raid1.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338
  1. /*
  2. * raid1.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
  5. *
  6. * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  7. *
  8. * RAID-1 management functions.
  9. *
  10. * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11. *
  12. * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13. * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14. *
  15. * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16. * bitmapped intelligence in resync:
  17. *
  18. * - bitmap marked during normal i/o
  19. * - bitmap used to skip nondirty blocks during sync
  20. *
  21. * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22. * - persistent bitmap code
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2, or (at your option)
  27. * any later version.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * (for example /usr/src/linux/COPYING); if not, write to the Free
  31. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32. */
  33. #include <linux/slab.h>
  34. #include <linux/delay.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/seq_file.h>
  37. #include "md.h"
  38. #include "raid1.h"
  39. #include "bitmap.h"
  40. #define DEBUG 0
  41. #if DEBUG
  42. #define PRINTK(x...) printk(x)
  43. #else
  44. #define PRINTK(x...)
  45. #endif
  46. /*
  47. * Number of guaranteed r1bios in case of extreme VM load:
  48. */
  49. #define NR_RAID1_BIOS 256
  50. static void unplug_slaves(mddev_t *mddev);
  51. static void allow_barrier(conf_t *conf);
  52. static void lower_barrier(conf_t *conf);
  53. static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  54. {
  55. struct pool_info *pi = data;
  56. r1bio_t *r1_bio;
  57. int size = offsetof(r1bio_t, bios[pi->raid_disks]);
  58. /* allocate a r1bio with room for raid_disks entries in the bios array */
  59. r1_bio = kzalloc(size, gfp_flags);
  60. if (!r1_bio && pi->mddev)
  61. unplug_slaves(pi->mddev);
  62. return r1_bio;
  63. }
  64. static void r1bio_pool_free(void *r1_bio, void *data)
  65. {
  66. kfree(r1_bio);
  67. }
  68. #define RESYNC_BLOCK_SIZE (64*1024)
  69. //#define RESYNC_BLOCK_SIZE PAGE_SIZE
  70. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  71. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  72. #define RESYNC_WINDOW (2048*1024)
  73. static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  74. {
  75. struct pool_info *pi = data;
  76. struct page *page;
  77. r1bio_t *r1_bio;
  78. struct bio *bio;
  79. int i, j;
  80. r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  81. if (!r1_bio) {
  82. unplug_slaves(pi->mddev);
  83. return NULL;
  84. }
  85. /*
  86. * Allocate bios : 1 for reading, n-1 for writing
  87. */
  88. for (j = pi->raid_disks ; j-- ; ) {
  89. bio = bio_alloc(gfp_flags, RESYNC_PAGES);
  90. if (!bio)
  91. goto out_free_bio;
  92. r1_bio->bios[j] = bio;
  93. }
  94. /*
  95. * Allocate RESYNC_PAGES data pages and attach them to
  96. * the first bio.
  97. * If this is a user-requested check/repair, allocate
  98. * RESYNC_PAGES for each bio.
  99. */
  100. if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
  101. j = pi->raid_disks;
  102. else
  103. j = 1;
  104. while(j--) {
  105. bio = r1_bio->bios[j];
  106. for (i = 0; i < RESYNC_PAGES; i++) {
  107. page = alloc_page(gfp_flags);
  108. if (unlikely(!page))
  109. goto out_free_pages;
  110. bio->bi_io_vec[i].bv_page = page;
  111. bio->bi_vcnt = i+1;
  112. }
  113. }
  114. /* If not user-requests, copy the page pointers to all bios */
  115. if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
  116. for (i=0; i<RESYNC_PAGES ; i++)
  117. for (j=1; j<pi->raid_disks; j++)
  118. r1_bio->bios[j]->bi_io_vec[i].bv_page =
  119. r1_bio->bios[0]->bi_io_vec[i].bv_page;
  120. }
  121. r1_bio->master_bio = NULL;
  122. return r1_bio;
  123. out_free_pages:
  124. for (j=0 ; j < pi->raid_disks; j++)
  125. for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
  126. put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
  127. j = -1;
  128. out_free_bio:
  129. while ( ++j < pi->raid_disks )
  130. bio_put(r1_bio->bios[j]);
  131. r1bio_pool_free(r1_bio, data);
  132. return NULL;
  133. }
  134. static void r1buf_pool_free(void *__r1_bio, void *data)
  135. {
  136. struct pool_info *pi = data;
  137. int i,j;
  138. r1bio_t *r1bio = __r1_bio;
  139. for (i = 0; i < RESYNC_PAGES; i++)
  140. for (j = pi->raid_disks; j-- ;) {
  141. if (j == 0 ||
  142. r1bio->bios[j]->bi_io_vec[i].bv_page !=
  143. r1bio->bios[0]->bi_io_vec[i].bv_page)
  144. safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
  145. }
  146. for (i=0 ; i < pi->raid_disks; i++)
  147. bio_put(r1bio->bios[i]);
  148. r1bio_pool_free(r1bio, data);
  149. }
  150. static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
  151. {
  152. int i;
  153. for (i = 0; i < conf->raid_disks; i++) {
  154. struct bio **bio = r1_bio->bios + i;
  155. if (*bio && *bio != IO_BLOCKED)
  156. bio_put(*bio);
  157. *bio = NULL;
  158. }
  159. }
  160. static void free_r1bio(r1bio_t *r1_bio)
  161. {
  162. conf_t *conf = r1_bio->mddev->private;
  163. /*
  164. * Wake up any possible resync thread that waits for the device
  165. * to go idle.
  166. */
  167. allow_barrier(conf);
  168. put_all_bios(conf, r1_bio);
  169. mempool_free(r1_bio, conf->r1bio_pool);
  170. }
  171. static void put_buf(r1bio_t *r1_bio)
  172. {
  173. conf_t *conf = r1_bio->mddev->private;
  174. int i;
  175. for (i=0; i<conf->raid_disks; i++) {
  176. struct bio *bio = r1_bio->bios[i];
  177. if (bio->bi_end_io)
  178. rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
  179. }
  180. mempool_free(r1_bio, conf->r1buf_pool);
  181. lower_barrier(conf);
  182. }
  183. static void reschedule_retry(r1bio_t *r1_bio)
  184. {
  185. unsigned long flags;
  186. mddev_t *mddev = r1_bio->mddev;
  187. conf_t *conf = mddev->private;
  188. spin_lock_irqsave(&conf->device_lock, flags);
  189. list_add(&r1_bio->retry_list, &conf->retry_list);
  190. conf->nr_queued ++;
  191. spin_unlock_irqrestore(&conf->device_lock, flags);
  192. wake_up(&conf->wait_barrier);
  193. md_wakeup_thread(mddev->thread);
  194. }
  195. /*
  196. * raid_end_bio_io() is called when we have finished servicing a mirrored
  197. * operation and are ready to return a success/failure code to the buffer
  198. * cache layer.
  199. */
  200. static void raid_end_bio_io(r1bio_t *r1_bio)
  201. {
  202. struct bio *bio = r1_bio->master_bio;
  203. /* if nobody has done the final endio yet, do it now */
  204. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  205. PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
  206. (bio_data_dir(bio) == WRITE) ? "write" : "read",
  207. (unsigned long long) bio->bi_sector,
  208. (unsigned long long) bio->bi_sector +
  209. (bio->bi_size >> 9) - 1);
  210. bio_endio(bio,
  211. test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
  212. }
  213. free_r1bio(r1_bio);
  214. }
  215. /*
  216. * Update disk head position estimator based on IRQ completion info.
  217. */
  218. static inline void update_head_pos(int disk, r1bio_t *r1_bio)
  219. {
  220. conf_t *conf = r1_bio->mddev->private;
  221. conf->mirrors[disk].head_position =
  222. r1_bio->sector + (r1_bio->sectors);
  223. }
  224. static void raid1_end_read_request(struct bio *bio, int error)
  225. {
  226. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  227. r1bio_t *r1_bio = bio->bi_private;
  228. int mirror;
  229. conf_t *conf = r1_bio->mddev->private;
  230. mirror = r1_bio->read_disk;
  231. /*
  232. * this branch is our 'one mirror IO has finished' event handler:
  233. */
  234. update_head_pos(mirror, r1_bio);
  235. if (uptodate)
  236. set_bit(R1BIO_Uptodate, &r1_bio->state);
  237. else {
  238. /* If all other devices have failed, we want to return
  239. * the error upwards rather than fail the last device.
  240. * Here we redefine "uptodate" to mean "Don't want to retry"
  241. */
  242. unsigned long flags;
  243. spin_lock_irqsave(&conf->device_lock, flags);
  244. if (r1_bio->mddev->degraded == conf->raid_disks ||
  245. (r1_bio->mddev->degraded == conf->raid_disks-1 &&
  246. !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
  247. uptodate = 1;
  248. spin_unlock_irqrestore(&conf->device_lock, flags);
  249. }
  250. if (uptodate)
  251. raid_end_bio_io(r1_bio);
  252. else {
  253. /*
  254. * oops, read error:
  255. */
  256. char b[BDEVNAME_SIZE];
  257. if (printk_ratelimit())
  258. printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
  259. mdname(conf->mddev),
  260. bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
  261. reschedule_retry(r1_bio);
  262. }
  263. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  264. }
  265. static void raid1_end_write_request(struct bio *bio, int error)
  266. {
  267. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  268. r1bio_t *r1_bio = bio->bi_private;
  269. int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
  270. conf_t *conf = r1_bio->mddev->private;
  271. struct bio *to_put = NULL;
  272. for (mirror = 0; mirror < conf->raid_disks; mirror++)
  273. if (r1_bio->bios[mirror] == bio)
  274. break;
  275. /*
  276. * 'one mirror IO has finished' event handler:
  277. */
  278. r1_bio->bios[mirror] = NULL;
  279. to_put = bio;
  280. if (!uptodate) {
  281. md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
  282. /* an I/O failed, we can't clear the bitmap */
  283. set_bit(R1BIO_Degraded, &r1_bio->state);
  284. } else
  285. /*
  286. * Set R1BIO_Uptodate in our master bio, so that we
  287. * will return a good error code for to the higher
  288. * levels even if IO on some other mirrored buffer
  289. * fails.
