smsc9420.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741
  1. /***************************************************************************
  2. *
  3. * Copyright (C) 2007,2008 SMSC
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. *
  19. ***************************************************************************
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/phy.h>
  24. #include <linux/pci.h>
  25. #include <linux/if_vlan.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/crc32.h>
  28. #include <asm/unaligned.h>
  29. #include "smsc9420.h"
  30. #define DRV_NAME "smsc9420"
  31. #define PFX DRV_NAME ": "
  32. #define DRV_MDIONAME "smsc9420-mdio"
  33. #define DRV_DESCRIPTION "SMSC LAN9420 driver"
  34. #define DRV_VERSION "1.01"
  35. MODULE_LICENSE("GPL");
  36. MODULE_VERSION(DRV_VERSION);
  37. struct smsc9420_dma_desc {
  38. u32 status;
  39. u32 length;
  40. u32 buffer1;
  41. u32 buffer2;
  42. };
  43. struct smsc9420_ring_info {
  44. struct sk_buff *skb;
  45. dma_addr_t mapping;
  46. };
  47. struct smsc9420_pdata {
  48. void __iomem *base_addr;
  49. struct pci_dev *pdev;
  50. struct net_device *dev;
  51. struct smsc9420_dma_desc *rx_ring;
  52. struct smsc9420_dma_desc *tx_ring;
  53. struct smsc9420_ring_info *tx_buffers;
  54. struct smsc9420_ring_info *rx_buffers;
  55. dma_addr_t rx_dma_addr;
  56. dma_addr_t tx_dma_addr;
  57. int tx_ring_head, tx_ring_tail;
  58. int rx_ring_head, rx_ring_tail;
  59. spinlock_t int_lock;
  60. spinlock_t phy_lock;
  61. struct napi_struct napi;
  62. bool software_irq_signal;
  63. bool rx_csum;
  64. u32 msg_enable;
  65. struct phy_device *phy_dev;
  66. struct mii_bus *mii_bus;
  67. int phy_irq[PHY_MAX_ADDR];
  68. int last_duplex;
  69. int last_carrier;
  70. };
  71. static const struct pci_device_id smsc9420_id_table[] = {
  72. { PCI_VENDOR_ID_9420, PCI_DEVICE_ID_9420, PCI_ANY_ID, PCI_ANY_ID, },
  73. { 0, }
  74. };
  75. MODULE_DEVICE_TABLE(pci, smsc9420_id_table);
  76. #define SMSC_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  77. static uint smsc_debug;
  78. static uint debug = -1;
  79. module_param(debug, uint, 0);
  80. MODULE_PARM_DESC(debug, "debug level");
  81. #define smsc_dbg(TYPE, f, a...) \
  82. do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
  83. printk(KERN_DEBUG PFX f "\n", ## a); \
  84. } while (0)
  85. #define smsc_info(TYPE, f, a...) \
  86. do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
  87. printk(KERN_INFO PFX f "\n", ## a); \
  88. } while (0)
  89. #define smsc_warn(TYPE, f, a...) \
  90. do { if ((pd)->msg_enable & NETIF_MSG_##TYPE) \
  91. printk(KERN_WARNING PFX f "\n", ## a); \
  92. } while (0)
  93. static inline u32 smsc9420_reg_read(struct smsc9420_pdata *pd, u32 offset)
  94. {
  95. return ioread32(pd->base_addr + offset);
  96. }
  97. static inline void
  98. smsc9420_reg_write(struct smsc9420_pdata *pd, u32 offset, u32 value)
  99. {
  100. iowrite32(value, pd->base_addr + offset);
  101. }
  102. static inline void smsc9420_pci_flush_write(struct smsc9420_pdata *pd)
  103. {
  104. /* to ensure PCI write completion, we must perform a PCI read */
  105. smsc9420_reg_read(pd, ID_REV);
  106. }
  107. static int smsc9420_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
  108. {
  109. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  110. unsigned long flags;
  111. u32 addr;
  112. int i, reg = -EIO;
  113. spin_lock_irqsave(&pd->phy_lock, flags);
  114. /* confirm MII not busy */
  115. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  116. smsc_warn(DRV, "MII is busy???");
  117. goto out;
  118. }
  119. /* set the address, index & direction (read from PHY) */
  120. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  121. MII_ACCESS_MII_READ_;
  122. smsc9420_reg_write(pd, MII_ACCESS, addr);
  123. /* wait for read to complete with 50us timeout */
  124. for (i = 0; i < 5; i++) {
  125. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  126. MII_ACCESS_MII_BUSY_)) {
  127. reg = (u16)smsc9420_reg_read(pd, MII_DATA);
  128. goto out;
  129. }
  130. udelay(10);
  131. }
  132. smsc_warn(DRV, "MII busy timeout!");
  133. out:
  134. spin_unlock_irqrestore(&pd->phy_lock, flags);
  135. return reg;
  136. }
  137. static int smsc9420_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
  138. u16 val)
  139. {
  140. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  141. unsigned long flags;
  142. u32 addr;
  143. int i, reg = -EIO;
  144. spin_lock_irqsave(&pd->phy_lock, flags);
  145. /* confirm MII not busy */
  146. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  147. smsc_warn(DRV, "MII is busy???");
  148. goto out;
  149. }
  150. /* put the data to write in the MAC */
  151. smsc9420_reg_write(pd, MII_DATA, (u32)val);
  152. /* set the address, index & direction (write to PHY) */
  153. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  154. MII_ACCESS_MII_WRITE_;
  155. smsc9420_reg_write(pd, MII_ACCESS, addr);
  156. /* wait for write to complete with 50us timeout */
  157. for (i = 0; i < 5; i++) {
  158. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  159. MII_ACCESS_MII_BUSY_)) {
  160. reg = 0;
  161. goto out;
  162. }
  163. udelay(10);
  164. }
  165. smsc_warn(DRV, "MII busy timeout!");
  166. out:
  167. spin_unlock_irqrestore(&pd->phy_lock, flags);
  168. return reg;
  169. }
  170. /* Returns hash bit number for given MAC address
  171. * Example:
  172. * 01 00 5E 00 00 01 -> returns bit number 31 */
  173. static u32 smsc9420_hash(u8 addr[ETH_ALEN])
  174. {
  175. return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f;
  176. }
  177. static int smsc9420_eeprom_reload(struct smsc9420_pdata *pd)
  178. {
  179. int timeout = 100000;
  180. BUG_ON(!pd);
  181. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  182. smsc_dbg(DRV, "smsc9420_eeprom_reload: Eeprom busy");
  183. return -EIO;
  184. }
  185. smsc9420_reg_write(pd, E2P_CMD,
  186. (E2P_CMD_EPC_BUSY_ | E2P_CMD_EPC_CMD_RELOAD_));
  187. do {
  188. udelay(10);
  189. if (!(smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_))
  190. return 0;
  191. } while (timeout--);
  192. smsc_warn(DRV, "smsc9420_eeprom_reload: Eeprom timed out");
  193. return -EIO;
  194. }
  195. /* Standard ioctls for mii-tool */
  196. static int smsc9420_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  197. {
  198. struct smsc9420_pdata *pd = netdev_priv(dev);
