++ ^ key[(i & 511) % keysize];
  119. kunmap_atomic(raw_buf, KM_USER0);
  120. kunmap_atomic(loop_buf, KM_USER1);
  121. cond_resched();
  122. return 0;
  123. }
  124. static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
  125. {
  126. if (unlikely(info->lo_encrypt_key_size <= 0))
  127. return -EINVAL;
  128. return 0;
  129. }
  130. static struct loop_func_table none_funcs = {
  131. .number = LO_CRYPT_NONE,
  132. .transfer = transfer_none,
  133. };
  134. static struct loop_func_table xor_funcs = {
  135. .number = LO_CRYPT_XOR,
  136. .transfer = transfer_xor,
  137. .init = xor_init
  138. };
  139. /* xfer_funcs[0] is special - its release function is never called */
  140. static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
  141. &none_funcs,
  142. &xor_funcs
  143. };
  144. static loff_t get_loop_size(struct loop_device *lo, struct file *file)
  145. {
  146. loff_t size, offset, loopsize;
  147. /* Compute loopsize in bytes */
  148. size = i_size_read(file->f_mapping->host);
  149. offset = lo->lo_offset;
  150. loopsize = size - offset;
  151. if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
  152. loopsize = lo->lo_sizelimit;
  153. /*
  154. * Unfortunately, if we want to do I/O on the device,
  155. * the number of 512-byte sectors has to fit into a sector_t.
  156. */
  157. return loopsize >> 9;
  158. }
  159. static int
  160. figure_loop_size(struct loop_device *lo)
  161. {
  162. loff_t size = get_loop_size(lo, lo->lo_backing_file);
  163. sector_t x = (sector_t)size;
  164. if (unlikely((loff_t)x != size))
  165. return -EFBIG;
  166. set_capacity(lo->lo_disk, x);
  167. return 0;
  168. }
  169. static inline int
  170. lo_do_transfer(struct loop_device *lo, int cmd,
  171. struct page *rpage, unsigned roffs,
  172. struct page *lpage, unsigned loffs,
  173. int size, sector_t rblock)
  174. {
  175. if (unlikely(!lo->transfer))
  176. return 0;
  177. return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
  178. }
  179. /**
  180. * do_lo_send_aops - helper for writing data to a loop device
  181. *
  182. * This is the fast version for backing filesystems which implement the address
  183. * space operations prepare_write and commit_write.
  184. */
  185. static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
  186. int bsize, loff_t pos, struct page *page)
  187. {
  188. struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
  189. struct address_space *mapping = file->f_mapping;
  190. const struct address_space_operations *aops = mapping->a_ops;
  191. pgoff_t index;
  192. unsigned offset, bv_offs;
  193. int len, ret;
  194. mutex_lock(&mapping->host->i_mutex);
  195. index = pos >> PAGE_CACHE_SHIFT;
  196. offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
  197. bv_offs = bvec->bv_offset;
  198. len = bvec->bv_len;
  199. while (len > 0) {
  200. sector_t IV;
  201. unsigned size;
  202. int transfer_result;
  203. IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  204. size = PAGE_CACHE_SIZE - offset;
  205. if (size > len)
  206. size = len;
  207. page = grab_cache_page(mapping, index);
  208. if (unlikely(!page))
  209. goto fail;
  210. ret = aops->prepare_write(file, page, offset,
  211. offset + size);
  212. if (unlikely(ret)) {
  213. if (ret == AOP_TRUNCATED_PAGE) {
  214. page_cache_release(page);
  215. continue;
  216. }
  217. goto unlock;
  218. }
  219. transfer_result = lo_do_transfer(lo, WRITE, page, offset,
  220. bvec->bv_page, bv_offs, size, IV);
  221. if (unlikely(transfer_result)) {
  222. /*
  223. * The transfer failed, but we still write the data to
  224. * keep prepare/commit calls balanced.
  225. */
  226. printk(KERN_ERR "loop: transfer error block %llu\n",
  227. (unsigned long long)index);
  228. zero_user_page(page, offset, size, KM_USER0);
  229. }
  230. flush_dcache_page(page);
  231. ret = aops->commit_write(file, page, offset,
  232. offset + size);
  233. if (unlikely(ret)) {
  234. if (ret == AOP_TRUNCATED_PAGE) {
  235. page_cache_release(page);
  236. continue;
  237. }
  238. goto unlock;
  239. }
  240. if (unlikely(transfer_result))
  241. goto unlock;
  242. bv_offs += size;
  243. len -= size;
  244. offset = 0;
  245. index++;
  246. pos += size;
  247. unlock_page(page);
  248. page_cache_release(page);
  249. }
  250. ret = 0;
  251. out:
  252. mutex_unlock(&mapping->host->i_mutex);
  253. return ret;
  254. unlock:
  255. unlock_page(page);
  256. page_cache_release(page);
  257. fail:
  258. ret = -1;
  259. goto out;
  260. }
  261. /**
  262. * __do_lo_send_write - helper for writing data to a loop device
  263. *
  264. * This helper just factors out common code between do_lo_send_direct_write()
  265. * and do_lo_send_write().
  266. */
  267. static int __do_lo_send_write(struct file *file,
  268. u8 *buf, const int len, loff_t pos)
  269. {
  270. ssize_t bw;
  271. mm_segment_t old_fs = get_fs();
  272. set_fs(get_ds());
  273. bw = file->f_op->write(file, buf, len, &pos);
  274. set_fs(old_fs);
  275. if (likely(bw == len))
  276. return 0;
  277. printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
  278. (unsigned long long)pos, len);
  279. if (bw >= 0)
  280. bw = -EIO;
  281. return bw;
  282. }
  283. /**
  284. * do_lo_send_direct_write - helper for writing data to a loop device
  285. *
  286. * This is the fast, non-transforming version for backing filesystems which do
  287. * not implement the address space operations prepare_write and commit_write.
