mmtimer.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847
  1. /*
  2. * Timer device implementation for SGI SN platforms.
  3. *
  4. * This file is subject to the terms and conditions of the GNU General Public
  5. * License. See the file "COPYING" in the main directory of this archive
  6. * for more details.
  7. *
  8. * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved.
  9. *
  10. * This driver exports an API that should be supportable by any HPET or IA-PC
  11. * multimedia timer. The code below is currently specific to the SGI Altix
  12. * SHub RTC, however.
  13. *
  14. * 11/01/01 - jbarnes - initial revision
  15. * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
  16. * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
  17. * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
  18. * support via the posix timer interface
  19. */
  20. #include <linux/types.h>
  21. #include <linux/kernel.h>
  22. #include <linux/ioctl.h>
  23. #include <linux/module.h>
  24. #include <linux/init.h>
  25. #include <linux/errno.h>
  26. #include <linux/mm.h>
  27. #include <linux/fs.h>
  28. #include <linux/mmtimer.h>
  29. #include <linux/miscdevice.h>
  30. #include <linux/posix-timers.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/time.h>
  33. #include <linux/math64.h>
  34. #include <linux/mutex.h>
  35. #include <linux/slab.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/sn/addrs.h>
  38. #include <asm/sn/intr.h>
  39. #include <asm/sn/shub_mmr.h>
  40. #include <asm/sn/nodepda.h>
  41. #include <asm/sn/shubio.h>
  42. MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
  43. MODULE_DESCRIPTION("SGI Altix RTC Timer");
  44. MODULE_LICENSE("GPL");
  45. /* name of the device, usually in /dev */
  46. #define MMTIMER_NAME "mmtimer"
  47. #define MMTIMER_DESC "SGI Altix RTC Timer"
  48. #define MMTIMER_VERSION "2.1"
  49. #define RTC_BITS 55 /* 55 bits for this implementation */
  50. extern unsigned long sn_rtc_cycles_per_second;
  51. #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
  52. #define rtc_time() (*RTC_COUNTER_ADDR)
  53. static DEFINE_MUTEX(mmtimer_mutex);
  54. static long mmtimer_ioctl(struct file *file, unsigned int cmd,
  55. unsigned long arg);
  56. static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
  57. /*
  58. * Period in femtoseconds (10^-15 s)
  59. */
  60. static unsigned long mmtimer_femtoperiod = 0;
  61. static const struct file_operations mmtimer_fops = {
  62. .owner = THIS_MODULE,
  63. .mmap = mmtimer_mmap,
  64. .unlocked_ioctl = mmtimer_ioctl,
  65. .llseek = noop_llseek,
  66. };
  67. /*
  68. * We only have comparison registers RTC1-4 currently available per
  69. * node. RTC0 is used by SAL.
  70. */
  71. /* Check for an RTC interrupt pending */
  72. static int mmtimer_int_pending(int comparator)
  73. {
  74. if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
  75. SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
  76. return 1;
  77. else
  78. return 0;
  79. }
  80. /* Clear the RTC interrupt pending bit */
  81. static void mmtimer_clr_int_pending(int comparator)
  82. {
  83. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
  84. SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
  85. }
  86. /* Setup timer on comparator RTC1 */
  87. static void mmtimer_setup_int_0(int cpu, u64 expires)
  88. {
  89. u64 val;
  90. /* Disable interrupt */
  91. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
  92. /* Initialize comparator value */
  93. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
  94. /* Clear pending bit */
  95. mmtimer_clr_int_pending(0);
  96. val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
  97. ((u64)cpu_physical_id(cpu) <<
  98. SH_RTC1_INT_CONFIG_PID_SHFT);
  99. /* Set configuration */
  100. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
  101. /* Enable RTC interrupts */
  102. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
  103. /* Initialize comparator value */
  104. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
  105. }
  106. /* Setup timer on comparator RTC2 */
  107. static void mmtimer_setup_int_1(int cpu, u64 expires)
  108. {
  109. u64 val;
  110. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
  111. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
  112. mmtimer_clr_int_pending(1);
  113. val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
  114. ((u64)cpu_physical_id(cpu) <<
  115. SH_RTC2_INT_CONFIG_PID_SHFT);
  116. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
  117. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
  118. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
  119. }
  120. /* Setup timer on comparator RTC3 */
  121. static void mmtimer_setup_int_2(int cpu, u64 expires)
  122. {
  123. u64 val;
  124. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
  125. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
  126. mmtimer_clr_int_pending(2);
  127. val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
  128. ((u64)cpu_physical_id(cpu) <<
  129. SH_RTC3_INT_CONFIG_PID_SHFT);
  130. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
  131. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
  132. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
  133. }
  134. /*
  135. * This function must be called with interrupts disabled and preemption off
  136. * in order to insure that the setup succeeds in a deterministic time frame.