  290. *
  291. * The 'master' represents the composite IO operation
  292. * to user-side. So if something waits for IO, then it
  293. * will wait for the 'master' bio.
  294. */
  295. set_bit(R1BIO_Uptodate, &r1_bio->state);
  296. update_head_pos(mirror, r1_bio);
  297. if (behind) {
  298. if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
  299. atomic_dec(&r1_bio->behind_remaining);
  300. /*
  301. * In behind mode, we ACK the master bio once the I/O
  302. * has safely reached all non-writemostly
  303. * disks. Setting the Returned bit ensures that this
  304. * gets done only once -- we don't ever want to return
  305. * -EIO here, instead we'll wait
  306. */
  307. if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
  308. test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  309. /* Maybe we can return now */
  310. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  311. struct bio *mbio = r1_bio->master_bio;
  312. PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
  313. (unsigned long long) mbio->bi_sector,
  314. (unsigned long long) mbio->bi_sector +
  315. (mbio->bi_size >> 9) - 1);
  316. bio_endio(mbio, 0);
  317. }
  318. }
  319. }
  320. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  321. /*
  322. * Let's see if all mirrored write operations have finished
  323. * already.
  324. */
  325. if (atomic_dec_and_test(&r1_bio->remaining)) {
  326. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  327. /* free extra copy of the data pages */
  328. int i = bio->bi_vcnt;
  329. while (i--)
  330. safe_put_page(bio->bi_io_vec[i].bv_page);
  331. }
  332. /* clear the bitmap if all writes complete successfully */
  333. bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
  334. r1_bio->sectors,
  335. !test_bit(R1BIO_Degraded, &r1_bio->state),
  336. behind);
  337. md_write_end(r1_bio->mddev);
  338. raid_end_bio_io(r1_bio);
  339. }
  340. if (to_put)
  341. bio_put(to_put);
  342. }
  343. /*
  344. * This routine returns the disk from which the requested read should
  345. * be done. There is a per-array 'next expected sequential IO' sector
  346. * number - if this matches on the next IO then we use the last disk.
  347. * There is also a per-disk 'last know head position' sector that is
  348. * maintained from IRQ contexts, both the normal and the resync IO
  349. * completion handlers update this position correctly. If there is no
  350. * perfect sequential match then we pick the disk whose head is closest.
  351. *
  352. * If there are 2 mirrors in the same 2 devices, performance degrades
  353. * because position is mirror, not device based.
  354. *
  355. * The rdev for the device selected will have nr_pending incremented.
  356. */
  357. static int read_balance(conf_t *conf, r1bio_t *r1_bio)
  358. {
  359. const sector_t this_sector = r1_bio->sector;
  360. int new_disk = conf->last_used, disk = new_disk;
  361. int wonly_disk = -1;
  362. const int sectors = r1_bio->sectors;
  363. sector_t new_distance, current_distance;
  364. mdk_rdev_t *rdev;
  365. rcu_read_lock();
  366. /*
  367. * Check if we can balance. We can balance on the whole
  368. * device if no resync is going on, or below the resync window.
  369. * We take the first readable disk when above the resync window.
  370. */
  371. retry:
  372. if (conf->mddev->recovery_cp < MaxSector &&
  373. (this_sector + sectors >= conf->next_resync)) {
  374. /* Choose the first operational device, for consistancy */
  375. new_disk = 0;
  376. for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  377. r1_bio->bios[new_disk] == IO_BLOCKED ||
  378. !rdev || !test_bit(In_sync, &rdev->flags)
  379. || test_bit(WriteMostly, &rdev->flags);
  380. rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
  381. if (rdev && test_bit(In_sync, &rdev->flags) &&
  382. r1_bio->bios[new_disk] != IO_BLOCKED)
  383. wonly_disk = new_disk;
  384. if (new_disk == conf->raid_disks - 1) {
  385. new_disk = wonly_disk;
  386. break;
  387. }
  388. }
  389. goto rb_out;
  390. }
  391. /* make sure the disk is operational */
  392. for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  393. r1_bio->bios[new_disk] == IO_BLOCKED ||
  394. !rdev || !test_bit(In_sync, &rdev->flags) ||
  395. test_bit(WriteMostly, &rdev->flags);
  396. rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
  397. if (rdev && test_bit(In_sync, &rdev->flags) &&
  398. r1_bio->bios[new_disk] != IO_BLOCKED)
  399. wonly_disk = new_disk;
  400. if (new_disk <= 0)
  401. new_disk = conf->raid_disks;
  402. new_disk--;
  403. if (new_disk == disk) {
  404. new_disk = wonly_disk;
  405. break;
  406. }
  407. }
  408. if (new_disk < 0)
  409. goto rb_out;
  410. disk = new_disk;
  411. /* now disk == new_disk == starting point for search */
  412. /*
  413. * Don't change to another disk for sequential reads:
  414. */
  415. if (conf->next_seq_sect == this_sector)
  416. goto rb_out;
  417. if (this_sector == conf->mirrors[new_disk].head_position)
  418. goto rb_out;
  419. current_distance = abs(this_sector - conf->mirrors[disk].head_position);
  420. /* Find the disk whose head is closest */
  421. do {
  422. if (disk <= 0)
  423. disk = conf->raid_disks;
  424. disk--;
  425. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  426. if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
  427. !test_bit(In_sync, &rdev->flags) ||
  428. test_bit(WriteMostly, &rdev->flags))
  429. continue;
  430. if (!atomic_read(&rdev->nr_pending)) {
  431. new_disk = disk;
  432. break;
  433. }
  434. new_distance = abs(this_sector - conf->mirrors[disk].head_position);
  435. if (new_distance < current_distance) {
  436. current_distance = new_distance;
  437. new_disk = disk;
  438. }
  439. } while (disk != conf->last_used);
  440. rb_out:
  441. if (new_disk >= 0) {
  442. rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  443. if (!rdev)
  444. goto retry;
  445. atomic_inc(&rdev->nr_pending);
  446. if (!test_bit(In_sync, &rdev->flags)) {
  447. /* cannot risk returning a device that failed
  448. * before we inc'ed nr_pending
  449. */
  450. rdev_dec_pending(rdev, conf->mddev);
  451. goto retry;
  452. }
  453. conf->next_seq_sect = this_sector + sectors;
  454. conf->last_used = new_disk;
  455. }
  456. rcu_read_unlock();
  457. return new_disk;
  458. }
  459. static void unplug_slaves(mddev_t *mddev)
  460. {
  461. conf_t *conf = mddev->private;
  462. int i;
  463. rcu_read_lock();
  464. for (i=0; i<mddev->raid_disks; i++) {
  465. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  466. if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
  467. struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
  468. atomic_inc(&rdev->nr_pending);
  469. rcu_read_unlock();
  470. blk_unplug(r_queue);
  471. rdev_dec_pending(rdev, mddev);
  472. rcu_read_lock();
  473. }
  474. }
  475. rcu_read_unlock();
  476. }
  477. static void raid1_unplug(struct request_queue *q)
  478. {
  479. mddev_t *mddev = q->queuedata;
  480. unplug_slaves(mddev);
  481. md_wakeup_thread(mddev->thread);
  482. }
  483. static int raid1_congested(void *data, int bits)
  484. {
  485. mddev_t *mddev = data;
  486. conf_t *conf = mddev->private;
  487. int i, ret = 0;
  488. if (mddev_congested(mddev, bits))
  489. return 1;
  490. rcu_read_lock();
  491. for (i = 0; i < mddev->raid_disks; i++) {
  492. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  493. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  494. struct request_queue *q = bdev_get_queue(rdev->bdev);
  495. /* Note the '|| 1' - when read_balance prefers
  496. * non-congested targets, it can be removed
  497. */
  498. if ((bits & (1<<BDI_async_congested)) || 1)
  499. ret |= bdi_congested(&q->backing_dev_info, bits);
  500. else
  501. ret &= bdi_congested(&q->backing_dev_info, bits);
  502. }
  503. }
  504. rcu_read_unlock();
  505. return ret;
  506. }
  507. static int flush_pending_writes(conf_t *conf)
  508. {
  509. /* Any writes that have been queued but are awaiting
  510. * bitmap updates get flushed here.
  511. * We return 1 if any requests were actually submitted.
  512. */
  513. int rv = 0;
  514. spin_lock_irq(&conf->device_lock);
  515. if (conf->pending_bio_list.head) {
  516. struct bio *bio;
  517. bio = bio_list_get(&conf->pending_bio_list);
  518. blk_remove_plug(conf->mddev->queue);
  519. spin_unlock_irq(&conf->device_lock);
  520. /* flush any pending bitmap writes to
  521. * disk before proceeding w/ I/O */
  522. bitmap_unplug(conf->mddev->bitmap);
  523. while (bio) { /* submit pending writes */
  524. struct bio *next = bio->bi_next;
  525. bio->bi_next = NULL;
  526. generic_make_request(bio);
  527. bio = next;
  528. }
  529. rv = 1;
  530. } else
  531. spin_unlock_irq(&conf->device_lock);
  532. return rv;
  533. }
  534. /* Barriers....
  535. * Sometimes we need to suspend IO while we do something else,
  536. * either some resync/recovery, or reconfigure the array.
  537. * To do this we raise a 'barrier'.
  538. * The 'barrier' is a counter that can be raised multiple times
  539. * to count how many activities are happening which preclude
  540. * normal IO.