  199. if (!netif_running(dev) || !pd->phy_dev)
  200. return -EINVAL;
  201. return phy_mii_ioctl(pd->phy_dev, if_mii(ifr), cmd);
  202. }
  203. static int smsc9420_ethtool_get_settings(struct net_device *dev,
  204. struct ethtool_cmd *cmd)
  205. {
  206. struct smsc9420_pdata *pd = netdev_priv(dev);
  207. cmd->maxtxpkt = 1;
  208. cmd->maxrxpkt = 1;
  209. return phy_ethtool_gset(pd->phy_dev, cmd);
  210. }
  211. static int smsc9420_ethtool_set_settings(struct net_device *dev,
  212. struct ethtool_cmd *cmd)
  213. {
  214. struct smsc9420_pdata *pd = netdev_priv(dev);
  215. return phy_ethtool_sset(pd->phy_dev, cmd);
  216. }
  217. static void smsc9420_ethtool_get_drvinfo(struct net_device *netdev,
  218. struct ethtool_drvinfo *drvinfo)
  219. {
  220. struct smsc9420_pdata *pd = netdev_priv(netdev);
  221. strcpy(drvinfo->driver, DRV_NAME);
  222. strcpy(drvinfo->bus_info, pci_name(pd->pdev));
  223. strcpy(drvinfo->version, DRV_VERSION);
  224. }
  225. static u32 smsc9420_ethtool_get_msglevel(struct net_device *netdev)
  226. {
  227. struct smsc9420_pdata *pd = netdev_priv(netdev);
  228. return pd->msg_enable;
  229. }
  230. static void smsc9420_ethtool_set_msglevel(struct net_device *netdev, u32 data)
  231. {
  232. struct smsc9420_pdata *pd = netdev_priv(netdev);
  233. pd->msg_enable = data;
  234. }
  235. static int smsc9420_ethtool_nway_reset(struct net_device *netdev)
  236. {
  237. struct smsc9420_pdata *pd = netdev_priv(netdev);
  238. return phy_start_aneg(pd->phy_dev);
  239. }
  240. static void smsc9420_eeprom_enable_access(struct smsc9420_pdata *pd)
  241. {
  242. unsigned int temp = smsc9420_reg_read(pd, GPIO_CFG);
  243. temp &= ~GPIO_CFG_EEPR_EN_;
  244. smsc9420_reg_write(pd, GPIO_CFG, temp);
  245. msleep(1);
  246. }
  247. static int smsc9420_eeprom_send_cmd(struct smsc9420_pdata *pd, u32 op)
  248. {
  249. int timeout = 100;
  250. u32 e2cmd;
  251. smsc_dbg(HW, "op 0x%08x", op);
  252. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  253. smsc_warn(HW, "Busy at start");
  254. return -EBUSY;
  255. }
  256. e2cmd = op | E2P_CMD_EPC_BUSY_;
  257. smsc9420_reg_write(pd, E2P_CMD, e2cmd);
  258. do {
  259. msleep(1);
  260. e2cmd = smsc9420_reg_read(pd, E2P_CMD);
  261. } while ((e2cmd & E2P_CMD_EPC_BUSY_) && (timeout--));
  262. if (!timeout) {
  263. smsc_info(HW, "TIMED OUT");
  264. return -EAGAIN;
  265. }
  266. if (e2cmd & E2P_CMD_EPC_TIMEOUT_) {
  267. smsc_info(HW, "Error occured during eeprom operation");
  268. return -EINVAL;
  269. }
  270. return 0;
  271. }
  272. static int smsc9420_eeprom_read_location(struct smsc9420_pdata *pd,
  273. u8 address, u8 *data)
  274. {
  275. u32 op = E2P_CMD_EPC_CMD_READ_ | address;
  276. int ret;
  277. smsc_dbg(HW, "address 0x%x", address);
  278. ret = smsc9420_eeprom_send_cmd(pd, op);
  279. if (!ret)
  280. data[address] = smsc9420_reg_read(pd, E2P_DATA);
  281. return ret;
  282. }
  283. static int smsc9420_eeprom_write_location(struct smsc9420_pdata *pd,
  284. u8 address, u8 data)
  285. {
  286. u32 op = E2P_CMD_EPC_CMD_ERASE_ | address;
  287. int ret;
  288. smsc_dbg(HW, "address 0x%x, data 0x%x", address, data);
  289. ret = smsc9420_eeprom_send_cmd(pd, op);
  290. if (!ret) {
  291. op = E2P_CMD_EPC_CMD_WRITE_ | address;
  292. smsc9420_reg_write(pd, E2P_DATA, (u32)data);
  293. ret = smsc9420_eeprom_send_cmd(pd, op);
  294. }
  295. return ret;
  296. }
  297. static int smsc9420_ethtool_get_eeprom_len(struct net_device *dev)
  298. {
  299. return SMSC9420_EEPROM_SIZE;
  300. }
  301. static int smsc9420_ethtool_get_eeprom(struct net_device *dev,
  302. struct ethtool_eeprom *eeprom, u8 *data)
  303. {
  304. struct smsc9420_pdata *pd = netdev_priv(dev);
  305. u8 eeprom_data[SMSC9420_EEPROM_SIZE];
  306. int len, i;
  307. smsc9420_eeprom_enable_access(pd);
  308. len = min(eeprom->len, SMSC9420_EEPROM_SIZE);
  309. for (i = 0; i < len; i++) {
  310. int ret = smsc9420_eeprom_read_location(pd, i, eeprom_data);
  311. if (ret < 0) {
  312. eeprom->len = 0;
  313. return ret;
  314. }
  315. }
  316. memcpy(data, &eeprom_data[eeprom->offset], len);
  317. eeprom->len = len;
  318. return 0;
  319. }
  320. static int smsc9420_ethtool_set_eeprom(struct net_device *dev,
  321. struct ethtool_eeprom *eeprom, u8 *data)
  322. {
  323. struct smsc9420_pdata *pd = netdev_priv(dev);
  324. int ret;
  325. smsc9420_eeprom_enable_access(pd);
  326. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWEN_);
  327. ret = smsc9420_eeprom_write_location(pd, eeprom->offset, *data);
  328. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWDS_);
  329. /* Single byte write, according to man page */
  330. eeprom->len = 1;
  331. return ret;
  332. }
  333. static const struct ethtool_ops smsc9420_ethtool_ops = {
  334. .get_settings = smsc9420_ethtool_get_settings,
  335. .set_settings = smsc9420_ethtool_set_settings,
  336. .get_drvinfo = smsc9420_ethtool_get_drvinfo,
  337. .get_msglevel = smsc9420_ethtool_get_msglevel,
  338. .set_msglevel = smsc9420_ethtool_set_msglevel,
  339. .nway_reset = smsc9420_ethtool_nway_reset,
  340. .get_link = ethtool_op_get_link,
  341. .get_eeprom_len = smsc9420_ethtool_get_eeprom_len,
  342. .get_eeprom = smsc9420_ethtool_get_eeprom,
  343. .set_eeprom = smsc9420_ethtool_set_eeprom,
  344. };
  345. /* Sets the device MAC address to dev_addr */
  346. static void smsc9420_set_mac_address(struct net_device *dev)
  347. {
  348. struct smsc9420_pdata *pd = netdev_priv(dev);
  349. u8 *dev_addr = dev->dev_addr;
  350. u32 mac_high16 = (dev_addr[5] << 8) | dev_addr[4];
  351. u32 mac_low32 = (dev_addr[3] << 24) | (dev_addr[2] << 16) |
  352. (dev_addr[1] << 8) | dev_addr[0];
  353. smsc9420_reg_write(pd, ADDRH, mac_high16);
  354. smsc9420_reg_write(pd, ADDRL, mac_low32);
  355. }
  356. static void smsc9420_check_mac_address(struct net_device *dev)
  357. {
  358. struct smsc9420_pdata *pd = netdev_priv(dev);
  359. /* Check if mac address has been specified when bringing interface up */
  360. if (is_valid_ether_addr(dev->dev_addr)) {
  361. smsc9420_set_mac_address(dev);
  362. smsc_dbg(PROBE, "MAC Address is specified by configuration");
  363. } else {
  364. /* Try reading mac address from device. if EEPROM is present
  365. * it will already have been set */
  366. u32 mac_high16 = smsc9420_reg_read(pd, ADDRH);
  367. u32 mac_low32 = smsc9420_reg_read(pd, ADDRL);
