workqueue.c 137 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There is one worker pool for each CPU and
  20. * one extra for works which are better served by workers which are
  21. * not bound to any specific CPU.
  22. *
  23. * Please read Documentation/workqueue.txt for details.
  24. */
  25. #include <linux/export.h>
  26. #include <linux/kernel.h>
  27. #include <linux/sched.h>
  28. #include <linux/init.h>
  29. #include <linux/signal.h>
  30. #include <linux/completion.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/slab.h>
  33. #include <linux/cpu.h>
  34. #include <linux/notifier.h>
  35. #include <linux/kthread.h>
  36. #include <linux/hardirq.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/freezer.h>
  39. #include <linux/kallsyms.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/lockdep.h>
  42. #include <linux/idr.h>
  43. #include <linux/jhash.h>
  44. #include <linux/hashtable.h>
  45. #include <linux/rculist.h>
  46. #include <linux/nodemask.h>
  47. #include <linux/moduleparam.h>
  48. #include <linux/uaccess.h>
  49. #include "workqueue_internal.h"
  50. enum {
  51. /*
  52. * worker_pool flags
  53. *
  54. * A bound pool is either associated or disassociated with its CPU.
  55. * While associated (!DISASSOCIATED), all workers are bound to the
  56. * CPU and none has %WORKER_UNBOUND set and concurrency management
  57. * is in effect.
  58. *
  59. * While DISASSOCIATED, the cpu may be offline and all workers have
  60. * %WORKER_UNBOUND set and concurrency management disabled, and may
  61. * be executing on any CPU. The pool behaves as an unbound one.
  62. *
  63. * Note that DISASSOCIATED should be flipped only while holding
  64. * manager_mutex to avoid changing binding state while
  65. * create_worker() is in progress.
  66. */
  67. POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
  68. POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
  69. POOL_FREEZING = 1 << 3, /* freeze in progress */
  70. /* worker flags */
  71. WORKER_STARTED = 1 << 0, /* started */
  72. WORKER_DIE = 1 << 1, /* die die die */
  73. WORKER_IDLE = 1 << 2, /* is idle */
  74. WORKER_PREP = 1 << 3, /* preparing to run works */
  75. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  76. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  77. WORKER_REBOUND = 1 << 8, /* worker was rebound */
  78. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
  79. WORKER_UNBOUND | WORKER_REBOUND,
  80. NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
  81. UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
  82. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  83. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  84. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  85. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  86. /* call for help after 10ms
  87. (min two ticks) */
  88. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  89. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  90. /*
  91. * Rescue workers are used only on emergencies and shared by
  92. * all cpus. Give -20.
  93. */
  94. RESCUER_NICE_LEVEL = -20,
  95. HIGHPRI_NICE_LEVEL = -20,
  96. WQ_NAME_LEN = 24,
  97. };
  98. /*
  99. * Structure fields follow one of the following exclusion rules.
  100. *
  101. * I: Modifiable by initialization/destruction paths and read-only for
  102. * everyone else.
  103. *
  104. * P: Preemption protected. Disabling preemption is enough and should
  105. * only be modified and accessed from the local cpu.
  106. *
  107. * L: pool->lock protected. Access with pool->lock held.
  108. *
  109. * X: During normal operation, modification requires pool->lock and should
  110. * be done only from local cpu. Either disabling preemption on local
  111. * cpu or grabbing pool->lock is enough for read access. If
  112. * POOL_DISASSOCIATED is set, it's identical to L.
  113. *
  114. * MG: pool->manager_mutex and pool->lock protected. Writes require both
  115. * locks. Reads can happen under either lock.
  116. *
  117. * PL: wq_pool_mutex protected.
  118. *
  119. * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
  120. *
  121. * WQ: wq->mutex protected.
  122. *
  123. * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
  124. *
  125. * MD: wq_mayday_lock protected.
  126. */
  127. /* struct worker is defined in workqueue_internal.h */
  128. struct worker_pool {
  129. spinlock_t lock; /* the pool lock */
  130. int cpu; /* I: the associated cpu */
  131. int node; /* I: the associated node ID */
  132. int id; /* I: pool ID */
  133. unsigned int flags; /* X: flags */
  134. struct list_head worklist; /* L: list of pending works */
  135. int nr_workers; /* L: total number of workers */
  136. /* nr_idle includes the ones off idle_list for rebinding */
  137. int nr_idle; /* L: currently idle ones */
  138. struct list_head idle_list; /* X: list of idle workers */
  139. struct timer_list idle_timer; /* L: worker idle timeout */
  140. struct timer_list mayday_timer; /* L: SOS timer for workers */
  141. /* a workers is either on busy_hash or idle_list, or the manager */
  142. DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
  143. /* L: hash of busy workers */
  144. /* see manage_workers() for details on the two manager mutexes */
  145. struct mutex manager_arb; /* manager arbitration */
  146. struct mutex manager_mutex; /* manager exclusion */
  147. struct idr worker_idr; /* MG: worker IDs and iteration */
  148. struct workqueue_attrs *attrs; /* I: worker attributes */
  149. struct hlist_node hash_node; /* PL: unbound_pool_hash node */
  150. int refcnt; /* PL: refcnt for unbound pools */
  151. /*
  152. * The current concurrency level. As it's likely to be accessed
  153. * from other CPUs during try_to_wake_up(), put it in a separate
  154. * cacheline.
  155. */
  156. atomic_t nr_running ____cacheline_aligned_in_smp;
  157. /*
  158. * Destruction of pool is sched-RCU protected to allow dereferences
  159. * from get_work_pool().
  160. */
  161. struct rcu_head rcu;
  162. } ____cacheline_aligned_in_smp;
  163. /*
  164. * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
  165. * of work_struct->data are used for flags and the remaining high bits
  166. * point to the pwq; thus, pwqs need to be aligned at two's power of the
  167. * number of flag bits.
  168. */
  169. struct pool_workqueue {
  170. struct worker_pool *pool; /* I: the associated pool */
  171. struct workqueue_struct *wq; /* I: the owning workqueue */
  172. int work_color; /* L: current color */
  173. int flush_color; /* L: flushing color */
  174. int refcnt; /* L: reference count */
  175. int nr_in_flight[WORK_NR_COLORS];
  176. /* L: nr of in_flight works */
  177. int nr_active; /* L: nr of active works */
  178. int max_active; /* L: max active works */
  179. struct list_head delayed_works; /* L: delayed works */
  180. struct list_head pwqs_node; /* WR: node on wq->pwqs */
  181. struct list_head mayday_node; /* MD: node on wq->maydays */
  182. /*
  183. * Release of unbound pwq is punted to system_wq. See put_pwq()
  184. * and pwq_unbound_release_workfn() for details. pool_workqueue
  185. * itself is also sched-RCU protected so that the first pwq can be
  186. * determined without grabbing wq->mutex.
  187. */
  188. struct work_struct unbound_release_work;
  189. struct rcu_head rcu;
  190. } __aligned(1 << WORK_STRUCT_FLAG_BITS);
  191. /*
  192. * Structure used to wait for workqueue flush.
  193. */
  194. struct wq_flusher {
  195. struct list_head list; /* WQ: list of flushers */
  196. int flush_color; /* WQ: flush color waiting for */
  197. struct completion done; /* flush completion */
  198. };
  199. struct wq_device;
  200. /*
  201. * The externally visible workqueue. It relays the issued work items to
  202. * the appropriate worker_pool through its pool_workqueues.
  203. */
  204. struct workqueue_struct {
  205. struct list_head pwqs; /* WR: all pwqs of this wq */
  206. struct list_head list; /* PL: list of all workqueues */
  207. struct mutex mutex; /* protects this wq */
  208. int work_color; /* WQ: current work color */
  209. int flush_color; /* WQ: current flush color */
  210. atomic_t nr_pwqs_to_flush; /* flush in progress */
  211. struct wq_flusher *first_flusher; /* WQ: first flusher */
  212. struct list_head flusher_queue; /* WQ: flush waiters */
  213. struct list_head flusher_overflow; /* WQ: flush overflow list */
  214. struct list_head maydays; /* MD: pwqs requesting rescue */
  215. struct worker *rescuer; /* I: rescue worker */
  216. int nr_drainers; /* WQ: drain in progress */
  217. int saved_max_active; /* WQ: saved pwq max_active */
  218. struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
  219. struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
  220. #ifdef CONFIG_SYSFS
  221. struct wq_device *wq_dev; /* I: for sysfs interface */
  222. #endif
  223. #ifdef CONFIG_LOCKDEP
  224. struct lockdep_map lockdep_map;
  225. #endif
  226. char name[WQ_NAME_LEN]; /* I: workqueue name */
  227. /* hot fields used during command issue, aligned to cacheline */
  228. unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
  229. struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
  230. struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
  231. };
  232. static struct kmem_cache *pwq_cache;
  233. static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
  234. static cpumask_var_t *wq_numa_possible_cpumask;
  235. /* possible CPUs of each node */
  236. static bool wq_disable_numa;
  237. module_param_named(disable_numa, wq_disable_numa, bool, 0444);
  238. static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
  239. /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
  240. static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
  241. static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
  242. static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
  243. static LIST_HEAD(workqueues); /* PL: list of all workqueues */
  244. static bool workqueue_freezing; /* PL: have wqs started freezing? */
  245. /* the per-cpu worker pools */
  246. static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
  247. cpu_worker_pools);
  248. static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
  249. /* PL: hash of all unbound pools keyed by pool->attrs */
  250. static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
  251. /* I: attributes used when instantiating standard unbound pools on demand */
  252. static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
  253. struct workqueue_struct *system_wq __read_mostly;
  254. EXPORT_SYMBOL_GPL(system_wq);
  255. struct workqueue_struct *system_highpri_wq __read_mostly;
  256. EXPORT_SYMBOL_GPL(system_highpri_wq);
  257. struct workqueue_struct *system_long_wq __read_mostly;
  258. EXPORT_SYMBOL_GPL(system_long_wq);
  259. struct workqueue_struct *system_unbound_wq __read_mostly;
  260. EXPORT_SYMBOL_GPL(system_unbound_wq);
  261. struct workqueue_struct *system_freezable_wq __read_mostly;
  262. EXPORT_SYMBOL_GPL(system_freezable_wq);
  263. static int worker_thread(void *__worker);
  264. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  265. const struct workqueue_attrs *from);
  266. #define CREATE_TRACE_POINTS
  267. #include <trace/events/workqueue.h>
  268. #define assert_rcu_or_pool_mutex() \
  269. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  270. lockdep_is_held(&wq_pool_mutex), \
  271. "sched RCU or wq_pool_mutex should be held")
  272. #define assert_rcu_or_wq_mutex(wq) \
  273. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  274. lockdep_is_held(&wq->mutex), \
  275. "sched RCU or wq->mutex should be held")
  276. #ifdef CONFIG_LOCKDEP
  277. #define assert_manager_or_pool_lock(pool) \
  278. WARN_ONCE(debug_locks && \
  279. !lockdep_is_held(&(pool)->manager_mutex) && \
  280. !lockdep_is_held(&(pool)->lock), \
  281. "pool->manager_mutex or ->lock should be held")
  282. #else
  283. #define assert_manager_or_pool_lock(pool) do { } while (0)
  284. #endif
  285. #define for_each_cpu_worker_pool(pool, cpu) \
  286. for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
  287. (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
  288. (pool)++)
  289. /**
  290. * for_each_pool - iterate through all worker_pools in the system
  291. * @pool: iteration cursor
  292. * @pi: integer used for iteration
  293. *
  294. * This must be called either with wq_pool_mutex held or sched RCU read
  295. * locked. If the pool needs to be used beyond the locking in effect, the
  296. * caller is responsible for guaranteeing that the pool stays online.
  297. *
  298. * The if/else clause exists only for the lockdep assertion and can be
  299. * ignored.
  300. */
  301. #define for_each_pool(pool, pi) \
  302. idr_for_each_entry(&worker_pool_idr, pool, pi) \
  303. if (({ assert_rcu_or_pool_mutex(); false; })) { } \
  304. else
  305. /**
  306. * for_each_pool_worker - iterate through all workers of a worker_pool
  307. * @worker: iteration cursor
  308. * @wi: integer used for iteration
  309. * @pool: worker_pool to iterate workers of
  310. *
  311. * This must be called with either @pool->manager_mutex or ->lock held.
  312. *
  313. * The if/else clause exists only for the lockdep assertion and can be
  314. * ignored.
  315. */
  316. #define for_each_pool_worker(worker, wi, pool) \
  317. idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
  318. if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
  319. else
  320. /**
  321. * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
  322. * @pwq: iteration cursor
  323. * @wq: the target workqueue
  324. *
  325. * This must be called either with wq->mutex held or sched RCU read locked.
  326. * If the pwq needs to be used beyond the locking in effect, the caller is
  327. * responsible for guaranteeing that the pwq stays online.
  328. *
  329. * The if/else clause exists only for the lockdep assertion and can be
  330. * ignored.
  331. */
  332. #define for_each_pwq(pwq, wq) \
  333. list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
  334. if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
  335. else
  336. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  337. static struct debug_obj_descr work_debug_descr;
  338. static void *work_debug_hint(void *addr)
  339. {
  340. return ((struct work_struct *) addr)->func;
  341. }
  342. /*
  343. * fixup_init is called when:
  344. * - an active object is initialized
  345. */
  346. static int work_fixup_init(void *addr, enum debug_obj_state state)
  347. {
  348. struct work_struct *work = addr;
  349. switch (state) {
  350. case ODEBUG_STATE_ACTIVE:
  351. cancel_work_sync(work);
  352. debug_object_init(work, &work_debug_descr);
  353. return 1;
  354. default:
  355. return 0;
  356. }
  357. }
  358. /*
  359. * fixup_activate is called when:
  360. * - an active object is activated
  361. * - an unknown object is activated (might be a statically initialized object)
  362. */
  363. static int work_fixup_activate(void *addr, enum debug_obj_state state)
  364. {
  365. struct work_struct *work = addr;
  366. switch (state) {
  367. case ODEBUG_STATE_NOTAVAILABLE:
  368. /*
  369. * This is not really a fixup. The work struct was
  370. * statically initialized. We just make sure that it
  371. * is tracked in the object tracker.
  372. */
  373. if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
  374. debug_object_init(work, &work_debug_descr);
  375. debug_object_activate(work, &work_debug_descr);
  376. return 0;
  377. }
  378. WARN_ON_ONCE(1);
  379. return 0;
  380. case ODEBUG_STATE_ACTIVE:
  381. WARN_ON(1);
  382. default:
  383. return 0;
  384. }
  385. }
  386. /*
  387. * fixup_free is called when:
  388. * - an active object is freed
  389. */
  390. static int work_fixup_free(void *addr, enum debug_obj_state state)
  391. {
  392. struct work_struct *work = addr;
  393. switch (state) {
  394. case ODEBUG_STATE_ACTIVE:
  395. cancel_work_sync(work);
  396. debug_object_free(work, &work_debug_descr);
  397. return 1;
  398. default:
  399. return 0;
  400. }
  401. }
  402. static struct debug_obj_descr work_debug_descr = {
  403. .name = "work_struct",
  404. .debug_hint = work_debug_hint,
  405. .fixup_init = work_fixup_init,
  406. .fixup_activate = work_fixup_activate,
  407. .fixup_free = work_fixup_free,
  408. };
  409. static inline void debug_work_activate(struct work_struct *work)
  410. {
  411. debug_object_activate(work, &work_debug_descr);
  412. }
  413. static inline void debug_work_deactivate(struct work_struct *work)
  414. {
  415. debug_object_deactivate(work, &work_debug_descr);
  416. }
  417. void __init_work(struct work_struct *work, int onstack)
  418. {
  419. if (onstack)
  420. debug_object_init_on_stack(work, &work_debug_descr);
  421. else
  422. debug_object_init(work, &work_debug_descr);
  423. }
  424. EXPORT_SYMBOL_GPL(__init_work);
  425. void destroy_work_on_stack(struct work_struct *work)
  426. {
  427. debug_object_free(work, &work_debug_descr);
  428. }
  429. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  430. #else
  431. static inline void debug_work_activate(struct work_struct *work) { }
  432. static inline void debug_work_deactivate(struct work_struct *work) { }
  433. #endif
  434. /* allocate ID and assign it to @pool */
  435. static int worker_pool_assign_id(struct worker_pool *pool)
  436. {
  437. int ret;
  438. lockdep_assert_held(&wq_pool_mutex);
  439. ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
  440. if (ret >= 0) {
  441. pool->id = ret;
  442. return 0;
  443. }
  444. return ret;
  445. }
  446. /**
  447. * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
  448. * @wq: the target workqueue
  449. * @node: the node ID
  450. *
  451. * This must be called either with pwq_lock held or sched RCU read locked.
  452. * If the pwq needs to be used beyond the locking in effect, the caller is
  453. * responsible for guaranteeing that the pwq stays online.
  454. */
  455. static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
  456. int node)
  457. {
  458. assert_rcu_or_wq_mutex(wq);
  459. return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
  460. }
  461. static unsigned int work_color_to_flags(int color)
  462. {
  463. return color << WORK_STRUCT_COLOR_SHIFT;
  464. }
  465. static int get_work_color(struct work_struct *work)
  466. {
  467. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  468. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  469. }
  470. static int work_next_color(int color)
  471. {
  472. return (color + 1) % WORK_NR_COLORS;
  473. }
  474. /*
  475. * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
  476. * contain the pointer to the queued pwq. Once execution starts, the flag
  477. * is cleared and the high bits contain OFFQ flags and pool ID.
  478. *
  479. * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
  480. * and clear_work_data() can be used to set the pwq, pool or clear
  481. * work->data. These functions should only be called while the work is
  482. * owned - ie. while the PENDING bit is set.
  483. *
  484. * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
  485. * corresponding to a work. Pool is available once the work has been
  486. * queued anywhere after initialization until it is sync canceled. pwq is
  487. * available only while the work item is queued.
  488. *
  489. * %WORK_OFFQ_CANCELING is used to mark a work item which is being
  490. * canceled. While being canceled, a work item may have its PENDING set
  491. * but stay off timer and worklist for arbitrarily long and nobody should
  492. * try to steal the PENDING bit.
  493. */
  494. static inline void set_work_data(struct work_struct *work, unsigned long data,
  495. unsigned long flags)
  496. {
  497. WARN_ON_ONCE(!work_pending(work));
  498. atomic_long_set(&work->data, data | flags | work_static(work));
  499. }
  500. static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
  501. unsigned long extra_flags)
  502. {
  503. set_work_data(work, (unsigned long)pwq,
  504. WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
  505. }
  506. static void set_work_pool_and_keep_pending(struct work_struct *work,
  507. int pool_id)
  508. {
  509. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
  510. WORK_STRUCT_PENDING);
  511. }
  512. static void set_work_pool_and_clear_pending(struct work_struct *work,
  513. int pool_id)
  514. {
  515. /*
  516. * The following wmb is paired with the implied mb in
  517. * test_and_set_bit(PENDING) and ensures all updates to @work made
  518. * here are visible to and precede any updates by the next PENDING
  519. * owner.
  520. */
  521. smp_wmb();
  522. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
  523. }
  524. static void clear_work_data(struct work_struct *work)
  525. {
  526. smp_wmb(); /* see set_work_pool_and_clear_pending() */
  527. set_work_data(work, WORK_STRUCT_NO_POOL, 0);
  528. }
  529. static struct pool_workqueue *get_work_pwq(struct work_struct *work)
  530. {
  531. unsigned long data = atomic_long_read(&work->data);
  532. if (data & WORK_STRUCT_PWQ)
  533. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  534. else
  535. return NULL;
  536. }
  537. /**
  538. * get_work_pool - return the worker_pool a given work was associated with
  539. * @work: the work item of interest
  540. *
  541. * Return the worker_pool @work was last associated with. %NULL if none.
  542. *
  543. * Pools are created and destroyed under wq_pool_mutex, and allows read
  544. * access under sched-RCU read lock. As such, this function should be
  545. * called under wq_pool_mutex or with preemption disabled.
  546. *
  547. * All fields of the returned pool are accessible as long as the above
  548. * mentioned locking is in effect. If the returned pool needs to be used
  549. * beyond the critical section, the caller is responsible for ensuring the
  550. * returned pool is and stays online.