  541. * We can only raise the barrier if there is no pending IO.
  542. * i.e. if nr_pending == 0.
  543. * We choose only to raise the barrier if no-one is waiting for the
  544. * barrier to go down. This means that as soon as an IO request
  545. * is ready, no other operations which require a barrier will start
  546. * until the IO request has had a chance.
  547. *
  548. * So: regular IO calls 'wait_barrier'. When that returns there
  549. * is no backgroup IO happening, It must arrange to call
  550. * allow_barrier when it has finished its IO.
  551. * backgroup IO calls must call raise_barrier. Once that returns
  552. * there is no normal IO happeing. It must arrange to call
  553. * lower_barrier when the particular background IO completes.
  554. */
  555. #define RESYNC_DEPTH 32
  556. static void raise_barrier(conf_t *conf)
  557. {
  558. spin_lock_irq(&conf->resync_lock);
  559. /* Wait until no block IO is waiting */
  560. wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
  561. conf->resync_lock,
  562. raid1_unplug(conf->mddev->queue));
  563. /* block any new IO from starting */
  564. conf->barrier++;
  565. /* No wait for all pending IO to complete */
  566. wait_event_lock_irq(conf->wait_barrier,
  567. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  568. conf->resync_lock,
  569. raid1_unplug(conf->mddev->queue));
  570. spin_unlock_irq(&conf->resync_lock);
  571. }
  572. static void lower_barrier(conf_t *conf)
  573. {
  574. unsigned long flags;
  575. BUG_ON(conf->barrier <= 0);
  576. spin_lock_irqsave(&conf->resync_lock, flags);
  577. conf->barrier--;
  578. spin_unlock_irqrestore(&conf->resync_lock, flags);
  579. wake_up(&conf->wait_barrier);
  580. }
  581. static void wait_barrier(conf_t *conf)
  582. {
  583. spin_lock_irq(&conf->resync_lock);
  584. if (conf->barrier) {
  585. conf->nr_waiting++;
  586. wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
  587. conf->resync_lock,
  588. raid1_unplug(conf->mddev->queue));
  589. conf->nr_waiting--;
  590. }
  591. conf->nr_pending++;
  592. spin_unlock_irq(&conf->resync_lock);
  593. }
  594. static void allow_barrier(conf_t *conf)
  595. {
  596. unsigned long flags;
  597. spin_lock_irqsave(&conf->resync_lock, flags);
  598. conf->nr_pending--;
  599. spin_unlock_irqrestore(&conf->resync_lock, flags);
  600. wake_up(&conf->wait_barrier);
  601. }
  602. static void freeze_array(conf_t *conf)
  603. {
  604. /* stop syncio and normal IO and wait for everything to
  605. * go quite.
  606. * We increment barrier and nr_waiting, and then
  607. * wait until nr_pending match nr_queued+1
  608. * This is called in the context of one normal IO request
  609. * that has failed. Thus any sync request that might be pending
  610. * will be blocked by nr_pending, and we need to wait for
  611. * pending IO requests to complete or be queued for re-try.
  612. * Thus the number queued (nr_queued) plus this request (1)
  613. * must match the number of pending IOs (nr_pending) before
  614. * we continue.
  615. */
  616. spin_lock_irq(&conf->resync_lock);
  617. conf->barrier++;
  618. conf->nr_waiting++;
  619. wait_event_lock_irq(conf->wait_barrier,
  620. conf->nr_pending == conf->nr_queued+1,
  621. conf->resync_lock,
  622. ({ flush_pending_writes(conf);
  623. raid1_unplug(conf->mddev->queue); }));
  624. spin_unlock_irq(&conf->resync_lock);
  625. }
  626. static void unfreeze_array(conf_t *conf)
  627. {
  628. /* reverse the effect of the freeze */
  629. spin_lock_irq(&conf->resync_lock);
  630. conf->barrier--;
  631. conf->nr_waiting--;
  632. wake_up(&conf->wait_barrier);
  633. spin_unlock_irq(&conf->resync_lock);
  634. }
  635. /* duplicate the data pages for behind I/O */
  636. static struct page **alloc_behind_pages(struct bio *bio)
  637. {
  638. int i;
  639. struct bio_vec *bvec;
  640. struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
  641. GFP_NOIO);
  642. if (unlikely(!pages))
  643. goto do_sync_io;
  644. bio_for_each_segment(bvec, bio, i) {
  645. pages[i] = alloc_page(GFP_NOIO);
  646. if (unlikely(!pages[i]))
  647. goto do_sync_io;
  648. memcpy(kmap(pages[i]) + bvec->bv_offset,
  649. kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
  650. kunmap(pages[i]);
  651. kunmap(bvec->bv_page);
  652. }
  653. return pages;
  654. do_sync_io:
  655. if (pages)
  656. for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
  657. put_page(pages[i]);
  658. kfree(pages);
  659. PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
  660. return NULL;
  661. }
  662. static int make_request(mddev_t *mddev, struct bio * bio)
  663. {
  664. conf_t *conf = mddev->private;
  665. mirror_info_t *mirror;
  666. r1bio_t *r1_bio;
  667. struct bio *read_bio;
  668. int i, targets = 0, disks;
  669. struct bitmap *bitmap;
  670. unsigned long flags;
  671. struct bio_list bl;
  672. struct page **behind_pages = NULL;
  673. const int rw = bio_data_dir(bio);
  674. const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
  675. const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
  676. mdk_rdev_t *blocked_rdev;
  677. /*
  678. * Register the new request and wait if the reconstruction
  679. * thread has put up a bar for new requests.
  680. * Continue immediately if no resync is active currently.
  681. */
  682. md_write_start(mddev, bio); /* wait on superblock update early */
  683. if (bio_data_dir(bio) == WRITE &&
  684. bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
  685. bio->bi_sector < mddev->suspend_hi) {
  686. /* As the suspend_* range is controlled by
  687. * userspace, we want an interruptible
  688. * wait.
  689. */
  690. DEFINE_WAIT(w);
  691. for (;;) {
  692. flush_signals(current);
  693. prepare_to_wait(&conf->wait_barrier,
  694. &w, TASK_INTERRUPTIBLE);
  695. if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
  696. bio->bi_sector >= mddev->suspend_hi)
  697. break;
  698. schedule();
  699. }
  700. finish_wait(&conf->wait_barrier, &w);
  701. }
  702. wait_barrier(conf);
  703. bitmap = mddev->bitmap;
  704. /*
  705. * make_request() can abort the operation when READA is being
  706. * used and no empty request is available.
  707. *
  708. */
  709. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  710. r1_bio->master_bio = bio;
  711. r1_bio->sectors = bio->bi_size >> 9;
  712. r1_bio->state = 0;
  713. r1_bio->mddev = mddev;
  714. r1_bio->sector = bio->bi_sector;
  715. if (rw == READ) {
  716. /*
  717. * read balancing logic:
  718. */
  719. int rdisk = read_balance(conf, r1_bio);
  720. if (rdisk < 0) {
  721. /* couldn't find anywhere to read from */
  722. raid_end_bio_io(r1_bio);
  723. return 0;
  724. }
  725. mirror = conf->mirrors + rdisk;
  726. if (test_bit(WriteMostly, &mirror->rdev->flags) &&
  727. bitmap) {
  728. /* Reading from a write-mostly device must
  729. * take care not to over-take any writes
  730. * that are 'behind'
  731. */
  732. wait_event(bitmap->behind_wait,
  733. atomic_read(&bitmap->behind_writes) == 0);
  734. }
  735. r1_bio->read_disk = rdisk;
  736. read_bio = bio_clone(bio, GFP_NOIO);
  737. r1_bio->bios[rdisk] = read_bio;
  738. read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
  739. read_bio->bi_bdev = mirror->rdev->bdev;
  740. read_bio->bi_end_io = raid1_end_read_request;
  741. read_bio->bi_rw = READ | do_sync;
  742. read_bio->bi_private = r1_bio;
  743. generic_make_request(read_bio);
  744. return 0;
  745. }
  746. /*
  747. * WRITE:
  748. */
  749. /* first select target devices under spinlock and
  750. * inc refcount on their rdev. Record them by setting
  751. * bios[x] to bio
  752. */
  753. disks = conf->raid_disks;
  754. #if 0
  755. { static int first=1;
  756. if (first) printk("First Write sector %llu disks %d\n",
  757. (unsigned long long)r1_bio->sector, disks);
  758. first = 0;
  759. }
  760. #endif
  761. retry_write:
  762. blocked_rdev = NULL;
  763. rcu_read_lock();
  764. for (i = 0; i < disks; i++) {
  765. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  766. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  767. atomic_inc(&rdev->nr_pending);
  768. blocked_rdev = rdev;
  769. break;
  770. }
  771. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  772. atomic_inc(&rdev->nr_pending);
  773. if (test_bit(Faulty, &rdev->flags)) {
  774. rdev_dec_pending(rdev, mddev);
  775. r1_bio->bios[i] = NULL;
  776. } else {
  777. r1_bio->bios[i] = bio;
  778. targets++;
  779. }
  780. } else
  781. r1_bio->bios[i] = NULL;
  782. }
  783. rcu_read_unlock();
  784. if (unlikely(blocked_rdev)) {
  785. /* Wait for this device to become unblocked */
  786. int j;
  787. for (j = 0; j < i; j++)
  788. if (r1_bio->bios[j])
  789. rdev_dec_pending(conf->mirrors[j].rdev, mddev);
  790. allow_barrier(conf);
  791. md_wait_for_blocked_rdev(blocked_rdev, mddev);
  792. wait_barrier(conf);
  793. goto retry_write;
  794. }
  795. BUG_ON(targets == 0); /* we never fail the last device */
  796. if (targets < conf->raid_disks) {
  797. /* array is degraded, we will not clear the bitmap
  798. * on I/O completion (see raid1_end_write_request) */
  799. set_bit(R1BIO_Degraded, &r1_bio->state);
  800. }
  801. /* do behind I/O ?