  368. dev->dev_addr[0] = (u8)(mac_low32);
  369. dev->dev_addr[1] = (u8)(mac_low32 >> 8);
  370. dev->dev_addr[2] = (u8)(mac_low32 >> 16);
  371. dev->dev_addr[3] = (u8)(mac_low32 >> 24);
  372. dev->dev_addr[4] = (u8)(mac_high16);
  373. dev->dev_addr[5] = (u8)(mac_high16 >> 8);
  374. if (is_valid_ether_addr(dev->dev_addr)) {
  375. /* eeprom values are valid so use them */
  376. smsc_dbg(PROBE, "Mac Address is read from EEPROM");
  377. } else {
  378. /* eeprom values are invalid, generate random MAC */
  379. random_ether_addr(dev->dev_addr);
  380. smsc9420_set_mac_address(dev);
  381. smsc_dbg(PROBE,
  382. "MAC Address is set to random_ether_addr");
  383. }
  384. }
  385. }
  386. static void smsc9420_stop_tx(struct smsc9420_pdata *pd)
  387. {
  388. u32 dmac_control, mac_cr, dma_intr_ena;
  389. int timeOut = 1000;
  390. /* disable TX DMAC */
  391. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  392. dmac_control &= (~DMAC_CONTROL_ST_);
  393. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  394. /* Wait max 10ms for transmit process to stop */
  395. while (timeOut--) {
  396. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_TS_)
  397. break;
  398. udelay(10);
  399. }
  400. if (!timeOut)
  401. smsc_warn(IFDOWN, "TX DMAC failed to stop");
  402. /* ACK Tx DMAC stop bit */
  403. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_TXPS_);
  404. /* mask TX DMAC interrupts */
  405. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  406. dma_intr_ena &= ~(DMAC_INTR_ENA_TX_);
  407. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  408. smsc9420_pci_flush_write(pd);
  409. /* stop MAC TX */
  410. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_TXEN_);
  411. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  412. smsc9420_pci_flush_write(pd);
  413. }
  414. static void smsc9420_free_tx_ring(struct smsc9420_pdata *pd)
  415. {
  416. int i;
  417. BUG_ON(!pd->tx_ring);
  418. if (!pd->tx_buffers)
  419. return;
  420. for (i = 0; i < TX_RING_SIZE; i++) {
  421. struct sk_buff *skb = pd->tx_buffers[i].skb;
  422. if (skb) {
  423. BUG_ON(!pd->tx_buffers[i].mapping);
  424. pci_unmap_single(pd->pdev, pd->tx_buffers[i].mapping,
  425. skb->len, PCI_DMA_TODEVICE);
  426. dev_kfree_skb_any(skb);
  427. }
  428. pd->tx_ring[i].status = 0;
  429. pd->tx_ring[i].length = 0;
  430. pd->tx_ring[i].buffer1 = 0;
  431. pd->tx_ring[i].buffer2 = 0;
  432. }
  433. wmb();
  434. kfree(pd->tx_buffers);
  435. pd->tx_buffers = NULL;
  436. pd->tx_ring_head = 0;
  437. pd->tx_ring_tail = 0;
  438. }
  439. static void smsc9420_free_rx_ring(struct smsc9420_pdata *pd)
  440. {
  441. int i;
  442. BUG_ON(!pd->rx_ring);
  443. if (!pd->rx_buffers)
  444. return;
  445. for (i = 0; i < RX_RING_SIZE; i++) {
  446. if (pd->rx_buffers[i].skb)
  447. dev_kfree_skb_any(pd->rx_buffers[i].skb);
  448. if (pd->rx_buffers[i].mapping)
  449. pci_unmap_single(pd->pdev, pd->rx_buffers[i].mapping,
  450. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  451. pd->rx_ring[i].status = 0;
  452. pd->rx_ring[i].length = 0;
  453. pd->rx_ring[i].buffer1 = 0;
  454. pd->rx_ring[i].buffer2 = 0;
  455. }
  456. wmb();
  457. kfree(pd->rx_buffers);
  458. pd->rx_buffers = NULL;
  459. pd->rx_ring_head = 0;
  460. pd->rx_ring_tail = 0;
  461. }
  462. static void smsc9420_stop_rx(struct smsc9420_pdata *pd)
  463. {
  464. int timeOut = 1000;
  465. u32 mac_cr, dmac_control, dma_intr_ena;
  466. /* mask RX DMAC interrupts */
  467. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  468. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  469. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  470. smsc9420_pci_flush_write(pd);
  471. /* stop RX MAC prior to stoping DMA */
  472. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_RXEN_);
  473. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  474. smsc9420_pci_flush_write(pd);
  475. /* stop RX DMAC */
  476. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  477. dmac_control &= (~DMAC_CONTROL_SR_);
  478. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  479. smsc9420_pci_flush_write(pd);
  480. /* wait up to 10ms for receive to stop */
  481. while (timeOut--) {
  482. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_RS_)
  483. break;
  484. udelay(10);
  485. }
  486. if (!timeOut)
  487. smsc_warn(IFDOWN, "RX DMAC did not stop! timeout.");
  488. /* ACK the Rx DMAC stop bit */
  489. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_RXPS_);
  490. }
  491. static irqreturn_t smsc9420_isr(int irq, void *dev_id)
  492. {
  493. struct smsc9420_pdata *pd = dev_id;
  494. u32 int_cfg, int_sts, int_ctl;
  495. irqreturn_t ret = IRQ_NONE;
  496. ulong flags;
  497. BUG_ON(!pd);
  498. BUG_ON(!pd->base_addr);
  499. int_cfg = smsc9420_reg_read(pd, INT_CFG);
  500. /* check if it's our interrupt */
  501. if ((int_cfg & (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_)) !=
  502. (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_))
  503. return IRQ_NONE;
  504. int_sts = smsc9420_reg_read(pd, INT_STAT);
  505. if (likely(INT_STAT_DMAC_INT_ & int_sts)) {
  506. u32 status = smsc9420_reg_read(pd, DMAC_STATUS);
  507. u32 ints_to_clear = 0;
  508. if (status & DMAC_STS_TX_) {
  509. ints_to_clear |= (DMAC_STS_TX_ | DMAC_STS_NIS_);
  510. netif_wake_queue(pd->dev);
  511. }
  512. if (status & DMAC_STS_RX_) {
  513. /* mask RX DMAC interrupts */
  514. u32 dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  515. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  516. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  517. smsc9420_pci_flush_write(pd);
  518. ints_to_clear |= (DMAC_STS_RX_ | DMAC_STS_NIS_);
  519. netif_rx_schedule(pd->dev, &pd->napi);
  520. }
  521. if (ints_to_clear)
  522. smsc9420_reg_write(pd, DMAC_STATUS, ints_to_clear);
  523. ret = IRQ_HANDLED;
  524. }
  525. if (unlikely(INT_STAT_SW_INT_ & int_sts)) {
  526. /* mask software interrupt */
  527. spin_lock_irqsave(&pd->int_lock, flags);
  528. int_ctl = smsc9420_reg_read(pd, INT_CTL);
  529. int_ctl &= (~INT_CTL_SW_INT_EN_);
  530. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  531. spin_unlock_irqrestore(&pd->int_lock, flags);
  532. smsc9420_reg_write(pd, INT_STAT, INT_STAT_SW_INT_);
  533. pd->software_irq_signal = true;
  534. smp_wmb();
  535. ret = IRQ_HANDLED;
  536. }
  537. /* to ensure PCI write completion, we must perform a PCI read */