  551. */
  552. static struct worker_pool *get_work_pool(struct work_struct *work)
  553. {
  554. unsigned long data = atomic_long_read(&work->data);
  555. int pool_id;
  556. assert_rcu_or_pool_mutex();
  557. if (data & WORK_STRUCT_PWQ)
  558. return ((struct pool_workqueue *)
  559. (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
  560. pool_id = data >> WORK_OFFQ_POOL_SHIFT;
  561. if (pool_id == WORK_OFFQ_POOL_NONE)
  562. return NULL;
  563. return idr_find(&worker_pool_idr, pool_id);
  564. }
  565. /**
  566. * get_work_pool_id - return the worker pool ID a given work is associated with
  567. * @work: the work item of interest
  568. *
  569. * Return the worker_pool ID @work was last associated with.
  570. * %WORK_OFFQ_POOL_NONE if none.
  571. */
  572. static int get_work_pool_id(struct work_struct *work)
  573. {
  574. unsigned long data = atomic_long_read(&work->data);
  575. if (data & WORK_STRUCT_PWQ)
  576. return ((struct pool_workqueue *)
  577. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
  578. return data >> WORK_OFFQ_POOL_SHIFT;
  579. }
  580. static void mark_work_canceling(struct work_struct *work)
  581. {
  582. unsigned long pool_id = get_work_pool_id(work);
  583. pool_id <<= WORK_OFFQ_POOL_SHIFT;
  584. set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
  585. }
  586. static bool work_is_canceling(struct work_struct *work)
  587. {
  588. unsigned long data = atomic_long_read(&work->data);
  589. return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
  590. }
  591. /*
  592. * Policy functions. These define the policies on how the global worker
  593. * pools are managed. Unless noted otherwise, these functions assume that
  594. * they're being called with pool->lock held.
  595. */
  596. static bool __need_more_worker(struct worker_pool *pool)
  597. {
  598. return !atomic_read(&pool->nr_running);
  599. }
  600. /*
  601. * Need to wake up a worker? Called from anything but currently
  602. * running workers.
  603. *
  604. * Note that, because unbound workers never contribute to nr_running, this
  605. * function will always return %true for unbound pools as long as the
  606. * worklist isn't empty.
  607. */
  608. static bool need_more_worker(struct worker_pool *pool)
  609. {
  610. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  611. }
  612. /* Can I start working? Called from busy but !running workers. */
  613. static bool may_start_working(struct worker_pool *pool)
  614. {
  615. return pool->nr_idle;
  616. }
  617. /* Do I need to keep working? Called from currently running workers. */
  618. static bool keep_working(struct worker_pool *pool)
  619. {
  620. return !list_empty(&pool->worklist) &&
  621. atomic_read(&pool->nr_running) <= 1;
  622. }
  623. /* Do we need a new worker? Called from manager. */
  624. static bool need_to_create_worker(struct worker_pool *pool)
  625. {
  626. return need_more_worker(pool) && !may_start_working(pool);
  627. }
  628. /* Do I need to be the manager? */
  629. static bool need_to_manage_workers(struct worker_pool *pool)
  630. {
  631. return need_to_create_worker(pool) ||
  632. (pool->flags & POOL_MANAGE_WORKERS);
  633. }
  634. /* Do we have too many workers and should some go away? */
  635. static bool too_many_workers(struct worker_pool *pool)
  636. {
  637. bool managing = mutex_is_locked(&pool->manager_arb);
  638. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  639. int nr_busy = pool->nr_workers - nr_idle;
  640. /*
  641. * nr_idle and idle_list may disagree if idle rebinding is in
  642. * progress. Never return %true if idle_list is empty.
  643. */
  644. if (list_empty(&pool->idle_list))
  645. return false;
  646. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  647. }
  648. /*
  649. * Wake up functions.
  650. */
  651. /* Return the first worker. Safe with preemption disabled */
  652. static struct worker *first_worker(struct worker_pool *pool)
  653. {
  654. if (unlikely(list_empty(&pool->idle_list)))
  655. return NULL;
  656. return list_first_entry(&pool->idle_list, struct worker, entry);
  657. }
  658. /**
  659. * wake_up_worker - wake up an idle worker
  660. * @pool: worker pool to wake worker from
  661. *
  662. * Wake up the first idle worker of @pool.
  663. *
  664. * CONTEXT:
  665. * spin_lock_irq(pool->lock).
  666. */
  667. static void wake_up_worker(struct worker_pool *pool)
  668. {
  669. struct worker *worker = first_worker(pool);
  670. if (likely(worker))
  671. wake_up_process(worker->task);
  672. }
  673. /**
  674. * wq_worker_waking_up - a worker is waking up
  675. * @task: task waking up
  676. * @cpu: CPU @task is waking up to
  677. *
  678. * This function is called during try_to_wake_up() when a worker is
  679. * being awoken.
  680. *
  681. * CONTEXT:
  682. * spin_lock_irq(rq->lock)
  683. */
  684. void wq_worker_waking_up(struct task_struct *task, int cpu)
  685. {
  686. struct worker *worker = kthread_data(task);
  687. if (!(worker->flags & WORKER_NOT_RUNNING)) {
  688. WARN_ON_ONCE(worker->pool->cpu != cpu);
  689. atomic_inc(&worker->pool->nr_running);
  690. }
  691. }
  692. /**
  693. * wq_worker_sleeping - a worker is going to sleep
  694. * @task: task going to sleep
  695. * @cpu: CPU in question, must be the current CPU number
  696. *
  697. * This function is called during schedule() when a busy worker is
  698. * going to sleep. Worker on the same cpu can be woken up by
  699. * returning pointer to its task.
  700. *
  701. * CONTEXT:
  702. * spin_lock_irq(rq->lock)
  703. *
  704. * RETURNS:
  705. * Worker task on @cpu to wake up, %NULL if none.
  706. */
  707. struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
  708. {
  709. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  710. struct worker_pool *pool;
  711. /*
  712. * Rescuers, which may not have all the fields set up like normal
  713. * workers, also reach here, let's not access anything before
  714. * checking NOT_RUNNING.
  715. */
  716. if (worker->flags & WORKER_NOT_RUNNING)
  717. return NULL;
  718. pool = worker->pool;
  719. /* this can only happen on the local cpu */
  720. if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
  721. return NULL;
  722. /*
  723. * The counterpart of the following dec_and_test, implied mb,
  724. * worklist not empty test sequence is in insert_work().
  725. * Please read comment there.
  726. *
  727. * NOT_RUNNING is clear. This means that we're bound to and
  728. * running on the local cpu w/ rq lock held and preemption
  729. * disabled, which in turn means that none else could be
  730. * manipulating idle_list, so dereferencing idle_list without pool
  731. * lock is safe.
  732. */
  733. if (atomic_dec_and_test(&pool->nr_running) &&
  734. !list_empty(&pool->worklist))
  735. to_wakeup = first_worker(pool);
  736. return to_wakeup ? to_wakeup->task : NULL;
  737. }
  738. /**
  739. * worker_set_flags - set worker flags and adjust nr_running accordingly
  740. * @worker: self
  741. * @flags: flags to set
  742. * @wakeup: wakeup an idle worker if necessary
  743. *
  744. * Set @flags in @worker->flags and adjust nr_running accordingly. If
  745. * nr_running becomes zero and @wakeup is %true, an idle worker is
  746. * woken up.
  747. *
  748. * CONTEXT:
  749. * spin_lock_irq(pool->lock)
  750. */
  751. static inline void worker_set_flags(struct worker *worker, unsigned int flags,
  752. bool wakeup)
  753. {
  754. struct worker_pool *pool = worker->pool;
  755. WARN_ON_ONCE(worker->task != current);
  756. /*
  757. * If transitioning into NOT_RUNNING, adjust nr_running and
  758. * wake up an idle worker as necessary if requested by
  759. * @wakeup.
  760. */
  761. if ((flags & WORKER_NOT_RUNNING) &&
  762. !(worker->flags & WORKER_NOT_RUNNING)) {
  763. if (wakeup) {
  764. if (atomic_dec_and_test(&pool->nr_running) &&
  765. !list_empty(&pool->worklist))
  766. wake_up_worker(pool);
  767. } else
  768. atomic_dec(&pool->nr_running);
  769. }
  770. worker->flags |= flags;
  771. }
  772. /**
  773. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  774. * @worker: self
  775. * @flags: flags to clear
  776. *
  777. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  778. *
  779. * CONTEXT:
  780. * spin_lock_irq(pool->lock)
  781. */
  782. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  783. {
  784. struct worker_pool *pool = worker->pool;
  785. unsigned int oflags = worker->flags;
  786. WARN_ON_ONCE(worker->task != current);
  787. worker->flags &= ~flags;
  788. /*
  789. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  790. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  791. * of multiple flags, not a single flag.
  792. */
  793. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  794. if (!(worker->flags & WORKER_NOT_RUNNING))
  795. atomic_inc(&pool->nr_running);
  796. }
  797. /**
  798. * find_worker_executing_work - find worker which is executing a work
  799. * @pool: pool of interest
  800. * @work: work to find worker for
  801. *
  802. * Find a worker which is executing @work on @pool by searching
  803. * @pool->busy_hash which is keyed by the address of @work. For a worker
  804. * to match, its current execution should match the address of @work and
  805. * its work function. This is to avoid unwanted dependency between
  806. * unrelated work executions through a work item being recycled while still
  807. * being executed.
  808. *
  809. * This is a bit tricky. A work item may be freed once its execution
  810. * starts and nothing prevents the freed area from being recycled for
  811. * another work item. If the same work item address ends up being reused
  812. * before the original execution finishes, workqueue will identify the
  813. * recycled work item as currently executing and make it wait until the
  814. * current execution finishes, introducing an unwanted dependency.
  815. *
  816. * This function checks the work item address and work function to avoid
  817. * false positives. Note that this isn't complete as one may construct a
  818. * work function which can introduce dependency onto itself through a
  819. * recycled work item. Well, if somebody wants to shoot oneself in the
  820. * foot that badly, there's only so much we can do, and if such deadlock
  821. * actually occurs, it should be easy to locate the culprit work function.
  822. *
  823. * CONTEXT:
  824. * spin_lock_irq(pool->lock).
  825. *
  826. * RETURNS:
  827. * Pointer to worker which is executing @work if found, NULL
  828. * otherwise.
  829. */
  830. static struct worker *find_worker_executing_work(struct worker_pool *pool,
  831. struct work_struct *work)
  832. {
  833. struct worker *worker;
  834. hash_for_each_possible(pool->busy_hash, worker, hentry,
  835. (unsigned long)work)
  836. if (worker->current_work == work &&
  837. worker->current_func == work->func)
  838. return worker;
  839. return NULL;
  840. }
  841. /**
  842. * move_linked_works - move linked works to a list
  843. * @work: start of series of works to be scheduled
  844. * @head: target list to append @work to
  845. * @nextp: out paramter for nested worklist walking
  846. *
  847. * Schedule linked works starting from @work to @head. Work series to
  848. * be scheduled starts at @work and includes any consecutive work with
  849. * WORK_STRUCT_LINKED set in its predecessor.
  850. *
  851. * If @nextp is not NULL, it's updated to point to the next work of
  852. * the last scheduled work. This allows move_linked_works() to be
  853. * nested inside outer list_for_each_entry_safe().
  854. *
  855. * CONTEXT:
  856. * spin_lock_irq(pool->lock).
  857. */
  858. static void move_linked_works(struct work_struct *work, struct list_head *head,
  859. struct work_struct **nextp)
  860. {
  861. struct work_struct *n;
  862. /*
  863. * Linked worklist will always end before the end of the list,
  864. * use NULL for list head.
  865. */
  866. list_for_each_entry_safe_from(work, n, NULL, entry) {
  867. list_move_tail(&work->entry, head);
  868. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  869. break;
  870. }
  871. /*
  872. * If we're already inside safe list traversal and have moved
  873. * multiple works to the scheduled queue, the next position
  874. * needs to be updated.
  875. */
  876. if (nextp)
  877. *nextp = n;
  878. }
  879. /**
  880. * get_pwq - get an extra reference on the specified pool_workqueue
  881. * @pwq: pool_workqueue to get
  882. *
  883. * Obtain an extra reference on @pwq. The caller should guarantee that
  884. * @pwq has positive refcnt and be holding the matching pool->lock.
  885. */
  886. static void get_pwq(struct pool_workqueue *pwq)
  887. {
  888. lockdep_assert_held(&pwq->pool->lock);
  889. WARN_ON_ONCE(pwq->refcnt <= 0);
  890. pwq->refcnt++;
  891. }
  892. /**
  893. * put_pwq - put a pool_workqueue reference
  894. * @pwq: pool_workqueue to put
  895. *
  896. * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
  897. * destruction. The caller should be holding the matching pool->lock.
  898. */
  899. static void put_pwq(struct pool_workqueue *pwq)
  900. {
  901. lockdep_assert_held(&pwq->pool->lock);
  902. if (likely(--pwq->refcnt))
  903. return;
  904. if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
  905. return;
  906. /*
  907. * @pwq can't be released under pool->lock, bounce to
  908. * pwq_unbound_release_workfn(). This never recurses on the same
  909. * pool->lock as this path is taken only for unbound workqueues and
  910. * the release work item is scheduled on a per-cpu workqueue. To
  911. * avoid lockdep warning, unbound pool->locks are given lockdep
  912. * subclass of 1 in get_unbound_pool().
  913. */
  914. schedule_work(&pwq->unbound_release_work);
  915. }
  916. /**
  917. * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
  918. * @pwq: pool_workqueue to put (can be %NULL)
  919. *
  920. * put_pwq() with locking. This function also allows %NULL @pwq.
  921. */
  922. static void put_pwq_unlocked(struct pool_workqueue *pwq)
  923. {
  924. if (pwq) {
  925. /*
  926. * As both pwqs and pools are sched-RCU protected, the
  927. * following lock operations are safe.
  928. */
  929. spin_lock_irq(&pwq->pool->lock);
  930. put_pwq(pwq);
  931. spin_unlock_irq(&pwq->pool->lock);
  932. }
  933. }
  934. static void pwq_activate_delayed_work(struct work_struct *work)
  935. {
  936. struct pool_workqueue *pwq = get_work_pwq(work);
  937. trace_workqueue_activate_work(work);
  938. move_linked_works(work, &pwq->pool->worklist, NULL);
  939. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  940. pwq->nr_active++;
  941. }
  942. static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
  943. {
  944. struct work_struct *work = list_first_entry(&pwq->delayed_works,
  945. struct work_struct, entry);
  946. pwq_activate_delayed_work(work);
  947. }
  948. /**
  949. * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
  950. * @pwq: pwq of interest
  951. * @color: color of work which left the queue
  952. *
  953. * A work either has completed or is removed from pending queue,
  954. * decrement nr_in_flight of its pwq and handle workqueue flushing.
  955. *
  956. * CONTEXT:
  957. * spin_lock_irq(pool->lock).
  958. */
  959. static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
  960. {
  961. /* uncolored work items don't participate in flushing or nr_active */
  962. if (color == WORK_NO_COLOR)
  963. goto out_put;
  964. pwq->nr_in_flight[color]--;
  965. pwq->nr_active--;
  966. if (!list_empty(&pwq->delayed_works)) {
  967. /* one down, submit a delayed one */
  968. if (pwq->nr_active < pwq->max_active)
  969. pwq_activate_first_delayed(pwq);
  970. }
  971. /* is flush in progress and are we at the flushing tip? */
  972. if (likely(pwq->flush_color != color))
  973. goto out_put;
  974. /* are there still in-flight works? */
  975. if (pwq->nr_in_flight[color])
  976. goto out_put;
  977. /* this pwq is done, clear flush_color */
  978. pwq->flush_color = -1;
  979. /*
  980. * If this was the last pwq, wake up the first flusher. It
  981. * will handle the rest.
  982. */
  983. if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
  984. complete(&pwq->wq->first_flusher->done);
  985. out_put:
  986. put_pwq(pwq);
  987. }
  988. /**
  989. * try_to_grab_pending - steal work item from worklist and disable irq
  990. * @work: work item to steal
  991. * @is_dwork: @work is a delayed_work
  992. * @flags: place to store irq state
  993. *
  994. * Try to grab PENDING bit of @work. This function can handle @work in any
  995. * stable state - idle, on timer or on worklist. Return values are
  996. *
  997. * 1 if @work was pending and we successfully stole PENDING
  998. * 0 if @work was idle and we claimed PENDING
  999. * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
  1000. * -ENOENT if someone else is canceling @work, this state may persist
  1001. * for arbitrarily long
  1002. *
  1003. * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
  1004. * interrupted while holding PENDING and @work off queue, irq must be
  1005. * disabled on entry. This, combined with delayed_work->timer being
  1006. * irqsafe, ensures that we return -EAGAIN for finite short period of time.
  1007. *
  1008. * On successful return, >= 0, irq is disabled and the caller is
  1009. * responsible for releasing it using local_irq_restore(*@flags).
  1010. *
  1011. * This function is safe to call from any context including IRQ handler.
  1012. */
  1013. static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
  1014. unsigned long *flags)
  1015. {
  1016. struct worker_pool *pool;
  1017. struct pool_workqueue *pwq;
  1018. local_irq_save(*flags);
  1019. /* try to steal the timer if it exists */
  1020. if (is_dwork) {
  1021. struct delayed_work *dwork = to_delayed_work(work);
  1022. /*
  1023. * dwork->timer is irqsafe. If del_timer() fails, it's
  1024. * guaranteed that the timer is not queued anywhere and not
  1025. * running on the local CPU.
  1026. */
  1027. if (likely(del_timer(&dwork->timer)))
  1028. return 1;
  1029. }
  1030. /* try to claim PENDING the normal way */
  1031. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  1032. return 0;
  1033. /*
  1034. * The queueing is in progress, or it is already queued. Try to
  1035. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  1036. */
  1037. pool = get_work_pool(work);
  1038. if (!pool)
  1039. goto fail;
  1040. spin_lock(&pool->lock);
  1041. /*
  1042. * work->data is guaranteed to point to pwq only while the work
  1043. * item is queued on pwq->wq, and both updating work->data to point
  1044. * to pwq on queueing and to pool on dequeueing are done under
  1045. * pwq->pool->lock. This in turn guarantees that, if work->data
  1046. * points to pwq which is associated with a locked pool, the work
  1047. * item is currently queued on that pool.
  1048. */
  1049. pwq = get_work_pwq(work);
  1050. if (pwq && pwq->pool == pool) {
  1051. debug_work_deactivate(work);
  1052. /*
  1053. * A delayed work item cannot be grabbed directly because
  1054. * it might have linked NO_COLOR work items which, if left
  1055. * on the delayed_list, will confuse pwq->nr_active
  1056. * management later on and cause stall. Make sure the work
  1057. * item is activated before grabbing.
  1058. */
  1059. if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
  1060. pwq_activate_delayed_work(work);
  1061. list_del_init(&work->entry);
  1062. pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
  1063. /* work->data points to pwq iff queued, point to pool */
  1064. set_work_pool_and_keep_pending(work, pool->id);
  1065. spin_unlock(&pool->lock);
  1066. return 1;
  1067. }
  1068. spin_unlock(&pool->lock);
  1069. fail:
  1070. local_irq_restore(*flags);
  1071. if (work_is_canceling(work))
  1072. return -ENOENT;
  1073. cpu_relax();
  1074. return -EAGAIN;
  1075. }
  1076. /**
  1077. * insert_work - insert a work into a pool
  1078. * @pwq: pwq @work belongs to
  1079. * @work: work to insert
  1080. * @head: insertion point
  1081. * @extra_flags: extra WORK_STRUCT_* flags to set
  1082. *
  1083. * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
  1084. * work_struct flags.
  1085. *
  1086. * CONTEXT:
  1087. * spin_lock_irq(pool->lock).
  1088. */
  1089. static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
  1090. struct list_head *head, unsigned int extra_flags)
  1091. {
  1092. struct worker_pool *pool = pwq->pool;
  1093. /* we own @work, set data and link */
  1094. set_work_pwq(work, pwq, extra_flags);
  1095. list_add_tail(&work->entry, head);
  1096. get_pwq(pwq);
  1097. /*
  1098. * Ensure either wq_worker_sleeping() sees the above
  1099. * list_add_tail() or we see zero nr_running to avoid workers lying
  1100. * around lazily while there are works to be processed.
  1101. */
  1102. smp_mb();
  1103. if (__need_more_worker(pool))
  1104. wake_up_worker(pool);
  1105. }
  1106. /*
  1107. * Test whether @work is being queued from another work executing on the
  1108. * same workqueue.