  288. * It uses the write file operation which should be present on all writeable
  289. * filesystems.
  290. */
  291. static int do_lo_send_direct_write(struct loop_device *lo,
  292. struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
  293. {
  294. ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
  295. kmap(bvec->bv_page) + bvec->bv_offset,
  296. bvec->bv_len, pos);
  297. kunmap(bvec->bv_page);
  298. cond_resched();
  299. return bw;
  300. }
  301. /**
  302. * do_lo_send_write - helper for writing data to a loop device
  303. *
  304. * This is the slow, transforming version for filesystems which do not
  305. * implement the address space operations prepare_write and commit_write. It
  306. * uses the write file operation which should be present on all writeable
  307. * filesystems.
  308. *
  309. * Using fops->write is slower than using aops->{prepare,commit}_write in the
  310. * transforming case because we need to double buffer the data as we cannot do
  311. * the transformations in place as we do not have direct access to the
  312. * destination pages of the backing file.
  313. */
  314. static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
  315. int bsize, loff_t pos, struct page *page)
  316. {
  317. int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
  318. bvec->bv_offset, bvec->bv_len, pos >> 9);
  319. if (likely(!ret))
  320. return __do_lo_send_write(lo->lo_backing_file,
  321. page_address(page), bvec->bv_len,
  322. pos);
  323. printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
  324. "length %i.\n", (unsigned long long)pos, bvec->bv_len);
  325. if (ret > 0)
  326. ret = -EIO;
  327. return ret;
  328. }
  329. static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
  330. loff_t pos)
  331. {
  332. int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
  333. struct page *page);
  334. struct bio_vec *bvec;
  335. struct page *page = NULL;
  336. int i, ret = 0;
  337. do_lo_send = do_lo_send_aops;
  338. if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
  339. do_lo_send = do_lo_send_direct_write;
  340. if (lo->transfer != transfer_none) {
  341. page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
  342. if (unlikely(!page))
  343. goto fail;
  344. kmap(page);
  345. do_lo_send = do_lo_send_write;
  346. }
  347. }
  348. bio_for_each_segment(bvec, bio, i) {
  349. ret = do_lo_send(lo, bvec, bsize, pos, page);
  350. if (ret < 0)
  351. break;
  352. pos += bvec->bv_len;
  353. }
  354. if (page) {
  355. kunmap(page);
  356. __free_page(page);
  357. }
  358. out:
  359. return ret;
  360. fail:
  361. printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
  362. ret = -ENOMEM;
  363. goto out;
  364. }
  365. struct lo_read_data {
  366. struct loop_device *lo;
  367. struct page *page;
  368. unsigned offset;
  369. int bsize;
  370. };
  371. static int
  372. lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
  373. struct splice_desc *sd)
  374. {
  375. struct lo_read_data *p = sd->u.data;
  376. struct loop_device *lo = p->lo;
  377. struct page *page = buf->page;
  378. sector_t IV;
  379. size_t size;
  380. int ret;
  381. ret = buf->ops->confirm(pipe, buf);
  382. if (unlikely(ret))
  383. return ret;
  384. IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
  385. (buf->offset >> 9);
  386. size = sd->len;
  387. if (size > p->bsize)
  388. size = p->bsize;
  389. if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
  390. printk(KERN_ERR "loop: transfer error block %ld\n",
  391. page->index);
  392. size = -EINVAL;
  393. }
  394. flush_dcache_page(p->page);
  395. if (size > 0)
  396. p->offset += size;
  397. return size;
  398. }
  399. static int
  400. lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
  401. {
  402. return __splice_from_pipe(pipe, sd, lo_splice_actor);
  403. }
  404. static int
  405. do_lo_receive(struct loop_device *lo,
  406. struct bio_vec *bvec, int bsize, loff_t pos)
  407. {
  408. struct lo_read_data cookie;
  409. struct splice_desc sd;
  410. struct file *file;
  411. long retval;
  412. cookie.lo = lo;
  413. cookie.page = bvec->bv_page;
  414. cookie.offset = bvec->bv_offset;
  415. cookie.bsize = bsize;
  416. sd.len = 0;
  417. sd.total_len = bvec->bv_len;
  418. sd.flags = 0;
  419. sd.pos = pos;
  420. sd.u.data = &cookie;
  421. file = lo->lo_backing_file;
  422. retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
  423. if (retval < 0)
  424. return retval;
  425. return 0;
  426. }
  427. static int
  428. lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
  429. {
  430. struct bio_vec *bvec;
  431. int i, ret = 0;
  432. bio_for_each_segment(bvec, bio, i) {
  433. ret = do_lo_receive(lo, bvec, bsize, pos);
  434. if (ret < 0)
  435. break;
  436. pos += bvec->bv_len;
  437. }
  438. return ret;
  439. }
  440. static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
  441. {
  442. loff_t pos;
  443. int ret;
  444. pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
  445. if (bio_rw(bio) == WRITE)
  446. ret = lo_send(lo, bio, lo->lo_blocksize, pos);
  447. else
  448. ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
  449. return ret;
  450. }
  451. /*
  452. * Add bio to back of pending list