  538. smsc9420_pci_flush_write(pd);
  539. return ret;
  540. }
  541. #ifdef CONFIG_NET_POLL_CONTROLLER
  542. static void smsc9420_poll_controller(struct net_device *dev)
  543. {
  544. disable_irq(dev->irq);
  545. smsc9420_isr(0, dev);
  546. enable_irq(dev->irq);
  547. }
  548. #endif /* CONFIG_NET_POLL_CONTROLLER */
  549. static void smsc9420_dmac_soft_reset(struct smsc9420_pdata *pd)
  550. {
  551. smsc9420_reg_write(pd, BUS_MODE, BUS_MODE_SWR_);
  552. smsc9420_reg_read(pd, BUS_MODE);
  553. udelay(2);
  554. if (smsc9420_reg_read(pd, BUS_MODE) & BUS_MODE_SWR_)
  555. smsc_warn(DRV, "Software reset not cleared");
  556. }
  557. static int smsc9420_stop(struct net_device *dev)
  558. {
  559. struct smsc9420_pdata *pd = netdev_priv(dev);
  560. u32 int_cfg;
  561. ulong flags;
  562. BUG_ON(!pd);
  563. BUG_ON(!pd->phy_dev);
  564. /* disable master interrupt */
  565. spin_lock_irqsave(&pd->int_lock, flags);
  566. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  567. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  568. spin_unlock_irqrestore(&pd->int_lock, flags);
  569. netif_tx_disable(dev);
  570. napi_disable(&pd->napi);
  571. smsc9420_stop_tx(pd);
  572. smsc9420_free_tx_ring(pd);
  573. smsc9420_stop_rx(pd);
  574. smsc9420_free_rx_ring(pd);
  575. free_irq(dev->irq, pd);
  576. smsc9420_dmac_soft_reset(pd);
  577. phy_stop(pd->phy_dev);
  578. phy_disconnect(pd->phy_dev);
  579. pd->phy_dev = NULL;
  580. mdiobus_unregister(pd->mii_bus);
  581. mdiobus_free(pd->mii_bus);
  582. return 0;
  583. }
  584. static void smsc9420_rx_count_stats(struct net_device *dev, u32 desc_status)
  585. {
  586. if (unlikely(desc_status & RDES0_ERROR_SUMMARY_)) {
  587. dev->stats.rx_errors++;
  588. if (desc_status & RDES0_DESCRIPTOR_ERROR_)
  589. dev->stats.rx_over_errors++;
  590. else if (desc_status & (RDES0_FRAME_TOO_LONG_ |
  591. RDES0_RUNT_FRAME_ | RDES0_COLLISION_SEEN_))
  592. dev->stats.rx_frame_errors++;
  593. else if (desc_status & RDES0_CRC_ERROR_)
  594. dev->stats.rx_crc_errors++;
  595. }
  596. if (unlikely(desc_status & RDES0_LENGTH_ERROR_))
  597. dev->stats.rx_length_errors++;
  598. if (unlikely(!((desc_status & RDES0_LAST_DESCRIPTOR_) &&
  599. (desc_status & RDES0_FIRST_DESCRIPTOR_))))
  600. dev->stats.rx_length_errors++;
  601. if (desc_status & RDES0_MULTICAST_FRAME_)
  602. dev->stats.multicast++;
  603. }
  604. static void smsc9420_rx_handoff(struct smsc9420_pdata *pd, const int index,
  605. const u32 status)
  606. {
  607. struct net_device *dev = pd->dev;
  608. struct sk_buff *skb;
  609. u16 packet_length = (status & RDES0_FRAME_LENGTH_MASK_)
  610. >> RDES0_FRAME_LENGTH_SHFT_;
  611. /* remove crc from packet lendth */
  612. packet_length -= 4;
  613. if (pd->rx_csum)
  614. packet_length -= 2;
  615. dev->stats.rx_packets++;
  616. dev->stats.rx_bytes += packet_length;
  617. pci_unmap_single(pd->pdev, pd->rx_buffers[index].mapping,
  618. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  619. pd->rx_buffers[index].mapping = 0;
  620. skb = pd->rx_buffers[index].skb;
  621. pd->rx_buffers[index].skb = NULL;
  622. if (pd->rx_csum) {
  623. u16 hw_csum = get_unaligned_le16(skb_tail_pointer(skb) +
  624. NET_IP_ALIGN + packet_length + 4);
  625. put_unaligned_le16(cpu_to_le16(hw_csum), &skb->csum);
  626. skb->ip_summed = CHECKSUM_COMPLETE;
  627. }
  628. skb_reserve(skb, NET_IP_ALIGN);
  629. skb_put(skb, packet_length);
  630. skb->protocol = eth_type_trans(skb, dev);
  631. netif_receive_skb(skb);
  632. dev->last_rx = jiffies;
  633. }
  634. static int smsc9420_alloc_rx_buffer(struct smsc9420_pdata *pd, int index)
  635. {
  636. struct sk_buff *skb = netdev_alloc_skb(pd->dev, PKT_BUF_SZ);
  637. dma_addr_t mapping;
  638. BUG_ON(pd->rx_buffers[index].skb);
  639. BUG_ON(pd->rx_buffers[index].mapping);
  640. if (unlikely(!skb)) {
  641. smsc_warn(RX_ERR, "Failed to allocate new skb!");
  642. return -ENOMEM;
  643. }
  644. skb->dev = pd->dev;
  645. mapping = pci_map_single(pd->pdev, skb_tail_pointer(skb),
  646. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  647. if (pci_dma_mapping_error(pd->pdev, mapping)) {
  648. dev_kfree_skb_any(skb);
  649. smsc_warn(RX_ERR, "pci_map_single failed!");
  650. return -ENOMEM;
  651. }
  652. pd->rx_buffers[index].skb = skb;
  653. pd->rx_buffers[index].mapping = mapping;
  654. pd->rx_ring[index].buffer1 = mapping + NET_IP_ALIGN;
  655. pd->rx_ring[index].status = RDES0_OWN_;
  656. wmb();
  657. return 0;
  658. }
  659. static void smsc9420_alloc_new_rx_buffers(struct smsc9420_pdata *pd)
  660. {
  661. while (pd->rx_ring_tail != pd->rx_ring_head) {
  662. if (smsc9420_alloc_rx_buffer(pd, pd->rx_ring_tail))
  663. break;
  664. pd->rx_ring_tail = (pd->rx_ring_tail + 1) % RX_RING_SIZE;
  665. }
  666. }
  667. static int smsc9420_rx_poll(struct napi_struct *napi, int budget)
  668. {
  669. struct smsc9420_pdata *pd =
  670. container_of(napi, struct smsc9420_pdata, napi);
  671. struct net_device *dev = pd->dev;
  672. u32 drop_frame_cnt, dma_intr_ena, status;
  673. int work_done;
  674. for (work_done = 0; work_done < budget; work_done++) {
  675. rmb();
  676. status = pd->rx_ring[pd->rx_ring_head].status;
  677. /* stop if DMAC owns this dma descriptor */
  678. if (status & RDES0_OWN_)
  679. break;
  680. smsc9420_rx_count_stats(dev, status);
  681. smsc9420_rx_handoff(pd, pd->rx_ring_head, status);
  682. pd->rx_ring_head = (pd->rx_ring_head + 1) % RX_RING_SIZE;
  683. smsc9420_alloc_new_rx_buffers(pd);
  684. }
  685. drop_frame_cnt = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  686. dev->stats.rx_dropped +=
  687. (drop_frame_cnt & 0xFFFF) + ((drop_frame_cnt >> 17) & 0x3FF);
  688. /* Kick RXDMA */
  689. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  690. smsc9420_pci_flush_write(pd);
  691. if (work_done < budget) {
  692. netif_rx_complete(dev, &pd->napi);
  693. /* re-enable RX DMA interrupts */
  694. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  695. dma_intr_ena |= (DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  696. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  697. smsc9420_pci_flush_write(pd);
  698. }
  699. return work_done;
  700. }
  701. static void
  702. smsc9420_tx_update_stats(struct net_device *dev, u32 status, u32 length)
  703. {
  704. if (unlikely(status & TDES0_ERROR_SUMMARY_)) {
  705. dev->stats.tx_errors++;
  706. if (status & (TDES0_EXCESSIVE_DEFERRAL_ |