  137. * It will check if the interrupt setup succeeded.
  138. */
  139. static int mmtimer_setup(int cpu, int comparator, unsigned long expires)
  140. {
  141. switch (comparator) {
  142. case 0:
  143. mmtimer_setup_int_0(cpu, expires);
  144. break;
  145. case 1:
  146. mmtimer_setup_int_1(cpu, expires);
  147. break;
  148. case 2:
  149. mmtimer_setup_int_2(cpu, expires);
  150. break;
  151. }
  152. /* We might've missed our expiration time */
  153. if (rtc_time() <= expires)
  154. return 1;
  155. /*
  156. * If an interrupt is already pending then its okay
  157. * if not then we failed
  158. */
  159. return mmtimer_int_pending(comparator);
  160. }
  161. static int mmtimer_disable_int(long nasid, int comparator)
  162. {
  163. switch (comparator) {
  164. case 0:
  165. nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
  166. 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
  167. break;
  168. case 1:
  169. nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
  170. 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
  171. break;
  172. case 2:
  173. nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
  174. 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
  175. break;
  176. default:
  177. return -EFAULT;
  178. }
  179. return 0;
  180. }
  181. #define COMPARATOR 1 /* The comparator to use */
  182. #define TIMER_OFF 0xbadcabLL /* Timer is not setup */
  183. #define TIMER_SET 0 /* Comparator is set for this timer */
  184. /* There is one of these for each timer */
  185. struct mmtimer {
  186. struct rb_node list;
  187. struct k_itimer *timer;
  188. int cpu;
  189. };
  190. struct mmtimer_node {
  191. spinlock_t lock ____cacheline_aligned;
  192. struct rb_root timer_head;
  193. struct rb_node *next;
  194. struct tasklet_struct tasklet;
  195. };
  196. static struct mmtimer_node *timers;
  197. /*
  198. * Add a new mmtimer struct to the node's mmtimer list.
  199. * This function assumes the struct mmtimer_node is locked.
  200. */
  201. static void mmtimer_add_list(struct mmtimer *n)
  202. {
  203. int nodeid = n->timer->it.mmtimer.node;
  204. unsigned long expires = n->timer->it.mmtimer.expires;
  205. struct rb_node **link = &timers[nodeid].timer_head.rb_node;
  206. struct rb_node *parent = NULL;
  207. struct mmtimer *x;
  208. /*
  209. * Find the right place in the rbtree:
  210. */
  211. while (*link) {
  212. parent = *link;
  213. x = rb_entry(parent, struct mmtimer, list);
  214. if (expires < x->timer->it.mmtimer.expires)
  215. link = &(*link)->rb_left;
  216. else
  217. link = &(*link)->rb_right;
  218. }
  219. /*
  220. * Insert the timer to the rbtree and check whether it
  221. * replaces the first pending timer
  222. */
  223. rb_link_node(&n->list, parent, link);
  224. rb_insert_color(&n->list, &timers[nodeid].timer_head);
  225. if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next,
  226. struct mmtimer, list)->timer->it.mmtimer.expires)
  227. timers[nodeid].next = &n->list;
  228. }
  229. /*
  230. * Set the comparator for the next timer.
  231. * This function assumes the struct mmtimer_node is locked.