  1109. */
  1110. static bool is_chained_work(struct workqueue_struct *wq)
  1111. {
  1112. struct worker *worker;
  1113. worker = current_wq_worker();
  1114. /*
  1115. * Return %true iff I'm a worker execuing a work item on @wq. If
  1116. * I'm @worker, it's safe to dereference it without locking.
  1117. */
  1118. return worker && worker->current_pwq->wq == wq;
  1119. }
  1120. static void __queue_work(int cpu, struct workqueue_struct *wq,
  1121. struct work_struct *work)
  1122. {
  1123. struct pool_workqueue *pwq;
  1124. struct worker_pool *last_pool;
  1125. struct list_head *worklist;
  1126. unsigned int work_flags;
  1127. unsigned int req_cpu = cpu;
  1128. /*
  1129. * While a work item is PENDING && off queue, a task trying to
  1130. * steal the PENDING will busy-loop waiting for it to either get
  1131. * queued or lose PENDING. Grabbing PENDING and queueing should
  1132. * happen with IRQ disabled.
  1133. */
  1134. WARN_ON_ONCE(!irqs_disabled());
  1135. debug_work_activate(work);
  1136. /* if dying, only works from the same workqueue are allowed */
  1137. if (unlikely(wq->flags & __WQ_DRAINING) &&
  1138. WARN_ON_ONCE(!is_chained_work(wq)))
  1139. return;
  1140. retry:
  1141. if (req_cpu == WORK_CPU_UNBOUND)
  1142. cpu = raw_smp_processor_id();
  1143. /* pwq which will be used unless @work is executing elsewhere */
  1144. if (!(wq->flags & WQ_UNBOUND))
  1145. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  1146. else
  1147. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  1148. /*
  1149. * If @work was previously on a different pool, it might still be
  1150. * running there, in which case the work needs to be queued on that
  1151. * pool to guarantee non-reentrancy.
  1152. */
  1153. last_pool = get_work_pool(work);
  1154. if (last_pool && last_pool != pwq->pool) {
  1155. struct worker *worker;
  1156. spin_lock(&last_pool->lock);
  1157. worker = find_worker_executing_work(last_pool, work);
  1158. if (worker && worker->current_pwq->wq == wq) {
  1159. pwq = worker->current_pwq;
  1160. } else {
  1161. /* meh... not running there, queue here */
  1162. spin_unlock(&last_pool->lock);
  1163. spin_lock(&pwq->pool->lock);
  1164. }
  1165. } else {
  1166. spin_lock(&pwq->pool->lock);
  1167. }
  1168. /*
  1169. * pwq is determined and locked. For unbound pools, we could have
  1170. * raced with pwq release and it could already be dead. If its
  1171. * refcnt is zero, repeat pwq selection. Note that pwqs never die
  1172. * without another pwq replacing it in the numa_pwq_tbl or while
  1173. * work items are executing on it, so the retrying is guaranteed to
  1174. * make forward-progress.
  1175. */
  1176. if (unlikely(!pwq->refcnt)) {
  1177. if (wq->flags & WQ_UNBOUND) {
  1178. spin_unlock(&pwq->pool->lock);
  1179. cpu_relax();
  1180. goto retry;
  1181. }
  1182. /* oops */
  1183. WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
  1184. wq->name, cpu);
  1185. }
  1186. /* pwq determined, queue */
  1187. trace_workqueue_queue_work(req_cpu, pwq, work);
  1188. if (WARN_ON(!list_empty(&work->entry))) {
  1189. spin_unlock(&pwq->pool->lock);
  1190. return;
  1191. }
  1192. pwq->nr_in_flight[pwq->work_color]++;
  1193. work_flags = work_color_to_flags(pwq->work_color);
  1194. if (likely(pwq->nr_active < pwq->max_active)) {
  1195. trace_workqueue_activate_work(work);
  1196. pwq->nr_active++;
  1197. worklist = &pwq->pool->worklist;
  1198. } else {
  1199. work_flags |= WORK_STRUCT_DELAYED;
  1200. worklist = &pwq->delayed_works;
  1201. }
  1202. insert_work(pwq, work, worklist, work_flags);
  1203. spin_unlock(&pwq->pool->lock);
  1204. }
  1205. /**
  1206. * queue_work_on - queue work on specific cpu
  1207. * @cpu: CPU number to execute work on
  1208. * @wq: workqueue to use
  1209. * @work: work to queue
  1210. *
  1211. * Returns %false if @work was already on a queue, %true otherwise.
  1212. *
  1213. * We queue the work to a specific CPU, the caller must ensure it
  1214. * can't go away.
  1215. */
  1216. bool queue_work_on(int cpu, struct workqueue_struct *wq,
  1217. struct work_struct *work)
  1218. {
  1219. bool ret = false;
  1220. unsigned long flags;
  1221. local_irq_save(flags);
  1222. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1223. __queue_work(cpu, wq, work);
  1224. ret = true;
  1225. }
  1226. local_irq_restore(flags);
  1227. return ret;
  1228. }
  1229. EXPORT_SYMBOL_GPL(queue_work_on);
  1230. void delayed_work_timer_fn(unsigned long __data)
  1231. {
  1232. struct delayed_work *dwork = (struct delayed_work *)__data;
  1233. /* should have been called from irqsafe timer with irq already off */
  1234. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  1235. }
  1236. EXPORT_SYMBOL(delayed_work_timer_fn);
  1237. static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
  1238. struct delayed_work *dwork, unsigned long delay)
  1239. {
  1240. struct timer_list *timer = &dwork->timer;
  1241. struct work_struct *work = &dwork->work;
  1242. WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
  1243. timer->data != (unsigned long)dwork);
  1244. WARN_ON_ONCE(timer_pending(timer));
  1245. WARN_ON_ONCE(!list_empty(&work->entry));
  1246. /*
  1247. * If @delay is 0, queue @dwork->work immediately. This is for
  1248. * both optimization and correctness. The earliest @timer can
  1249. * expire is on the closest next tick and delayed_work users depend
  1250. * on that there's no such delay when @delay is 0.
  1251. */
  1252. if (!delay) {
  1253. __queue_work(cpu, wq, &dwork->work);
  1254. return;
  1255. }
  1256. timer_stats_timer_set_start_info(&dwork->timer);
  1257. dwork->wq = wq;
  1258. dwork->cpu = cpu;
  1259. timer->expires = jiffies + delay;
  1260. if (unlikely(cpu != WORK_CPU_UNBOUND))
  1261. add_timer_on(timer, cpu);
  1262. else
  1263. add_timer(timer);
  1264. }
  1265. /**
  1266. * queue_delayed_work_on - queue work on specific CPU after delay
  1267. * @cpu: CPU number to execute work on
  1268. * @wq: workqueue to use
  1269. * @dwork: work to queue
  1270. * @delay: number of jiffies to wait before queueing
  1271. *
  1272. * Returns %false if @work was already on a queue, %true otherwise. If
  1273. * @delay is zero and @dwork is idle, it will be scheduled for immediate
  1274. * execution.
  1275. */
  1276. bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1277. struct delayed_work *dwork, unsigned long delay)
  1278. {
  1279. struct work_struct *work = &dwork->work;
  1280. bool ret = false;
  1281. unsigned long flags;
  1282. /* read the comment in __queue_work() */
  1283. local_irq_save(flags);
  1284. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1285. __queue_delayed_work(cpu, wq, dwork, delay);
  1286. ret = true;
  1287. }
  1288. local_irq_restore(flags);
  1289. return ret;
  1290. }
  1291. EXPORT_SYMBOL_GPL(queue_delayed_work_on);
  1292. /**
  1293. * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
  1294. * @cpu: CPU number to execute work on
  1295. * @wq: workqueue to use
  1296. * @dwork: work to queue
  1297. * @delay: number of jiffies to wait before queueing
  1298. *
  1299. * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
  1300. * modify @dwork's timer so that it expires after @delay. If @delay is
  1301. * zero, @work is guaranteed to be scheduled immediately regardless of its
  1302. * current state.
  1303. *
  1304. * Returns %false if @dwork was idle and queued, %true if @dwork was
  1305. * pending and its timer was modified.
  1306. *
  1307. * This function is safe to call from any context including IRQ handler.
  1308. * See try_to_grab_pending() for details.
  1309. */
  1310. bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1311. struct delayed_work *dwork, unsigned long delay)
  1312. {
  1313. unsigned long flags;
  1314. int ret;
  1315. do {
  1316. ret = try_to_grab_pending(&dwork->work, true, &flags);
  1317. } while (unlikely(ret == -EAGAIN));
  1318. if (likely(ret >= 0)) {
  1319. __queue_delayed_work(cpu, wq, dwork, delay);
  1320. local_irq_restore(flags);
  1321. }
  1322. /* -ENOENT from try_to_grab_pending() becomes %true */
  1323. return ret;
  1324. }
  1325. EXPORT_SYMBOL_GPL(mod_delayed_work_on);
  1326. /**
  1327. * worker_enter_idle - enter idle state
  1328. * @worker: worker which is entering idle state
  1329. *
  1330. * @worker is entering idle state. Update stats and idle timer if
  1331. * necessary.
  1332. *
  1333. * LOCKING:
  1334. * spin_lock_irq(pool->lock).
  1335. */
  1336. static void worker_enter_idle(struct worker *worker)
  1337. {
  1338. struct worker_pool *pool = worker->pool;
  1339. if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
  1340. WARN_ON_ONCE(!list_empty(&worker->entry) &&
  1341. (worker->hentry.next || worker->hentry.pprev)))
  1342. return;
  1343. /* can't use worker_set_flags(), also called from start_worker() */
  1344. worker->flags |= WORKER_IDLE;
  1345. pool->nr_idle++;
  1346. worker->last_active = jiffies;
  1347. /* idle_list is LIFO */
  1348. list_add(&worker->entry, &pool->idle_list);
  1349. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1350. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1351. /*
  1352. * Sanity check nr_running. Because wq_unbind_fn() releases
  1353. * pool->lock between setting %WORKER_UNBOUND and zapping
  1354. * nr_running, the warning may trigger spuriously. Check iff
  1355. * unbind is not in progress.
  1356. */
  1357. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1358. pool->nr_workers == pool->nr_idle &&
  1359. atomic_read(&pool->nr_running));
  1360. }
  1361. /**
  1362. * worker_leave_idle - leave idle state
  1363. * @worker: worker which is leaving idle state
  1364. *
  1365. * @worker is leaving idle state. Update stats.
  1366. *
  1367. * LOCKING:
  1368. * spin_lock_irq(pool->lock).
  1369. */
  1370. static void worker_leave_idle(struct worker *worker)
  1371. {
  1372. struct worker_pool *pool = worker->pool;
  1373. if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
  1374. return;
  1375. worker_clr_flags(worker, WORKER_IDLE);
  1376. pool->nr_idle--;
  1377. list_del_init(&worker->entry);
  1378. }
  1379. /**
  1380. * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
  1381. * @pool: target worker_pool
  1382. *
  1383. * Bind %current to the cpu of @pool if it is associated and lock @pool.
  1384. *
  1385. * Works which are scheduled while the cpu is online must at least be
  1386. * scheduled to a worker which is bound to the cpu so that if they are
  1387. * flushed from cpu callbacks while cpu is going down, they are
  1388. * guaranteed to execute on the cpu.
  1389. *
  1390. * This function is to be used by unbound workers and rescuers to bind
  1391. * themselves to the target cpu and may race with cpu going down or
  1392. * coming online. kthread_bind() can't be used because it may put the
  1393. * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
  1394. * verbatim as it's best effort and blocking and pool may be
  1395. * [dis]associated in the meantime.
  1396. *
  1397. * This function tries set_cpus_allowed() and locks pool and verifies the
  1398. * binding against %POOL_DISASSOCIATED which is set during
  1399. * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
  1400. * enters idle state or fetches works without dropping lock, it can
  1401. * guarantee the scheduling requirement described in the first paragraph.
  1402. *
  1403. * CONTEXT:
  1404. * Might sleep. Called without any lock but returns with pool->lock
  1405. * held.
  1406. *
  1407. * RETURNS:
  1408. * %true if the associated pool is online (@worker is successfully
  1409. * bound), %false if offline.
  1410. */
  1411. static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
  1412. __acquires(&pool->lock)
  1413. {
  1414. while (true) {
  1415. /*
  1416. * The following call may fail, succeed or succeed
  1417. * without actually migrating the task to the cpu if
  1418. * it races with cpu hotunplug operation. Verify
  1419. * against POOL_DISASSOCIATED.
  1420. */
  1421. if (!(pool->flags & POOL_DISASSOCIATED))
  1422. set_cpus_allowed_ptr(current, pool->attrs->cpumask);
  1423. spin_lock_irq(&pool->lock);
  1424. if (pool->flags & POOL_DISASSOCIATED)
  1425. return false;
  1426. if (task_cpu(current) == pool->cpu &&
  1427. cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
  1428. return true;
  1429. spin_unlock_irq(&pool->lock);
  1430. /*
  1431. * We've raced with CPU hot[un]plug. Give it a breather
  1432. * and retry migration. cond_resched() is required here;
  1433. * otherwise, we might deadlock against cpu_stop trying to
  1434. * bring down the CPU on non-preemptive kernel.
  1435. */
  1436. cpu_relax();
  1437. cond_resched();
  1438. }
  1439. }
  1440. static struct worker *alloc_worker(void)
  1441. {
  1442. struct worker *worker;
  1443. worker = kzalloc(sizeof(*worker), GFP_KERNEL);
  1444. if (worker) {
  1445. INIT_LIST_HEAD(&worker->entry);
  1446. INIT_LIST_HEAD(&worker->scheduled);
  1447. /* on creation a worker is in !idle && prep state */
  1448. worker->flags = WORKER_PREP;
  1449. }
  1450. return worker;
  1451. }
  1452. /**
  1453. * create_worker - create a new workqueue worker
  1454. * @pool: pool the new worker will belong to
  1455. *
  1456. * Create a new worker which is bound to @pool. The returned worker
  1457. * can be started by calling start_worker() or destroyed using
  1458. * destroy_worker().
  1459. *
  1460. * CONTEXT:
  1461. * Might sleep. Does GFP_KERNEL allocations.
  1462. *
  1463. * RETURNS:
  1464. * Pointer to the newly created worker.
  1465. */
  1466. static struct worker *create_worker(struct worker_pool *pool)
  1467. {
  1468. struct worker *worker = NULL;
  1469. int id = -1;
  1470. char id_buf[16];
  1471. lockdep_assert_held(&pool->manager_mutex);
  1472. /*
  1473. * ID is needed to determine kthread name. Allocate ID first
  1474. * without installing the pointer.
  1475. */
  1476. idr_preload(GFP_KERNEL);
  1477. spin_lock_irq(&pool->lock);
  1478. id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
  1479. spin_unlock_irq(&pool->lock);
  1480. idr_preload_end();
  1481. if (id < 0)
  1482. goto fail;
  1483. worker = alloc_worker();
  1484. if (!worker)
  1485. goto fail;
  1486. worker->pool = pool;
  1487. worker->id = id;
  1488. if (pool->cpu >= 0)
  1489. snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
  1490. pool->attrs->nice < 0 ? "H" : "");
  1491. else
  1492. snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
  1493. worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
  1494. "kworker/%s", id_buf);
  1495. if (IS_ERR(worker->task))
  1496. goto fail;
  1497. /*
  1498. * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
  1499. * online CPUs. It'll be re-applied when any of the CPUs come up.
  1500. */
  1501. set_user_nice(worker->task, pool->attrs->nice);
  1502. set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
  1503. /* prevent userland from meddling with cpumask of workqueue workers */
  1504. worker->task->flags |= PF_NO_SETAFFINITY;
  1505. /*
  1506. * The caller is responsible for ensuring %POOL_DISASSOCIATED
  1507. * remains stable across this function. See the comments above the
  1508. * flag definition for details.
  1509. */
  1510. if (pool->flags & POOL_DISASSOCIATED)
  1511. worker->flags |= WORKER_UNBOUND;
  1512. /* successful, commit the pointer to idr */
  1513. spin_lock_irq(&pool->lock);
  1514. idr_replace(&pool->worker_idr, worker, worker->id);
  1515. spin_unlock_irq(&pool->lock);
  1516. return worker;
  1517. fail:
  1518. if (id >= 0) {
  1519. spin_lock_irq(&pool->lock);
  1520. idr_remove(&pool->worker_idr, id);
  1521. spin_unlock_irq(&pool->lock);
  1522. }
  1523. kfree(worker);
  1524. return NULL;
  1525. }
  1526. /**
  1527. * start_worker - start a newly created worker
  1528. * @worker: worker to start
  1529. *
  1530. * Make the pool aware of @worker and start it.
  1531. *
  1532. * CONTEXT:
  1533. * spin_lock_irq(pool->lock).
  1534. */
  1535. static void start_worker(struct worker *worker)
  1536. {
  1537. worker->flags |= WORKER_STARTED;
  1538. worker->pool->nr_workers++;
  1539. worker_enter_idle(worker);
  1540. wake_up_process(worker->task);
  1541. }
  1542. /**
  1543. * create_and_start_worker - create and start a worker for a pool
  1544. * @pool: the target pool
  1545. *
  1546. * Grab the managership of @pool and create and start a new worker for it.
  1547. */
  1548. static int create_and_start_worker(struct worker_pool *pool)
  1549. {
  1550. struct worker *worker;
  1551. mutex_lock(&pool->manager_mutex);
  1552. worker = create_worker(pool);
  1553. if (worker) {
  1554. spin_lock_irq(&pool->lock);
  1555. start_worker(worker);
  1556. spin_unlock_irq(&pool->lock);
  1557. }
  1558. mutex_unlock(&pool->manager_mutex);
  1559. return worker ? 0 : -ENOMEM;
  1560. }
  1561. /**
  1562. * destroy_worker - destroy a workqueue worker
  1563. * @worker: worker to be destroyed
  1564. *
  1565. * Destroy @worker and adjust @pool stats accordingly.
  1566. *
  1567. * CONTEXT:
  1568. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1569. */
  1570. static void destroy_worker(struct worker *worker)
  1571. {
  1572. struct worker_pool *pool = worker->pool;
  1573. lockdep_assert_held(&pool->manager_mutex);
  1574. lockdep_assert_held(&pool->lock);
  1575. /* sanity check frenzy */
  1576. if (WARN_ON(worker->current_work) ||
  1577. WARN_ON(!list_empty(&worker->scheduled)))
  1578. return;
  1579. if (worker->flags & WORKER_STARTED)
  1580. pool->nr_workers--;
  1581. if (worker->flags & WORKER_IDLE)
  1582. pool->nr_idle--;
  1583. list_del_init(&worker->entry);
  1584. worker->flags |= WORKER_DIE;
  1585. idr_remove(&pool->worker_idr, worker->id);
  1586. spin_unlock_irq(&pool->lock);
  1587. kthread_stop(worker->task);
  1588. kfree(worker);
  1589. spin_lock_irq(&pool->lock);
  1590. }
  1591. static void idle_worker_timeout(unsigned long __pool)
  1592. {
  1593. struct worker_pool *pool = (void *)__pool;
  1594. spin_lock_irq(&pool->lock);
  1595. if (too_many_workers(pool)) {
  1596. struct worker *worker;
  1597. unsigned long expires;
  1598. /* idle_list is kept in LIFO order, check the last one */
  1599. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1600. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1601. if (time_before(jiffies, expires))
  1602. mod_timer(&pool->idle_timer, expires);
  1603. else {
  1604. /* it's been idle for too long, wake up manager */
  1605. pool->flags |= POOL_MANAGE_WORKERS;
  1606. wake_up_worker(pool);
  1607. }
  1608. }
  1609. spin_unlock_irq(&pool->lock);
  1610. }
  1611. static void send_mayday(struct work_struct *work)
  1612. {
  1613. struct pool_workqueue *pwq = get_work_pwq(work);
  1614. struct workqueue_struct *wq = pwq->wq;
  1615. lockdep_assert_held(&wq_mayday_lock);
  1616. if (!wq->rescuer)
  1617. return;
  1618. /* mayday mayday mayday */
  1619. if (list_empty(&pwq->mayday_node)) {
  1620. list_add_tail(&pwq->mayday_node, &wq->maydays);
  1621. wake_up_process(wq->rescuer->task);
  1622. }
  1623. }
  1624. static void pool_mayday_timeout(unsigned long __pool)
  1625. {
  1626. struct worker_pool *pool = (void *)__pool;
  1627. struct work_struct *work;
  1628. spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
  1629. spin_lock(&pool->lock);
  1630. if (need_to_create_worker(pool)) {
  1631. /*
  1632. * We've been trying to create a new worker but
  1633. * haven't been successful. We might be hitting an
  1634. * allocation deadlock. Send distress signals to
  1635. * rescuers.