  802. * Not if there are too many, or cannot allocate memory,
  803. * or a reader on WriteMostly is waiting for behind writes
  804. * to flush */
  805. if (bitmap &&
  806. (atomic_read(&bitmap->behind_writes)
  807. < mddev->bitmap_info.max_write_behind) &&
  808. !waitqueue_active(&bitmap->behind_wait) &&
  809. (behind_pages = alloc_behind_pages(bio)) != NULL)
  810. set_bit(R1BIO_BehindIO, &r1_bio->state);
  811. atomic_set(&r1_bio->remaining, 0);
  812. atomic_set(&r1_bio->behind_remaining, 0);
  813. bio_list_init(&bl);
  814. for (i = 0; i < disks; i++) {
  815. struct bio *mbio;
  816. if (!r1_bio->bios[i])
  817. continue;
  818. mbio = bio_clone(bio, GFP_NOIO);
  819. r1_bio->bios[i] = mbio;
  820. mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
  821. mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  822. mbio->bi_end_io = raid1_end_write_request;
  823. mbio->bi_rw = WRITE | do_flush_fua | do_sync;
  824. mbio->bi_private = r1_bio;
  825. if (behind_pages) {
  826. struct bio_vec *bvec;
  827. int j;
  828. /* Yes, I really want the '__' version so that
  829. * we clear any unused pointer in the io_vec, rather
  830. * than leave them unchanged. This is important
  831. * because when we come to free the pages, we won't
  832. * know the originial bi_idx, so we just free
  833. * them all
  834. */
  835. __bio_for_each_segment(bvec, mbio, j, 0)
  836. bvec->bv_page = behind_pages[j];
  837. if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
  838. atomic_inc(&r1_bio->behind_remaining);
  839. }
  840. atomic_inc(&r1_bio->remaining);
  841. bio_list_add(&bl, mbio);
  842. }
  843. kfree(behind_pages); /* the behind pages are attached to the bios now */
  844. bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
  845. test_bit(R1BIO_BehindIO, &r1_bio->state));
  846. spin_lock_irqsave(&conf->device_lock, flags);
  847. bio_list_merge(&conf->pending_bio_list, &bl);
  848. bio_list_init(&bl);
  849. blk_plug_device(mddev->queue);
  850. spin_unlock_irqrestore(&conf->device_lock, flags);
  851. /* In case raid1d snuck into freeze_array */
  852. wake_up(&conf->wait_barrier);
  853. if (do_sync)
  854. md_wakeup_thread(mddev->thread);
  855. #if 0
  856. while ((bio = bio_list_pop(&bl)) != NULL)
  857. generic_make_request(bio);
  858. #endif
  859. return 0;
  860. }
  861. static void status(struct seq_file *seq, mddev_t *mddev)
  862. {
  863. conf_t *conf = mddev->private;
  864. int i;
  865. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  866. conf->raid_disks - mddev->degraded);
  867. rcu_read_lock();
  868. for (i = 0; i < conf->raid_disks; i++) {
  869. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  870. seq_printf(seq, "%s",
  871. rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
  872. }
  873. rcu_read_unlock();
  874. seq_printf(seq, "]");
  875. }
  876. static void error(mddev_t *mddev, mdk_rdev_t *rdev)
  877. {
  878. char b[BDEVNAME_SIZE];
  879. conf_t *conf = mddev->private;
  880. /*
  881. * If it is not operational, then we have already marked it as dead
  882. * else if it is the last working disks, ignore the error, let the
  883. * next level up know.
  884. * else mark the drive as failed
  885. */
  886. if (test_bit(In_sync, &rdev->flags)
  887. && (conf->raid_disks - mddev->degraded) == 1) {
  888. /*
  889. * Don't fail the drive, act as though we were just a
  890. * normal single drive.
  891. * However don't try a recovery from this drive as
  892. * it is very likely to fail.
  893. */
  894. mddev->recovery_disabled = 1;
  895. return;
  896. }
  897. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  898. unsigned long flags;
  899. spin_lock_irqsave(&conf->device_lock, flags);
  900. mddev->degraded++;
  901. set_bit(Faulty, &rdev->flags);
  902. spin_unlock_irqrestore(&conf->device_lock, flags);
  903. /*
  904. * if recovery is running, make sure it aborts.
  905. */
  906. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  907. } else
  908. set_bit(Faulty, &rdev->flags);
  909. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  910. printk(KERN_ALERT "md/raid1:%s: Disk failure on %s, disabling device.\n"
  911. KERN_ALERT "md/raid1:%s: Operation continuing on %d devices.\n",
  912. mdname(mddev), bdevname(rdev->bdev, b),
  913. mdname(mddev), conf->raid_disks - mddev->degraded);
  914. }
  915. static void print_conf(conf_t *conf)
  916. {
  917. int i;
  918. printk(KERN_DEBUG "RAID1 conf printout:\n");
  919. if (!conf) {
  920. printk(KERN_DEBUG "(!conf)\n");
  921. return;
  922. }
  923. printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
  924. conf->raid_disks);
  925. rcu_read_lock();
  926. for (i = 0; i < conf->raid_disks; i++) {
  927. char b[BDEVNAME_SIZE];
  928. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  929. if (rdev)
  930. printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
  931. i, !test_bit(In_sync, &rdev->flags),
  932. !test_bit(Faulty, &rdev->flags),
  933. bdevname(rdev->bdev,b));
  934. }
  935. rcu_read_unlock();
  936. }
  937. static void close_sync(conf_t *conf)
  938. {
  939. wait_barrier(conf);
  940. allow_barrier(conf);
  941. mempool_destroy(conf->r1buf_pool);
  942. conf->r1buf_pool = NULL;
  943. }
  944. static int raid1_spare_active(mddev_t *mddev)
  945. {
  946. int i;
  947. conf_t *conf = mddev->private;
  948. int count = 0;
  949. unsigned long flags;
  950. /*
  951. * Find all failed disks within the RAID1 configuration
  952. * and mark them readable.
  953. * Called under mddev lock, so rcu protection not needed.
  954. */
  955. for (i = 0; i < conf->raid_disks; i++) {
  956. mdk_rdev_t *rdev = conf->mirrors[i].rdev;
  957. if (rdev
  958. && !test_bit(Faulty, &rdev->flags)
  959. && !test_and_set_bit(In_sync, &rdev->flags)) {
  960. count++;
  961. sysfs_notify_dirent(rdev->sysfs_state);
  962. }
  963. }
  964. spin_lock_irqsave(&conf->device_lock, flags);
  965. mddev->degraded -= count;
  966. spin_unlock_irqrestore(&conf->device_lock, flags);
  967. print_conf(conf);
  968. return count;
  969. }
  970. static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
  971. {
  972. conf_t *conf = mddev->private;
  973. int err = -EEXIST;
  974. int mirror = 0;
  975. mirror_info_t *p;
  976. int first = 0;
  977. int last = mddev->raid_disks - 1;
  978. if (rdev->raid_disk >= 0)
  979. first = last = rdev->raid_disk;
  980. for (mirror = first; mirror <= last; mirror++)
  981. if ( !(p=conf->mirrors+mirror)->rdev) {
  982. disk_stack_limits(mddev->gendisk, rdev->bdev,
  983. rdev->data_offset << 9);
  984. /* as we don't honour merge_bvec_fn, we must
  985. * never risk violating it, so limit
  986. * ->max_segments to one lying with a single
  987. * page, as a one page request is never in
  988. * violation.
  989. */
  990. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  991. blk_queue_max_segments(mddev->queue, 1);
  992. blk_queue_segment_boundary(mddev->queue,
  993. PAGE_CACHE_SIZE - 1);
  994. }
  995. p->head_position = 0;
  996. rdev->raid_disk = mirror;
  997. err = 0;
  998. /* As all devices are equivalent, we don't need a full recovery
  999. * if this was recently any drive of the array
  1000. */
  1001. if (rdev->saved_raid_disk < 0)
  1002. conf->fullsync = 1;
  1003. rcu_assign_pointer(p->rdev, rdev);
  1004. break;
  1005. }
  1006. md_integrity_add_rdev(rdev, mddev);
  1007. print_conf(conf);
  1008. return err;
  1009. }
  1010. static int raid1_remove_disk(mddev_t *mddev, int number)
  1011. {
  1012. conf_t *conf = mddev->private;
  1013. int err = 0;
  1014. mdk_rdev_t *rdev;
  1015. mirror_info_t *p = conf->mirrors+ number;
  1016. print_conf(conf);
  1017. rdev = p->rdev;
  1018. if (rdev) {
  1019. if (test_bit(In_sync, &rdev->flags) ||
  1020. atomic_read(&rdev->nr_pending)) {
  1021. err = -EBUSY;
  1022. goto abort;
  1023. }
  1024. /* Only remove non-faulty devices is recovery
  1025. * is not possible.
  1026. */
  1027. if (!test_bit(Faulty, &rdev->flags) &&
  1028. mddev->degraded < conf->raid_disks) {
  1029. err = -EBUSY;
  1030. goto abort;
  1031. }
  1032. p->rdev = NULL;
  1033. synchronize_rcu();
  1034. if (atomic_read(&rdev->nr_pending)) {
  1035. /* lost the race, try later */
  1036. err = -EBUSY;
  1037. p->rdev = rdev;
  1038. goto abort;
  1039. }
  1040. md_integrity_register(mddev);
  1041. }
  1042. abort:
  1043. print_conf(conf);
  1044. return err;
  1045. }
  1046. static void end_sync_read(struct bio *bio, int error)
  1047. {
  1048. r1bio_t *r1_bio = bio->bi_private;
  1049. int i;
  1050. for (i=r1_bio->mddev->raid_disks; i--; )
  1051. if (r1_bio->bios[i] == bio)
  1052. break;
  1053. BUG_ON(i < 0);
  1054. update_head_pos(i, r1_bio);
  1055. /*
  1056. * we have read a block, now it needs to be re-written,
  1057. * or re-read if the read failed.