  453. */
  454. static void loop_add_bio(struct loop_device *lo, struct bio *bio)
  455. {
  456. if (lo->lo_biotail) {
  457. lo->lo_biotail->bi_next = bio;
  458. lo->lo_biotail = bio;
  459. } else
  460. lo->lo_bio = lo->lo_biotail = bio;
  461. }
  462. /*
  463. * Grab first pending buffer
  464. */
  465. static struct bio *loop_get_bio(struct loop_device *lo)
  466. {
  467. struct bio *bio;
  468. if ((bio = lo->lo_bio)) {
  469. if (bio == lo->lo_biotail)
  470. lo->lo_biotail = NULL;
  471. lo->lo_bio = bio->bi_next;
  472. bio->bi_next = NULL;
  473. }
  474. return bio;
  475. }
  476. static int loop_make_request(request_queue_t *q, struct bio *old_bio)
  477. {
  478. struct loop_device *lo = q->queuedata;
  479. int rw = bio_rw(old_bio);
  480. if (rw == READA)
  481. rw = READ;
  482. BUG_ON(!lo || (rw != READ && rw != WRITE));
  483. spin_lock_irq(&lo->lo_lock);
  484. if (lo->lo_state != Lo_bound)
  485. goto out;
  486. if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
  487. goto out;
  488. loop_add_bio(lo, old_bio);
  489. wake_up(&lo->lo_event);
  490. spin_unlock_irq(&lo->lo_lock);
  491. return 0;
  492. out:
  493. spin_unlock_irq(&lo->lo_lock);
  494. bio_io_error(old_bio, old_bio->bi_size);
  495. return 0;
  496. }
  497. /*
  498. * kick off io on the underlying address space
  499. */
  500. static void loop_unplug(request_queue_t *q)
  501. {
  502. struct loop_device *lo = q->queuedata;
  503. clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
  504. blk_run_address_space(lo->lo_backing_file->f_mapping);
  505. }
  506. struct switch_request {
  507. struct file *file;
  508. struct completion wait;
  509. };
  510. static void do_loop_switch(struct loop_device *, struct switch_request *);
  511. static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
  512. {
  513. if (unlikely(!bio->bi_bdev)) {
  514. do_loop_switch(lo, bio->bi_private);
  515. bio_put(bio);
  516. } else {
  517. int ret = do_bio_filebacked(lo, bio);
  518. bio_endio(bio, bio->bi_size, ret);
  519. }
  520. }
  521. /*
  522. * worker thread that handles reads/writes to file backed loop devices,
  523. * to avoid blocking in our make_request_fn. it also does loop decrypting
  524. * on reads for block backed loop, as that is too heavy to do from
  525. * b_end_io context where irqs may be disabled.
  526. *
  527. * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
  528. * calling kthread_stop(). Therefore once kthread_should_stop() is
  529. * true, make_request will not place any more requests. Therefore
  530. * once kthread_should_stop() is true and lo_bio is NULL, we are
  531. * done with the loop.
  532. */
  533. static int loop_thread(void *data)
  534. {
  535. struct loop_device *lo = data;
  536. struct bio *bio;
  537. /*
  538. * loop can be used in an encrypted device,
  539. * hence, it mustn't be stopped at all
  540. * because it could be indirectly used during suspension
  541. */
  542. current->flags |= PF_NOFREEZE;
  543. set_user_nice(current, -20);
  544. while (!kthread_should_stop() || lo->lo_bio) {
  545. wait_event_interruptible(lo->lo_event,
  546. lo->lo_bio || kthread_should_stop());
  547. if (!lo->lo_bio)
  548. continue;
  549. spin_lock_irq(&lo->lo_lock);
  550. bio = loop_get_bio(lo);
  551. spin_unlock_irq(&lo->lo_lock);
  552. BUG_ON(!bio);
  553. loop_handle_bio(lo, bio);
  554. }
  555. return 0;
  556. }
  557. /*
  558. * loop_switch performs the hard work of switching a backing store.
  559. * First it needs to flush existing IO, it does this by sending a magic
  560. * BIO down the pipe. The completion of this BIO does the actual switch.
  561. */
  562. static int loop_switch(struct loop_device *lo, struct file *file)
  563. {
  564. struct switch_request w;
  565. struct bio *bio = bio_alloc(GFP_KERNEL, 1);
  566. if (!bio)
  567. return -ENOMEM;
  568. init_completion(&w.wait);
  569. w.file = file;
  570. bio->bi_private = &w;
  571. bio->bi_bdev = NULL;
  572. loop_make_request(lo->lo_queue, bio);
  573. wait_for_completion(&w.wait);
  574. return 0;
  575. }
  576. /*
  577. * Do the actual switch; called from the BIO completion routine
  578. */
  579. static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
  580. {
  581. struct file *file = p->file;
  582. struct file *old_file = lo->lo_backing_file;
  583. struct address_space *mapping = file->f_mapping;
  584. mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
  585. lo->lo_backing_file = file;
  586. lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
  587. mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
  588. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  589. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  590. complete(&p->wait);
  591. }
  592. /*
  593. * loop_change_fd switched the backing store of a loopback device to
  594. * a new file. This is useful for operating system installers to free up
  595. * the original file and in High Availability environments to switch to
  596. * an alternative location for the content in case of server meltdown.
  597. * This can only work if the loop device is used read-only, and if the
  598. * new backing store is the same size and type as the old backing store.
