pid_namespace.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. /*
  2. * Pid namespaces
  3. *
  4. * Authors:
  5. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  6. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  7. * Many thanks to Oleg Nesterov for comments and help
  8. *
  9. */
  10. #include <linux/pid.h>
  11. #include <linux/pid_namespace.h>
  12. #include <linux/user_namespace.h>
  13. #include <linux/syscalls.h>
  14. #include <linux/err.h>
  15. #include <linux/acct.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_ns.h>
  18. #include <linux/reboot.h>
  19. #include <linux/export.h>
  20. struct pid_cache {
  21. int nr_ids;
  22. char name[16];
  23. struct kmem_cache *cachep;
  24. struct list_head list;
  25. };
  26. static LIST_HEAD(pid_caches_lh);
  27. static DEFINE_MUTEX(pid_caches_mutex);
  28. static struct kmem_cache *pid_ns_cachep;
  29. /*
  30. * creates the kmem cache to allocate pids from.
  31. * @nr_ids: the number of numerical ids this pid will have to carry
  32. */
  33. static struct kmem_cache *create_pid_cachep(int nr_ids)
  34. {
  35. struct pid_cache *pcache;
  36. struct kmem_cache *cachep;
  37. mutex_lock(&pid_caches_mutex);
  38. list_for_each_entry(pcache, &pid_caches_lh, list)
  39. if (pcache->nr_ids == nr_ids)
  40. goto out;
  41. pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
  42. if (pcache == NULL)
  43. goto err_alloc;
  44. snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
  45. cachep = kmem_cache_create(pcache->name,
  46. sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
  47. 0, SLAB_HWCACHE_ALIGN, NULL);
  48. if (cachep == NULL)
  49. goto err_cachep;
  50. pcache->nr_ids = nr_ids;
  51. pcache->cachep = cachep;
  52. list_add(&pcache->list, &pid_caches_lh);
  53. out:
  54. mutex_unlock(&pid_caches_mutex);
  55. return pcache->cachep;
  56. err_cachep:
  57. kfree(pcache);
  58. err_alloc:
  59. mutex_unlock(&pid_caches_mutex);
  60. return NULL;
  61. }
  62. static void proc_cleanup_work(struct work_struct *work)
  63. {
  64. struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
  65. pid_ns_release_proc(ns);
  66. }
  67. /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
  68. #define MAX_PID_NS_LEVEL 32
  69. static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
  70. struct pid_namespace *parent_pid_ns)
  71. {
  72. struct pid_namespace *ns;
  73. unsigned int level = parent_pid_ns->level + 1;
  74. int i;
  75. int err;
  76. if (level > MAX_PID_NS_LEVEL) {
  77. err = -EINVAL;
  78. goto out;
  79. }
  80. err = -ENOMEM;
  81. ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
  82. if (ns == NULL)
  83. goto out;
  84. ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  85. if (!ns->pidmap[0].page)
  86. goto out_free;
  87. ns->pid_cachep = create_pid_cachep(level + 1);
  88. if (ns->pid_cachep == NULL)
  89. goto out_free_map;
  90. err = proc_alloc_inum(&ns->proc_inum);
  91. if (err)
  92. goto out_free_map;
  93. kref_init(&ns->kref);
  94. ns->level = level;
  95. ns->parent = get_pid_ns(parent_pid_ns);
  96. ns->user_ns = get_user_ns(user_ns);
  97. ns->nr_hashed = PIDNS_HASH_ADDING;
  98. INIT_WORK(&ns->proc_work, proc_cleanup_work);
  99. set_bit(0, ns->pidmap[0].page);
  100. atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
  101. for (i = 1; i < PIDMAP_ENTRIES; i++)
  102. atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
  103. return ns;
  104. out_free_map:
  105. kfree(ns->pidmap[0].page);
  106. out_free:
  107. kmem_cache_free(pid_ns_cachep, ns);
  108. out:
  109. return ERR_PTR(err);
  110. }
  111. static void destroy_pid_namespace(struct pid_namespace *ns)
  112. {
  113. int i;
  114. proc_free_inum(ns->proc_inum);
  115. for (i = 0; i < PIDMAP_ENTRIES; i++)
  116. kfree(ns->pidmap[i].page);
  117. put_user_ns(ns->user_ns);
  118. kmem_cache_free(pid_ns_cachep, ns);
  119. }
  120. struct pid_namespace *copy_pid_ns(unsigned long flags,
  121. struct user_namespace *user_ns, struct pid_namespace *old_ns)
  122. {