  1058. * We don't do much here, just schedule handling by raid1d
  1059. */
  1060. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  1061. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1062. if (atomic_dec_and_test(&r1_bio->remaining))
  1063. reschedule_retry(r1_bio);
  1064. }
  1065. static void end_sync_write(struct bio *bio, int error)
  1066. {
  1067. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1068. r1bio_t *r1_bio = bio->bi_private;
  1069. mddev_t *mddev = r1_bio->mddev;
  1070. conf_t *conf = mddev->private;
  1071. int i;
  1072. int mirror=0;
  1073. for (i = 0; i < conf->raid_disks; i++)
  1074. if (r1_bio->bios[i] == bio) {
  1075. mirror = i;
  1076. break;
  1077. }
  1078. if (!uptodate) {
  1079. int sync_blocks = 0;
  1080. sector_t s = r1_bio->sector;
  1081. long sectors_to_go = r1_bio->sectors;
  1082. /* make sure these bits doesn't get cleared. */
  1083. do {
  1084. bitmap_end_sync(mddev->bitmap, s,
  1085. &sync_blocks, 1);
  1086. s += sync_blocks;
  1087. sectors_to_go -= sync_blocks;
  1088. } while (sectors_to_go > 0);
  1089. md_error(mddev, conf->mirrors[mirror].rdev);
  1090. }
  1091. update_head_pos(mirror, r1_bio);
  1092. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1093. sector_t s = r1_bio->sectors;
  1094. put_buf(r1_bio);
  1095. md_done_sync(mddev, s, uptodate);
  1096. }
  1097. }
  1098. static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
  1099. {
  1100. conf_t *conf = mddev->private;
  1101. int i;
  1102. int disks = conf->raid_disks;
  1103. struct bio *bio, *wbio;
  1104. bio = r1_bio->bios[r1_bio->read_disk];
  1105. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1106. /* We have read all readable devices. If we haven't
  1107. * got the block, then there is no hope left.
  1108. * If we have, then we want to do a comparison
  1109. * and skip the write if everything is the same.
  1110. * If any blocks failed to read, then we need to
  1111. * attempt an over-write
  1112. */
  1113. int primary;
  1114. if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  1115. for (i=0; i<mddev->raid_disks; i++)
  1116. if (r1_bio->bios[i]->bi_end_io == end_sync_read)
  1117. md_error(mddev, conf->mirrors[i].rdev);
  1118. md_done_sync(mddev, r1_bio->sectors, 1);
  1119. put_buf(r1_bio);
  1120. return;
  1121. }
  1122. for (primary=0; primary<mddev->raid_disks; primary++)
  1123. if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
  1124. test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
  1125. r1_bio->bios[primary]->bi_end_io = NULL;
  1126. rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
  1127. break;
  1128. }
  1129. r1_bio->read_disk = primary;
  1130. for (i=0; i<mddev->raid_disks; i++)
  1131. if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
  1132. int j;
  1133. int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
  1134. struct bio *pbio = r1_bio->bios[primary];
  1135. struct bio *sbio = r1_bio->bios[i];
  1136. if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
  1137. for (j = vcnt; j-- ; ) {
  1138. struct page *p, *s;
  1139. p = pbio->bi_io_vec[j].bv_page;
  1140. s = sbio->bi_io_vec[j].bv_page;
  1141. if (memcmp(page_address(p),
  1142. page_address(s),
  1143. PAGE_SIZE))
  1144. break;
  1145. }
  1146. } else
  1147. j = 0;
  1148. if (j >= 0)
  1149. mddev->resync_mismatches += r1_bio->sectors;
  1150. if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
  1151. && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
  1152. sbio->bi_end_io = NULL;
  1153. rdev_dec_pending(conf->mirrors[i].rdev, mddev);
  1154. } else {
  1155. /* fixup the bio for reuse */
  1156. int size;
  1157. sbio->bi_vcnt = vcnt;
  1158. sbio->bi_size = r1_bio->sectors << 9;
  1159. sbio->bi_idx = 0;
  1160. sbio->bi_phys_segments = 0;
  1161. sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1162. sbio->bi_flags |= 1 << BIO_UPTODATE;
  1163. sbio->bi_next = NULL;
  1164. sbio->bi_sector = r1_bio->sector +
  1165. conf->mirrors[i].rdev->data_offset;
  1166. sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1167. size = sbio->bi_size;
  1168. for (j = 0; j < vcnt ; j++) {
  1169. struct bio_vec *bi;
  1170. bi = &sbio->bi_io_vec[j];
  1171. bi->bv_offset = 0;
  1172. if (size > PAGE_SIZE)
  1173. bi->bv_len = PAGE_SIZE;
  1174. else
  1175. bi->bv_len = size;
  1176. size -= PAGE_SIZE;
  1177. memcpy(page_address(bi->bv_page),
  1178. page_address(pbio->bi_io_vec[j].bv_page),
  1179. PAGE_SIZE);
  1180. }
  1181. }
  1182. }
  1183. }
  1184. if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  1185. /* ouch - failed to read all of that.
  1186. * Try some synchronous reads of other devices to get
  1187. * good data, much like with normal read errors. Only
  1188. * read into the pages we already have so we don't
  1189. * need to re-issue the read request.
  1190. * We don't need to freeze the array, because being in an
  1191. * active sync request, there is no normal IO, and
  1192. * no overlapping syncs.
  1193. */
  1194. sector_t sect = r1_bio->sector;
  1195. int sectors = r1_bio->sectors;
  1196. int idx = 0;
  1197. while(sectors) {
  1198. int s = sectors;
  1199. int d = r1_bio->read_disk;
  1200. int success = 0;
  1201. mdk_rdev_t *rdev;
  1202. if (s > (PAGE_SIZE>>9))
  1203. s = PAGE_SIZE >> 9;
  1204. do {
  1205. if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
  1206. /* No rcu protection needed here devices
  1207. * can only be removed when no resync is
  1208. * active, and resync is currently active
  1209. */
  1210. rdev = conf->mirrors[d].rdev;
  1211. if (sync_page_io(rdev->bdev,
  1212. sect + rdev->data_offset,
  1213. s<<9,
  1214. bio->bi_io_vec[idx].bv_page,
  1215. READ)) {
  1216. success = 1;
  1217. break;
  1218. }
  1219. }
  1220. d++;
  1221. if (d == conf->raid_disks)
  1222. d = 0;
  1223. } while (!success && d != r1_bio->read_disk);
  1224. if (success) {
  1225. int start = d;
  1226. /* write it back and re-read */
  1227. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1228. while (d != r1_bio->read_disk) {
  1229. if (d == 0)
  1230. d = conf->raid_disks;
  1231. d--;
  1232. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1233. continue;
  1234. rdev = conf->mirrors[d].rdev;
  1235. atomic_add(s, &rdev->corrected_errors);
  1236. if (sync_page_io(rdev->bdev,
  1237. sect + rdev->data_offset,
  1238. s<<9,
  1239. bio->bi_io_vec[idx].bv_page,
  1240. WRITE) == 0)
  1241. md_error(mddev, rdev);
  1242. }
  1243. d = start;
  1244. while (d != r1_bio->read_disk) {
  1245. if (d == 0)
  1246. d = conf->raid_disks;
  1247. d--;
  1248. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1249. continue;
  1250. rdev = conf->mirrors[d].rdev;
  1251. if (sync_page_io(rdev->bdev,
  1252. sect + rdev->data_offset,
  1253. s<<9,
  1254. bio->bi_io_vec[idx].bv_page,
  1255. READ) == 0)
  1256. md_error(mddev, rdev);
  1257. }
  1258. } else {
  1259. char b[BDEVNAME_SIZE];
  1260. /* Cannot read from anywhere, array is toast */
  1261. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1262. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
  1263. " for block %llu\n",
  1264. mdname(mddev),
  1265. bdevname(bio->bi_bdev, b),
  1266. (unsigned long long)r1_bio->sector);
  1267. md_done_sync(mddev, r1_bio->sectors, 0);
  1268. put_buf(r1_bio);
  1269. return;
  1270. }
  1271. sectors -= s;
  1272. sect += s;
  1273. idx ++;
  1274. }
  1275. }
  1276. /*
  1277. * schedule writes
  1278. */
  1279. atomic_set(&r1_bio->remaining, 1);
  1280. for (i = 0; i < disks ; i++) {
  1281. wbio = r1_bio->bios[i];
  1282. if (wbio->bi_end_io == NULL ||
  1283. (wbio->bi_end_io == end_sync_read &&
  1284. (i == r1_bio->read_disk ||
  1285. !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
  1286. continue;
  1287. wbio->bi_rw = WRITE;
  1288. wbio->bi_end_io = end_sync_write;
  1289. atomic_inc(&r1_bio->remaining);
  1290. md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
  1291. generic_make_request(wbio);
  1292. }
  1293. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1294. /* if we're here, all write(s) have completed, so clean up */
  1295. md_done_sync(mddev, r1_bio->sectors, 1);
  1296. put_buf(r1_bio);
  1297. }
  1298. }
  1299. /*
  1300. * This is a kernel thread which:
  1301. *
  1302. * 1. Retries failed read operations on working mirrors.
  1303. * 2. Updates the raid superblock when problems encounter.
  1304. * 3. Performs writes following reads for array syncronising.