  599. */
  600. static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
  601. struct block_device *bdev, unsigned int arg)
  602. {
  603. struct file *file, *old_file;
  604. struct inode *inode;
  605. int error;
  606. error = -ENXIO;
  607. if (lo->lo_state != Lo_bound)
  608. goto out;
  609. /* the loop device has to be read-only */
  610. error = -EINVAL;
  611. if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
  612. goto out;
  613. error = -EBADF;
  614. file = fget(arg);
  615. if (!file)
  616. goto out;
  617. inode = file->f_mapping->host;
  618. old_file = lo->lo_backing_file;
  619. error = -EINVAL;
  620. if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
  621. goto out_putf;
  622. /* new backing store needs to support loop (eg splice_read) */
  623. if (!inode->i_fop->splice_read)
  624. goto out_putf;
  625. /* size of the new backing store needs to be the same */
  626. if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
  627. goto out_putf;
  628. /* and ... switch */
  629. error = loop_switch(lo, file);
  630. if (error)
  631. goto out_putf;
  632. fput(old_file);
  633. return 0;
  634. out_putf:
  635. fput(file);
  636. out:
  637. return error;
  638. }
  639. static inline int is_loop_device(struct file *file)
  640. {
  641. struct inode *i = file->f_mapping->host;
  642. return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
  643. }
  644. static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
  645. struct block_device *bdev, unsigned int arg)
  646. {
  647. struct file *file, *f;
  648. struct inode *inode;
  649. struct address_space *mapping;
  650. unsigned lo_blocksize;
  651. int lo_flags = 0;
  652. int error;
  653. loff_t size;
  654. /* This is safe, since we have a reference from open(). */
  655. __module_get(THIS_MODULE);
  656. error = -EBADF;
  657. file = fget(arg);
  658. if (!file)
  659. goto out;
  660. error = -EBUSY;
  661. if (lo->lo_state != Lo_unbound)
  662. goto out_putf;
  663. /* Avoid recursion */
  664. f = file;
  665. while (is_loop_device(f)) {
  666. struct loop_device *l;
  667. if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
  668. goto out_putf;
  669. l = f->f_mapping->host->i_bdev->bd_disk->private_data;
  670. if (l->lo_state == Lo_unbound) {
  671. error = -EINVAL;
  672. goto out_putf;
  673. }
  674. f = l->lo_backing_file;
  675. }
  676. mapping = file->f_mapping;
  677. inode = mapping->host;
  678. if (!(file->f_mode & FMODE_WRITE))
  679. lo_flags |= LO_FLAGS_READ_ONLY;
  680. error = -EINVAL;
  681. if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  682. const struct address_space_operations *aops = mapping->a_ops;
  683. /*
  684. * If we can't read - sorry. If we only can't write - well,
  685. * it's going to be read-only.
  686. */
  687. if (!file->f_op->splice_read)
  688. goto out_putf;
  689. if (aops->prepare_write && aops->commit_write)
  690. lo_flags |= LO_FLAGS_USE_AOPS;
  691. if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
  692. lo_flags |= LO_FLAGS_READ_ONLY;
  693. lo_blocksize = S_ISBLK(inode->i_mode) ?
  694. inode->i_bdev->bd_block_size : PAGE_SIZE;
  695. error = 0;
  696. } else {
  697. goto out_putf;
  698. }
  699. size = get_loop_size(lo, file);
  700. if ((loff_t)(sector_t)size != size) {
  701. error = -EFBIG;
  702. goto out_putf;
  703. }
  704. if (!(lo_file->f_mode & FMODE_WRITE))
  705. lo_flags |= LO_FLAGS_READ_ONLY;
  706. set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
  707. lo->lo_blocksize = lo_blocksize;
  708. lo->lo_device = bdev;
  709. lo->lo_flags = lo_flags;
  710. lo->lo_backing_file = file;
  711. lo->transfer = transfer_none;
  712. lo->ioctl = NULL;
  713. lo->lo_sizelimit = 0;
  714. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  715. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  716. lo->lo_bio = lo->lo_biotail = NULL;
  717. /*
  718. * set queue make_request_fn, and add limits based on lower level
  719. * device
  720. */
  721. blk_queue_make_request(lo->lo_queue, loop_make_request);
  722. lo->lo_queue->queuedata = lo;
  723. lo->lo_queue->unplug_fn = loop_unplug;
  724. set_capacity(lo->lo_disk, size);
  725. bd_set_size(bdev, size << 9);
  726. set_blocksize(bdev, lo_blocksize);
  727. lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
  728. lo->lo_number);
  729. if (IS_ERR(lo->lo_thread)) {
  730. error = PTR_ERR(lo->lo_thread);
  731. goto out_clr;
  732. }
  733. lo->lo_state = Lo_bound;
  734. wake_up_process(lo->lo_thread);
  735. return 0;
  736. out_clr:
  737. lo->lo_thread = NULL;
  738. lo->lo_device = NULL;
  739. lo->lo_backing_file = NULL;
  740. lo->lo_flags = 0;
  741. set_capacity(lo->lo_disk, 0);
  742. invalidate_bdev(bdev);
  743. bd_set_size(bdev, 0);
  744. mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
  745. lo->lo_state = Lo_unbound;
  746. out_putf:
  747. fput(file);
  748. out:
  749. /* This is safe: open() is still holding a reference. */
  750. module_put(THIS_MODULE);
  751. return error;
  752. }
  753. static int
  754. loop_release_xfer(struct loop_device *lo)
  755. {
  756. int err = 0;
  757. struct loop_func_table *xfer = lo->lo_encryption;
  758. if (xfer) {