  232. */
  233. static void mmtimer_set_next_timer(int nodeid)
  234. {
  235. struct mmtimer_node *n = &timers[nodeid];
  236. struct mmtimer *x;
  237. struct k_itimer *t;
  238. int o;
  239. restart:
  240. if (n->next == NULL)
  241. return;
  242. x = rb_entry(n->next, struct mmtimer, list);
  243. t = x->timer;
  244. if (!t->it.mmtimer.incr) {
  245. /* Not an interval timer */
  246. if (!mmtimer_setup(x->cpu, COMPARATOR,
  247. t->it.mmtimer.expires)) {
  248. /* Late setup, fire now */
  249. tasklet_schedule(&n->tasklet);
  250. }
  251. return;
  252. }
  253. /* Interval timer */
  254. o = 0;
  255. while (!mmtimer_setup(x->cpu, COMPARATOR, t->it.mmtimer.expires)) {
  256. unsigned long e, e1;
  257. struct rb_node *next;
  258. t->it.mmtimer.expires += t->it.mmtimer.incr << o;
  259. t->it_overrun += 1 << o;
  260. o++;
  261. if (o > 20) {
  262. printk(KERN_ALERT "mmtimer: cannot reschedule timer\n");
  263. t->it.mmtimer.clock = TIMER_OFF;
  264. n->next = rb_next(&x->list);
  265. rb_erase(&x->list, &n->timer_head);
  266. kfree(x);
  267. goto restart;
  268. }
  269. e = t->it.mmtimer.expires;
  270. next = rb_next(&x->list);
  271. if (next == NULL)
  272. continue;
  273. e1 = rb_entry(next, struct mmtimer, list)->
  274. timer->it.mmtimer.expires;
  275. if (e > e1) {
  276. n->next = next;
  277. rb_erase(&x->list, &n->timer_head);
  278. mmtimer_add_list(x);
  279. goto restart;
  280. }
  281. }
  282. }
  283. /**
  284. * mmtimer_ioctl - ioctl interface for /dev/mmtimer
  285. * @file: file structure for the device
  286. * @cmd: command to execute
  287. * @arg: optional argument to command
  288. *
  289. * Executes the command specified by @cmd. Returns 0 for success, < 0 for
  290. * failure.
  291. *
  292. * Valid commands:
  293. *
  294. * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
  295. * of the page where the registers are mapped) for the counter in question.
  296. *
  297. * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
  298. * seconds
  299. *
  300. * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
  301. * specified by @arg
  302. *
  303. * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
  304. *
  305. * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
  306. *
  307. * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
  308. * in the address specified by @arg.
  309. */
  310. static long mmtimer_ioctl(struct file *file, unsigned int cmd,
  311. unsigned long arg)
  312. {
  313. int ret = 0;
  314. mutex_lock(&mmtimer_mutex);
  315. switch (cmd) {
  316. case MMTIMER_GETOFFSET: /* offset of the counter */
  317. /*
  318. * SN RTC registers are on their own 64k page
  319. */
  320. if(PAGE_SIZE <= (1 << 16))
  321. ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
  322. else
  323. ret = -ENOSYS;
  324. break;
  325. case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
  326. if(copy_to_user((unsigned long __user *)arg,
  327. &mmtimer_femtoperiod, sizeof(unsigned long)))
  328. ret = -EFAULT;
  329. break;
  330. case MMTIMER_GETFREQ: /* frequency in Hz */
  331. if(copy_to_user((unsigned long __user *)arg,
  332. &sn_rtc_cycles_per_second,
  333. sizeof(unsigned long)))
  334. ret = -EFAULT;
  335. break;
  336. case MMTIMER_GETBITS: /* number of bits in the clock */
  337. ret = RTC_BITS;
  338. break;
  339. case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
  340. ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
  341. break;
  342. case MMTIMER_GETCOUNTER:
  343. if(copy_to_user((unsigned long __user *)arg,
  344. RTC_COUNTER_ADDR, sizeof(unsigned long)))
  345. ret = -EFAULT;
  346. break;
  347. default:
  348. ret = -ENOTTY;
  349. break;
  350. }
  351. mutex_unlock(&mmtimer_mutex);
  352. return ret;
  353. }
  354. /**
  355. * mmtimer_mmap - maps the clock's registers into userspace
  356. * @file: file structure for the device
  357. * @vma: VMA to map the registers into
  358. *
  359. * Calls remap_pfn_range() to map the clock's registers into
  360. * the calling process' address space.