  1636. */
  1637. list_for_each_entry(work, &pool->worklist, entry)
  1638. send_mayday(work);
  1639. }
  1640. spin_unlock(&pool->lock);
  1641. spin_unlock_irq(&wq_mayday_lock);
  1642. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1643. }
  1644. /**
  1645. * maybe_create_worker - create a new worker if necessary
  1646. * @pool: pool to create a new worker for
  1647. *
  1648. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1649. * have at least one idle worker on return from this function. If
  1650. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1651. * sent to all rescuers with works scheduled on @pool to resolve
  1652. * possible allocation deadlock.
  1653. *
  1654. * On return, need_to_create_worker() is guaranteed to be %false and
  1655. * may_start_working() %true.
  1656. *
  1657. * LOCKING:
  1658. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1659. * multiple times. Does GFP_KERNEL allocations. Called only from
  1660. * manager.
  1661. *
  1662. * RETURNS:
  1663. * %false if no action was taken and pool->lock stayed locked, %true
  1664. * otherwise.
  1665. */
  1666. static bool maybe_create_worker(struct worker_pool *pool)
  1667. __releases(&pool->lock)
  1668. __acquires(&pool->lock)
  1669. {
  1670. if (!need_to_create_worker(pool))
  1671. return false;
  1672. restart:
  1673. spin_unlock_irq(&pool->lock);
  1674. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1675. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1676. while (true) {
  1677. struct worker *worker;
  1678. worker = create_worker(pool);
  1679. if (worker) {
  1680. del_timer_sync(&pool->mayday_timer);
  1681. spin_lock_irq(&pool->lock);
  1682. start_worker(worker);
  1683. if (WARN_ON_ONCE(need_to_create_worker(pool)))
  1684. goto restart;
  1685. return true;
  1686. }
  1687. if (!need_to_create_worker(pool))
  1688. break;
  1689. __set_current_state(TASK_INTERRUPTIBLE);
  1690. schedule_timeout(CREATE_COOLDOWN);
  1691. if (!need_to_create_worker(pool))
  1692. break;
  1693. }
  1694. del_timer_sync(&pool->mayday_timer);
  1695. spin_lock_irq(&pool->lock);
  1696. if (need_to_create_worker(pool))
  1697. goto restart;
  1698. return true;
  1699. }
  1700. /**
  1701. * maybe_destroy_worker - destroy workers which have been idle for a while
  1702. * @pool: pool to destroy workers for
  1703. *
  1704. * Destroy @pool workers which have been idle for longer than
  1705. * IDLE_WORKER_TIMEOUT.
  1706. *
  1707. * LOCKING:
  1708. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1709. * multiple times. Called only from manager.
  1710. *
  1711. * RETURNS:
  1712. * %false if no action was taken and pool->lock stayed locked, %true
  1713. * otherwise.
  1714. */
  1715. static bool maybe_destroy_workers(struct worker_pool *pool)
  1716. {
  1717. bool ret = false;
  1718. while (too_many_workers(pool)) {
  1719. struct worker *worker;
  1720. unsigned long expires;
  1721. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1722. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1723. if (time_before(jiffies, expires)) {
  1724. mod_timer(&pool->idle_timer, expires);
  1725. break;
  1726. }
  1727. destroy_worker(worker);
  1728. ret = true;
  1729. }
  1730. return ret;
  1731. }
  1732. /**
  1733. * manage_workers - manage worker pool
  1734. * @worker: self
  1735. *
  1736. * Assume the manager role and manage the worker pool @worker belongs
  1737. * to. At any given time, there can be only zero or one manager per
  1738. * pool. The exclusion is handled automatically by this function.
  1739. *
  1740. * The caller can safely start processing works on false return. On
  1741. * true return, it's guaranteed that need_to_create_worker() is false
  1742. * and may_start_working() is true.
  1743. *
  1744. * CONTEXT:
  1745. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1746. * multiple times. Does GFP_KERNEL allocations.
  1747. *
  1748. * RETURNS:
  1749. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1750. * multiple times. Does GFP_KERNEL allocations.
  1751. */
  1752. static bool manage_workers(struct worker *worker)
  1753. {
  1754. struct worker_pool *pool = worker->pool;
  1755. bool ret = false;
  1756. /*
  1757. * Managership is governed by two mutexes - manager_arb and
  1758. * manager_mutex. manager_arb handles arbitration of manager role.
  1759. * Anyone who successfully grabs manager_arb wins the arbitration
  1760. * and becomes the manager. mutex_trylock() on pool->manager_arb
  1761. * failure while holding pool->lock reliably indicates that someone
  1762. * else is managing the pool and the worker which failed trylock
  1763. * can proceed to executing work items. This means that anyone
  1764. * grabbing manager_arb is responsible for actually performing
  1765. * manager duties. If manager_arb is grabbed and released without
  1766. * actual management, the pool may stall indefinitely.
  1767. *
  1768. * manager_mutex is used for exclusion of actual management
  1769. * operations. The holder of manager_mutex can be sure that none
  1770. * of management operations, including creation and destruction of
  1771. * workers, won't take place until the mutex is released. Because
  1772. * manager_mutex doesn't interfere with manager role arbitration,
  1773. * it is guaranteed that the pool's management, while may be
  1774. * delayed, won't be disturbed by someone else grabbing
  1775. * manager_mutex.
  1776. */
  1777. if (!mutex_trylock(&pool->manager_arb))
  1778. return ret;
  1779. /*
  1780. * With manager arbitration won, manager_mutex would be free in
  1781. * most cases. trylock first without dropping @pool->lock.
  1782. */
  1783. if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
  1784. spin_unlock_irq(&pool->lock);
  1785. mutex_lock(&pool->manager_mutex);
  1786. ret = true;
  1787. }
  1788. pool->flags &= ~POOL_MANAGE_WORKERS;
  1789. /*
  1790. * Destroy and then create so that may_start_working() is true
  1791. * on return.
  1792. */
  1793. ret |= maybe_destroy_workers(pool);
  1794. ret |= maybe_create_worker(pool);
  1795. mutex_unlock(&pool->manager_mutex);
  1796. mutex_unlock(&pool->manager_arb);
  1797. return ret;
  1798. }
  1799. /**
  1800. * process_one_work - process single work
  1801. * @worker: self
  1802. * @work: work to process
  1803. *
  1804. * Process @work. This function contains all the logics necessary to
  1805. * process a single work including synchronization against and
  1806. * interaction with other workers on the same cpu, queueing and
  1807. * flushing. As long as context requirement is met, any worker can
  1808. * call this function to process a work.
  1809. *
  1810. * CONTEXT:
  1811. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1812. */
  1813. static void process_one_work(struct worker *worker, struct work_struct *work)
  1814. __releases(&pool->lock)
  1815. __acquires(&pool->lock)
  1816. {
  1817. struct pool_workqueue *pwq = get_work_pwq(work);
  1818. struct worker_pool *pool = worker->pool;
  1819. bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
  1820. int work_color;
  1821. struct worker *collision;
  1822. #ifdef CONFIG_LOCKDEP
  1823. /*
  1824. * It is permissible to free the struct work_struct from
  1825. * inside the function that is called from it, this we need to
  1826. * take into account for lockdep too. To avoid bogus "held
  1827. * lock freed" warnings as well as problems when looking into
  1828. * work->lockdep_map, make a copy and use that here.
  1829. */
  1830. struct lockdep_map lockdep_map;
  1831. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1832. #endif
  1833. /*
  1834. * Ensure we're on the correct CPU. DISASSOCIATED test is
  1835. * necessary to avoid spurious warnings from rescuers servicing the
  1836. * unbound or a disassociated pool.
  1837. */
  1838. WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
  1839. !(pool->flags & POOL_DISASSOCIATED) &&
  1840. raw_smp_processor_id() != pool->cpu);
  1841. /*
  1842. * A single work shouldn't be executed concurrently by
  1843. * multiple workers on a single cpu. Check whether anyone is
  1844. * already processing the work. If so, defer the work to the
  1845. * currently executing one.
  1846. */
  1847. collision = find_worker_executing_work(pool, work);
  1848. if (unlikely(collision)) {
  1849. move_linked_works(work, &collision->scheduled, NULL);
  1850. return;
  1851. }
  1852. /* claim and dequeue */
  1853. debug_work_deactivate(work);
  1854. hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
  1855. worker->current_work = work;
  1856. worker->current_func = work->func;
  1857. worker->current_pwq = pwq;
  1858. work_color = get_work_color(work);
  1859. list_del_init(&work->entry);
  1860. /*
  1861. * CPU intensive works don't participate in concurrency
  1862. * management. They're the scheduler's responsibility.
  1863. */
  1864. if (unlikely(cpu_intensive))
  1865. worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
  1866. /*
  1867. * Unbound pool isn't concurrency managed and work items should be
  1868. * executed ASAP. Wake up another worker if necessary.
  1869. */
  1870. if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
  1871. wake_up_worker(pool);
  1872. /*
  1873. * Record the last pool and clear PENDING which should be the last
  1874. * update to @work. Also, do this inside @pool->lock so that
  1875. * PENDING and queued state changes happen together while IRQ is
  1876. * disabled.
  1877. */
  1878. set_work_pool_and_clear_pending(work, pool->id);
  1879. spin_unlock_irq(&pool->lock);
  1880. lock_map_acquire_read(&pwq->wq->lockdep_map);
  1881. lock_map_acquire(&lockdep_map);
  1882. trace_workqueue_execute_start(work);
  1883. worker->current_func(work);
  1884. /*
  1885. * While we must be careful to not use "work" after this, the trace
  1886. * point will only record its address.
  1887. */
  1888. trace_workqueue_execute_end(work);
  1889. lock_map_release(&lockdep_map);
  1890. lock_map_release(&pwq->wq->lockdep_map);
  1891. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1892. pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
  1893. " last function: %pf\n",
  1894. current->comm, preempt_count(), task_pid_nr(current),
  1895. worker->current_func);
  1896. debug_show_held_locks(current);
  1897. dump_stack();
  1898. }
  1899. spin_lock_irq(&pool->lock);
  1900. /* clear cpu intensive status */
  1901. if (unlikely(cpu_intensive))
  1902. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1903. /* we're done with it, release */
  1904. hash_del(&worker->hentry);
  1905. worker->current_work = NULL;
  1906. worker->current_func = NULL;
  1907. worker->current_pwq = NULL;
  1908. worker->desc_valid = false;
  1909. pwq_dec_nr_in_flight(pwq, work_color);
  1910. }
  1911. /**
  1912. * process_scheduled_works - process scheduled works
  1913. * @worker: self
  1914. *
  1915. * Process all scheduled works. Please note that the scheduled list
  1916. * may change while processing a work, so this function repeatedly
  1917. * fetches a work from the top and executes it.
  1918. *
  1919. * CONTEXT:
  1920. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1921. * multiple times.
  1922. */
  1923. static void process_scheduled_works(struct worker *worker)
  1924. {
  1925. while (!list_empty(&worker->scheduled)) {
  1926. struct work_struct *work = list_first_entry(&worker->scheduled,
  1927. struct work_struct, entry);
  1928. process_one_work(worker, work);
  1929. }
  1930. }
  1931. /**
  1932. * worker_thread - the worker thread function
  1933. * @__worker: self
  1934. *
  1935. * The worker thread function. All workers belong to a worker_pool -
  1936. * either a per-cpu one or dynamic unbound one. These workers process all
  1937. * work items regardless of their specific target workqueue. The only
  1938. * exception is work items which belong to workqueues with a rescuer which
  1939. * will be explained in rescuer_thread().
  1940. */
  1941. static int worker_thread(void *__worker)
  1942. {
  1943. struct worker *worker = __worker;
  1944. struct worker_pool *pool = worker->pool;
  1945. /* tell the scheduler that this is a workqueue worker */
  1946. worker->task->flags |= PF_WQ_WORKER;
  1947. woke_up:
  1948. spin_lock_irq(&pool->lock);
  1949. /* am I supposed to die? */
  1950. if (unlikely(worker->flags & WORKER_DIE)) {
  1951. spin_unlock_irq(&pool->lock);
  1952. WARN_ON_ONCE(!list_empty(&worker->entry));
  1953. worker->task->flags &= ~PF_WQ_WORKER;
  1954. return 0;
  1955. }
  1956. worker_leave_idle(worker);
  1957. recheck:
  1958. /* no more worker necessary? */
  1959. if (!need_more_worker(pool))
  1960. goto sleep;
  1961. /* do we need to manage? */
  1962. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  1963. goto recheck;
  1964. /*
  1965. * ->scheduled list can only be filled while a worker is
  1966. * preparing to process a work or actually processing it.
  1967. * Make sure nobody diddled with it while I was sleeping.
  1968. */
  1969. WARN_ON_ONCE(!list_empty(&worker->scheduled));
  1970. /*
  1971. * Finish PREP stage. We're guaranteed to have at least one idle
  1972. * worker or that someone else has already assumed the manager
  1973. * role. This is where @worker starts participating in concurrency
  1974. * management if applicable and concurrency management is restored
  1975. * after being rebound. See rebind_workers() for details.
  1976. */
  1977. worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
  1978. do {
  1979. struct work_struct *work =
  1980. list_first_entry(&pool->worklist,
  1981. struct work_struct, entry);
  1982. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  1983. /* optimization path, not strictly necessary */
  1984. process_one_work(worker, work);
  1985. if (unlikely(!list_empty(&worker->scheduled)))
  1986. process_scheduled_works(worker);
  1987. } else {
  1988. move_linked_works(work, &worker->scheduled, NULL);
  1989. process_scheduled_works(worker);
  1990. }
  1991. } while (keep_working(pool));
  1992. worker_set_flags(worker, WORKER_PREP, false);
  1993. sleep:
  1994. if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
  1995. goto recheck;
  1996. /*
  1997. * pool->lock is held and there's no work to process and no need to
  1998. * manage, sleep. Workers are woken up only while holding
  1999. * pool->lock or from local cpu, so setting the current state
  2000. * before releasing pool->lock is enough to prevent losing any
  2001. * event.
  2002. */
  2003. worker_enter_idle(worker);
  2004. __set_current_state(TASK_INTERRUPTIBLE);
  2005. spin_unlock_irq(&pool->lock);
  2006. schedule();
  2007. goto woke_up;
  2008. }
  2009. /**
  2010. * rescuer_thread - the rescuer thread function
  2011. * @__rescuer: self
  2012. *
  2013. * Workqueue rescuer thread function. There's one rescuer for each
  2014. * workqueue which has WQ_MEM_RECLAIM set.
  2015. *
  2016. * Regular work processing on a pool may block trying to create a new
  2017. * worker which uses GFP_KERNEL allocation which has slight chance of
  2018. * developing into deadlock if some works currently on the same queue
  2019. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  2020. * the problem rescuer solves.
  2021. *
  2022. * When such condition is possible, the pool summons rescuers of all
  2023. * workqueues which have works queued on the pool and let them process
  2024. * those works so that forward progress can be guaranteed.
  2025. *
  2026. * This should happen rarely.
  2027. */
  2028. static int rescuer_thread(void *__rescuer)
  2029. {
  2030. struct worker *rescuer = __rescuer;
  2031. struct workqueue_struct *wq = rescuer->rescue_wq;
  2032. struct list_head *scheduled = &rescuer->scheduled;
  2033. set_user_nice(current, RESCUER_NICE_LEVEL);
  2034. /*
  2035. * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
  2036. * doesn't participate in concurrency management.
  2037. */
  2038. rescuer->task->flags |= PF_WQ_WORKER;
  2039. repeat:
  2040. set_current_state(TASK_INTERRUPTIBLE);
  2041. if (kthread_should_stop()) {
  2042. __set_current_state(TASK_RUNNING);
  2043. rescuer->task->flags &= ~PF_WQ_WORKER;
  2044. return 0;
  2045. }
  2046. /* see whether any pwq is asking for help */
  2047. spin_lock_irq(&wq_mayday_lock);
  2048. while (!list_empty(&wq->maydays)) {
  2049. struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
  2050. struct pool_workqueue, mayday_node);
  2051. struct worker_pool *pool = pwq->pool;
  2052. struct work_struct *work, *n;
  2053. __set_current_state(TASK_RUNNING);
  2054. list_del_init(&pwq->mayday_node);
  2055. spin_unlock_irq(&wq_mayday_lock);
  2056. /* migrate to the target cpu if possible */
  2057. worker_maybe_bind_and_lock(pool);
  2058. rescuer->pool = pool;
  2059. /*
  2060. * Slurp in all works issued via this workqueue and
  2061. * process'em.
  2062. */
  2063. WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
  2064. list_for_each_entry_safe(work, n, &pool->worklist, entry)
  2065. if (get_work_pwq(work) == pwq)
  2066. move_linked_works(work, scheduled, &n);
  2067. process_scheduled_works(rescuer);
  2068. /*
  2069. * Leave this pool. If keep_working() is %true, notify a
  2070. * regular worker; otherwise, we end up with 0 concurrency
  2071. * and stalling the execution.
  2072. */
  2073. if (keep_working(pool))
  2074. wake_up_worker(pool);
  2075. rescuer->pool = NULL;
  2076. spin_unlock(&pool->lock);
  2077. spin_lock(&wq_mayday_lock);
  2078. }
  2079. spin_unlock_irq(&wq_mayday_lock);
  2080. /* rescuers should never participate in concurrency management */
  2081. WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
  2082. schedule();
  2083. goto repeat;
  2084. }
  2085. struct wq_barrier {
  2086. struct work_struct work;
  2087. struct completion done;
  2088. };
  2089. static void wq_barrier_func(struct work_struct *work)
  2090. {
  2091. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  2092. complete(&barr->done);
  2093. }
  2094. /**
  2095. * insert_wq_barrier - insert a barrier work
  2096. * @pwq: pwq to insert barrier into
  2097. * @barr: wq_barrier to insert
  2098. * @target: target work to attach @barr to
  2099. * @worker: worker currently executing @target, NULL if @target is not executing
  2100. *
  2101. * @barr is linked to @target such that @barr is completed only after
  2102. * @target finishes execution. Please note that the ordering
  2103. * guarantee is observed only with respect to @target and on the local
  2104. * cpu.
  2105. *
  2106. * Currently, a queued barrier can't be canceled. This is because
  2107. * try_to_grab_pending() can't determine whether the work to be
  2108. * grabbed is at the head of the queue and thus can't clear LINKED
  2109. * flag of the previous work while there must be a valid next work
  2110. * after a work with LINKED flag set.
  2111. *
  2112. * Note that when @worker is non-NULL, @target may be modified
  2113. * underneath us, so we can't reliably determine pwq from @target.
  2114. *
  2115. * CONTEXT:
  2116. * spin_lock_irq(pool->lock).
  2117. */
  2118. static void insert_wq_barrier(struct pool_workqueue *pwq,
  2119. struct wq_barrier *barr,
  2120. struct work_struct *target, struct worker *worker)
  2121. {
  2122. struct list_head *head;
  2123. unsigned int linked = 0;
  2124. /*
  2125. * debugobject calls are safe here even with pool->lock locked
  2126. * as we know for sure that this will not trigger any of the
  2127. * checks and call back into the fixup functions where we
  2128. * might deadlock.
  2129. */
  2130. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  2131. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  2132. init_completion(&barr->done);
  2133. /*
  2134. * If @target is currently being executed, schedule the
  2135. * barrier to the worker; otherwise, put it after @target.
  2136. */
  2137. if (worker)
  2138. head = worker->scheduled.next;
  2139. else {
  2140. unsigned long *bits = work_data_bits(target);
  2141. head = target->entry.next;
  2142. /* there can already be other linked works, inherit and set */
  2143. linked = *bits & WORK_STRUCT_LINKED;
  2144. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  2145. }
  2146. debug_work_activate(&barr->work);
  2147. insert_work(pwq, &barr->work, head,
  2148. work_color_to_flags(WORK_NO_COLOR) | linked);
  2149. }
  2150. /**
  2151. * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
  2152. * @wq: workqueue being flushed
  2153. * @flush_color: new flush color, < 0 for no-op
  2154. * @work_color: new work color, < 0 for no-op
  2155. *
  2156. * Prepare pwqs for workqueue flushing.