  759. if (xfer->release)
  760. err = xfer->release(lo);
  761. lo->transfer = NULL;
  762. lo->lo_encryption = NULL;
  763. module_put(xfer->owner);
  764. }
  765. return err;
  766. }
  767. static int
  768. loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
  769. const struct loop_info64 *i)
  770. {
  771. int err = 0;
  772. if (xfer) {
  773. struct module *owner = xfer->owner;
  774. if (!try_module_get(owner))
  775. return -EINVAL;
  776. if (xfer->init)
  777. err = xfer->init(lo, i);
  778. if (err)
  779. module_put(owner);
  780. else
  781. lo->lo_encryption = xfer;
  782. }
  783. return err;
  784. }
  785. static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
  786. {
  787. struct file *filp = lo->lo_backing_file;
  788. gfp_t gfp = lo->old_gfp_mask;
  789. if (lo->lo_state != Lo_bound)
  790. return -ENXIO;
  791. if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
  792. return -EBUSY;
  793. if (filp == NULL)
  794. return -EINVAL;
  795. spin_lock_irq(&lo->lo_lock);
  796. lo->lo_state = Lo_rundown;
  797. spin_unlock_irq(&lo->lo_lock);
  798. kthread_stop(lo->lo_thread);
  799. lo->lo_backing_file = NULL;
  800. loop_release_xfer(lo);
  801. lo->transfer = NULL;
  802. lo->ioctl = NULL;
  803. lo->lo_device = NULL;
  804. lo->lo_encryption = NULL;
  805. lo->lo_offset = 0;
  806. lo->lo_sizelimit = 0;
  807. lo->lo_encrypt_key_size = 0;
  808. lo->lo_flags = 0;
  809. lo->lo_thread = NULL;
  810. memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
  811. memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
  812. memset(lo->lo_file_name, 0, LO_NAME_SIZE);
  813. invalidate_bdev(bdev);
  814. set_capacity(lo->lo_disk, 0);
  815. bd_set_size(bdev, 0);
  816. mapping_set_gfp_mask(filp->f_mapping, gfp);
  817. lo->lo_state = Lo_unbound;
  818. fput(filp);
  819. /* This is safe: open() is still holding a reference. */
  820. module_put(THIS_MODULE);
  821. return 0;
  822. }
  823. static int
  824. loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
  825. {
  826. int err;
  827. struct loop_func_table *xfer;
  828. if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
  829. !capable(CAP_SYS_ADMIN))
  830. return -EPERM;
  831. if (lo->lo_state != Lo_bound)
  832. return -ENXIO;
  833. if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
  834. return -EINVAL;
  835. err = loop_release_xfer(lo);
  836. if (err)
  837. return err;
  838. if (info->lo_encrypt_type) {
  839. unsigned int type = info->lo_encrypt_type;
  840. if (type >= MAX_LO_CRYPT)
  841. return -EINVAL;
  842. xfer = xfer_funcs[type];
  843. if (xfer == NULL)
  844. return -EINVAL;
  845. } else
  846. xfer = NULL;
  847. err = loop_init_xfer(lo, xfer, info);
  848. if (err)
  849. return err;
  850. if (lo->lo_offset != info->lo_offset ||
  851. lo->lo_sizelimit != info->lo_sizelimit) {
  852. lo->lo_offset = info->lo_offset;
  853. lo->lo_sizelimit = info->lo_sizelimit;
  854. if (figure_loop_size(lo))
  855. return -EFBIG;
  856. }
  857. memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
  858. memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
  859. lo->lo_file_name[LO_NAME_SIZE-1] = 0;
  860. lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
  861. if (!xfer)
  862. xfer = &none_funcs;
  863. lo->transfer = xfer->transfer;
  864. lo->ioctl = xfer->ioctl;
  865. lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
  866. lo->lo_init[0] = info->lo_init[0];
  867. lo->lo_init[1] = info->lo_init[1];
  868. if (info->lo_encrypt_key_size) {
  869. memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
  870. info->lo_encrypt_key_size);
  871. lo->lo_key_owner = current->uid;
  872. }
  873. return 0;
  874. }
  875. static int
  876. loop_get_status(struct loop_device *lo, struct loop_info64 *info)
  877. {
  878. struct file *file = lo->lo_backing_file;
  879. struct kstat stat;
  880. int error;
  881. if (lo->lo_state != Lo_bound)
  882. return -ENXIO;
  883. error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
  884. if (error)
  885. return error;
  886. memset(info, 0, sizeof(*info));
  887. info->lo_number = lo->lo_number;
  888. info->lo_device = huge_encode_dev(stat.dev);
  889. info->lo_inode = stat.ino;
  890. info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
  891. info->lo_offset = lo->lo_offset;
  892. info->lo_sizelimit = lo->lo_sizelimit;
  893. info->lo_flags = lo->lo_flags;
  894. memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
  895. memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
  896. info->lo_encrypt_type =
  897. lo->lo_encryption ? lo->lo_encryption->number : 0;
  898. if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
  899. info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
  900. memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
  901. lo->lo_encrypt_key_size);
  902. }
  903. return 0;
  904. }
  905. static void
  906. loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
  907. {
  908. memset(info64, 0, sizeof(*info64));
  909. info64->lo_number = info->lo_number;
  910. info64->lo_device = info->lo_device;
  911. info64->lo_inode = info->lo_inode;
  912. info64->lo_rdevice = info->lo_rdevice;