  361. */
  362. static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
  363. {
  364. unsigned long mmtimer_addr;
  365. if (vma->vm_end - vma->vm_start != PAGE_SIZE)
  366. return -EINVAL;
  367. if (vma->vm_flags & VM_WRITE)
  368. return -EPERM;
  369. if (PAGE_SIZE > (1 << 16))
  370. return -ENOSYS;
  371. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  372. mmtimer_addr = __pa(RTC_COUNTER_ADDR);
  373. mmtimer_addr &= ~(PAGE_SIZE - 1);
  374. mmtimer_addr &= 0xfffffffffffffffUL;
  375. if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
  376. PAGE_SIZE, vma->vm_page_prot)) {
  377. printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
  378. return -EAGAIN;
  379. }
  380. return 0;
  381. }
  382. static struct miscdevice mmtimer_miscdev = {
  383. SGI_MMTIMER,
  384. MMTIMER_NAME,
  385. &mmtimer_fops
  386. };
  387. static struct timespec sgi_clock_offset;
  388. static int sgi_clock_period;
  389. /*
  390. * Posix Timer Interface
  391. */
  392. static struct timespec sgi_clock_offset;
  393. static int sgi_clock_period;
  394. static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
  395. {
  396. u64 nsec;
  397. nsec = rtc_time() * sgi_clock_period
  398. + sgi_clock_offset.tv_nsec;
  399. *tp = ns_to_timespec(nsec);
  400. tp->tv_sec += sgi_clock_offset.tv_sec;
  401. return 0;
  402. };
  403. static int sgi_clock_set(clockid_t clockid, struct timespec *tp)
  404. {
  405. u64 nsec;
  406. u32 rem;
  407. nsec = rtc_time() * sgi_clock_period;
  408. sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem);
  409. if (rem <= tp->tv_nsec)
  410. sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
  411. else {
  412. sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
  413. sgi_clock_offset.tv_sec--;
  414. }
  415. return 0;
  416. }
  417. /**
  418. * mmtimer_interrupt - timer interrupt handler
  419. * @irq: irq received
  420. * @dev_id: device the irq came from
  421. *
  422. * Called when one of the comarators matches the counter, This
  423. * routine will send signals to processes that have requested
  424. * them.
  425. *
  426. * This interrupt is run in an interrupt context
  427. * by the SHUB. It is therefore safe to locally access SHub
  428. * registers.
  429. */
  430. static irqreturn_t
  431. mmtimer_interrupt(int irq, void *dev_id)
  432. {
  433. unsigned long expires = 0;
  434. int result = IRQ_NONE;
  435. unsigned indx = cpu_to_node(smp_processor_id());
  436. struct mmtimer *base;
  437. spin_lock(&timers[indx].lock);
  438. base = rb_entry(timers[indx].next, struct mmtimer, list);
  439. if (base == NULL) {
  440. spin_unlock(&timers[indx].lock);
  441. return result;
  442. }
  443. if (base->cpu == smp_processor_id()) {
  444. if (base->timer)
  445. expires = base->timer->it.mmtimer.expires;
  446. /* expires test won't work with shared irqs */
  447. if ((mmtimer_int_pending(COMPARATOR) > 0) ||
  448. (expires && (expires <= rtc_time()))) {
  449. mmtimer_clr_int_pending(COMPARATOR);
  450. tasklet_schedule(&timers[indx].tasklet);
  451. result = IRQ_HANDLED;
  452. }
  453. }
  454. spin_unlock(&timers[indx].lock);
  455. return result;
  456. }
  457. static void mmtimer_tasklet(unsigned long data)
  458. {
  459. int nodeid = data;
  460. struct mmtimer_node *mn = &timers[nodeid];
  461. struct mmtimer *x;
  462. struct k_itimer *t;
  463. unsigned long flags;
  464. /* Send signal and deal with periodic signals */
  465. spin_lock_irqsave(&mn->lock, flags);
  466. if (!mn->next)
  467. goto out;
  468. x = rb_entry(mn->next, struct mmtimer, list);
  469. t = x->timer;
  470. if (t->it.mmtimer.clock == TIMER_OFF)
  471. goto out;
  472. t->it_overrun = 0;
  473. mn->next = rb_next(&x->list);
  474. rb_erase(&x->list, &mn->timer_head);
  475. if (posix_timer_event(t, 0) != 0)