  707. TDES0_EXCESSIVE_COLLISIONS_))
  708. dev->stats.tx_aborted_errors++;
  709. if (status & (TDES0_LOSS_OF_CARRIER_ | TDES0_NO_CARRIER_))
  710. dev->stats.tx_carrier_errors++;
  711. } else {
  712. dev->stats.tx_packets++;
  713. dev->stats.tx_bytes += (length & 0x7FF);
  714. }
  715. if (unlikely(status & TDES0_EXCESSIVE_COLLISIONS_)) {
  716. dev->stats.collisions += 16;
  717. } else {
  718. dev->stats.collisions +=
  719. (status & TDES0_COLLISION_COUNT_MASK_) >>
  720. TDES0_COLLISION_COUNT_SHFT_;
  721. }
  722. if (unlikely(status & TDES0_HEARTBEAT_FAIL_))
  723. dev->stats.tx_heartbeat_errors++;
  724. }
  725. /* Check for completed dma transfers, update stats and free skbs */
  726. static void smsc9420_complete_tx(struct net_device *dev)
  727. {
  728. struct smsc9420_pdata *pd = netdev_priv(dev);
  729. while (pd->tx_ring_tail != pd->tx_ring_head) {
  730. int index = pd->tx_ring_tail;
  731. u32 status, length;
  732. rmb();
  733. status = pd->tx_ring[index].status;
  734. length = pd->tx_ring[index].length;
  735. /* Check if DMA still owns this descriptor */
  736. if (unlikely(TDES0_OWN_ & status))
  737. break;
  738. smsc9420_tx_update_stats(dev, status, length);
  739. BUG_ON(!pd->tx_buffers[index].skb);
  740. BUG_ON(!pd->tx_buffers[index].mapping);
  741. pci_unmap_single(pd->pdev, pd->tx_buffers[index].mapping,
  742. pd->tx_buffers[index].skb->len, PCI_DMA_TODEVICE);
  743. pd->tx_buffers[index].mapping = 0;
  744. dev_kfree_skb_any(pd->tx_buffers[index].skb);
  745. pd->tx_buffers[index].skb = NULL;
  746. pd->tx_ring[index].buffer1 = 0;
  747. wmb();
  748. pd->tx_ring_tail = (pd->tx_ring_tail + 1) % TX_RING_SIZE;
  749. }
  750. }
  751. static int smsc9420_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
  752. {
  753. struct smsc9420_pdata *pd = netdev_priv(dev);
  754. dma_addr_t mapping;
  755. int index = pd->tx_ring_head;
  756. u32 tmp_desc1;
  757. bool about_to_take_last_desc =
  758. (((pd->tx_ring_head + 2) % TX_RING_SIZE) == pd->tx_ring_tail);
  759. smsc9420_complete_tx(dev);
  760. rmb();
  761. BUG_ON(pd->tx_ring[index].status & TDES0_OWN_);
  762. BUG_ON(pd->tx_buffers[index].skb);
  763. BUG_ON(pd->tx_buffers[index].mapping);
  764. mapping = pci_map_single(pd->pdev, skb->data,
  765. skb->len, PCI_DMA_TODEVICE);
  766. if (pci_dma_mapping_error(pd->pdev, mapping)) {
  767. smsc_warn(TX_ERR, "pci_map_single failed, dropping packet");
  768. return NETDEV_TX_BUSY;
  769. }
  770. pd->tx_buffers[index].skb = skb;
  771. pd->tx_buffers[index].mapping = mapping;
  772. tmp_desc1 = (TDES1_LS_ | ((u32)skb->len & 0x7FF));
  773. if (unlikely(about_to_take_last_desc)) {
  774. tmp_desc1 |= TDES1_IC_;
  775. netif_stop_queue(pd->dev);
  776. }
  777. /* check if we are at the last descriptor and need to set EOR */
  778. if (unlikely(index == (TX_RING_SIZE - 1)))
  779. tmp_desc1 |= TDES1_TER_;
  780. pd->tx_ring[index].buffer1 = mapping;
  781. pd->tx_ring[index].length = tmp_desc1;
  782. wmb();
  783. /* increment head */
  784. pd->tx_ring_head = (pd->tx_ring_head + 1) % TX_RING_SIZE;
  785. /* assign ownership to DMAC */
  786. pd->tx_ring[index].status = TDES0_OWN_;
  787. wmb();
  788. /* kick the DMA */
  789. smsc9420_reg_write(pd, TX_POLL_DEMAND, 1);
  790. smsc9420_pci_flush_write(pd);
  791. dev->trans_start = jiffies;
  792. return NETDEV_TX_OK;
  793. }
  794. static struct net_device_stats *smsc9420_get_stats(struct net_device *dev)
  795. {
  796. struct smsc9420_pdata *pd = netdev_priv(dev);
  797. u32 counter = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  798. dev->stats.rx_dropped +=
  799. (counter & 0x0000FFFF) + ((counter >> 17) & 0x000003FF);
  800. return &dev->stats;
  801. }
  802. static void smsc9420_set_multicast_list(struct net_device *dev)
  803. {
  804. struct smsc9420_pdata *pd = netdev_priv(dev);
  805. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  806. if (dev->flags & IFF_PROMISC) {
  807. smsc_dbg(HW, "Promiscuous Mode Enabled");
  808. mac_cr |= MAC_CR_PRMS_;
  809. mac_cr &= (~MAC_CR_MCPAS_);
  810. mac_cr &= (~MAC_CR_HPFILT_);
  811. } else if (dev->flags & IFF_ALLMULTI) {
  812. smsc_dbg(HW, "Receive all Multicast Enabled");
  813. mac_cr &= (~MAC_CR_PRMS_);
  814. mac_cr |= MAC_CR_MCPAS_;
  815. mac_cr &= (~MAC_CR_HPFILT_);
  816. } else if (dev->mc_count > 0) {
  817. struct dev_mc_list *mc_list = dev->mc_list;
  818. u32 hash_lo = 0, hash_hi = 0;
  819. smsc_dbg(HW, "Multicast filter enabled");
  820. while (mc_list) {
  821. u32 bit_num = smsc9420_hash(mc_list->dmi_addr);
  822. u32 mask = 1 << (bit_num & 0x1F);
  823. if (bit_num & 0x20)
  824. hash_hi |= mask;
  825. else
  826. hash_lo |= mask;
  827. mc_list = mc_list->next;
  828. }
  829. smsc9420_reg_write(pd, HASHH, hash_hi);
  830. smsc9420_reg_write(pd, HASHL, hash_lo);
  831. mac_cr &= (~MAC_CR_PRMS_);
  832. mac_cr &= (~MAC_CR_MCPAS_);
  833. mac_cr |= MAC_CR_HPFILT_;
  834. } else {
  835. smsc_dbg(HW, "Receive own packets only.");
  836. smsc9420_reg_write(pd, HASHH, 0);
  837. smsc9420_reg_write(pd, HASHL, 0);
  838. mac_cr &= (~MAC_CR_PRMS_);
  839. mac_cr &= (~MAC_CR_MCPAS_);
  840. mac_cr &= (~MAC_CR_HPFILT_);
  841. }
  842. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  843. smsc9420_pci_flush_write(pd);
  844. }
  845. static u8 smsc9420_resolve_flowctrl_fulldplx(u16 lcladv, u16 rmtadv)
  846. {
  847. u8 cap = 0;
  848. if (lcladv & ADVERTISE_PAUSE_CAP) {
  849. if (lcladv & ADVERTISE_PAUSE_ASYM) {
  850. if (rmtadv & LPA_PAUSE_CAP)
  851. cap = FLOW_CTRL_TX | FLOW_CTRL_RX;
  852. else if (rmtadv & LPA_PAUSE_ASYM)
  853. cap = FLOW_CTRL_RX;
  854. } else {
  855. if (rmtadv & LPA_PAUSE_CAP)
  856. cap = FLOW_CTRL_TX | FLOW_CTRL_RX;
  857. }
  858. } else if (lcladv & ADVERTISE_PAUSE_ASYM) {
  859. if ((rmtadv & LPA_PAUSE_CAP) && (rmtadv & LPA_PAUSE_ASYM))
  860. cap = FLOW_CTRL_TX;
  861. }
  862. return cap;
  863. }
  864. static void smsc9420_phy_update_flowcontrol(struct smsc9420_pdata *pd)
  865. {
  866. struct phy_device *phy_dev = pd->phy_dev;
  867. u32 flow;
  868. if (phy_dev->duplex == DUPLEX_FULL) {
  869. u16 lcladv = phy_read(phy_dev, MII_ADVERTISE);
  870. u16 rmtadv = phy_read(phy_dev, MII_LPA);
  871. u8 cap = smsc9420_resolve_flowctrl_fulldplx(lcladv, rmtadv);
  872. if (cap & FLOW_CTRL_RX)
  873. flow = 0xFFFF0002;
  874. else
  875. flow = 0;
  876. smsc_info(LINK, "rx pause %s, tx pause %s",