  913. info64->lo_offset = info->lo_offset;
  914. info64->lo_sizelimit = 0;
  915. info64->lo_encrypt_type = info->lo_encrypt_type;
  916. info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
  917. info64->lo_flags = info->lo_flags;
  918. info64->lo_init[0] = info->lo_init[0];
  919. info64->lo_init[1] = info->lo_init[1];
  920. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  921. memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
  922. else
  923. memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
  924. memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
  925. }
  926. static int
  927. loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
  928. {
  929. memset(info, 0, sizeof(*info));
  930. info->lo_number = info64->lo_number;
  931. info->lo_device = info64->lo_device;
  932. info->lo_inode = info64->lo_inode;
  933. info->lo_rdevice = info64->lo_rdevice;
  934. info->lo_offset = info64->lo_offset;
  935. info->lo_encrypt_type = info64->lo_encrypt_type;
  936. info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
  937. info->lo_flags = info64->lo_flags;
  938. info->lo_init[0] = info64->lo_init[0];
  939. info->lo_init[1] = info64->lo_init[1];
  940. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  941. memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  942. else
  943. memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
  944. memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  945. /* error in case values were truncated */
  946. if (info->lo_device != info64->lo_device ||
  947. info->lo_rdevice != info64->lo_rdevice ||
  948. info->lo_inode != info64->lo_inode ||
  949. info->lo_offset != info64->lo_offset)
  950. return -EOVERFLOW;
  951. return 0;
  952. }
  953. static int
  954. loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
  955. {
  956. struct loop_info info;
  957. struct loop_info64 info64;
  958. if (copy_from_user(&info, arg, sizeof (struct loop_info)))
  959. return -EFAULT;
  960. loop_info64_from_old(&info, &info64);
  961. return loop_set_status(lo, &info64);
  962. }
  963. static int
  964. loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
  965. {
  966. struct loop_info64 info64;
  967. if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
  968. return -EFAULT;
  969. return loop_set_status(lo, &info64);
  970. }
  971. static int
  972. loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
  973. struct loop_info info;
  974. struct loop_info64 info64;
  975. int err = 0;
  976. if (!arg)
  977. err = -EINVAL;
  978. if (!err)
  979. err = loop_get_status(lo, &info64);
  980. if (!err)
  981. err = loop_info64_to_old(&info64, &info);
  982. if (!err && copy_to_user(arg, &info, sizeof(info)))
  983. err = -EFAULT;
  984. return err;
  985. }
  986. static int
  987. loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
  988. struct loop_info64 info64;
  989. int err = 0;
  990. if (!arg)
  991. err = -EINVAL;
  992. if (!err)
  993. err = loop_get_status(lo, &info64);
  994. if (!err && copy_to_user(arg, &info64, sizeof(info64)))
  995. err = -EFAULT;
  996. return err;
  997. }
  998. static int lo_ioctl(struct inode * inode, struct file * file,
  999. unsigned int cmd, unsigned long arg)
  1000. {
  1001. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1002. int err;
  1003. mutex_lock(&lo->lo_ctl_mutex);
  1004. switch (cmd) {
  1005. case LOOP_SET_FD:
  1006. err = loop_set_fd(lo, file, inode->i_bdev, arg);
  1007. break;
  1008. case LOOP_CHANGE_FD:
  1009. err = loop_change_fd(lo, file, inode->i_bdev, arg);
  1010. break;
  1011. case LOOP_CLR_FD:
  1012. err = loop_clr_fd(lo, inode->i_bdev);
  1013. break;
  1014. case LOOP_SET_STATUS:
  1015. err = loop_set_status_old(lo, (struct loop_info __user *) arg);
  1016. break;
  1017. case LOOP_GET_STATUS:
  1018. err = loop_get_status_old(lo, (struct loop_info __user *) arg);
  1019. break;
  1020. case LOOP_SET_STATUS64:
  1021. err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
  1022. break;
  1023. case LOOP_GET_STATUS64:
  1024. err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
  1025. break;
  1026. default:
  1027. err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
  1028. }
  1029. mutex_unlock(&lo->lo_ctl_mutex);
  1030. return err;
  1031. }
  1032. #ifdef CONFIG_COMPAT
  1033. struct compat_loop_info {
  1034. compat_int_t lo_number; /* ioctl r/o */
  1035. compat_dev_t lo_device; /* ioctl r/o */
  1036. compat_ulong_t lo_inode; /* ioctl r/o */
  1037. compat_dev_t lo_rdevice; /* ioctl r/o */
  1038. compat_int_t lo_offset;
  1039. compat_int_t lo_encrypt_type;
  1040. compat_int_t lo_encrypt_key_size; /* ioctl w/o */
  1041. compat_int_t lo_flags; /* ioctl r/o */
  1042. char lo_name[LO_NAME_SIZE];
  1043. unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
  1044. compat_ulong_t lo_init[2];
  1045. char reserved[4];
  1046. };
  1047. /*
  1048. * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
  1049. * - noinlined to reduce stack space usage in main part of driver
  1050. */
  1051. static noinline int
  1052. loop_info64_from_compat(const struct compat_loop_info __user *arg,
  1053. struct loop_info64 *info64)
  1054. {