  476. t->it_overrun++;
  477. if(t->it.mmtimer.incr) {
  478. t->it.mmtimer.expires += t->it.mmtimer.incr;
  479. mmtimer_add_list(x);
  480. } else {
  481. /* Ensure we don't false trigger in mmtimer_interrupt */
  482. t->it.mmtimer.clock = TIMER_OFF;
  483. t->it.mmtimer.expires = 0;
  484. kfree(x);
  485. }
  486. /* Set comparator for next timer, if there is one */
  487. mmtimer_set_next_timer(nodeid);
  488. t->it_overrun_last = t->it_overrun;
  489. out:
  490. spin_unlock_irqrestore(&mn->lock, flags);
  491. }
  492. static int sgi_timer_create(struct k_itimer *timer)
  493. {
  494. /* Insure that a newly created timer is off */
  495. timer->it.mmtimer.clock = TIMER_OFF;
  496. return 0;
  497. }
  498. /* This does not really delete a timer. It just insures
  499. * that the timer is not active
  500. *
  501. * Assumption: it_lock is already held with irq's disabled
  502. */
  503. static int sgi_timer_del(struct k_itimer *timr)
  504. {
  505. cnodeid_t nodeid = timr->it.mmtimer.node;
  506. unsigned long irqflags;
  507. spin_lock_irqsave(&timers[nodeid].lock, irqflags);
  508. if (timr->it.mmtimer.clock != TIMER_OFF) {
  509. unsigned long expires = timr->it.mmtimer.expires;
  510. struct rb_node *n = timers[nodeid].timer_head.rb_node;
  511. struct mmtimer *uninitialized_var(t);
  512. int r = 0;
  513. timr->it.mmtimer.clock = TIMER_OFF;
  514. timr->it.mmtimer.expires = 0;
  515. while (n) {
  516. t = rb_entry(n, struct mmtimer, list);
  517. if (t->timer == timr)
  518. break;
  519. if (expires < t->timer->it.mmtimer.expires)
  520. n = n->rb_left;
  521. else
  522. n = n->rb_right;
  523. }
  524. if (!n) {
  525. spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
  526. return 0;
  527. }
  528. if (timers[nodeid].next == n) {
  529. timers[nodeid].next = rb_next(n);
  530. r = 1;
  531. }
  532. rb_erase(n, &timers[nodeid].timer_head);
  533. kfree(t);
  534. if (r) {
  535. mmtimer_disable_int(cnodeid_to_nasid(nodeid),
  536. COMPARATOR);
  537. mmtimer_set_next_timer(nodeid);
  538. }
  539. }
  540. spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
  541. return 0;
  542. }
  543. /* Assumption: it_lock is already held with irq's disabled */
  544. static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
  545. {
  546. if (timr->it.mmtimer.clock == TIMER_OFF) {
  547. cur_setting->it_interval.tv_nsec = 0;
  548. cur_setting->it_interval.tv_sec = 0;
  549. cur_setting->it_value.tv_nsec = 0;
  550. cur_setting->it_value.tv_sec =0;
  551. return;
  552. }
  553. cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period);
  554. cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period);
  555. }
  556. static int sgi_timer_set(struct k_itimer *timr, int flags,
  557. struct itimerspec * new_setting,
  558. struct itimerspec * old_setting)
  559. {
  560. unsigned long when, period, irqflags;
  561. int err = 0;
  562. cnodeid_t nodeid;
  563. struct mmtimer *base;
  564. struct rb_node *n;
  565. if (old_setting)
  566. sgi_timer_get(timr, old_setting);
  567. sgi_timer_del(timr);
  568. when = timespec_to_ns(&new_setting->it_value);
  569. period = timespec_to_ns(&new_setting->it_interval);
  570. if (when == 0)
  571. /* Clear timer */
  572. return 0;
  573. base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL);
  574. if (base == NULL)
  575. return -ENOMEM;
  576. if (flags & TIMER_ABSTIME) {
  577. struct timespec n;
  578. unsigned long now;
  579. getnstimeofday(&n);
  580. now = timespec_to_ns(&n);
  581. if (when > now)
  582. when -= now;
  583. else
  584. /* Fire the timer immediately */
  585. when = 0;
  586. }
  587. /*
  588. * Convert to sgi clock period. Need to keep rtc_time() as near as possible
  589. * to getnstimeofday() in order to be as faithful as possible to the time
  590. * specified.