  1305. */
  1306. static void fix_read_error(conf_t *conf, int read_disk,
  1307. sector_t sect, int sectors)
  1308. {
  1309. mddev_t *mddev = conf->mddev;
  1310. while(sectors) {
  1311. int s = sectors;
  1312. int d = read_disk;
  1313. int success = 0;
  1314. int start;
  1315. mdk_rdev_t *rdev;
  1316. if (s > (PAGE_SIZE>>9))
  1317. s = PAGE_SIZE >> 9;
  1318. do {
  1319. /* Note: no rcu protection needed here
  1320. * as this is synchronous in the raid1d thread
  1321. * which is the thread that might remove
  1322. * a device. If raid1d ever becomes multi-threaded....
  1323. */
  1324. rdev = conf->mirrors[d].rdev;
  1325. if (rdev &&
  1326. test_bit(In_sync, &rdev->flags) &&
  1327. sync_page_io(rdev->bdev,
  1328. sect + rdev->data_offset,
  1329. s<<9,
  1330. conf->tmppage, READ))
  1331. success = 1;
  1332. else {
  1333. d++;
  1334. if (d == conf->raid_disks)
  1335. d = 0;
  1336. }
  1337. } while (!success && d != read_disk);
  1338. if (!success) {
  1339. /* Cannot read from anywhere -- bye bye array */
  1340. md_error(mddev, conf->mirrors[read_disk].rdev);
  1341. break;
  1342. }
  1343. /* write it back and re-read */
  1344. start = d;
  1345. while (d != read_disk) {
  1346. if (d==0)
  1347. d = conf->raid_disks;
  1348. d--;
  1349. rdev = conf->mirrors[d].rdev;
  1350. if (rdev &&
  1351. test_bit(In_sync, &rdev->flags)) {
  1352. if (sync_page_io(rdev->bdev,
  1353. sect + rdev->data_offset,
  1354. s<<9, conf->tmppage, WRITE)
  1355. == 0)
  1356. /* Well, this device is dead */
  1357. md_error(mddev, rdev);
  1358. }
  1359. }
  1360. d = start;
  1361. while (d != read_disk) {
  1362. char b[BDEVNAME_SIZE];
  1363. if (d==0)
  1364. d = conf->raid_disks;
  1365. d--;
  1366. rdev = conf->mirrors[d].rdev;
  1367. if (rdev &&
  1368. test_bit(In_sync, &rdev->flags)) {
  1369. if (sync_page_io(rdev->bdev,
  1370. sect + rdev->data_offset,
  1371. s<<9, conf->tmppage, READ)
  1372. == 0)
  1373. /* Well, this device is dead */
  1374. md_error(mddev, rdev);
  1375. else {
  1376. atomic_add(s, &rdev->corrected_errors);
  1377. printk(KERN_INFO
  1378. "md/raid1:%s: read error corrected "
  1379. "(%d sectors at %llu on %s)\n",
  1380. mdname(mddev), s,
  1381. (unsigned long long)(sect +
  1382. rdev->data_offset),
  1383. bdevname(rdev->bdev, b));
  1384. }
  1385. }
  1386. }
  1387. sectors -= s;
  1388. sect += s;
  1389. }
  1390. }
  1391. static void raid1d(mddev_t *mddev)
  1392. {
  1393. r1bio_t *r1_bio;
  1394. struct bio *bio;
  1395. unsigned long flags;
  1396. conf_t *conf = mddev->private;
  1397. struct list_head *head = &conf->retry_list;
  1398. int unplug=0;
  1399. mdk_rdev_t *rdev;
  1400. md_check_recovery(mddev);
  1401. for (;;) {
  1402. char b[BDEVNAME_SIZE];
  1403. unplug += flush_pending_writes(conf);
  1404. spin_lock_irqsave(&conf->device_lock, flags);
  1405. if (list_empty(head)) {
  1406. spin_unlock_irqrestore(&conf->device_lock, flags);
  1407. break;
  1408. }
  1409. r1_bio = list_entry(head->prev, r1bio_t, retry_list);
  1410. list_del(head->prev);
  1411. conf->nr_queued--;
  1412. spin_unlock_irqrestore(&conf->device_lock, flags);
  1413. mddev = r1_bio->mddev;
  1414. conf = mddev->private;
  1415. if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
  1416. sync_request_write(mddev, r1_bio);
  1417. unplug = 1;
  1418. } else {
  1419. int disk;
  1420. /* we got a read error. Maybe the drive is bad. Maybe just
  1421. * the block and we can fix it.
  1422. * We freeze all other IO, and try reading the block from
  1423. * other devices. When we find one, we re-write
  1424. * and check it that fixes the read error.
  1425. * This is all done synchronously while the array is
  1426. * frozen
  1427. */
  1428. if (mddev->ro == 0) {
  1429. freeze_array(conf);
  1430. fix_read_error(conf, r1_bio->read_disk,
  1431. r1_bio->sector,
  1432. r1_bio->sectors);
  1433. unfreeze_array(conf);
  1434. } else
  1435. md_error(mddev,
  1436. conf->mirrors[r1_bio->read_disk].rdev);
  1437. bio = r1_bio->bios[r1_bio->read_disk];
  1438. if ((disk=read_balance(conf, r1_bio)) == -1) {
  1439. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
  1440. " read error for block %llu\n",
  1441. mdname(mddev),
  1442. bdevname(bio->bi_bdev,b),
  1443. (unsigned long long)r1_bio->sector);
  1444. raid_end_bio_io(r1_bio);
  1445. } else {
  1446. const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
  1447. r1_bio->bios[r1_bio->read_disk] =
  1448. mddev->ro ? IO_BLOCKED : NULL;
  1449. r1_bio->read_disk = disk;
  1450. bio_put(bio);
  1451. bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
  1452. r1_bio->bios[r1_bio->read_disk] = bio;
  1453. rdev = conf->mirrors[disk].rdev;
  1454. if (printk_ratelimit())
  1455. printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
  1456. " other mirror: %s\n",
  1457. mdname(mddev),
  1458. (unsigned long long)r1_bio->sector,
  1459. bdevname(rdev->bdev,b));
  1460. bio->bi_sector = r1_bio->sector + rdev->data_offset;
  1461. bio->bi_bdev = rdev->bdev;
  1462. bio->bi_end_io = raid1_end_read_request;
  1463. bio->bi_rw = READ | do_sync;
  1464. bio->bi_private = r1_bio;
  1465. unplug = 1;
  1466. generic_make_request(bio);
  1467. }
  1468. }
  1469. cond_resched();
  1470. }
  1471. if (unplug)
  1472. unplug_slaves(mddev);
  1473. }
  1474. static int init_resync(conf_t *conf)
  1475. {
  1476. int buffs;
  1477. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  1478. BUG_ON(conf->r1buf_pool);
  1479. conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
  1480. conf->poolinfo);
  1481. if (!conf->r1buf_pool)
  1482. return -ENOMEM;
  1483. conf->next_resync = 0;
  1484. return 0;
  1485. }
  1486. /*
  1487. * perform a "sync" on one "block"
  1488. *
  1489. * We need to make sure that no normal I/O request - particularly write
  1490. * requests - conflict with active sync requests.
  1491. *
  1492. * This is achieved by tracking pending requests and a 'barrier' concept
  1493. * that can be installed to exclude normal IO requests.
  1494. */
  1495. static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1496. {
  1497. conf_t *conf = mddev->private;
  1498. r1bio_t *r1_bio;
  1499. struct bio *bio;
  1500. sector_t max_sector, nr_sectors;
  1501. int disk = -1;
  1502. int i;
  1503. int wonly = -1;
  1504. int write_targets = 0, read_targets = 0;
  1505. int sync_blocks;
  1506. int still_degraded = 0;
  1507. if (!conf->r1buf_pool)
  1508. if (init_resync(conf))
  1509. return 0;
  1510. max_sector = mddev->dev_sectors;
  1511. if (sector_nr >= max_sector) {
  1512. /* If we aborted, we need to abort the
  1513. * sync on the 'current' bitmap chunk (there will
  1514. * only be one in raid1 resync.
  1515. * We can find the current addess in mddev->curr_resync
  1516. */
  1517. if (mddev->curr_resync < max_sector) /* aborted */
  1518. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1519. &sync_blocks, 1);
  1520. else /* completed sync */
  1521. conf->fullsync = 0;
  1522. bitmap_close_sync(mddev->bitmap);
  1523. close_sync(conf);
  1524. return 0;
  1525. }
  1526. if (mddev->bitmap == NULL &&
  1527. mddev->recovery_cp == MaxSector &&
  1528. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  1529. conf->fullsync == 0) {
  1530. *skipped = 1;
  1531. return max_sector - sector_nr;
  1532. }
  1533. /* before building a request, check if we can skip these blocks..
  1534. * This call the bitmap_start_sync doesn't actually record anything
  1535. */
  1536. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  1537. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1538. /* We can skip this block, and probably several more */
  1539. *skipped = 1;
  1540. return sync_blocks;
  1541. }
  1542. /*
  1543. * If there is non-resync activity waiting for a turn,
  1544. * and resync is going fast enough,
  1545. * then let it though before starting on this new sync request.
  1546. */
  1547. if (!go_faster && conf->nr_waiting)
  1548. msleep_interruptible(1000);
  1549. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  1550. raise_barrier(conf);
  1551. conf->next_resync = sector_nr;
  1552. r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
  1553. rcu_read_lock();
  1554. /*
  1555. * If we get a correctably read error during resync or recovery,
  1556. * we might want to read from a different device. So we
  1557. * flag all drives that could conceivably be read from for READ,
  1558. * and any others (which will be non-In_sync devices) for WRITE.
  1559. * If a read fails, we try reading from something else for which READ
  1560. * is OK.