  2157. *
  2158. * If @flush_color is non-negative, flush_color on all pwqs should be
  2159. * -1. If no pwq has in-flight commands at the specified color, all
  2160. * pwq->flush_color's stay at -1 and %false is returned. If any pwq
  2161. * has in flight commands, its pwq->flush_color is set to
  2162. * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
  2163. * wakeup logic is armed and %true is returned.
  2164. *
  2165. * The caller should have initialized @wq->first_flusher prior to
  2166. * calling this function with non-negative @flush_color. If
  2167. * @flush_color is negative, no flush color update is done and %false
  2168. * is returned.
  2169. *
  2170. * If @work_color is non-negative, all pwqs should have the same
  2171. * work_color which is previous to @work_color and all will be
  2172. * advanced to @work_color.
  2173. *
  2174. * CONTEXT:
  2175. * mutex_lock(wq->mutex).
  2176. *
  2177. * RETURNS:
  2178. * %true if @flush_color >= 0 and there's something to flush. %false
  2179. * otherwise.
  2180. */
  2181. static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
  2182. int flush_color, int work_color)
  2183. {
  2184. bool wait = false;
  2185. struct pool_workqueue *pwq;
  2186. if (flush_color >= 0) {
  2187. WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
  2188. atomic_set(&wq->nr_pwqs_to_flush, 1);
  2189. }
  2190. for_each_pwq(pwq, wq) {
  2191. struct worker_pool *pool = pwq->pool;
  2192. spin_lock_irq(&pool->lock);
  2193. if (flush_color >= 0) {
  2194. WARN_ON_ONCE(pwq->flush_color != -1);
  2195. if (pwq->nr_in_flight[flush_color]) {
  2196. pwq->flush_color = flush_color;
  2197. atomic_inc(&wq->nr_pwqs_to_flush);
  2198. wait = true;
  2199. }
  2200. }
  2201. if (work_color >= 0) {
  2202. WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
  2203. pwq->work_color = work_color;
  2204. }
  2205. spin_unlock_irq(&pool->lock);
  2206. }
  2207. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
  2208. complete(&wq->first_flusher->done);
  2209. return wait;
  2210. }
  2211. /**
  2212. * flush_workqueue - ensure that any scheduled work has run to completion.
  2213. * @wq: workqueue to flush
  2214. *
  2215. * This function sleeps until all work items which were queued on entry
  2216. * have finished execution, but it is not livelocked by new incoming ones.
  2217. */
  2218. void flush_workqueue(struct workqueue_struct *wq)
  2219. {
  2220. struct wq_flusher this_flusher = {
  2221. .list = LIST_HEAD_INIT(this_flusher.list),
  2222. .flush_color = -1,
  2223. .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
  2224. };
  2225. int next_color;
  2226. lock_map_acquire(&wq->lockdep_map);
  2227. lock_map_release(&wq->lockdep_map);
  2228. mutex_lock(&wq->mutex);
  2229. /*
  2230. * Start-to-wait phase
  2231. */
  2232. next_color = work_next_color(wq->work_color);
  2233. if (next_color != wq->flush_color) {
  2234. /*
  2235. * Color space is not full. The current work_color
  2236. * becomes our flush_color and work_color is advanced
  2237. * by one.
  2238. */
  2239. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
  2240. this_flusher.flush_color = wq->work_color;
  2241. wq->work_color = next_color;
  2242. if (!wq->first_flusher) {
  2243. /* no flush in progress, become the first flusher */
  2244. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2245. wq->first_flusher = &this_flusher;
  2246. if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
  2247. wq->work_color)) {
  2248. /* nothing to flush, done */
  2249. wq->flush_color = next_color;
  2250. wq->first_flusher = NULL;
  2251. goto out_unlock;
  2252. }
  2253. } else {
  2254. /* wait in queue */
  2255. WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
  2256. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2257. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2258. }
  2259. } else {
  2260. /*
  2261. * Oops, color space is full, wait on overflow queue.
  2262. * The next flush completion will assign us
  2263. * flush_color and transfer to flusher_queue.
  2264. */
  2265. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2266. }
  2267. mutex_unlock(&wq->mutex);
  2268. wait_for_completion(&this_flusher.done);
  2269. /*
  2270. * Wake-up-and-cascade phase
  2271. *
  2272. * First flushers are responsible for cascading flushes and
  2273. * handling overflow. Non-first flushers can simply return.
  2274. */
  2275. if (wq->first_flusher != &this_flusher)
  2276. return;
  2277. mutex_lock(&wq->mutex);
  2278. /* we might have raced, check again with mutex held */
  2279. if (wq->first_flusher != &this_flusher)
  2280. goto out_unlock;
  2281. wq->first_flusher = NULL;
  2282. WARN_ON_ONCE(!list_empty(&this_flusher.list));
  2283. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2284. while (true) {
  2285. struct wq_flusher *next, *tmp;
  2286. /* complete all the flushers sharing the current flush color */
  2287. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2288. if (next->flush_color != wq->flush_color)
  2289. break;
  2290. list_del_init(&next->list);
  2291. complete(&next->done);
  2292. }
  2293. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
  2294. wq->flush_color != work_next_color(wq->work_color));
  2295. /* this flush_color is finished, advance by one */
  2296. wq->flush_color = work_next_color(wq->flush_color);
  2297. /* one color has been freed, handle overflow queue */
  2298. if (!list_empty(&wq->flusher_overflow)) {
  2299. /*
  2300. * Assign the same color to all overflowed
  2301. * flushers, advance work_color and append to
  2302. * flusher_queue. This is the start-to-wait
  2303. * phase for these overflowed flushers.
  2304. */
  2305. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2306. tmp->flush_color = wq->work_color;
  2307. wq->work_color = work_next_color(wq->work_color);
  2308. list_splice_tail_init(&wq->flusher_overflow,
  2309. &wq->flusher_queue);
  2310. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2311. }
  2312. if (list_empty(&wq->flusher_queue)) {
  2313. WARN_ON_ONCE(wq->flush_color != wq->work_color);
  2314. break;
  2315. }
  2316. /*
  2317. * Need to flush more colors. Make the next flusher
  2318. * the new first flusher and arm pwqs.
  2319. */
  2320. WARN_ON_ONCE(wq->flush_color == wq->work_color);
  2321. WARN_ON_ONCE(wq->flush_color != next->flush_color);
  2322. list_del_init(&next->list);
  2323. wq->first_flusher = next;
  2324. if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
  2325. break;
  2326. /*
  2327. * Meh... this color is already done, clear first
  2328. * flusher and repeat cascading.
  2329. */
  2330. wq->first_flusher = NULL;
  2331. }
  2332. out_unlock:
  2333. mutex_unlock(&wq->mutex);
  2334. }
  2335. EXPORT_SYMBOL_GPL(flush_workqueue);
  2336. /**
  2337. * drain_workqueue - drain a workqueue
  2338. * @wq: workqueue to drain
  2339. *
  2340. * Wait until the workqueue becomes empty. While draining is in progress,
  2341. * only chain queueing is allowed. IOW, only currently pending or running
  2342. * work items on @wq can queue further work items on it. @wq is flushed
  2343. * repeatedly until it becomes empty. The number of flushing is detemined
  2344. * by the depth of chaining and should be relatively short. Whine if it
  2345. * takes too long.
  2346. */
  2347. void drain_workqueue(struct workqueue_struct *wq)
  2348. {
  2349. unsigned int flush_cnt = 0;
  2350. struct pool_workqueue *pwq;
  2351. /*
  2352. * __queue_work() needs to test whether there are drainers, is much
  2353. * hotter than drain_workqueue() and already looks at @wq->flags.
  2354. * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2355. */
  2356. mutex_lock(&wq->mutex);
  2357. if (!wq->nr_drainers++)
  2358. wq->flags |= __WQ_DRAINING;
  2359. mutex_unlock(&wq->mutex);
  2360. reflush:
  2361. flush_workqueue(wq);
  2362. mutex_lock(&wq->mutex);
  2363. for_each_pwq(pwq, wq) {
  2364. bool drained;
  2365. spin_lock_irq(&pwq->pool->lock);
  2366. drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
  2367. spin_unlock_irq(&pwq->pool->lock);
  2368. if (drained)
  2369. continue;
  2370. if (++flush_cnt == 10 ||
  2371. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2372. pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
  2373. wq->name, flush_cnt);
  2374. mutex_unlock(&wq->mutex);
  2375. goto reflush;
  2376. }
  2377. if (!--wq->nr_drainers)
  2378. wq->flags &= ~__WQ_DRAINING;
  2379. mutex_unlock(&wq->mutex);
  2380. }
  2381. EXPORT_SYMBOL_GPL(drain_workqueue);
  2382. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
  2383. {
  2384. struct worker *worker = NULL;
  2385. struct worker_pool *pool;
  2386. struct pool_workqueue *pwq;
  2387. might_sleep();
  2388. local_irq_disable();
  2389. pool = get_work_pool(work);
  2390. if (!pool) {
  2391. local_irq_enable();
  2392. return false;
  2393. }
  2394. spin_lock(&pool->lock);
  2395. /* see the comment in try_to_grab_pending() with the same code */
  2396. pwq = get_work_pwq(work);
  2397. if (pwq) {
  2398. if (unlikely(pwq->pool != pool))
  2399. goto already_gone;
  2400. } else {
  2401. worker = find_worker_executing_work(pool, work);
  2402. if (!worker)
  2403. goto already_gone;
  2404. pwq = worker->current_pwq;
  2405. }
  2406. insert_wq_barrier(pwq, barr, work, worker);
  2407. spin_unlock_irq(&pool->lock);
  2408. /*
  2409. * If @max_active is 1 or rescuer is in use, flushing another work
  2410. * item on the same workqueue may lead to deadlock. Make sure the
  2411. * flusher is not running on the same workqueue by verifying write
  2412. * access.
  2413. */
  2414. if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
  2415. lock_map_acquire(&pwq->wq->lockdep_map);
  2416. else
  2417. lock_map_acquire_read(&pwq->wq->lockdep_map);
  2418. lock_map_release(&pwq->wq->lockdep_map);
  2419. return true;
  2420. already_gone:
  2421. spin_unlock_irq(&pool->lock);
  2422. return false;
  2423. }
  2424. /**
  2425. * flush_work - wait for a work to finish executing the last queueing instance
  2426. * @work: the work to flush
  2427. *
  2428. * Wait until @work has finished execution. @work is guaranteed to be idle
  2429. * on return if it hasn't been requeued since flush started.
  2430. *
  2431. * RETURNS:
  2432. * %true if flush_work() waited for the work to finish execution,
  2433. * %false if it was already idle.
  2434. */
  2435. bool flush_work(struct work_struct *work)
  2436. {
  2437. struct wq_barrier barr;
  2438. lock_map_acquire(&work->lockdep_map);
  2439. lock_map_release(&work->lockdep_map);
  2440. if (start_flush_work(work, &barr)) {
  2441. wait_for_completion(&barr.done);
  2442. destroy_work_on_stack(&barr.work);
  2443. return true;
  2444. } else {
  2445. return false;
  2446. }
  2447. }
  2448. EXPORT_SYMBOL_GPL(flush_work);
  2449. static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
  2450. {
  2451. unsigned long flags;
  2452. int ret;
  2453. do {
  2454. ret = try_to_grab_pending(work, is_dwork, &flags);
  2455. /*
  2456. * If someone else is canceling, wait for the same event it
  2457. * would be waiting for before retrying.
  2458. */
  2459. if (unlikely(ret == -ENOENT))
  2460. flush_work(work);
  2461. } while (unlikely(ret < 0));
  2462. /* tell other tasks trying to grab @work to back off */
  2463. mark_work_canceling(work);
  2464. local_irq_restore(flags);
  2465. flush_work(work);
  2466. clear_work_data(work);
  2467. return ret;
  2468. }
  2469. /**
  2470. * cancel_work_sync - cancel a work and wait for it to finish
  2471. * @work: the work to cancel
  2472. *
  2473. * Cancel @work and wait for its execution to finish. This function
  2474. * can be used even if the work re-queues itself or migrates to
  2475. * another workqueue. On return from this function, @work is
  2476. * guaranteed to be not pending or executing on any CPU.
  2477. *
  2478. * cancel_work_sync(&delayed_work->work) must not be used for
  2479. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2480. *
  2481. * The caller must ensure that the workqueue on which @work was last
  2482. * queued can't be destroyed before this function returns.
  2483. *
  2484. * RETURNS:
  2485. * %true if @work was pending, %false otherwise.
  2486. */
  2487. bool cancel_work_sync(struct work_struct *work)
  2488. {
  2489. return __cancel_work_timer(work, false);
  2490. }
  2491. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2492. /**
  2493. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2494. * @dwork: the delayed work to flush
  2495. *
  2496. * Delayed timer is cancelled and the pending work is queued for
  2497. * immediate execution. Like flush_work(), this function only
  2498. * considers the last queueing instance of @dwork.
  2499. *
  2500. * RETURNS:
  2501. * %true if flush_work() waited for the work to finish execution,
  2502. * %false if it was already idle.
  2503. */
  2504. bool flush_delayed_work(struct delayed_work *dwork)
  2505. {
  2506. local_irq_disable();
  2507. if (del_timer_sync(&dwork->timer))
  2508. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  2509. local_irq_enable();
  2510. return flush_work(&dwork->work);
  2511. }
  2512. EXPORT_SYMBOL(flush_delayed_work);
  2513. /**
  2514. * cancel_delayed_work - cancel a delayed work
  2515. * @dwork: delayed_work to cancel
  2516. *
  2517. * Kill off a pending delayed_work. Returns %true if @dwork was pending
  2518. * and canceled; %false if wasn't pending. Note that the work callback
  2519. * function may still be running on return, unless it returns %true and the
  2520. * work doesn't re-arm itself. Explicitly flush or use
  2521. * cancel_delayed_work_sync() to wait on it.
  2522. *
  2523. * This function is safe to call from any context including IRQ handler.
  2524. */
  2525. bool cancel_delayed_work(struct delayed_work *dwork)
  2526. {
  2527. unsigned long flags;
  2528. int ret;
  2529. do {
  2530. ret = try_to_grab_pending(&dwork->work, true, &flags);
  2531. } while (unlikely(ret == -EAGAIN));
  2532. if (unlikely(ret < 0))
  2533. return false;
  2534. set_work_pool_and_clear_pending(&dwork->work,
  2535. get_work_pool_id(&dwork->work));
  2536. local_irq_restore(flags);
  2537. return ret;
  2538. }
  2539. EXPORT_SYMBOL(cancel_delayed_work);
  2540. /**
  2541. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2542. * @dwork: the delayed work cancel
  2543. *
  2544. * This is cancel_work_sync() for delayed works.
  2545. *
  2546. * RETURNS:
  2547. * %true if @dwork was pending, %false otherwise.
  2548. */
  2549. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2550. {
  2551. return __cancel_work_timer(&dwork->work, true);
  2552. }
  2553. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2554. /**
  2555. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2556. * @func: the function to call
  2557. *
  2558. * schedule_on_each_cpu() executes @func on each online CPU using the
  2559. * system workqueue and blocks until all CPUs have completed.
  2560. * schedule_on_each_cpu() is very slow.
  2561. *
  2562. * RETURNS:
  2563. * 0 on success, -errno on failure.
  2564. */
  2565. int schedule_on_each_cpu(work_func_t func)
  2566. {
  2567. int cpu;
  2568. struct work_struct __percpu *works;
  2569. works = alloc_percpu(struct work_struct);
  2570. if (!works)
  2571. return -ENOMEM;
  2572. get_online_cpus();
  2573. for_each_online_cpu(cpu) {
  2574. struct work_struct *work = per_cpu_ptr(works, cpu);
  2575. INIT_WORK(work, func);
  2576. schedule_work_on(cpu, work);
  2577. }
  2578. for_each_online_cpu(cpu)
  2579. flush_work(per_cpu_ptr(works, cpu));
  2580. put_online_cpus();
  2581. free_percpu(works);
  2582. return 0;
  2583. }
  2584. /**
  2585. * flush_scheduled_work - ensure that any scheduled work has run to completion.
  2586. *
  2587. * Forces execution of the kernel-global workqueue and blocks until its
  2588. * completion.
  2589. *
  2590. * Think twice before calling this function! It's very easy to get into
  2591. * trouble if you don't take great care. Either of the following situations
  2592. * will lead to deadlock:
  2593. *
  2594. * One of the work items currently on the workqueue needs to acquire
  2595. * a lock held by your code or its caller.
  2596. *
  2597. * Your code is running in the context of a work routine.
  2598. *
  2599. * They will be detected by lockdep when they occur, but the first might not
  2600. * occur very often. It depends on what work items are on the workqueue and
  2601. * what locks they need, which you have no control over.
  2602. *
  2603. * In most situations flushing the entire workqueue is overkill; you merely
  2604. * need to know that a particular work item isn't queued and isn't running.
  2605. * In such cases you should use cancel_delayed_work_sync() or
  2606. * cancel_work_sync() instead.
  2607. */
  2608. void flush_scheduled_work(void)
  2609. {
  2610. flush_workqueue(system_wq);
  2611. }
  2612. EXPORT_SYMBOL(flush_scheduled_work);
  2613. /**
  2614. * execute_in_process_context - reliably execute the routine with user context
  2615. * @fn: the function to execute
  2616. * @ew: guaranteed storage for the execute work structure (must
  2617. * be available when the work executes)
  2618. *
  2619. * Executes the function immediately if process context is available,
  2620. * otherwise schedules the function for delayed execution.
  2621. *
  2622. * Returns: 0 - function was executed
  2623. * 1 - function was scheduled for execution
  2624. */
  2625. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2626. {
  2627. if (!in_interrupt()) {
  2628. fn(&ew->work);
  2629. return 0;
  2630. }
  2631. INIT_WORK(&ew->work, fn);
  2632. schedule_work(&ew->work);
  2633. return 1;
  2634. }
  2635. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2636. #ifdef CONFIG_SYSFS
  2637. /*
  2638. * Workqueues with WQ_SYSFS flag set is visible to userland via
  2639. * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
  2640. * following attributes.
  2641. *
  2642. * per_cpu RO bool : whether the workqueue is per-cpu or unbound
  2643. * max_active RW int : maximum number of in-flight work items
  2644. *
  2645. * Unbound workqueues have the following extra attributes.