  1055. struct compat_loop_info info;
  1056. if (copy_from_user(&info, arg, sizeof(info)))
  1057. return -EFAULT;
  1058. memset(info64, 0, sizeof(*info64));
  1059. info64->lo_number = info.lo_number;
  1060. info64->lo_device = info.lo_device;
  1061. info64->lo_inode = info.lo_inode;
  1062. info64->lo_rdevice = info.lo_rdevice;
  1063. info64->lo_offset = info.lo_offset;
  1064. info64->lo_sizelimit = 0;
  1065. info64->lo_encrypt_type = info.lo_encrypt_type;
  1066. info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
  1067. info64->lo_flags = info.lo_flags;
  1068. info64->lo_init[0] = info.lo_init[0];
  1069. info64->lo_init[1] = info.lo_init[1];
  1070. if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  1071. memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
  1072. else
  1073. memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
  1074. memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
  1075. return 0;
  1076. }
  1077. /*
  1078. * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
  1079. * - noinlined to reduce stack space usage in main part of driver
  1080. */
  1081. static noinline int
  1082. loop_info64_to_compat(const struct loop_info64 *info64,
  1083. struct compat_loop_info __user *arg)
  1084. {
  1085. struct compat_loop_info info;
  1086. memset(&info, 0, sizeof(info));
  1087. info.lo_number = info64->lo_number;
  1088. info.lo_device = info64->lo_device;
  1089. info.lo_inode = info64->lo_inode;
  1090. info.lo_rdevice = info64->lo_rdevice;
  1091. info.lo_offset = info64->lo_offset;
  1092. info.lo_encrypt_type = info64->lo_encrypt_type;
  1093. info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
  1094. info.lo_flags = info64->lo_flags;
  1095. info.lo_init[0] = info64->lo_init[0];
  1096. info.lo_init[1] = info64->lo_init[1];
  1097. if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  1098. memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  1099. else
  1100. memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
  1101. memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  1102. /* error in case values were truncated */
  1103. if (info.lo_device != info64->lo_device ||
  1104. info.lo_rdevice != info64->lo_rdevice ||
  1105. info.lo_inode != info64->lo_inode ||
  1106. info.lo_offset != info64->lo_offset ||
  1107. info.lo_init[0] != info64->lo_init[0] ||
  1108. info.lo_init[1] != info64->lo_init[1])
  1109. return -EOVERFLOW;
  1110. if (copy_to_user(arg, &info, sizeof(info)))
  1111. return -EFAULT;
  1112. return 0;
  1113. }
  1114. static int
  1115. loop_set_status_compat(struct loop_device *lo,
  1116. const struct compat_loop_info __user *arg)
  1117. {
  1118. struct loop_info64 info64;
  1119. int ret;
  1120. ret = loop_info64_from_compat(arg, &info64);
  1121. if (ret < 0)
  1122. return ret;
  1123. return loop_set_status(lo, &info64);
  1124. }
  1125. static int
  1126. loop_get_status_compat(struct loop_device *lo,
  1127. struct compat_loop_info __user *arg)
  1128. {
  1129. struct loop_info64 info64;
  1130. int err = 0;
  1131. if (!arg)
  1132. err = -EINVAL;
  1133. if (!err)
  1134. err = loop_get_status(lo, &info64);
  1135. if (!err)
  1136. err = loop_info64_to_compat(&info64, arg);
  1137. return err;
  1138. }
  1139. static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1140. {
  1141. struct inode *inode = file->f_path.dentry->d_inode;
  1142. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1143. int err;
  1144. lock_kernel();
  1145. switch(cmd) {
  1146. case LOOP_SET_STATUS:
  1147. mutex_lock(&lo->lo_ctl_mutex);
  1148. err = loop_set_status_compat(
  1149. lo, (const struct compat_loop_info __user *) arg);
  1150. mutex_unlock(&lo->lo_ctl_mutex);
  1151. break;
  1152. case LOOP_GET_STATUS:
  1153. mutex_lock(&lo->lo_ctl_mutex);
  1154. err = loop_get_status_compat(
  1155. lo, (struct compat_loop_info __user *) arg);
  1156. mutex_unlock(&lo->lo_ctl_mutex);
  1157. break;
  1158. case LOOP_CLR_FD:
  1159. case LOOP_GET_STATUS64:
  1160. case LOOP_SET_STATUS64:
  1161. arg = (unsigned long) compat_ptr(arg);
  1162. case LOOP_SET_FD:
  1163. case LOOP_CHANGE_FD:
  1164. err = lo_ioctl(inode, file, cmd, arg);
  1165. break;
  1166. default:
  1167. err = -ENOIOCTLCMD;
  1168. break;
  1169. }
  1170. unlock_kernel();
  1171. return err;
  1172. }
  1173. #endif
  1174. static int lo_open(struct inode *inode, struct file *file)
  1175. {
  1176. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1177. mutex_lock(&lo->lo_ctl_mutex);
  1178. lo->lo_refcnt++;
  1179. mutex_unlock(&lo->lo_ctl_mutex);
  1180. return 0;
  1181. }
  1182. static int lo_release(struct inode *inode, struct file *file)
  1183. {
  1184. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1185. mutex_lock(&lo->lo_ctl_mutex);
  1186. --lo->lo_refcnt;
  1187. mutex_unlock(&lo->lo_ctl_mutex);
  1188. return 0;
  1189. }
  1190. static struct block_device_operations lo_fops = {
  1191. .owner = THIS_MODULE,
  1192. .open = lo_open,
  1193. .release = lo_release,
  1194. .ioctl = lo_ioctl,
  1195. #ifdef CONFIG_COMPAT
  1196. .compat_ioctl = lo_compat_ioctl,
  1197. #endif
  1198. };
  1199. /*
  1200. * And now the modules code and kernel interface.