  1561. */
  1562. r1_bio->mddev = mddev;
  1563. r1_bio->sector = sector_nr;
  1564. r1_bio->state = 0;
  1565. set_bit(R1BIO_IsSync, &r1_bio->state);
  1566. for (i=0; i < conf->raid_disks; i++) {
  1567. mdk_rdev_t *rdev;
  1568. bio = r1_bio->bios[i];
  1569. /* take from bio_init */
  1570. bio->bi_next = NULL;
  1571. bio->bi_flags &= ~(BIO_POOL_MASK-1);
  1572. bio->bi_flags |= 1 << BIO_UPTODATE;
  1573. bio->bi_comp_cpu = -1;
  1574. bio->bi_rw = READ;
  1575. bio->bi_vcnt = 0;
  1576. bio->bi_idx = 0;
  1577. bio->bi_phys_segments = 0;
  1578. bio->bi_size = 0;
  1579. bio->bi_end_io = NULL;
  1580. bio->bi_private = NULL;
  1581. rdev = rcu_dereference(conf->mirrors[i].rdev);
  1582. if (rdev == NULL ||
  1583. test_bit(Faulty, &rdev->flags)) {
  1584. still_degraded = 1;
  1585. continue;
  1586. } else if (!test_bit(In_sync, &rdev->flags)) {
  1587. bio->bi_rw = WRITE;
  1588. bio->bi_end_io = end_sync_write;
  1589. write_targets ++;
  1590. } else {
  1591. /* may need to read from here */
  1592. bio->bi_rw = READ;
  1593. bio->bi_end_io = end_sync_read;
  1594. if (test_bit(WriteMostly, &rdev->flags)) {
  1595. if (wonly < 0)
  1596. wonly = i;
  1597. } else {
  1598. if (disk < 0)
  1599. disk = i;
  1600. }
  1601. read_targets++;
  1602. }
  1603. atomic_inc(&rdev->nr_pending);
  1604. bio->bi_sector = sector_nr + rdev->data_offset;
  1605. bio->bi_bdev = rdev->bdev;
  1606. bio->bi_private = r1_bio;
  1607. }
  1608. rcu_read_unlock();
  1609. if (disk < 0)
  1610. disk = wonly;
  1611. r1_bio->read_disk = disk;
  1612. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
  1613. /* extra read targets are also write targets */
  1614. write_targets += read_targets-1;
  1615. if (write_targets == 0 || read_targets == 0) {
  1616. /* There is nowhere to write, so all non-sync
  1617. * drives must be failed - so we are finished
  1618. */
  1619. sector_t rv = max_sector - sector_nr;
  1620. *skipped = 1;
  1621. put_buf(r1_bio);
  1622. return rv;
  1623. }
  1624. if (max_sector > mddev->resync_max)
  1625. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  1626. nr_sectors = 0;
  1627. sync_blocks = 0;
  1628. do {
  1629. struct page *page;
  1630. int len = PAGE_SIZE;
  1631. if (sector_nr + (len>>9) > max_sector)
  1632. len = (max_sector - sector_nr) << 9;
  1633. if (len == 0)
  1634. break;
  1635. if (sync_blocks == 0) {
  1636. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  1637. &sync_blocks, still_degraded) &&
  1638. !conf->fullsync &&
  1639. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1640. break;
  1641. BUG_ON(sync_blocks < (PAGE_SIZE>>9));
  1642. if ((len >> 9) > sync_blocks)
  1643. len = sync_blocks<<9;
  1644. }
  1645. for (i=0 ; i < conf->raid_disks; i++) {
  1646. bio = r1_bio->bios[i];
  1647. if (bio->bi_end_io) {
  1648. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  1649. if (bio_add_page(bio, page, len, 0) == 0) {
  1650. /* stop here */
  1651. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  1652. while (i > 0) {
  1653. i--;
  1654. bio = r1_bio->bios[i];
  1655. if (bio->bi_end_io==NULL)
  1656. continue;
  1657. /* remove last page from this bio */
  1658. bio->bi_vcnt--;
  1659. bio->bi_size -= len;
  1660. bio->bi_flags &= ~(1<< BIO_SEG_VALID);
  1661. }
  1662. goto bio_full;
  1663. }
  1664. }
  1665. }
  1666. nr_sectors += len>>9;
  1667. sector_nr += len>>9;
  1668. sync_blocks -= (len>>9);
  1669. } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
  1670. bio_full:
  1671. r1_bio->sectors = nr_sectors;
  1672. /* For a user-requested sync, we read all readable devices and do a
  1673. * compare
  1674. */
  1675. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1676. atomic_set(&r1_bio->remaining, read_targets);
  1677. for (i=0; i<conf->raid_disks; i++) {
  1678. bio = r1_bio->bios[i];
  1679. if (bio->bi_end_io == end_sync_read) {
  1680. md_sync_acct(bio->bi_bdev, nr_sectors);
  1681. generic_make_request(bio);
  1682. }
  1683. }
  1684. } else {
  1685. atomic_set(&r1_bio->remaining, 1);
  1686. bio = r1_bio->bios[r1_bio->read_disk];
  1687. md_sync_acct(bio->bi_bdev, nr_sectors);
  1688. generic_make_request(bio);
  1689. }
  1690. return nr_sectors;
  1691. }
  1692. static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
  1693. {
  1694. if (sectors)
  1695. return sectors;
  1696. return mddev->dev_sectors;
  1697. }
  1698. static conf_t *setup_conf(mddev_t *mddev)
  1699. {
  1700. conf_t *conf;
  1701. int i;
  1702. mirror_info_t *disk;
  1703. mdk_rdev_t *rdev;
  1704. int err = -ENOMEM;
  1705. conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
  1706. if (!conf)
  1707. goto abort;
  1708. conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
  1709. GFP_KERNEL);
  1710. if (!conf->mirrors)
  1711. goto abort;
  1712. conf->tmppage = alloc_page(GFP_KERNEL);
  1713. if (!conf->tmppage)
  1714. goto abort;
  1715. conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
  1716. if (!conf->poolinfo)
  1717. goto abort;
  1718. conf->poolinfo->raid_disks = mddev->raid_disks;
  1719. conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  1720. r1bio_pool_free,
  1721. conf->poolinfo);
  1722. if (!conf->r1bio_pool)
  1723. goto abort;
  1724. conf->poolinfo->mddev = mddev;
  1725. spin_lock_init(&conf->device_lock);
  1726. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1727. int disk_idx = rdev->raid_disk;
  1728. if (disk_idx >= mddev->raid_disks
  1729. || disk_idx < 0)
  1730. continue;
  1731. disk = conf->mirrors + disk_idx;
  1732. disk->rdev = rdev;
  1733. disk->head_position = 0;
  1734. }
  1735. conf->raid_disks = mddev->raid_disks;
  1736. conf->mddev = mddev;
  1737. INIT_LIST_HEAD(&conf->retry_list);
  1738. spin_lock_init(&conf->resync_lock);
  1739. init_waitqueue_head(&conf->wait_barrier);
  1740. bio_list_init(&conf->pending_bio_list);
  1741. bio_list_init(&conf->flushing_bio_list);
  1742. conf->last_used = -1;
  1743. for (i = 0; i < conf->raid_disks; i++) {
  1744. disk = conf->mirrors + i;
  1745. if (!disk->rdev ||
  1746. !test_bit(In_sync, &disk->rdev->flags)) {
  1747. disk->head_position = 0;
  1748. if (disk->rdev)
  1749. conf->fullsync = 1;
  1750. } else if (conf->last_used < 0)
  1751. /*
  1752. * The first working device is used as a
  1753. * starting point to read balancing.
  1754. */
  1755. conf->last_used = i;
  1756. }
  1757. err = -EIO;
  1758. if (conf->last_used < 0) {
  1759. printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
  1760. mdname(mddev));
  1761. goto abort;
  1762. }
  1763. err = -ENOMEM;
  1764. conf->thread = md_register_thread(raid1d, mddev, NULL);
  1765. if (!conf->thread) {
  1766. printk(KERN_ERR
  1767. "md/raid1:%s: couldn't allocate thread\n",
  1768. mdname(mddev));
  1769. goto abort;
  1770. }
  1771. return conf;
  1772. abort:
  1773. if (conf) {
  1774. if (conf->r1bio_pool)
  1775. mempool_destroy(conf->r1bio_pool);
  1776. kfree(conf->mirrors);
  1777. safe_put_page(conf->tmppage);
  1778. kfree(conf->poolinfo);
  1779. kfree(conf);
  1780. }
  1781. return ERR_PTR(err);
  1782. }
  1783. static int run(mddev_t *mddev)
  1784. {
  1785. conf_t *conf;
  1786. int i;
  1787. mdk_rdev_t *rdev;
  1788. if (mddev->level != 1) {
  1789. printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
  1790. mdname(mddev), mddev->level);
  1791. return -EIO;
  1792. }
  1793. if (mddev->reshape_position != MaxSector) {
  1794. printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
  1795. mdname(mddev));
  1796. return -EIO;
  1797. }
  1798. /*
  1799. * copy the already verified devices into our private RAID1
  1800. * bookkeeping area. [whatever we allocate in run(),
  1801. * should be freed in stop()]
  1802. */
  1803. if (mddev->private == NULL)
  1804. conf = setup_conf(mddev);
  1805. else
  1806. conf = mddev->private;
  1807. if (IS_ERR(conf))
  1808. return PTR_ERR(conf);
  1809. mddev->queue->queue_lock = &conf->device_lock;
  1810. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1811. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1812. rdev->data_offset << 9);
  1813. /* as we don't honour merge_bvec_fn, we must never risk
  1814. * violating it, so limit ->max_segments to 1 lying within
  1815. * a single page, as a one page request is never in violation.