  591. */
  592. when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
  593. period = (period + sgi_clock_period - 1) / sgi_clock_period;
  594. /*
  595. * We are allocating a local SHub comparator. If we would be moved to another
  596. * cpu then another SHub may be local to us. Prohibit that by switching off
  597. * preemption.
  598. */
  599. preempt_disable();
  600. nodeid = cpu_to_node(smp_processor_id());
  601. /* Lock the node timer structure */
  602. spin_lock_irqsave(&timers[nodeid].lock, irqflags);
  603. base->timer = timr;
  604. base->cpu = smp_processor_id();
  605. timr->it.mmtimer.clock = TIMER_SET;
  606. timr->it.mmtimer.node = nodeid;
  607. timr->it.mmtimer.incr = period;
  608. timr->it.mmtimer.expires = when;
  609. n = timers[nodeid].next;
  610. /* Add the new struct mmtimer to node's timer list */
  611. mmtimer_add_list(base);
  612. if (timers[nodeid].next == n) {
  613. /* No need to reprogram comparator for now */
  614. spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
  615. preempt_enable();
  616. return err;
  617. }
  618. /* We need to reprogram the comparator */
  619. if (n)
  620. mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR);
  621. mmtimer_set_next_timer(nodeid);
  622. /* Unlock the node timer structure */
  623. spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
  624. preempt_enable();
  625. return err;
  626. }
  627. static struct k_clock sgi_clock = {
  628. .res = 0,
  629. .clock_set = sgi_clock_set,
  630. .clock_get = sgi_clock_get,
  631. .timer_create = sgi_timer_create,
  632. .nsleep = do_posix_clock_nonanosleep,
  633. .timer_set = sgi_timer_set,
  634. .timer_del = sgi_timer_del,
  635. .timer_get = sgi_timer_get
  636. };
  637. /**
  638. * mmtimer_init - device initialization routine
  639. *
  640. * Does initial setup for the mmtimer device.
  641. */
  642. static int __init mmtimer_init(void)
  643. {
  644. cnodeid_t node, maxn = -1;
  645. if (!ia64_platform_is("sn2"))
  646. return 0;
  647. /*
  648. * Sanity check the cycles/sec variable
  649. */
  650. if (sn_rtc_cycles_per_second < 100000) {
  651. printk(KERN_ERR "%s: unable to determine clock frequency\n",
  652. MMTIMER_NAME);
  653. goto out1;
  654. }
  655. mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
  656. 2) / sn_rtc_cycles_per_second;
  657. if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
  658. printk(KERN_WARNING "%s: unable to allocate interrupt.",
  659. MMTIMER_NAME);
  660. goto out1;
  661. }
  662. if (misc_register(&mmtimer_miscdev)) {
  663. printk(KERN_ERR "%s: failed to register device\n",
  664. MMTIMER_NAME);
  665. goto out2;
  666. }
  667. /* Get max numbered node, calculate slots needed */
  668. for_each_online_node(node) {
  669. maxn = node;
  670. }
  671. maxn++;
  672. /* Allocate list of node ptrs to mmtimer_t's */
  673. timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL);
  674. if (timers == NULL) {
  675. printk(KERN_ERR "%s: failed to allocate memory for device\n",
  676. MMTIMER_NAME);
  677. goto out3;
  678. }
  679. /* Initialize struct mmtimer's for each online node */
  680. for_each_online_node(node) {
  681. spin_lock_init(&timers[node].lock);
  682. tasklet_init(&timers[node].tasklet, mmtimer_tasklet,
  683. (unsigned long) node);
  684. }
  685. sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second;
  686. register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock);
  687. printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
  688. sn_rtc_cycles_per_second/(unsigned long)1E6);
  689. return 0;
  690. out3:
  691. kfree(timers);
  692. misc_deregister(&mmtimer_miscdev);
  693. out2:
  694. free_irq(SGI_MMTIMER_VECTOR, NULL);
  695. out1:
  696. return -1;
  697. }
  698. module_init(mmtimer_init);