  1201. */
  1202. static int max_loop;
  1203. module_param(max_loop, int, 0);
  1204. MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
  1205. MODULE_LICENSE("GPL");
  1206. MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
  1207. int loop_register_transfer(struct loop_func_table *funcs)
  1208. {
  1209. unsigned int n = funcs->number;
  1210. if (n >= MAX_LO_CRYPT || xfer_funcs[n])
  1211. return -EINVAL;
  1212. xfer_funcs[n] = funcs;
  1213. return 0;
  1214. }
  1215. int loop_unregister_transfer(int number)
  1216. {
  1217. unsigned int n = number;
  1218. struct loop_device *lo;
  1219. struct loop_func_table *xfer;
  1220. if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
  1221. return -EINVAL;
  1222. xfer_funcs[n] = NULL;
  1223. list_for_each_entry(lo, &loop_devices, lo_list) {
  1224. mutex_lock(&lo->lo_ctl_mutex);
  1225. if (lo->lo_encryption == xfer)
  1226. loop_release_xfer(lo);
  1227. mutex_unlock(&lo->lo_ctl_mutex);
  1228. }
  1229. return 0;
  1230. }
  1231. EXPORT_SYMBOL(loop_register_transfer);
  1232. EXPORT_SYMBOL(loop_unregister_transfer);
  1233. static struct loop_device *loop_alloc(int i)
  1234. {
  1235. struct loop_device *lo;
  1236. struct gendisk *disk;
  1237. lo = kzalloc(sizeof(*lo), GFP_KERNEL);
  1238. if (!lo)
  1239. goto out;
  1240. lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
  1241. if (!lo->lo_queue)
  1242. goto out_free_dev;
  1243. disk = lo->lo_disk = alloc_disk(1);
  1244. if (!disk)
  1245. goto out_free_queue;
  1246. mutex_init(&lo->lo_ctl_mutex);
  1247. lo->lo_number = i;
  1248. lo->lo_thread = NULL;
  1249. init_waitqueue_head(&lo->lo_event);
  1250. spin_lock_init(&lo->lo_lock);
  1251. disk->major = LOOP_MAJOR;
  1252. disk->first_minor = i;
  1253. disk->fops = &lo_fops;
  1254. disk->private_data = lo;
  1255. disk->queue = lo->lo_queue;
  1256. sprintf(disk->disk_name, "loop%d", i);
  1257. return lo;
  1258. out_free_queue:
  1259. blk_cleanup_queue(lo->lo_queue);
  1260. out_free_dev:
  1261. kfree(lo);
  1262. out:
  1263. return NULL;
  1264. }
  1265. static void loop_free(struct loop_device *lo)
  1266. {
  1267. blk_cleanup_queue(lo->lo_queue);
  1268. put_disk(lo->lo_disk);
  1269. list_del(&lo->lo_list);
  1270. kfree(lo);
  1271. }
  1272. static struct loop_device *loop_init_one(int i)
  1273. {
  1274. struct loop_device *lo;
  1275. list_for_each_entry(lo, &loop_devices, lo_list) {
  1276. if (lo->lo_number == i)
  1277. return lo;
  1278. }
  1279. lo = loop_alloc(i);
  1280. if (lo) {
  1281. add_disk(lo->lo_disk);
  1282. list_add_tail(&lo->lo_list, &loop_devices);
  1283. }
  1284. return lo;
  1285. }
  1286. static void loop_del_one(struct loop_device *lo)
  1287. {
  1288. del_gendisk(lo->lo_disk);
  1289. loop_free(lo);
  1290. }
  1291. static struct kobject *loop_probe(dev_t dev, int *part, void *data)
  1292. {
  1293. struct loop_device *lo;
  1294. struct kobject *kobj;
  1295. mutex_lock(&loop_devices_mutex);
  1296. lo = loop_init_one(dev & MINORMASK);
  1297. kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
  1298. mutex_unlock(&loop_devices_mutex);
  1299. *part = 0;
  1300. return kobj;
  1301. }
  1302. static int __init loop_init(void)
  1303. {
  1304. int i, nr;
  1305. unsigned long range;
  1306. struct loop_device *lo, *next;
  1307. /*
  1308. * loop module now has a feature to instantiate underlying device
  1309. * structure on-demand, provided that there is an access dev node.
  1310. * However, this will not work well with user space tool that doesn't
  1311. * know about such "feature". In order to not break any existing
  1312. * tool, we do the following:
  1313. *
  1314. * (1) if max_loop is specified, create that many upfront, and this
  1315. * also becomes a hard limit.
  1316. * (2) if max_loop is not specified, create 8 loop device on module
  1317. * load, user can further extend loop device by create dev node
  1318. * themselves and have kernel automatically instantiate actual
  1319. * device on-demand.
  1320. */
  1321. if (max_loop > 1UL << MINORBITS)
  1322. return -EINVAL;
  1323. if (max_loop) {
  1324. nr = max_loop;
  1325. range = max_loop;
  1326. } else {
  1327. nr = 8;
  1328. range = 1UL << MINORBITS;
  1329. }
  1330. if (register_blkdev(LOOP_MAJOR, "loop"))
  1331. return -EIO;
  1332. for (i = 0; i < nr; i++) {
  1333. lo = loop_alloc(i);
  1334. if (!lo)
  1335. goto Enomem;
  1336. list_add_tail(&lo->lo_list, &loop_devices);
  1337. }
  1338. /* point of no return */
  1339. list_for_each_entry(lo, &loop_devices, lo_list)
  1340. add_disk(lo->lo_disk);
  1341. blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
  1342. THIS_MODULE, loop_probe, NULL, NULL);
  1343. printk(KERN_INFO "loop: module loaded\n");
  1344. return 0;
  1345. Enomem:
  1346. printk(KERN_INFO "loop: out of memory\n");
  1347. list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
  1348. loop_free(lo);
  1349. unregister_blkdev(LOOP_MAJOR, "loop");
  1350. return -ENOMEM;
  1351. }
  1352. static void __exit loop_exit(void)
  1353. {
  1354. unsigned long range;
  1355. struct loop_device *lo, *next;
  1356. range = max_loop ? max_loop : 1UL << MINORBITS;
  1357. list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
  1358. loop_del_one(lo);
  1359. blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
  1360. if (unregister_blkdev(LOOP_MAJOR, "loop"))
  1361. printk(KERN_WARNING "loop: cannot unregister blkdev\n");
  1362. }
  1363. module_init(loop_init);
  1364. module_exit(loop_exit);
  1365. #ifndef MODULE
  1366. static int __init max_loop_setup(char *str)
  1367. {
  1368. max_loop = simple_strtol(str, NULL, 0);
  1369. return 1;
  1370. }
  1371. __setup("max_loop=", max_loop_setup);
  1372. #endif