  877. (cap & FLOW_CTRL_RX ? "enabled" : "disabled"),
  878. (cap & FLOW_CTRL_TX ? "enabled" : "disabled"));
  879. } else {
  880. smsc_info(LINK, "half duplex");
  881. flow = 0;
  882. }
  883. smsc9420_reg_write(pd, FLOW, flow);
  884. }
  885. /* Update link mode if anything has changed. Called periodically when the
  886. * PHY is in polling mode, even if nothing has changed. */
  887. static void smsc9420_phy_adjust_link(struct net_device *dev)
  888. {
  889. struct smsc9420_pdata *pd = netdev_priv(dev);
  890. struct phy_device *phy_dev = pd->phy_dev;
  891. int carrier;
  892. if (phy_dev->duplex != pd->last_duplex) {
  893. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  894. if (phy_dev->duplex) {
  895. smsc_dbg(LINK, "full duplex mode");
  896. mac_cr |= MAC_CR_FDPX_;
  897. } else {
  898. smsc_dbg(LINK, "half duplex mode");
  899. mac_cr &= ~MAC_CR_FDPX_;
  900. }
  901. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  902. smsc9420_phy_update_flowcontrol(pd);
  903. pd->last_duplex = phy_dev->duplex;
  904. }
  905. carrier = netif_carrier_ok(dev);
  906. if (carrier != pd->last_carrier) {
  907. if (carrier)
  908. smsc_dbg(LINK, "carrier OK");
  909. else
  910. smsc_dbg(LINK, "no carrier");
  911. pd->last_carrier = carrier;
  912. }
  913. }
  914. static int smsc9420_mii_probe(struct net_device *dev)
  915. {
  916. struct smsc9420_pdata *pd = netdev_priv(dev);
  917. struct phy_device *phydev = NULL;
  918. BUG_ON(pd->phy_dev);
  919. /* Device only supports internal PHY at address 1 */
  920. if (!pd->mii_bus->phy_map[1]) {
  921. pr_err("%s: no PHY found at address 1\n", dev->name);
  922. return -ENODEV;
  923. }
  924. phydev = pd->mii_bus->phy_map[1];
  925. smsc_info(PROBE, "PHY addr %d, phy_id 0x%08X", phydev->addr,
  926. phydev->phy_id);
  927. phydev = phy_connect(dev, phydev->dev.bus_id,
  928. &smsc9420_phy_adjust_link, 0, PHY_INTERFACE_MODE_MII);
  929. if (IS_ERR(phydev)) {
  930. pr_err("%s: Could not attach to PHY\n", dev->name);
  931. return PTR_ERR(phydev);
  932. }
  933. pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
  934. dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);
  935. /* mask with MAC supported features */
  936. phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
  937. SUPPORTED_Asym_Pause);
  938. phydev->advertising = phydev->supported;
  939. pd->phy_dev = phydev;
  940. pd->last_duplex = -1;
  941. pd->last_carrier = -1;
  942. return 0;
  943. }
  944. static int smsc9420_mii_init(struct net_device *dev)
  945. {
  946. struct smsc9420_pdata *pd = netdev_priv(dev);
  947. int err = -ENXIO, i;
  948. pd->mii_bus = mdiobus_alloc();
  949. if (!pd->mii_bus) {
  950. err = -ENOMEM;
  951. goto err_out_1;
  952. }
  953. pd->mii_bus->name = DRV_MDIONAME;
  954. snprintf(pd->mii_bus->id, MII_BUS_ID_SIZE, "%x",
  955. (pd->pdev->bus->number << 8) | pd->pdev->devfn);
  956. pd->mii_bus->priv = pd;
  957. pd->mii_bus->read = smsc9420_mii_read;
  958. pd->mii_bus->write = smsc9420_mii_write;
  959. pd->mii_bus->irq = pd->phy_irq;
  960. for (i = 0; i < PHY_MAX_ADDR; ++i)
  961. pd->mii_bus->irq[i] = PHY_POLL;
  962. /* Mask all PHYs except ID 1 (internal) */
  963. pd->mii_bus->phy_mask = ~(1 << 1);
  964. if (mdiobus_register(pd->mii_bus)) {
  965. smsc_warn(PROBE, "Error registering mii bus");
  966. goto err_out_free_bus_2;
  967. }
  968. if (smsc9420_mii_probe(dev) < 0) {
  969. smsc_warn(PROBE, "Error probing mii bus");
  970. goto err_out_unregister_bus_3;
  971. }
  972. return 0;
  973. err_out_unregister_bus_3:
  974. mdiobus_unregister(pd->mii_bus);
  975. err_out_free_bus_2:
  976. mdiobus_free(pd->mii_bus);
  977. err_out_1:
  978. return err;
  979. }
  980. static int smsc9420_alloc_tx_ring(struct smsc9420_pdata *pd)
  981. {
  982. int i;
  983. BUG_ON(!pd->tx_ring);
  984. pd->tx_buffers = kmalloc((sizeof(struct smsc9420_ring_info) *
  985. TX_RING_SIZE), GFP_KERNEL);
  986. if (!pd->tx_buffers) {
  987. smsc_warn(IFUP, "Failed to allocated tx_buffers");
  988. return -ENOMEM;
  989. }
  990. /* Initialize the TX Ring */
  991. for (i = 0; i < TX_RING_SIZE; i++) {
  992. pd->tx_buffers[i].skb = NULL;
  993. pd->tx_buffers[i].mapping = 0;
  994. pd->tx_ring[i].status = 0;
  995. pd->tx_ring[i].length = 0;
  996. pd->tx_ring[i].buffer1 = 0;
  997. pd->tx_ring[i].buffer2 = 0;
  998. }
  999. pd->tx_ring[TX_RING_SIZE - 1].length = TDES1_TER_;
  1000. wmb();
  1001. pd->tx_ring_head = 0;
  1002. pd->tx_ring_tail = 0;
  1003. smsc9420_reg_write(pd, TX_BASE_ADDR, pd->tx_dma_addr);
  1004. smsc9420_pci_flush_write(pd);
  1005. return 0;
  1006. }
  1007. static int smsc9420_alloc_rx_ring(struct smsc9420_pdata *pd)
  1008. {
  1009. int i;
  1010. BUG_ON(!pd->rx_ring);
  1011. pd->rx_buffers = kmalloc((sizeof(struct smsc9420_ring_info) *
  1012. RX_RING_SIZE), GFP_KERNEL);
  1013. if (pd->rx_buffers == NULL) {
  1014. smsc_warn(IFUP, "Failed to allocated rx_buffers");
  1015. goto out;
  1016. }
  1017. /* initialize the rx ring */
  1018. for (i = 0; i < RX_RING_SIZE; i++) {
  1019. pd->rx_ring[i].status = 0;
  1020. pd->rx_ring[i].length = PKT_BUF_SZ;
  1021. pd->rx_ring[i].buffer2 = 0;
  1022. pd->rx_buffers[i].skb = NULL;
  1023. pd->rx_buffers[i].mapping = 0;
  1024. }
  1025. pd->rx_ring[RX_RING_SIZE - 1].length = (PKT_BUF_SZ | RDES1_RER_);
  1026. /* now allocate the entire ring of skbs */
  1027. for (i = 0; i < RX_RING_SIZE; i++) {
  1028. if (smsc9420_alloc_rx_buffer(pd, i)) {
  1029. smsc_warn(IFUP, "failed to allocate rx skb %d", i);
  1030. goto out_free_rx_skbs;
  1031. }
  1032. }
  1033. pd->rx_ring_head = 0;
  1034. pd->rx_ring_tail = 0;
  1035. smsc9420_reg_write(pd, VLAN1, ETH_P_8021Q);
  1036. smsc_dbg(IFUP, "VLAN1 = 0x%08x", smsc9420_reg_read(pd, VLAN1));
  1037. if (pd->rx_csum) {
  1038. /* Enable RX COE */
  1039. u32 coe = smsc9420_reg_read(pd, COE_CR) | RX_COE_EN;
  1040. smsc9420_reg_write(pd, COE_CR, coe);
  1041. smsc_dbg(IFUP, "COE_CR = 0x%08x", coe);
  1042. }
  1043. smsc9420_reg_write(pd, RX_BASE_ADDR, pd->rx_dma_addr);
  1044. smsc9420_pci_flush_write(pd);
  1045. return 0;
  1046. out_free_rx_skbs:
  1047. smsc9420_free_rx_ring(pd);
  1048. out:
  1049. return -ENOMEM;
  1050. }
  1051. static int smsc9420_open(struct net_device *dev)
  1052. {
  1053. struct smsc9420_pdata *pd;
  1054. u32 bus_mode, mac_cr, dmac_control, int_cfg, dma_intr_ena, int_ctl;
  1055. unsigned long flags;
  1056. int result = 0, timeout;