  2646. *
  2647. * id RO int : the associated pool ID
  2648. * nice RW int : nice value of the workers
  2649. * cpumask RW mask : bitmask of allowed CPUs for the workers
  2650. */
  2651. struct wq_device {
  2652. struct workqueue_struct *wq;
  2653. struct device dev;
  2654. };
  2655. static struct workqueue_struct *dev_to_wq(struct device *dev)
  2656. {
  2657. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2658. return wq_dev->wq;
  2659. }
  2660. static ssize_t wq_per_cpu_show(struct device *dev,
  2661. struct device_attribute *attr, char *buf)
  2662. {
  2663. struct workqueue_struct *wq = dev_to_wq(dev);
  2664. return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
  2665. }
  2666. static ssize_t wq_max_active_show(struct device *dev,
  2667. struct device_attribute *attr, char *buf)
  2668. {
  2669. struct workqueue_struct *wq = dev_to_wq(dev);
  2670. return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
  2671. }
  2672. static ssize_t wq_max_active_store(struct device *dev,
  2673. struct device_attribute *attr,
  2674. const char *buf, size_t count)
  2675. {
  2676. struct workqueue_struct *wq = dev_to_wq(dev);
  2677. int val;
  2678. if (sscanf(buf, "%d", &val) != 1 || val <= 0)
  2679. return -EINVAL;
  2680. workqueue_set_max_active(wq, val);
  2681. return count;
  2682. }
  2683. static struct device_attribute wq_sysfs_attrs[] = {
  2684. __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
  2685. __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
  2686. __ATTR_NULL,
  2687. };
  2688. static ssize_t wq_pool_ids_show(struct device *dev,
  2689. struct device_attribute *attr, char *buf)
  2690. {
  2691. struct workqueue_struct *wq = dev_to_wq(dev);
  2692. const char *delim = "";
  2693. int node, written = 0;
  2694. rcu_read_lock_sched();
  2695. for_each_node(node) {
  2696. written += scnprintf(buf + written, PAGE_SIZE - written,
  2697. "%s%d:%d", delim, node,
  2698. unbound_pwq_by_node(wq, node)->pool->id);
  2699. delim = " ";
  2700. }
  2701. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2702. rcu_read_unlock_sched();
  2703. return written;
  2704. }
  2705. static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
  2706. char *buf)
  2707. {
  2708. struct workqueue_struct *wq = dev_to_wq(dev);
  2709. int written;
  2710. mutex_lock(&wq->mutex);
  2711. written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
  2712. mutex_unlock(&wq->mutex);
  2713. return written;
  2714. }
  2715. /* prepare workqueue_attrs for sysfs store operations */
  2716. static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
  2717. {
  2718. struct workqueue_attrs *attrs;
  2719. attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2720. if (!attrs)
  2721. return NULL;
  2722. mutex_lock(&wq->mutex);
  2723. copy_workqueue_attrs(attrs, wq->unbound_attrs);
  2724. mutex_unlock(&wq->mutex);
  2725. return attrs;
  2726. }
  2727. static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
  2728. const char *buf, size_t count)
  2729. {
  2730. struct workqueue_struct *wq = dev_to_wq(dev);
  2731. struct workqueue_attrs *attrs;
  2732. int ret;
  2733. attrs = wq_sysfs_prep_attrs(wq);
  2734. if (!attrs)
  2735. return -ENOMEM;
  2736. if (sscanf(buf, "%d", &attrs->nice) == 1 &&
  2737. attrs->nice >= -20 && attrs->nice <= 19)
  2738. ret = apply_workqueue_attrs(wq, attrs);
  2739. else
  2740. ret = -EINVAL;
  2741. free_workqueue_attrs(attrs);
  2742. return ret ?: count;
  2743. }
  2744. static ssize_t wq_cpumask_show(struct device *dev,
  2745. struct device_attribute *attr, char *buf)
  2746. {
  2747. struct workqueue_struct *wq = dev_to_wq(dev);
  2748. int written;
  2749. mutex_lock(&wq->mutex);
  2750. written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
  2751. mutex_unlock(&wq->mutex);
  2752. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2753. return written;
  2754. }
  2755. static ssize_t wq_cpumask_store(struct device *dev,
  2756. struct device_attribute *attr,
  2757. const char *buf, size_t count)
  2758. {
  2759. struct workqueue_struct *wq = dev_to_wq(dev);
  2760. struct workqueue_attrs *attrs;
  2761. int ret;
  2762. attrs = wq_sysfs_prep_attrs(wq);
  2763. if (!attrs)
  2764. return -ENOMEM;
  2765. ret = cpumask_parse(buf, attrs->cpumask);
  2766. if (!ret)
  2767. ret = apply_workqueue_attrs(wq, attrs);
  2768. free_workqueue_attrs(attrs);
  2769. return ret ?: count;
  2770. }
  2771. static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
  2772. char *buf)
  2773. {
  2774. struct workqueue_struct *wq = dev_to_wq(dev);
  2775. int written;
  2776. mutex_lock(&wq->mutex);
  2777. written = scnprintf(buf, PAGE_SIZE, "%d\n",
  2778. !wq->unbound_attrs->no_numa);
  2779. mutex_unlock(&wq->mutex);
  2780. return written;
  2781. }
  2782. static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
  2783. const char *buf, size_t count)
  2784. {
  2785. struct workqueue_struct *wq = dev_to_wq(dev);
  2786. struct workqueue_attrs *attrs;
  2787. int v, ret;
  2788. attrs = wq_sysfs_prep_attrs(wq);
  2789. if (!attrs)
  2790. return -ENOMEM;
  2791. ret = -EINVAL;
  2792. if (sscanf(buf, "%d", &v) == 1) {
  2793. attrs->no_numa = !v;
  2794. ret = apply_workqueue_attrs(wq, attrs);
  2795. }
  2796. free_workqueue_attrs(attrs);
  2797. return ret ?: count;
  2798. }
  2799. static struct device_attribute wq_sysfs_unbound_attrs[] = {
  2800. __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
  2801. __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
  2802. __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
  2803. __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
  2804. __ATTR_NULL,
  2805. };
  2806. static struct bus_type wq_subsys = {
  2807. .name = "workqueue",
  2808. .dev_attrs = wq_sysfs_attrs,
  2809. };
  2810. static int __init wq_sysfs_init(void)
  2811. {
  2812. return subsys_virtual_register(&wq_subsys, NULL);
  2813. }
  2814. core_initcall(wq_sysfs_init);
  2815. static void wq_device_release(struct device *dev)
  2816. {
  2817. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2818. kfree(wq_dev);
  2819. }
  2820. /**
  2821. * workqueue_sysfs_register - make a workqueue visible in sysfs
  2822. * @wq: the workqueue to register
  2823. *
  2824. * Expose @wq in sysfs under /sys/bus/workqueue/devices.
  2825. * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
  2826. * which is the preferred method.
  2827. *
  2828. * Workqueue user should use this function directly iff it wants to apply
  2829. * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
  2830. * apply_workqueue_attrs() may race against userland updating the
  2831. * attributes.
  2832. *
  2833. * Returns 0 on success, -errno on failure.
  2834. */
  2835. int workqueue_sysfs_register(struct workqueue_struct *wq)
  2836. {
  2837. struct wq_device *wq_dev;
  2838. int ret;
  2839. /*
  2840. * Adjusting max_active or creating new pwqs by applyting
  2841. * attributes breaks ordering guarantee. Disallow exposing ordered
  2842. * workqueues.
  2843. */
  2844. if (WARN_ON(wq->flags & __WQ_ORDERED))
  2845. return -EINVAL;
  2846. wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
  2847. if (!wq_dev)
  2848. return -ENOMEM;
  2849. wq_dev->wq = wq;
  2850. wq_dev->dev.bus = &wq_subsys;
  2851. wq_dev->dev.init_name = wq->name;
  2852. wq_dev->dev.release = wq_device_release;
  2853. /*
  2854. * unbound_attrs are created separately. Suppress uevent until
  2855. * everything is ready.
  2856. */
  2857. dev_set_uevent_suppress(&wq_dev->dev, true);
  2858. ret = device_register(&wq_dev->dev);
  2859. if (ret) {
  2860. kfree(wq_dev);
  2861. wq->wq_dev = NULL;
  2862. return ret;
  2863. }
  2864. if (wq->flags & WQ_UNBOUND) {
  2865. struct device_attribute *attr;
  2866. for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
  2867. ret = device_create_file(&wq_dev->dev, attr);
  2868. if (ret) {
  2869. device_unregister(&wq_dev->dev);
  2870. wq->wq_dev = NULL;
  2871. return ret;
  2872. }
  2873. }
  2874. }
  2875. kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
  2876. return 0;
  2877. }
  2878. /**
  2879. * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
  2880. * @wq: the workqueue to unregister
  2881. *
  2882. * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
  2883. */
  2884. static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
  2885. {
  2886. struct wq_device *wq_dev = wq->wq_dev;
  2887. if (!wq->wq_dev)
  2888. return;
  2889. wq->wq_dev = NULL;
  2890. device_unregister(&wq_dev->dev);
  2891. }
  2892. #else /* CONFIG_SYSFS */
  2893. static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
  2894. #endif /* CONFIG_SYSFS */
  2895. /**
  2896. * free_workqueue_attrs - free a workqueue_attrs
  2897. * @attrs: workqueue_attrs to free
  2898. *
  2899. * Undo alloc_workqueue_attrs().
  2900. */
  2901. void free_workqueue_attrs(struct workqueue_attrs *attrs)
  2902. {
  2903. if (attrs) {
  2904. free_cpumask_var(attrs->cpumask);
  2905. kfree(attrs);
  2906. }
  2907. }
  2908. /**
  2909. * alloc_workqueue_attrs - allocate a workqueue_attrs
  2910. * @gfp_mask: allocation mask to use
  2911. *
  2912. * Allocate a new workqueue_attrs, initialize with default settings and
  2913. * return it. Returns NULL on failure.
  2914. */
  2915. struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
  2916. {
  2917. struct workqueue_attrs *attrs;
  2918. attrs = kzalloc(sizeof(*attrs), gfp_mask);
  2919. if (!attrs)
  2920. goto fail;
  2921. if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
  2922. goto fail;
  2923. cpumask_copy(attrs->cpumask, cpu_possible_mask);
  2924. return attrs;
  2925. fail:
  2926. free_workqueue_attrs(attrs);
  2927. return NULL;
  2928. }
  2929. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  2930. const struct workqueue_attrs *from)
  2931. {
  2932. to->nice = from->nice;
  2933. cpumask_copy(to->cpumask, from->cpumask);
  2934. }
  2935. /* hash value of the content of @attr */
  2936. static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
  2937. {
  2938. u32 hash = 0;
  2939. hash = jhash_1word(attrs->nice, hash);
  2940. hash = jhash(cpumask_bits(attrs->cpumask),
  2941. BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
  2942. return hash;
  2943. }
  2944. /* content equality test */
  2945. static bool wqattrs_equal(const struct workqueue_attrs *a,
  2946. const struct workqueue_attrs *b)
  2947. {
  2948. if (a->nice != b->nice)
  2949. return false;
  2950. if (!cpumask_equal(a->cpumask, b->cpumask))
  2951. return false;
  2952. return true;
  2953. }
  2954. /**
  2955. * init_worker_pool - initialize a newly zalloc'd worker_pool
  2956. * @pool: worker_pool to initialize
  2957. *
  2958. * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
  2959. * Returns 0 on success, -errno on failure. Even on failure, all fields
  2960. * inside @pool proper are initialized and put_unbound_pool() can be called
  2961. * on @pool safely to release it.
  2962. */
  2963. static int init_worker_pool(struct worker_pool *pool)
  2964. {
  2965. spin_lock_init(&pool->lock);
  2966. pool->id = -1;
  2967. pool->cpu = -1;
  2968. pool->node = NUMA_NO_NODE;
  2969. pool->flags |= POOL_DISASSOCIATED;
  2970. INIT_LIST_HEAD(&pool->worklist);
  2971. INIT_LIST_HEAD(&pool->idle_list);
  2972. hash_init(pool->busy_hash);
  2973. init_timer_deferrable(&pool->idle_timer);
  2974. pool->idle_timer.function = idle_worker_timeout;
  2975. pool->idle_timer.data = (unsigned long)pool;
  2976. setup_timer(&pool->mayday_timer, pool_mayday_timeout,
  2977. (unsigned long)pool);
  2978. mutex_init(&pool->manager_arb);
  2979. mutex_init(&pool->manager_mutex);
  2980. idr_init(&pool->worker_idr);
  2981. INIT_HLIST_NODE(&pool->hash_node);
  2982. pool->refcnt = 1;
  2983. /* shouldn't fail above this point */
  2984. pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2985. if (!pool->attrs)
  2986. return -ENOMEM;
  2987. return 0;
  2988. }
  2989. static void rcu_free_pool(struct rcu_head *rcu)
  2990. {
  2991. struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
  2992. idr_destroy(&pool->worker_idr);
  2993. free_workqueue_attrs(pool->attrs);
  2994. kfree(pool);
  2995. }
  2996. /**
  2997. * put_unbound_pool - put a worker_pool
  2998. * @pool: worker_pool to put
  2999. *
  3000. * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
  3001. * safe manner. get_unbound_pool() calls this function on its failure path
  3002. * and this function should be able to release pools which went through,
  3003. * successfully or not, init_worker_pool().
  3004. *
  3005. * Should be called with wq_pool_mutex held.
  3006. */
  3007. static void put_unbound_pool(struct worker_pool *pool)
  3008. {
  3009. struct worker *worker;
  3010. lockdep_assert_held(&wq_pool_mutex);
  3011. if (--pool->refcnt)
  3012. return;
  3013. /* sanity checks */
  3014. if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
  3015. WARN_ON(!list_empty(&pool->worklist)))
  3016. return;
  3017. /* release id and unhash */
  3018. if (pool->id >= 0)
  3019. idr_remove(&worker_pool_idr, pool->id);
  3020. hash_del(&pool->hash_node);
  3021. /*
  3022. * Become the manager and destroy all workers. Grabbing
  3023. * manager_arb prevents @pool's workers from blocking on
  3024. * manager_mutex.
  3025. */
  3026. mutex_lock(&pool->manager_arb);
  3027. mutex_lock(&pool->manager_mutex);
  3028. spin_lock_irq(&pool->lock);
  3029. while ((worker = first_worker(pool)))
  3030. destroy_worker(worker);
  3031. WARN_ON(pool->nr_workers || pool->nr_idle);
  3032. spin_unlock_irq(&pool->lock);
  3033. mutex_unlock(&pool->manager_mutex);
  3034. mutex_unlock(&pool->manager_arb);
  3035. /* shut down the timers */
  3036. del_timer_sync(&pool->idle_timer);
  3037. del_timer_sync(&pool->mayday_timer);
  3038. /* sched-RCU protected to allow dereferences from get_work_pool() */
  3039. call_rcu_sched(&pool->rcu, rcu_free_pool);
  3040. }
  3041. /**
  3042. * get_unbound_pool - get a worker_pool with the specified attributes
  3043. * @attrs: the attributes of the worker_pool to get
  3044. *
  3045. * Obtain a worker_pool which has the same attributes as @attrs, bump the
  3046. * reference count and return it. If there already is a matching
  3047. * worker_pool, it will be used; otherwise, this function attempts to
  3048. * create a new one. On failure, returns NULL.
  3049. *
  3050. * Should be called with wq_pool_mutex held.
  3051. */
  3052. static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
  3053. {
  3054. u32 hash = wqattrs_hash(attrs);
  3055. struct worker_pool *pool;
  3056. int node;
  3057. lockdep_assert_held(&wq_pool_mutex);
  3058. /* do we already have a matching pool? */
  3059. hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
  3060. if (wqattrs_equal(pool->attrs, attrs)) {
  3061. pool->refcnt++;
  3062. goto out_unlock;
  3063. }
  3064. }
  3065. /* nope, create a new one */
  3066. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  3067. if (!pool || init_worker_pool(pool) < 0)
  3068. goto fail;
  3069. if (workqueue_freezing)
  3070. pool->flags |= POOL_FREEZING;
  3071. lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
  3072. copy_workqueue_attrs(pool->attrs, attrs);
  3073. /* if cpumask is contained inside a NUMA node, we belong to that node */
  3074. if (wq_numa_enabled) {
  3075. for_each_node(node) {
  3076. if (cpumask_subset(pool->attrs->cpumask,
  3077. wq_numa_possible_cpumask[node])) {
  3078. pool->node = node;
  3079. break;
  3080. }
  3081. }
  3082. }
  3083. if (worker_pool_assign_id(pool) < 0)
  3084. goto fail;
  3085. /* create and start the initial worker */
  3086. if (create_and_start_worker(pool) < 0)
  3087. goto fail;
  3088. /* install */
  3089. hash_add(unbound_pool_hash, &pool->hash_node, hash);
  3090. out_unlock:
  3091. return pool;
  3092. fail:
  3093. if (pool)
  3094. put_unbound_pool(pool);
  3095. return NULL;
  3096. }
  3097. static void rcu_free_pwq(struct rcu_head *rcu)
  3098. {
  3099. kmem_cache_free(pwq_cache,
  3100. container_of(rcu, struct pool_workqueue, rcu));
  3101. }
  3102. /*
  3103. * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
  3104. * and needs to be destroyed.
  3105. */
  3106. static void pwq_unbound_release_workfn(struct work_struct *work)
  3107. {
  3108. struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
  3109. unbound_release_work);
  3110. struct workqueue_struct *wq = pwq->wq;
  3111. struct worker_pool *pool = pwq->pool;
  3112. bool is_last;
  3113. if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
  3114. return;
  3115. /*
  3116. * Unlink @pwq. Synchronization against wq->mutex isn't strictly
  3117. * necessary on release but do it anyway. It's easier to verify
  3118. * and consistent with the linking path.
  3119. */
  3120. mutex_lock(&wq->mutex);
  3121. list_del_rcu(&pwq->pwqs_node);
  3122. is_last = list_empty(&wq->pwqs);
  3123. mutex_unlock(&wq->mutex);
  3124. mutex_lock(&wq_pool_mutex);
  3125. put_unbound_pool(pool);
  3126. mutex_unlock(&wq_pool_mutex);
  3127. call_rcu_sched(&pwq->rcu, rcu_free_pwq);
  3128. /*
  3129. * If we're the last pwq going away, @wq is already dead and no one
  3130. * is gonna access it anymore. Free it.
  3131. */
  3132. if (is_last) {
  3133. free_workqueue_attrs(wq->unbound_attrs);
  3134. kfree(wq);
  3135. }
  3136. }
  3137. /**
  3138. * pwq_adjust_max_active - update a pwq's max_active to the current setting
  3139. * @pwq: target pool_workqueue
  3140. *
  3141. * If @pwq isn't freezing, set @pwq->max_active to the associated
  3142. * workqueue's saved_max_active and activate delayed work items
  3143. * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
  3144. */
  3145. static void pwq_adjust_max_active(struct pool_workqueue *pwq)
  3146. {
  3147. struct workqueue_struct *wq = pwq->wq;
  3148. bool freezable = wq->flags & WQ_FREEZABLE;
  3149. /* for @wq->saved_max_active */
  3150. lockdep_assert_held(&wq->mutex);
  3151. /* fast exit for non-freezable wqs */
  3152. if (!freezable && pwq->max_active == wq->saved_max_active)
  3153. return;
  3154. spin_lock_irq(&pwq->pool->lock);
  3155. if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
  3156. pwq->max_active = wq->saved_max_active;
  3157. while (!list_empty(&pwq->delayed_works) &&
  3158. pwq->nr_active < pwq->max_active)
  3159. pwq_activate_first_delayed(pwq);
  3160. /*
  3161. * Need to kick a worker after thawed or an unbound wq's
  3162. * max_active is bumped. It's a slow path. Do it always.
  3163. */
  3164. wake_up_worker(pwq->pool);
  3165. } else {
  3166. pwq->max_active = 0;
  3167. }
  3168. spin_unlock_irq(&pwq->pool->lock);
  3169. }
  3170. /* initialize newly alloced @pwq which is associated with @wq and @pool */
  3171. static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
  3172. struct worker_pool *pool)
  3173. {
  3174. BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
  3175. memset(pwq, 0, sizeof(*pwq));
  3176. pwq->pool = pool;
  3177. pwq->wq = wq;
  3178. pwq->flush_color = -1;
  3179. pwq->refcnt = 1;
  3180. INIT_LIST_HEAD(&pwq->delayed_works);
  3181. INIT_LIST_HEAD(&pwq->pwqs_node);
  3182. INIT_LIST_HEAD(&pwq->mayday_node);
  3183. INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
  3184. }
  3185. /* sync @pwq with the current state of its associated wq and link it */
  3186. static void link_pwq(struct pool_workqueue *pwq)
  3187. {
  3188. struct workqueue_struct *wq = pwq->wq;
  3189. lockdep_assert_held(&wq->mutex);
  3190. /* may be called multiple times, ignore if already linked */
  3191. if (!list_empty(&pwq->pwqs_node))
  3192. return;
  3193. /*
  3194. * Set the matching work_color. This is synchronized with
  3195. * wq->mutex to avoid confusing flush_workqueue().
  3196. */
  3197. pwq->work_color = wq->work_color;
  3198. /* sync max_active to the current setting */
  3199. pwq_adjust_max_active(pwq);
  3200. /* link in @pwq */
  3201. list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
  3202. }
  3203. /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
  3204. static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
  3205. const struct workqueue_attrs *attrs)
  3206. {
  3207. struct worker_pool *pool;
  3208. struct pool_workqueue *pwq;
  3209. lockdep_assert_held(&wq_pool_mutex);
  3210. pool = get_unbound_pool(attrs);
  3211. if (!pool)
  3212. return NULL;
  3213. pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
  3214. if (!pwq) {
  3215. put_unbound_pool(pool);
  3216. return NULL;
  3217. }
  3218. init_pwq(pwq, wq, pool);
  3219. return pwq;
  3220. }
  3221. /* undo alloc_unbound_pwq(), used only in the error path */
  3222. static void free_unbound_pwq(struct pool_workqueue *pwq)
  3223. {
  3224. lockdep_assert_held(&wq_pool_mutex);
  3225. if (pwq) {
  3226. put_unbound_pool(pwq->pool);
  3227. kmem_cache_free(pwq_cache, pwq);
  3228. }
  3229. }
  3230. /**
  3231. * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
  3232. * @attrs: the wq_attrs of interest
  3233. * @node: the target NUMA node
  3234. * @cpu_going_down: if >= 0, the CPU to consider as offline
  3235. * @cpumask: outarg, the resulting cpumask
  3236. *
  3237. * Calculate the cpumask a workqueue with @attrs should use on @node. If
  3238. * @cpu_going_down is >= 0, that cpu is considered offline during
  3239. * calculation. The result is stored in @cpumask. This function returns
  3240. * %true if the resulting @cpumask is different from @attrs->cpumask,
  3241. * %false if equal.