  1816. */
  1817. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  1818. blk_queue_max_segments(mddev->queue, 1);
  1819. blk_queue_segment_boundary(mddev->queue,
  1820. PAGE_CACHE_SIZE - 1);
  1821. }
  1822. }
  1823. mddev->degraded = 0;
  1824. for (i=0; i < conf->raid_disks; i++)
  1825. if (conf->mirrors[i].rdev == NULL ||
  1826. !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
  1827. test_bit(Faulty, &conf->mirrors[i].rdev->flags))
  1828. mddev->degraded++;
  1829. if (conf->raid_disks - mddev->degraded == 1)
  1830. mddev->recovery_cp = MaxSector;
  1831. if (mddev->recovery_cp != MaxSector)
  1832. printk(KERN_NOTICE "md/raid1:%s: not clean"
  1833. " -- starting background reconstruction\n",
  1834. mdname(mddev));
  1835. printk(KERN_INFO
  1836. "md/raid1:%s: active with %d out of %d mirrors\n",
  1837. mdname(mddev), mddev->raid_disks - mddev->degraded,
  1838. mddev->raid_disks);
  1839. /*
  1840. * Ok, everything is just fine now
  1841. */
  1842. mddev->thread = conf->thread;
  1843. conf->thread = NULL;
  1844. mddev->private = conf;
  1845. md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
  1846. mddev->queue->unplug_fn = raid1_unplug;
  1847. mddev->queue->backing_dev_info.congested_fn = raid1_congested;
  1848. mddev->queue->backing_dev_info.congested_data = mddev;
  1849. md_integrity_register(mddev);
  1850. return 0;
  1851. }
  1852. static int stop(mddev_t *mddev)
  1853. {
  1854. conf_t *conf = mddev->private;
  1855. struct bitmap *bitmap = mddev->bitmap;
  1856. /* wait for behind writes to complete */
  1857. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  1858. printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
  1859. mdname(mddev));
  1860. /* need to kick something here to make sure I/O goes? */
  1861. wait_event(bitmap->behind_wait,
  1862. atomic_read(&bitmap->behind_writes) == 0);
  1863. }
  1864. raise_barrier(conf);
  1865. lower_barrier(conf);
  1866. md_unregister_thread(mddev->thread);
  1867. mddev->thread = NULL;
  1868. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  1869. if (conf->r1bio_pool)
  1870. mempool_destroy(conf->r1bio_pool);
  1871. kfree(conf->mirrors);
  1872. kfree(conf->poolinfo);
  1873. kfree(conf);
  1874. mddev->private = NULL;
  1875. return 0;
  1876. }
  1877. static int raid1_resize(mddev_t *mddev, sector_t sectors)
  1878. {
  1879. /* no resync is happening, and there is enough space
  1880. * on all devices, so we can resize.
  1881. * We need to make sure resync covers any new space.
  1882. * If the array is shrinking we should possibly wait until
  1883. * any io in the removed space completes, but it hardly seems
  1884. * worth it.
  1885. */
  1886. md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
  1887. if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
  1888. return -EINVAL;
  1889. set_capacity(mddev->gendisk, mddev->array_sectors);
  1890. revalidate_disk(mddev->gendisk);
  1891. if (sectors > mddev->dev_sectors &&
  1892. mddev->recovery_cp == MaxSector) {
  1893. mddev->recovery_cp = mddev->dev_sectors;
  1894. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1895. }
  1896. mddev->dev_sectors = sectors;
  1897. mddev->resync_max_sectors = sectors;
  1898. return 0;
  1899. }
  1900. static int raid1_reshape(mddev_t *mddev)
  1901. {
  1902. /* We need to:
  1903. * 1/ resize the r1bio_pool
  1904. * 2/ resize conf->mirrors
  1905. *
  1906. * We allocate a new r1bio_pool if we can.
  1907. * Then raise a device barrier and wait until all IO stops.
  1908. * Then resize conf->mirrors and swap in the new r1bio pool.
  1909. *
  1910. * At the same time, we "pack" the devices so that all the missing
  1911. * devices have the higher raid_disk numbers.
  1912. */
  1913. mempool_t *newpool, *oldpool;
  1914. struct pool_info *newpoolinfo;
  1915. mirror_info_t *newmirrors;
  1916. conf_t *conf = mddev->private;
  1917. int cnt, raid_disks;
  1918. unsigned long flags;
  1919. int d, d2, err;
  1920. /* Cannot change chunk_size, layout, or level */
  1921. if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
  1922. mddev->layout != mddev->new_layout ||
  1923. mddev->level != mddev->new_level) {
  1924. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1925. mddev->new_layout = mddev->layout;
  1926. mddev->new_level = mddev->level;
  1927. return -EINVAL;
  1928. }
  1929. err = md_allow_write(mddev);
  1930. if (err)
  1931. return err;
  1932. raid_disks = mddev->raid_disks + mddev->delta_disks;
  1933. if (raid_disks < conf->raid_disks) {
  1934. cnt=0;
  1935. for (d= 0; d < conf->raid_disks; d++)
  1936. if (conf->mirrors[d].rdev)
  1937. cnt++;
  1938. if (cnt > raid_disks)
  1939. return -EBUSY;
  1940. }
  1941. newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
  1942. if (!newpoolinfo)
  1943. return -ENOMEM;
  1944. newpoolinfo->mddev = mddev;
  1945. newpoolinfo->raid_disks = raid_disks;
  1946. newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  1947. r1bio_pool_free, newpoolinfo);
  1948. if (!newpool) {
  1949. kfree(newpoolinfo);
  1950. return -ENOMEM;
  1951. }
  1952. newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
  1953. if (!newmirrors) {
  1954. kfree(newpoolinfo);
  1955. mempool_destroy(newpool);
  1956. return -ENOMEM;
  1957. }
  1958. raise_barrier(conf);
  1959. /* ok, everything is stopped */
  1960. oldpool = conf->r1bio_pool;
  1961. conf->r1bio_pool = newpool;
  1962. for (d = d2 = 0; d < conf->raid_disks; d++) {
  1963. mdk_rdev_t *rdev = conf->mirrors[d].rdev;
  1964. if (rdev && rdev->raid_disk != d2) {
  1965. char nm[20];
  1966. sprintf(nm, "rd%d", rdev->raid_disk);
  1967. sysfs_remove_link(&mddev->kobj, nm);
  1968. rdev->raid_disk = d2;
  1969. sprintf(nm, "rd%d", rdev->raid_disk);
  1970. sysfs_remove_link(&mddev->kobj, nm);
  1971. if (sysfs_create_link(&mddev->kobj,
  1972. &rdev->kobj, nm))
  1973. printk(KERN_WARNING
  1974. "md/raid1:%s: cannot register "
  1975. "%s\n",
  1976. mdname(mddev), nm);
  1977. }
  1978. if (rdev)
  1979. newmirrors[d2++].rdev = rdev;
  1980. }
  1981. kfree(conf->mirrors);
  1982. conf->mirrors = newmirrors;
  1983. kfree(conf->poolinfo);
  1984. conf->poolinfo = newpoolinfo;
  1985. spin_lock_irqsave(&conf->device_lock, flags);
  1986. mddev->degraded += (raid_disks - conf->raid_disks);
  1987. spin_unlock_irqrestore(&conf->device_lock, flags);
  1988. conf->raid_disks = mddev->raid_disks = raid_disks;
  1989. mddev->delta_disks = 0;
  1990. conf->last_used = 0; /* just make sure it is in-range */
  1991. lower_barrier(conf);
  1992. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1993. md_wakeup_thread(mddev->thread);
  1994. mempool_destroy(oldpool);
  1995. return 0;
  1996. }
  1997. static void raid1_quiesce(mddev_t *mddev, int state)
  1998. {
  1999. conf_t *conf = mddev->private;
  2000. switch(state) {
  2001. case 2: /* wake for suspend */
  2002. wake_up(&conf->wait_barrier);
  2003. break;
  2004. case 1:
  2005. raise_barrier(conf);
  2006. break;
  2007. case 0:
  2008. lower_barrier(conf);
  2009. break;
  2010. }
  2011. }
  2012. static void *raid1_takeover(mddev_t *mddev)
  2013. {
  2014. /* raid1 can take over:
  2015. * raid5 with 2 devices, any layout or chunk size
  2016. */
  2017. if (mddev->level == 5 && mddev->raid_disks == 2) {
  2018. conf_t *conf;
  2019. mddev->new_level = 1;
  2020. mddev->new_layout = 0;
  2021. mddev->new_chunk_sectors = 0;
  2022. conf = setup_conf(mddev);
  2023. if (!IS_ERR(conf))
  2024. conf->barrier = 1;
  2025. return conf;
  2026. }
  2027. return ERR_PTR(-EINVAL);
  2028. }
  2029. static struct mdk_personality raid1_personality =
  2030. {
  2031. .name = "raid1",
  2032. .level = 1,
  2033. .owner = THIS_MODULE,
  2034. .make_request = make_request,
  2035. .run = run,
  2036. .stop = stop,
  2037. .status = status,
  2038. .error_handler = error,
  2039. .hot_add_disk = raid1_add_disk,
  2040. .hot_remove_disk= raid1_remove_disk,
  2041. .spare_active = raid1_spare_active,
  2042. .sync_request = sync_request,
  2043. .resize = raid1_resize,
  2044. .size = raid1_size,
  2045. .check_reshape = raid1_reshape,
  2046. .quiesce = raid1_quiesce,
  2047. .takeover = raid1_takeover,
  2048. };
  2049. static int __init raid_init(void)
  2050. {
  2051. return register_md_personality(&raid1_personality);
  2052. }
  2053. static void raid_exit(void)
  2054. {
  2055. unregister_md_personality(&raid1_personality);
  2056. }
  2057. module_init(raid_init);
  2058. module_exit(raid_exit);
  2059. MODULE_LICENSE("GPL");
  2060. MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
  2061. MODULE_ALIAS("md-personality-3"); /* RAID1 */
  2062. MODULE_ALIAS("md-raid1");
  2063. MODULE_ALIAS("md-level-1");