  1057. BUG_ON(!dev);
  1058. pd = netdev_priv(dev);
  1059. BUG_ON(!pd);
  1060. if (!is_valid_ether_addr(dev->dev_addr)) {
  1061. smsc_warn(IFUP, "dev_addr is not a valid MAC address");
  1062. result = -EADDRNOTAVAIL;
  1063. goto out_0;
  1064. }
  1065. netif_carrier_off(dev);
  1066. /* disable, mask and acknowlege all interrupts */
  1067. spin_lock_irqsave(&pd->int_lock, flags);
  1068. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1069. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1070. smsc9420_reg_write(pd, INT_CTL, 0);
  1071. spin_unlock_irqrestore(&pd->int_lock, flags);
  1072. smsc9420_reg_write(pd, DMAC_INTR_ENA, 0);
  1073. smsc9420_reg_write(pd, INT_STAT, 0xFFFFFFFF);
  1074. smsc9420_pci_flush_write(pd);
  1075. if (request_irq(dev->irq, smsc9420_isr, IRQF_SHARED | IRQF_DISABLED,
  1076. DRV_NAME, pd)) {
  1077. smsc_warn(IFUP, "Unable to use IRQ = %d", dev->irq);
  1078. result = -ENODEV;
  1079. goto out_0;
  1080. }
  1081. smsc9420_dmac_soft_reset(pd);
  1082. /* make sure MAC_CR is sane */
  1083. smsc9420_reg_write(pd, MAC_CR, 0);
  1084. smsc9420_set_mac_address(dev);
  1085. /* Configure GPIO pins to drive LEDs */
  1086. smsc9420_reg_write(pd, GPIO_CFG,
  1087. (GPIO_CFG_LED_3_ | GPIO_CFG_LED_2_ | GPIO_CFG_LED_1_));
  1088. bus_mode = BUS_MODE_DMA_BURST_LENGTH_16;
  1089. #ifdef __BIG_ENDIAN
  1090. bus_mode |= BUS_MODE_DBO_;
  1091. #endif
  1092. smsc9420_reg_write(pd, BUS_MODE, bus_mode);
  1093. smsc9420_pci_flush_write(pd);
  1094. /* set bus master bridge arbitration priority for Rx and TX DMA */
  1095. smsc9420_reg_write(pd, BUS_CFG, BUS_CFG_RXTXWEIGHT_4_1);
  1096. smsc9420_reg_write(pd, DMAC_CONTROL,
  1097. (DMAC_CONTROL_SF_ | DMAC_CONTROL_OSF_));
  1098. smsc9420_pci_flush_write(pd);
  1099. /* test the IRQ connection to the ISR */
  1100. smsc_dbg(IFUP, "Testing ISR using IRQ %d", dev->irq);
  1101. spin_lock_irqsave(&pd->int_lock, flags);
  1102. /* configure interrupt deassertion timer and enable interrupts */
  1103. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1104. int_cfg &= ~(INT_CFG_INT_DEAS_MASK);
  1105. int_cfg |= (INT_DEAS_TIME & INT_CFG_INT_DEAS_MASK);
  1106. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1107. /* unmask software interrupt */
  1108. int_ctl = smsc9420_reg_read(pd, INT_CTL) | INT_CTL_SW_INT_EN_;
  1109. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  1110. spin_unlock_irqrestore(&pd->int_lock, flags);
  1111. smsc9420_pci_flush_write(pd);
  1112. timeout = 1000;
  1113. pd->software_irq_signal = false;
  1114. smp_wmb();
  1115. while (timeout--) {
  1116. if (pd->software_irq_signal)
  1117. break;
  1118. msleep(1);
  1119. }
  1120. /* disable interrupts */
  1121. spin_lock_irqsave(&pd->int_lock, flags);
  1122. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1123. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1124. spin_unlock_irqrestore(&pd->int_lock, flags);
  1125. if (!pd->software_irq_signal) {
  1126. smsc_warn(IFUP, "ISR failed signaling test");
  1127. result = -ENODEV;
  1128. goto out_free_irq_1;
  1129. }
  1130. smsc_dbg(IFUP, "ISR passed test using IRQ %d", dev->irq);
  1131. result = smsc9420_alloc_tx_ring(pd);
  1132. if (result) {
  1133. smsc_warn(IFUP, "Failed to Initialize tx dma ring");
  1134. result = -ENOMEM;
  1135. goto out_free_irq_1;
  1136. }
  1137. result = smsc9420_alloc_rx_ring(pd);
  1138. if (result) {
  1139. smsc_warn(IFUP, "Failed to Initialize rx dma ring");
  1140. result = -ENOMEM;
  1141. goto out_free_tx_ring_2;
  1142. }
  1143. result = smsc9420_mii_init(dev);
  1144. if (result) {
  1145. smsc_warn(IFUP, "Failed to initialize Phy");
  1146. result = -ENODEV;
  1147. goto out_free_rx_ring_3;
  1148. }
  1149. /* Bring the PHY up */
  1150. phy_start(pd->phy_dev);
  1151. napi_enable(&pd->napi);
  1152. /* start tx and rx */
  1153. mac_cr = smsc9420_reg_read(pd, MAC_CR) | MAC_CR_TXEN_ | MAC_CR_RXEN_;
  1154. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  1155. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  1156. dmac_control |= DMAC_CONTROL_ST_ | DMAC_CONTROL_SR_;
  1157. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  1158. smsc9420_pci_flush_write(pd);
  1159. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  1160. dma_intr_ena |=
  1161. (DMAC_INTR_ENA_TX_ | DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  1162. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  1163. smsc9420_pci_flush_write(pd);
  1164. netif_wake_queue(dev);
  1165. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  1166. /* enable interrupts */
  1167. spin_lock_irqsave(&pd->int_lock, flags);
  1168. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1169. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1170. spin_unlock_irqrestore(&pd->int_lock, flags);
  1171. return 0;
  1172. out_free_rx_ring_3:
  1173. smsc9420_free_rx_ring(pd);
  1174. out_free_tx_ring_2:
  1175. smsc9420_free_tx_ring(pd);
  1176. out_free_irq_1:
  1177. free_irq(dev->irq, pd);
  1178. out_0:
  1179. return result;
  1180. }
  1181. #ifdef CONFIG_PM
  1182. static int smsc9420_suspend(struct pci_dev *pdev, pm_message_t state)
  1183. {
  1184. struct net_device *dev = pci_get_drvdata(pdev);
  1185. struct smsc9420_pdata *pd = netdev_priv(dev);
  1186. u32 int_cfg;
  1187. ulong flags;
  1188. /* disable interrupts */
  1189. spin_lock_irqsave(&pd->int_lock, flags);
  1190. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1191. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1192. spin_unlock_irqrestore(&pd->int_lock, flags);
  1193. if (netif_running(dev)) {
  1194. netif_tx_disable(dev);
  1195. smsc9420_stop_tx(pd);
  1196. smsc9420_free_tx_ring(pd);
  1197. napi_disable(&pd->napi);
  1198. smsc9420_stop_rx(pd);
  1199. smsc9420_free_rx_ring(pd);
  1200. free_irq(dev->irq, pd);
  1201. netif_device_detach(dev);
  1202. }
  1203. pci_save_state(pdev);
  1204. pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
  1205. pci_disable_device(pdev);
  1206. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  1207. return 0;
  1208. }
  1209. static int smsc9420_resume(struct pci_dev *pdev)
  1210. {
  1211. struct net_device *dev = pci_get_drvdata(pdev);
  1212. struct smsc9420_pdata *pd = netdev_priv(dev);
  1213. int err;
  1214. pci_set_power_state(pdev, PCI_D0);
  1215. pci_restore_state(pdev);
  1216. err = pci_enable_device(pdev);
  1217. if (err)
  1218. return err;