  3242. *
  3243. * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
  3244. * enabled and @node has online CPUs requested by @attrs, the returned
  3245. * cpumask is the intersection of the possible CPUs of @node and
  3246. * @attrs->cpumask.
  3247. *
  3248. * The caller is responsible for ensuring that the cpumask of @node stays
  3249. * stable.
  3250. */
  3251. static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
  3252. int cpu_going_down, cpumask_t *cpumask)
  3253. {
  3254. if (!wq_numa_enabled || attrs->no_numa)
  3255. goto use_dfl;
  3256. /* does @node have any online CPUs @attrs wants? */
  3257. cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
  3258. if (cpu_going_down >= 0)
  3259. cpumask_clear_cpu(cpu_going_down, cpumask);
  3260. if (cpumask_empty(cpumask))
  3261. goto use_dfl;
  3262. /* yeap, return possible CPUs in @node that @attrs wants */
  3263. cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
  3264. return !cpumask_equal(cpumask, attrs->cpumask);
  3265. use_dfl:
  3266. cpumask_copy(cpumask, attrs->cpumask);
  3267. return false;
  3268. }
  3269. /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
  3270. static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
  3271. int node,
  3272. struct pool_workqueue *pwq)
  3273. {
  3274. struct pool_workqueue *old_pwq;
  3275. lockdep_assert_held(&wq->mutex);
  3276. /* link_pwq() can handle duplicate calls */
  3277. link_pwq(pwq);
  3278. old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3279. rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
  3280. return old_pwq;
  3281. }
  3282. /**
  3283. * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
  3284. * @wq: the target workqueue
  3285. * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
  3286. *
  3287. * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
  3288. * machines, this function maps a separate pwq to each NUMA node with
  3289. * possibles CPUs in @attrs->cpumask so that work items are affine to the
  3290. * NUMA node it was issued on. Older pwqs are released as in-flight work
  3291. * items finish. Note that a work item which repeatedly requeues itself
  3292. * back-to-back will stay on its current pwq.
  3293. *
  3294. * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
  3295. * failure.
  3296. */
  3297. int apply_workqueue_attrs(struct workqueue_struct *wq,
  3298. const struct workqueue_attrs *attrs)
  3299. {
  3300. struct workqueue_attrs *new_attrs, *tmp_attrs;
  3301. struct pool_workqueue **pwq_tbl, *dfl_pwq;
  3302. int node, ret;
  3303. /* only unbound workqueues can change attributes */
  3304. if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
  3305. return -EINVAL;
  3306. /* creating multiple pwqs breaks ordering guarantee */
  3307. if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
  3308. return -EINVAL;
  3309. pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
  3310. new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3311. tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3312. if (!pwq_tbl || !new_attrs || !tmp_attrs)
  3313. goto enomem;
  3314. /* make a copy of @attrs and sanitize it */
  3315. copy_workqueue_attrs(new_attrs, attrs);
  3316. cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
  3317. /*
  3318. * We may create multiple pwqs with differing cpumasks. Make a
  3319. * copy of @new_attrs which will be modified and used to obtain
  3320. * pools.
  3321. */
  3322. copy_workqueue_attrs(tmp_attrs, new_attrs);
  3323. /*
  3324. * CPUs should stay stable across pwq creations and installations.
  3325. * Pin CPUs, determine the target cpumask for each node and create
  3326. * pwqs accordingly.
  3327. */
  3328. get_online_cpus();
  3329. mutex_lock(&wq_pool_mutex);
  3330. /*
  3331. * If something goes wrong during CPU up/down, we'll fall back to
  3332. * the default pwq covering whole @attrs->cpumask. Always create
  3333. * it even if we don't use it immediately.
  3334. */
  3335. dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
  3336. if (!dfl_pwq)
  3337. goto enomem_pwq;
  3338. for_each_node(node) {
  3339. if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
  3340. pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
  3341. if (!pwq_tbl[node])
  3342. goto enomem_pwq;
  3343. } else {
  3344. dfl_pwq->refcnt++;
  3345. pwq_tbl[node] = dfl_pwq;
  3346. }
  3347. }
  3348. mutex_unlock(&wq_pool_mutex);
  3349. /* all pwqs have been created successfully, let's install'em */
  3350. mutex_lock(&wq->mutex);
  3351. copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
  3352. /* save the previous pwq and install the new one */
  3353. for_each_node(node)
  3354. pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
  3355. /* @dfl_pwq might not have been used, ensure it's linked */
  3356. link_pwq(dfl_pwq);
  3357. swap(wq->dfl_pwq, dfl_pwq);
  3358. mutex_unlock(&wq->mutex);
  3359. /* put the old pwqs */
  3360. for_each_node(node)
  3361. put_pwq_unlocked(pwq_tbl[node]);
  3362. put_pwq_unlocked(dfl_pwq);
  3363. put_online_cpus();
  3364. ret = 0;
  3365. /* fall through */
  3366. out_free:
  3367. free_workqueue_attrs(tmp_attrs);
  3368. free_workqueue_attrs(new_attrs);
  3369. kfree(pwq_tbl);
  3370. return ret;
  3371. enomem_pwq:
  3372. free_unbound_pwq(dfl_pwq);
  3373. for_each_node(node)
  3374. if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
  3375. free_unbound_pwq(pwq_tbl[node]);
  3376. mutex_unlock(&wq_pool_mutex);
  3377. put_online_cpus();
  3378. enomem:
  3379. ret = -ENOMEM;
  3380. goto out_free;
  3381. }
  3382. /**
  3383. * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
  3384. * @wq: the target workqueue
  3385. * @cpu: the CPU coming up or going down
  3386. * @online: whether @cpu is coming up or going down
  3387. *
  3388. * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
  3389. * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
  3390. * @wq accordingly.
  3391. *
  3392. * If NUMA affinity can't be adjusted due to memory allocation failure, it
  3393. * falls back to @wq->dfl_pwq which may not be optimal but is always
  3394. * correct.
  3395. *
  3396. * Note that when the last allowed CPU of a NUMA node goes offline for a
  3397. * workqueue with a cpumask spanning multiple nodes, the workers which were
  3398. * already executing the work items for the workqueue will lose their CPU
  3399. * affinity and may execute on any CPU. This is similar to how per-cpu
  3400. * workqueues behave on CPU_DOWN. If a workqueue user wants strict
  3401. * affinity, it's the user's responsibility to flush the work item from
  3402. * CPU_DOWN_PREPARE.
  3403. */
  3404. static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
  3405. bool online)
  3406. {
  3407. int node = cpu_to_node(cpu);
  3408. int cpu_off = online ? -1 : cpu;
  3409. struct pool_workqueue *old_pwq = NULL, *pwq;
  3410. struct workqueue_attrs *target_attrs;
  3411. cpumask_t *cpumask;
  3412. lockdep_assert_held(&wq_pool_mutex);
  3413. if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
  3414. return;
  3415. /*
  3416. * We don't wanna alloc/free wq_attrs for each wq for each CPU.
  3417. * Let's use a preallocated one. The following buf is protected by
  3418. * CPU hotplug exclusion.
  3419. */
  3420. target_attrs = wq_update_unbound_numa_attrs_buf;
  3421. cpumask = target_attrs->cpumask;
  3422. mutex_lock(&wq->mutex);
  3423. if (wq->unbound_attrs->no_numa)
  3424. goto out_unlock;
  3425. copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
  3426. pwq = unbound_pwq_by_node(wq, node);
  3427. /*
  3428. * Let's determine what needs to be done. If the target cpumask is
  3429. * different from wq's, we need to compare it to @pwq's and create
  3430. * a new one if they don't match. If the target cpumask equals
  3431. * wq's, the default pwq should be used. If @pwq is already the
  3432. * default one, nothing to do; otherwise, install the default one.
  3433. */
  3434. if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
  3435. if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
  3436. goto out_unlock;
  3437. } else {
  3438. if (pwq == wq->dfl_pwq)
  3439. goto out_unlock;
  3440. else
  3441. goto use_dfl_pwq;
  3442. }
  3443. mutex_unlock(&wq->mutex);
  3444. /* create a new pwq */
  3445. pwq = alloc_unbound_pwq(wq, target_attrs);
  3446. if (!pwq) {
  3447. pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
  3448. wq->name);
  3449. goto out_unlock;
  3450. }
  3451. /*
  3452. * Install the new pwq. As this function is called only from CPU
  3453. * hotplug callbacks and applying a new attrs is wrapped with
  3454. * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
  3455. * inbetween.
  3456. */
  3457. mutex_lock(&wq->mutex);
  3458. old_pwq = numa_pwq_tbl_install(wq, node, pwq);
  3459. goto out_unlock;
  3460. use_dfl_pwq:
  3461. spin_lock_irq(&wq->dfl_pwq->pool->lock);
  3462. get_pwq(wq->dfl_pwq);
  3463. spin_unlock_irq(&wq->dfl_pwq->pool->lock);
  3464. old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
  3465. out_unlock:
  3466. mutex_unlock(&wq->mutex);
  3467. put_pwq_unlocked(old_pwq);
  3468. }
  3469. static int alloc_and_link_pwqs(struct workqueue_struct *wq)
  3470. {
  3471. bool highpri = wq->flags & WQ_HIGHPRI;
  3472. int cpu;
  3473. if (!(wq->flags & WQ_UNBOUND)) {
  3474. wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
  3475. if (!wq->cpu_pwqs)
  3476. return -ENOMEM;
  3477. for_each_possible_cpu(cpu) {
  3478. struct pool_workqueue *pwq =
  3479. per_cpu_ptr(wq->cpu_pwqs, cpu);
  3480. struct worker_pool *cpu_pools =
  3481. per_cpu(cpu_worker_pools, cpu);
  3482. init_pwq(pwq, wq, &cpu_pools[highpri]);
  3483. mutex_lock(&wq->mutex);
  3484. link_pwq(pwq);
  3485. mutex_unlock(&wq->mutex);
  3486. }
  3487. return 0;
  3488. } else {
  3489. return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
  3490. }
  3491. }
  3492. static int wq_clamp_max_active(int max_active, unsigned int flags,
  3493. const char *name)
  3494. {
  3495. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  3496. if (max_active < 1 || max_active > lim)
  3497. pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
  3498. max_active, name, 1, lim);
  3499. return clamp_val(max_active, 1, lim);
  3500. }
  3501. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  3502. unsigned int flags,
  3503. int max_active,
  3504. struct lock_class_key *key,
  3505. const char *lock_name, ...)
  3506. {
  3507. size_t tbl_size = 0;
  3508. va_list args;
  3509. struct workqueue_struct *wq;
  3510. struct pool_workqueue *pwq;
  3511. /* allocate wq and format name */
  3512. if (flags & WQ_UNBOUND)
  3513. tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
  3514. wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
  3515. if (!wq)
  3516. return NULL;
  3517. if (flags & WQ_UNBOUND) {
  3518. wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3519. if (!wq->unbound_attrs)
  3520. goto err_free_wq;
  3521. }
  3522. va_start(args, lock_name);
  3523. vsnprintf(wq->name, sizeof(wq->name), fmt, args);
  3524. va_end(args);
  3525. max_active = max_active ?: WQ_DFL_ACTIVE;
  3526. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  3527. /* init wq */
  3528. wq->flags = flags;
  3529. wq->saved_max_active = max_active;
  3530. mutex_init(&wq->mutex);
  3531. atomic_set(&wq->nr_pwqs_to_flush, 0);
  3532. INIT_LIST_HEAD(&wq->pwqs);
  3533. INIT_LIST_HEAD(&wq->flusher_queue);
  3534. INIT_LIST_HEAD(&wq->flusher_overflow);
  3535. INIT_LIST_HEAD(&wq->maydays);
  3536. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  3537. INIT_LIST_HEAD(&wq->list);
  3538. if (alloc_and_link_pwqs(wq) < 0)
  3539. goto err_free_wq;
  3540. /*
  3541. * Workqueues which may be used during memory reclaim should
  3542. * have a rescuer to guarantee forward progress.
  3543. */
  3544. if (flags & WQ_MEM_RECLAIM) {
  3545. struct worker *rescuer;
  3546. rescuer = alloc_worker();
  3547. if (!rescuer)
  3548. goto err_destroy;
  3549. rescuer->rescue_wq = wq;
  3550. rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
  3551. wq->name);
  3552. if (IS_ERR(rescuer->task)) {
  3553. kfree(rescuer);
  3554. goto err_destroy;
  3555. }
  3556. wq->rescuer = rescuer;
  3557. rescuer->task->flags |= PF_NO_SETAFFINITY;
  3558. wake_up_process(rescuer->task);
  3559. }
  3560. if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
  3561. goto err_destroy;
  3562. /*
  3563. * wq_pool_mutex protects global freeze state and workqueues list.
  3564. * Grab it, adjust max_active and add the new @wq to workqueues
  3565. * list.
  3566. */
  3567. mutex_lock(&wq_pool_mutex);
  3568. mutex_lock(&wq->mutex);
  3569. for_each_pwq(pwq, wq)
  3570. pwq_adjust_max_active(pwq);
  3571. mutex_unlock(&wq->mutex);
  3572. list_add(&wq->list, &workqueues);
  3573. mutex_unlock(&wq_pool_mutex);
  3574. return wq;
  3575. err_free_wq:
  3576. free_workqueue_attrs(wq->unbound_attrs);
  3577. kfree(wq);
  3578. return NULL;
  3579. err_destroy:
  3580. destroy_workqueue(wq);
  3581. return NULL;
  3582. }
  3583. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  3584. /**
  3585. * destroy_workqueue - safely terminate a workqueue
  3586. * @wq: target workqueue
  3587. *
  3588. * Safely destroy a workqueue. All work currently pending will be done first.
  3589. */
  3590. void destroy_workqueue(struct workqueue_struct *wq)
  3591. {
  3592. struct pool_workqueue *pwq;
  3593. int node;
  3594. /* drain it before proceeding with destruction */
  3595. drain_workqueue(wq);
  3596. /* sanity checks */
  3597. mutex_lock(&wq->mutex);
  3598. for_each_pwq(pwq, wq) {
  3599. int i;
  3600. for (i = 0; i < WORK_NR_COLORS; i++) {
  3601. if (WARN_ON(pwq->nr_in_flight[i])) {
  3602. mutex_unlock(&wq->mutex);
  3603. return;
  3604. }
  3605. }
  3606. if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
  3607. WARN_ON(pwq->nr_active) ||
  3608. WARN_ON(!list_empty(&pwq->delayed_works))) {
  3609. mutex_unlock(&wq->mutex);
  3610. return;
  3611. }
  3612. }
  3613. mutex_unlock(&wq->mutex);
  3614. /*
  3615. * wq list is used to freeze wq, remove from list after
  3616. * flushing is complete in case freeze races us.
  3617. */
  3618. mutex_lock(&wq_pool_mutex);
  3619. list_del_init(&wq->list);
  3620. mutex_unlock(&wq_pool_mutex);
  3621. workqueue_sysfs_unregister(wq);
  3622. if (wq->rescuer) {
  3623. kthread_stop(wq->rescuer->task);
  3624. kfree(wq->rescuer);
  3625. wq->rescuer = NULL;
  3626. }
  3627. if (!(wq->flags & WQ_UNBOUND)) {
  3628. /*
  3629. * The base ref is never dropped on per-cpu pwqs. Directly
  3630. * free the pwqs and wq.
  3631. */
  3632. free_percpu(wq->cpu_pwqs);
  3633. kfree(wq);
  3634. } else {
  3635. /*
  3636. * We're the sole accessor of @wq at this point. Directly
  3637. * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
  3638. * @wq will be freed when the last pwq is released.
  3639. */
  3640. for_each_node(node) {
  3641. pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3642. RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
  3643. put_pwq_unlocked(pwq);
  3644. }
  3645. /*
  3646. * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
  3647. * put. Don't access it afterwards.
  3648. */
  3649. pwq = wq->dfl_pwq;
  3650. wq->dfl_pwq = NULL;
  3651. put_pwq_unlocked(pwq);
  3652. }
  3653. }
  3654. EXPORT_SYMBOL_GPL(destroy_workqueue);
  3655. /**
  3656. * workqueue_set_max_active - adjust max_active of a workqueue
  3657. * @wq: target workqueue
  3658. * @max_active: new max_active value.
  3659. *
  3660. * Set max_active of @wq to @max_active.
  3661. *
  3662. * CONTEXT:
  3663. * Don't call from IRQ context.
  3664. */
  3665. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  3666. {
  3667. struct pool_workqueue *pwq;
  3668. /* disallow meddling with max_active for ordered workqueues */
  3669. if (WARN_ON(wq->flags & __WQ_ORDERED))
  3670. return;
  3671. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  3672. mutex_lock(&wq->mutex);
  3673. wq->saved_max_active = max_active;
  3674. for_each_pwq(pwq, wq)
  3675. pwq_adjust_max_active(pwq);
  3676. mutex_unlock(&wq->mutex);
  3677. }
  3678. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  3679. /**
  3680. * current_is_workqueue_rescuer - is %current workqueue rescuer?
  3681. *
  3682. * Determine whether %current is a workqueue rescuer. Can be used from
  3683. * work functions to determine whether it's being run off the rescuer task.
  3684. */
  3685. bool current_is_workqueue_rescuer(void)
  3686. {
  3687. struct worker *worker = current_wq_worker();
  3688. return worker && worker->rescue_wq;
  3689. }
  3690. /**
  3691. * workqueue_congested - test whether a workqueue is congested
  3692. * @cpu: CPU in question
  3693. * @wq: target workqueue
  3694. *
  3695. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  3696. * no synchronization around this function and the test result is
  3697. * unreliable and only useful as advisory hints or for debugging.
  3698. *
  3699. * RETURNS:
  3700. * %true if congested, %false otherwise.
  3701. */
  3702. bool workqueue_congested(int cpu, struct workqueue_struct *wq)
  3703. {
  3704. struct pool_workqueue *pwq;
  3705. bool ret;
  3706. rcu_read_lock_sched();
  3707. if (!(wq->flags & WQ_UNBOUND))
  3708. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  3709. else
  3710. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  3711. ret = !list_empty(&pwq->delayed_works);
  3712. rcu_read_unlock_sched();
  3713. return ret;
  3714. }
  3715. EXPORT_SYMBOL_GPL(workqueue_congested);
  3716. /**
  3717. * work_busy - test whether a work is currently pending or running
  3718. * @work: the work to be tested
  3719. *
  3720. * Test whether @work is currently pending or running. There is no
  3721. * synchronization around this function and the test result is
  3722. * unreliable and only useful as advisory hints or for debugging.
  3723. *
  3724. * RETURNS:
  3725. * OR'd bitmask of WORK_BUSY_* bits.
  3726. */
  3727. unsigned int work_busy(struct work_struct *work)
  3728. {
  3729. struct worker_pool *pool;
  3730. unsigned long flags;
  3731. unsigned int ret = 0;
  3732. if (work_pending(work))
  3733. ret |= WORK_BUSY_PENDING;
  3734. local_irq_save(flags);
  3735. pool = get_work_pool(work);
  3736. if (pool) {
  3737. spin_lock(&pool->lock);
  3738. if (find_worker_executing_work(pool, work))
  3739. ret |= WORK_BUSY_RUNNING;
  3740. spin_unlock(&pool->lock);
  3741. }
  3742. local_irq_restore(flags);
  3743. return ret;
  3744. }
  3745. EXPORT_SYMBOL_GPL(work_busy);
  3746. /**
  3747. * set_worker_desc - set description for the current work item
  3748. * @fmt: printf-style format string
  3749. * @...: arguments for the format string
  3750. *
  3751. * This function can be called by a running work function to describe what
  3752. * the work item is about. If the worker task gets dumped, this
  3753. * information will be printed out together to help debugging. The
  3754. * description can be at most WORKER_DESC_LEN including the trailing '\0'.
  3755. */
  3756. void set_worker_desc(const char *fmt, ...)