  1219. pci_set_master(pdev);
  1220. err = pci_enable_wake(pdev, 0, 0);
  1221. if (err)
  1222. smsc_warn(IFUP, "pci_enable_wake failed: %d", err);
  1223. if (netif_running(dev)) {
  1224. err = smsc9420_open(dev);
  1225. netif_device_attach(dev);
  1226. }
  1227. return err;
  1228. }
  1229. #endif /* CONFIG_PM */
  1230. static const struct net_device_ops smsc9420_netdev_ops = {
  1231. .ndo_open = smsc9420_open,
  1232. .ndo_stop = smsc9420_stop,
  1233. .ndo_start_xmit = smsc9420_hard_start_xmit,
  1234. .ndo_get_stats = smsc9420_get_stats,
  1235. .ndo_set_multicast_list = smsc9420_set_multicast_list,
  1236. .ndo_do_ioctl = smsc9420_do_ioctl,
  1237. .ndo_validate_addr = eth_validate_addr,
  1238. #ifdef CONFIG_NET_POLL_CONTROLLER
  1239. .ndo_poll_controller = smsc9420_poll_controller,
  1240. #endif /* CONFIG_NET_POLL_CONTROLLER */
  1241. };
  1242. static int __devinit
  1243. smsc9420_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1244. {
  1245. struct net_device *dev;
  1246. struct smsc9420_pdata *pd;
  1247. void __iomem *virt_addr;
  1248. int result = 0;
  1249. u32 id_rev;
  1250. printk(KERN_INFO DRV_DESCRIPTION " version " DRV_VERSION "\n");
  1251. /* First do the PCI initialisation */
  1252. result = pci_enable_device(pdev);
  1253. if (unlikely(result)) {
  1254. printk(KERN_ERR "Cannot enable smsc9420\n");
  1255. goto out_0;
  1256. }
  1257. pci_set_master(pdev);
  1258. dev = alloc_etherdev(sizeof(*pd));
  1259. if (!dev) {
  1260. printk(KERN_ERR "ether device alloc failed\n");
  1261. goto out_disable_pci_device_1;
  1262. }
  1263. SET_NETDEV_DEV(dev, &pdev->dev);
  1264. if (!(pci_resource_flags(pdev, SMSC_BAR) & IORESOURCE_MEM)) {
  1265. printk(KERN_ERR "Cannot find PCI device base address\n");
  1266. goto out_free_netdev_2;
  1267. }
  1268. if ((pci_request_regions(pdev, DRV_NAME))) {
  1269. printk(KERN_ERR "Cannot obtain PCI resources, aborting.\n");
  1270. goto out_free_netdev_2;
  1271. }
  1272. if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  1273. printk(KERN_ERR "No usable DMA configuration, aborting.\n");
  1274. goto out_free_regions_3;
  1275. }
  1276. virt_addr = ioremap(pci_resource_start(pdev, SMSC_BAR),
  1277. pci_resource_len(pdev, SMSC_BAR));
  1278. if (!virt_addr) {
  1279. printk(KERN_ERR "Cannot map device registers, aborting.\n");
  1280. goto out_free_regions_3;
  1281. }
  1282. /* registers are double mapped with 0 offset for LE and 0x200 for BE */
  1283. virt_addr += LAN9420_CPSR_ENDIAN_OFFSET;
  1284. dev->base_addr = (ulong)virt_addr;
  1285. pd = netdev_priv(dev);
  1286. /* pci descriptors are created in the PCI consistent area */
  1287. pd->rx_ring = pci_alloc_consistent(pdev,
  1288. sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE +
  1289. sizeof(struct smsc9420_dma_desc) * TX_RING_SIZE,
  1290. &pd->rx_dma_addr);
  1291. if (!pd->rx_ring)
  1292. goto out_free_io_4;
  1293. /* descriptors are aligned due to the nature of pci_alloc_consistent */
  1294. pd->tx_ring = (struct smsc9420_dma_desc *)
  1295. (pd->rx_ring + RX_RING_SIZE);
  1296. pd->tx_dma_addr = pd->rx_dma_addr +
  1297. sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE;
  1298. pd->pdev = pdev;
  1299. pd->dev = dev;
  1300. pd->base_addr = virt_addr;
  1301. pd->msg_enable = smsc_debug;
  1302. pd->rx_csum = true;
  1303. smsc_dbg(PROBE, "lan_base=0x%08lx", (ulong)virt_addr);
  1304. id_rev = smsc9420_reg_read(pd, ID_REV);
  1305. switch (id_rev & 0xFFFF0000) {
  1306. case 0x94200000:
  1307. smsc_info(PROBE, "LAN9420 identified, ID_REV=0x%08X", id_rev);
  1308. break;
  1309. default:
  1310. smsc_warn(PROBE, "LAN9420 NOT identified");
  1311. smsc_warn(PROBE, "ID_REV=0x%08X", id_rev);
  1312. goto out_free_dmadesc_5;
  1313. }
  1314. smsc9420_dmac_soft_reset(pd);
  1315. smsc9420_eeprom_reload(pd);
  1316. smsc9420_check_mac_address(dev);
  1317. dev->netdev_ops = &smsc9420_netdev_ops;
  1318. dev->ethtool_ops = &smsc9420_ethtool_ops;
  1319. dev->irq = pdev->irq;
  1320. netif_napi_add(dev, &pd->napi, smsc9420_rx_poll, NAPI_WEIGHT);
  1321. result = register_netdev(dev);
  1322. if (result) {
  1323. smsc_warn(PROBE, "error %i registering device", result);
  1324. goto out_free_dmadesc_5;
  1325. }
  1326. pci_set_drvdata(pdev, dev);
  1327. spin_lock_init(&pd->int_lock);
  1328. spin_lock_init(&pd->phy_lock);
  1329. dev_info(&dev->dev, "MAC Address: %pM\n", dev->dev_addr);
  1330. return 0;
  1331. out_free_dmadesc_5:
  1332. pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
  1333. (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
  1334. out_free_io_4:
  1335. iounmap(virt_addr - LAN9420_CPSR_ENDIAN_OFFSET);
  1336. out_free_regions_3:
  1337. pci_release_regions(pdev);
  1338. out_free_netdev_2:
  1339. free_netdev(dev);
  1340. out_disable_pci_device_1:
  1341. pci_disable_device(pdev);
  1342. out_0:
  1343. return -ENODEV;
  1344. }
  1345. static void __devexit smsc9420_remove(struct pci_dev *pdev)
  1346. {
  1347. struct net_device *dev;
  1348. struct smsc9420_pdata *pd;
  1349. dev = pci_get_drvdata(pdev);
  1350. if (!dev)
  1351. return;
  1352. pci_set_drvdata(pdev, NULL);
  1353. pd = netdev_priv(dev);
  1354. unregister_netdev(dev);
  1355. /* tx_buffers and rx_buffers are freed in stop */
  1356. BUG_ON(pd->tx_buffers);
  1357. BUG_ON(pd->rx_buffers);
  1358. BUG_ON(!pd->tx_ring);
  1359. BUG_ON(!pd->rx_ring);
  1360. pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
  1361. (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
  1362. iounmap(pd->base_addr - LAN9420_CPSR_ENDIAN_OFFSET);
  1363. pci_release_regions(pdev);
  1364. free_netdev(dev);
  1365. pci_disable_device(pdev);
  1366. }
  1367. static struct pci_driver smsc9420_driver = {
  1368. .name = DRV_NAME,
  1369. .id_table = smsc9420_id_table,
  1370. .probe = smsc9420_probe,
  1371. .remove = __devexit_p(smsc9420_remove),
  1372. #ifdef CONFIG_PM
  1373. .suspend = smsc9420_suspend,
  1374. .resume = smsc9420_resume,
  1375. #endif /* CONFIG_PM */
  1376. };
  1377. static int __init smsc9420_init_module(void)
  1378. {
  1379. smsc_debug = netif_msg_init(debug, SMSC_MSG_DEFAULT);
  1380. return pci_register_driver(&smsc9420_driver);
  1381. }
  1382. static void __exit smsc9420_exit_module(void)
  1383. {
  1384. pci_unregister_driver(&smsc9420_driver);
  1385. }
  1386. module_init(smsc9420_init_module);
  1387. module_exit(smsc9420_exit_module);