  3757. {
  3758. struct worker *worker = current_wq_worker();
  3759. va_list args;
  3760. if (worker) {
  3761. va_start(args, fmt);
  3762. vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
  3763. va_end(args);
  3764. worker->desc_valid = true;
  3765. }
  3766. }
  3767. /**
  3768. * print_worker_info - print out worker information and description
  3769. * @log_lvl: the log level to use when printing
  3770. * @task: target task
  3771. *
  3772. * If @task is a worker and currently executing a work item, print out the
  3773. * name of the workqueue being serviced and worker description set with
  3774. * set_worker_desc() by the currently executing work item.
  3775. *
  3776. * This function can be safely called on any task as long as the
  3777. * task_struct itself is accessible. While safe, this function isn't
  3778. * synchronized and may print out mixups or garbages of limited length.
  3779. */
  3780. void print_worker_info(const char *log_lvl, struct task_struct *task)
  3781. {
  3782. work_func_t *fn = NULL;
  3783. char name[WQ_NAME_LEN] = { };
  3784. char desc[WORKER_DESC_LEN] = { };
  3785. struct pool_workqueue *pwq = NULL;
  3786. struct workqueue_struct *wq = NULL;
  3787. bool desc_valid = false;
  3788. struct worker *worker;
  3789. if (!(task->flags & PF_WQ_WORKER))
  3790. return;
  3791. /*
  3792. * This function is called without any synchronization and @task
  3793. * could be in any state. Be careful with dereferences.
  3794. */
  3795. worker = probe_kthread_data(task);
  3796. /*
  3797. * Carefully copy the associated workqueue's workfn and name. Keep
  3798. * the original last '\0' in case the original contains garbage.
  3799. */
  3800. probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
  3801. probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
  3802. probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
  3803. probe_kernel_read(name, wq->name, sizeof(name) - 1);
  3804. /* copy worker description */
  3805. probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
  3806. if (desc_valid)
  3807. probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
  3808. if (fn || name[0] || desc[0]) {
  3809. printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
  3810. if (desc[0])
  3811. pr_cont(" (%s)", desc);
  3812. pr_cont("\n");
  3813. }
  3814. }
  3815. /*
  3816. * CPU hotplug.
  3817. *
  3818. * There are two challenges in supporting CPU hotplug. Firstly, there
  3819. * are a lot of assumptions on strong associations among work, pwq and
  3820. * pool which make migrating pending and scheduled works very
  3821. * difficult to implement without impacting hot paths. Secondly,
  3822. * worker pools serve mix of short, long and very long running works making
  3823. * blocked draining impractical.
  3824. *
  3825. * This is solved by allowing the pools to be disassociated from the CPU
  3826. * running as an unbound one and allowing it to be reattached later if the
  3827. * cpu comes back online.
  3828. */
  3829. static void wq_unbind_fn(struct work_struct *work)
  3830. {
  3831. int cpu = smp_processor_id();
  3832. struct worker_pool *pool;
  3833. struct worker *worker;
  3834. int wi;
  3835. for_each_cpu_worker_pool(pool, cpu) {
  3836. WARN_ON_ONCE(cpu != smp_processor_id());
  3837. mutex_lock(&pool->manager_mutex);
  3838. spin_lock_irq(&pool->lock);
  3839. /*
  3840. * We've blocked all manager operations. Make all workers
  3841. * unbound and set DISASSOCIATED. Before this, all workers
  3842. * except for the ones which are still executing works from
  3843. * before the last CPU down must be on the cpu. After
  3844. * this, they may become diasporas.
  3845. */
  3846. for_each_pool_worker(worker, wi, pool)
  3847. worker->flags |= WORKER_UNBOUND;
  3848. pool->flags |= POOL_DISASSOCIATED;
  3849. spin_unlock_irq(&pool->lock);
  3850. mutex_unlock(&pool->manager_mutex);
  3851. /*
  3852. * Call schedule() so that we cross rq->lock and thus can
  3853. * guarantee sched callbacks see the %WORKER_UNBOUND flag.
  3854. * This is necessary as scheduler callbacks may be invoked
  3855. * from other cpus.
  3856. */
  3857. schedule();
  3858. /*
  3859. * Sched callbacks are disabled now. Zap nr_running.
  3860. * After this, nr_running stays zero and need_more_worker()
  3861. * and keep_working() are always true as long as the
  3862. * worklist is not empty. This pool now behaves as an
  3863. * unbound (in terms of concurrency management) pool which
  3864. * are served by workers tied to the pool.
  3865. */
  3866. atomic_set(&pool->nr_running, 0);
  3867. /*
  3868. * With concurrency management just turned off, a busy
  3869. * worker blocking could lead to lengthy stalls. Kick off
  3870. * unbound chain execution of currently pending work items.
  3871. */
  3872. spin_lock_irq(&pool->lock);
  3873. wake_up_worker(pool);
  3874. spin_unlock_irq(&pool->lock);
  3875. }
  3876. }
  3877. /**
  3878. * rebind_workers - rebind all workers of a pool to the associated CPU
  3879. * @pool: pool of interest
  3880. *
  3881. * @pool->cpu is coming online. Rebind all workers to the CPU.
  3882. */
  3883. static void rebind_workers(struct worker_pool *pool)
  3884. {
  3885. struct worker *worker;
  3886. int wi;
  3887. lockdep_assert_held(&pool->manager_mutex);
  3888. /*
  3889. * Restore CPU affinity of all workers. As all idle workers should
  3890. * be on the run-queue of the associated CPU before any local
  3891. * wake-ups for concurrency management happen, restore CPU affinty
  3892. * of all workers first and then clear UNBOUND. As we're called
  3893. * from CPU_ONLINE, the following shouldn't fail.
  3894. */
  3895. for_each_pool_worker(worker, wi, pool)
  3896. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3897. pool->attrs->cpumask) < 0);
  3898. spin_lock_irq(&pool->lock);
  3899. for_each_pool_worker(worker, wi, pool) {
  3900. unsigned int worker_flags = worker->flags;
  3901. /*
  3902. * A bound idle worker should actually be on the runqueue
  3903. * of the associated CPU for local wake-ups targeting it to
  3904. * work. Kick all idle workers so that they migrate to the
  3905. * associated CPU. Doing this in the same loop as
  3906. * replacing UNBOUND with REBOUND is safe as no worker will
  3907. * be bound before @pool->lock is released.
  3908. */
  3909. if (worker_flags & WORKER_IDLE)
  3910. wake_up_process(worker->task);
  3911. /*
  3912. * We want to clear UNBOUND but can't directly call
  3913. * worker_clr_flags() or adjust nr_running. Atomically
  3914. * replace UNBOUND with another NOT_RUNNING flag REBOUND.
  3915. * @worker will clear REBOUND using worker_clr_flags() when
  3916. * it initiates the next execution cycle thus restoring
  3917. * concurrency management. Note that when or whether
  3918. * @worker clears REBOUND doesn't affect correctness.
  3919. *
  3920. * ACCESS_ONCE() is necessary because @worker->flags may be
  3921. * tested without holding any lock in
  3922. * wq_worker_waking_up(). Without it, NOT_RUNNING test may
  3923. * fail incorrectly leading to premature concurrency
  3924. * management operations.
  3925. */
  3926. WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
  3927. worker_flags |= WORKER_REBOUND;
  3928. worker_flags &= ~WORKER_UNBOUND;
  3929. ACCESS_ONCE(worker->flags) = worker_flags;
  3930. }
  3931. spin_unlock_irq(&pool->lock);
  3932. }
  3933. /**
  3934. * restore_unbound_workers_cpumask - restore cpumask of unbound workers
  3935. * @pool: unbound pool of interest
  3936. * @cpu: the CPU which is coming up
  3937. *
  3938. * An unbound pool may end up with a cpumask which doesn't have any online
  3939. * CPUs. When a worker of such pool get scheduled, the scheduler resets
  3940. * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
  3941. * online CPU before, cpus_allowed of all its workers should be restored.
  3942. */
  3943. static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
  3944. {
  3945. static cpumask_t cpumask;
  3946. struct worker *worker;
  3947. int wi;
  3948. lockdep_assert_held(&pool->manager_mutex);
  3949. /* is @cpu allowed for @pool? */
  3950. if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
  3951. return;
  3952. /* is @cpu the only online CPU? */
  3953. cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
  3954. if (cpumask_weight(&cpumask) != 1)
  3955. return;
  3956. /* as we're called from CPU_ONLINE, the following shouldn't fail */
  3957. for_each_pool_worker(worker, wi, pool)
  3958. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3959. pool->attrs->cpumask) < 0);
  3960. }
  3961. /*
  3962. * Workqueues should be brought up before normal priority CPU notifiers.
  3963. * This will be registered high priority CPU notifier.
  3964. */
  3965. static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
  3966. unsigned long action,
  3967. void *hcpu)
  3968. {
  3969. int cpu = (unsigned long)hcpu;
  3970. struct worker_pool *pool;
  3971. struct workqueue_struct *wq;
  3972. int pi;
  3973. switch (action & ~CPU_TASKS_FROZEN) {
  3974. case CPU_UP_PREPARE:
  3975. for_each_cpu_worker_pool(pool, cpu) {
  3976. if (pool->nr_workers)
  3977. continue;
  3978. if (create_and_start_worker(pool) < 0)
  3979. return NOTIFY_BAD;
  3980. }
  3981. break;
  3982. case CPU_DOWN_FAILED:
  3983. case CPU_ONLINE:
  3984. mutex_lock(&wq_pool_mutex);
  3985. for_each_pool(pool, pi) {
  3986. mutex_lock(&pool->manager_mutex);
  3987. if (pool->cpu == cpu) {
  3988. spin_lock_irq(&pool->lock);
  3989. pool->flags &= ~POOL_DISASSOCIATED;
  3990. spin_unlock_irq(&pool->lock);
  3991. rebind_workers(pool);
  3992. } else if (pool->cpu < 0) {
  3993. restore_unbound_workers_cpumask(pool, cpu);
  3994. }
  3995. mutex_unlock(&pool->manager_mutex);
  3996. }
  3997. /* update NUMA affinity of unbound workqueues */
  3998. list_for_each_entry(wq, &workqueues, list)
  3999. wq_update_unbound_numa(wq, cpu, true);
  4000. mutex_unlock(&wq_pool_mutex);
  4001. break;
  4002. }
  4003. return NOTIFY_OK;
  4004. }
  4005. /*
  4006. * Workqueues should be brought down after normal priority CPU notifiers.
  4007. * This will be registered as low priority CPU notifier.
  4008. */
  4009. static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
  4010. unsigned long action,
  4011. void *hcpu)
  4012. {
  4013. int cpu = (unsigned long)hcpu;
  4014. struct work_struct unbind_work;
  4015. struct workqueue_struct *wq;
  4016. switch (action & ~CPU_TASKS_FROZEN) {
  4017. case CPU_DOWN_PREPARE:
  4018. /* unbinding per-cpu workers should happen on the local CPU */
  4019. INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
  4020. queue_work_on(cpu, system_highpri_wq, &unbind_work);
  4021. /* update NUMA affinity of unbound workqueues */
  4022. mutex_lock(&wq_pool_mutex);
  4023. list_for_each_entry(wq, &workqueues, list)
  4024. wq_update_unbound_numa(wq, cpu, false);
  4025. mutex_unlock(&wq_pool_mutex);
  4026. /* wait for per-cpu unbinding to finish */
  4027. flush_work(&unbind_work);
  4028. break;
  4029. }
  4030. return NOTIFY_OK;
  4031. }
  4032. #ifdef CONFIG_SMP
  4033. struct work_for_cpu {
  4034. struct work_struct work;
  4035. long (*fn)(void *);
  4036. void *arg;
  4037. long ret;
  4038. };
  4039. static void work_for_cpu_fn(struct work_struct *work)
  4040. {
  4041. struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
  4042. wfc->ret = wfc->fn(wfc->arg);
  4043. }
  4044. /**
  4045. * work_on_cpu - run a function in user context on a particular cpu
  4046. * @cpu: the cpu to run on
  4047. * @fn: the function to run
  4048. * @arg: the function arg
  4049. *
  4050. * This will return the value @fn returns.
  4051. * It is up to the caller to ensure that the cpu doesn't go offline.
  4052. * The caller must not hold any locks which would prevent @fn from completing.
  4053. */
  4054. long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
  4055. {
  4056. struct work_for_cpu wfc = { .fn = fn, .arg = arg };
  4057. INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
  4058. schedule_work_on(cpu, &wfc.work);
  4059. flush_work(&wfc.work);
  4060. return wfc.ret;
  4061. }
  4062. EXPORT_SYMBOL_GPL(work_on_cpu);
  4063. #endif /* CONFIG_SMP */
  4064. #ifdef CONFIG_FREEZER
  4065. /**
  4066. * freeze_workqueues_begin - begin freezing workqueues
  4067. *
  4068. * Start freezing workqueues. After this function returns, all freezable
  4069. * workqueues will queue new works to their delayed_works list instead of
  4070. * pool->worklist.
  4071. *
  4072. * CONTEXT:
  4073. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4074. */
  4075. void freeze_workqueues_begin(void)
  4076. {
  4077. struct worker_pool *pool;
  4078. struct workqueue_struct *wq;
  4079. struct pool_workqueue *pwq;
  4080. int pi;
  4081. mutex_lock(&wq_pool_mutex);
  4082. WARN_ON_ONCE(workqueue_freezing);
  4083. workqueue_freezing = true;
  4084. /* set FREEZING */
  4085. for_each_pool(pool, pi) {
  4086. spin_lock_irq(&pool->lock);
  4087. WARN_ON_ONCE(pool->flags & POOL_FREEZING);
  4088. pool->flags |= POOL_FREEZING;
  4089. spin_unlock_irq(&pool->lock);
  4090. }
  4091. list_for_each_entry(wq, &workqueues, list) {
  4092. mutex_lock(&wq->mutex);
  4093. for_each_pwq(pwq, wq)
  4094. pwq_adjust_max_active(pwq);
  4095. mutex_unlock(&wq->mutex);
  4096. }
  4097. mutex_unlock(&wq_pool_mutex);
  4098. }
  4099. /**
  4100. * freeze_workqueues_busy - are freezable workqueues still busy?
  4101. *
  4102. * Check whether freezing is complete. This function must be called
  4103. * between freeze_workqueues_begin() and thaw_workqueues().
  4104. *
  4105. * CONTEXT:
  4106. * Grabs and releases wq_pool_mutex.
  4107. *
  4108. * RETURNS:
  4109. * %true if some freezable workqueues are still busy. %false if freezing
  4110. * is complete.
  4111. */
  4112. bool freeze_workqueues_busy(void)
  4113. {
  4114. bool busy = false;
  4115. struct workqueue_struct *wq;
  4116. struct pool_workqueue *pwq;
  4117. mutex_lock(&wq_pool_mutex);
  4118. WARN_ON_ONCE(!workqueue_freezing);
  4119. list_for_each_entry(wq, &workqueues, list) {
  4120. if (!(wq->flags & WQ_FREEZABLE))
  4121. continue;
  4122. /*
  4123. * nr_active is monotonically decreasing. It's safe
  4124. * to peek without lock.
  4125. */
  4126. rcu_read_lock_sched();
  4127. for_each_pwq(pwq, wq) {
  4128. WARN_ON_ONCE(pwq->nr_active < 0);
  4129. if (pwq->nr_active) {
  4130. busy = true;
  4131. rcu_read_unlock_sched();
  4132. goto out_unlock;
  4133. }
  4134. }
  4135. rcu_read_unlock_sched();
  4136. }
  4137. out_unlock:
  4138. mutex_unlock(&wq_pool_mutex);
  4139. return busy;
  4140. }
  4141. /**
  4142. * thaw_workqueues - thaw workqueues
  4143. *
  4144. * Thaw workqueues. Normal queueing is restored and all collected
  4145. * frozen works are transferred to their respective pool worklists.
  4146. *
  4147. * CONTEXT:
  4148. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4149. */
  4150. void thaw_workqueues(void)
  4151. {
  4152. struct workqueue_struct *wq;
  4153. struct pool_workqueue *pwq;
  4154. struct worker_pool *pool;
  4155. int pi;
  4156. mutex_lock(&wq_pool_mutex);
  4157. if (!workqueue_freezing)
  4158. goto out_unlock;
  4159. /* clear FREEZING */
  4160. for_each_pool(pool, pi) {
  4161. spin_lock_irq(&pool->lock);
  4162. WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
  4163. pool->flags &= ~POOL_FREEZING;
  4164. spin_unlock_irq(&pool->lock);
  4165. }
  4166. /* restore max_active and repopulate worklist */
  4167. list_for_each_entry(wq, &workqueues, list) {
  4168. mutex_lock(&wq->mutex);
  4169. for_each_pwq(pwq, wq)
  4170. pwq_adjust_max_active(pwq);
  4171. mutex_unlock(&wq->mutex);
  4172. }
  4173. workqueue_freezing = false;
  4174. out_unlock:
  4175. mutex_unlock(&wq_pool_mutex);
  4176. }
  4177. #endif /* CONFIG_FREEZER */
  4178. static void __init wq_numa_init(void)
  4179. {
  4180. cpumask_var_t *tbl;
  4181. int node, cpu;
  4182. /* determine NUMA pwq table len - highest node id + 1 */
  4183. for_each_node(node)
  4184. wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
  4185. if (num_possible_nodes() <= 1)
  4186. return;
  4187. if (wq_disable_numa) {
  4188. pr_info("workqueue: NUMA affinity support disabled\n");
  4189. return;
  4190. }
  4191. wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
  4192. BUG_ON(!wq_update_unbound_numa_attrs_buf);
  4193. /*
  4194. * We want masks of possible CPUs of each node which isn't readily
  4195. * available. Build one from cpu_to_node() which should have been
  4196. * fully initialized by now.
  4197. */
  4198. tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
  4199. BUG_ON(!tbl);
  4200. for_each_node(node)
  4201. BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, node));
  4202. for_each_possible_cpu(cpu) {
  4203. node = cpu_to_node(cpu);
  4204. if (WARN_ON(node == NUMA_NO_NODE)) {
  4205. pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
  4206. /* happens iff arch is bonkers, let's just proceed */
  4207. return;
  4208. }
  4209. cpumask_set_cpu(cpu, tbl[node]);
  4210. }
  4211. wq_numa_possible_cpumask = tbl;
  4212. wq_numa_enabled = true;
  4213. }
  4214. static int __init init_workqueues(void)
  4215. {
  4216. int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
  4217. int i, cpu;
  4218. /* make sure we have enough bits for OFFQ pool ID */
  4219. BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
  4220. WORK_CPU_END * NR_STD_WORKER_POOLS);
  4221. WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
  4222. pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
  4223. cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
  4224. hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
  4225. wq_numa_init();
  4226. /* initialize CPU pools */
  4227. for_each_possible_cpu(cpu) {
  4228. struct worker_pool *pool;
  4229. i = 0;
  4230. for_each_cpu_worker_pool(pool, cpu) {
  4231. BUG_ON(init_worker_pool(pool));
  4232. pool->cpu = cpu;
  4233. cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
  4234. pool->attrs->nice = std_nice[i++];
  4235. pool->node = cpu_to_node(cpu);
  4236. /* alloc pool ID */
  4237. mutex_lock(&wq_pool_mutex);
  4238. BUG_ON(worker_pool_assign_id(pool));
  4239. mutex_unlock(&wq_pool_mutex);
  4240. }
  4241. }
  4242. /* create the initial worker */
  4243. for_each_online_cpu(cpu) {
  4244. struct worker_pool *pool;
  4245. for_each_cpu_worker_pool(pool, cpu) {
  4246. pool->flags &= ~POOL_DISASSOCIATED;
  4247. BUG_ON(create_and_start_worker(pool) < 0);
  4248. }
  4249. }
  4250. /* create default unbound wq attrs */
  4251. for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
  4252. struct workqueue_attrs *attrs;
  4253. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  4254. attrs->nice = std_nice[i];
  4255. unbound_std_wq_attrs[i] = attrs;
  4256. }
  4257. system_wq = alloc_workqueue("events", 0, 0);
  4258. system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
  4259. system_long_wq = alloc_workqueue("events_long", 0, 0);
  4260. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  4261. WQ_UNBOUND_MAX_ACTIVE);
  4262. system_freezable_wq = alloc_workqueue("events_freezable",
  4263. WQ_FREEZABLE, 0);
  4264. BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
  4265. !system_unbound_wq || !system_freezable_wq);
  4266. return 0;
  4267. }
  4268. early_initcall(init_workqueues);