  123. if (!(flags & CLONE_NEWPID))
  124. return get_pid_ns(old_ns);
  125. if (task_active_pid_ns(current) != old_ns)
  126. return ERR_PTR(-EINVAL);
  127. return create_pid_namespace(user_ns, old_ns);
  128. }
  129. static void free_pid_ns(struct kref *kref)
  130. {
  131. struct pid_namespace *ns;
  132. ns = container_of(kref, struct pid_namespace, kref);
  133. destroy_pid_namespace(ns);
  134. }
  135. void put_pid_ns(struct pid_namespace *ns)
  136. {
  137. struct pid_namespace *parent;
  138. while (ns != &init_pid_ns) {
  139. parent = ns->parent;
  140. if (!kref_put(&ns->kref, free_pid_ns))
  141. break;
  142. ns = parent;
  143. }
  144. }
  145. EXPORT_SYMBOL_GPL(put_pid_ns);
  146. void zap_pid_ns_processes(struct pid_namespace *pid_ns)
  147. {
  148. int nr;
  149. int rc;
  150. struct task_struct *task, *me = current;
  151. int init_pids = thread_group_leader(me) ? 1 : 2;
  152. /* Don't allow any more processes into the pid namespace */
  153. disable_pid_allocation(pid_ns);
  154. /* Ignore SIGCHLD causing any terminated children to autoreap */
  155. spin_lock_irq(&me->sighand->siglock);
  156. me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
  157. spin_unlock_irq(&me->sighand->siglock);
  158. /*
  159. * The last thread in the cgroup-init thread group is terminating.
  160. * Find remaining pid_ts in the namespace, signal and wait for them
  161. * to exit.
  162. *
  163. * Note: This signals each threads in the namespace - even those that
  164. * belong to the same thread group, To avoid this, we would have
  165. * to walk the entire tasklist looking a processes in this
  166. * namespace, but that could be unnecessarily expensive if the
  167. * pid namespace has just a few processes. Or we need to
  168. * maintain a tasklist for each pid namespace.
  169. *
  170. */
  171. read_lock(&tasklist_lock);
  172. nr = next_pidmap(pid_ns, 1);
  173. while (nr > 0) {
  174. rcu_read_lock();
  175. task = pid_task(find_vpid(nr), PIDTYPE_PID);
  176. if (task && !__fatal_signal_pending(task))
  177. send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
  178. rcu_read_unlock();
  179. nr = next_pidmap(pid_ns, nr);
  180. }
  181. read_unlock(&tasklist_lock);
  182. /* Firstly reap the EXIT_ZOMBIE children we may have. */
  183. do {
  184. clear_thread_flag(TIF_SIGPENDING);
  185. rc = sys_wait4(-1, NULL, __WALL, NULL);
  186. } while (rc != -ECHILD);
  187. /*
  188. * sys_wait4() above can't reap the TASK_DEAD children.
  189. * Make sure they all go away, see free_pid().
  190. */
  191. for (;;) {
  192. set_current_state(TASK_UNINTERRUPTIBLE);
  193. if (pid_ns->nr_hashed == init_pids)
  194. break;
  195. schedule();
  196. }
  197. __set_current_state(TASK_RUNNING);
  198. if (pid_ns->reboot)
  199. current->signal->group_exit_code = pid_ns->reboot;
  200. acct_exit_ns(pid_ns);
  201. return;
  202. }
  203. #ifdef CONFIG_CHECKPOINT_RESTORE
  204. static int pid_ns_ctl_handler(struct ctl_table *table, int write,
  205. void __user *buffer, size_t *lenp, loff_t *ppos)
  206. {
  207. struct pid_namespace *pid_ns = task_active_pid_ns(current);
  208. struct ctl_table tmp = *table;
  209. if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
  210. return -EPERM;
  211. /*
  212. * Writing directly to ns' last_pid field is OK, since this field
  213. * is volatile in a living namespace anyway and a code writing to
  214. * it should synchronize its usage with external means.
  215. */
  216. tmp.data = &pid_ns->last_pid;
  217. return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
  218. }
  219. extern int pid_max;
  220. static int zero = 0;
  221. static struct ctl_table pid_ns_ctl_table[] = {
  222. {
  223. .procname = "ns_last_pid",
  224. .maxlen = sizeof(int),
  225. .mode = 0666, /* permissions are checked in the handler */
  226. .proc_handler = pid_ns_ctl_handler,
  227. .extra1 = &zero,
  228. .extra2 = &pid_max,
  229. },
  230. { }
  231. };
  232. static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
  233. #endif /* CONFIG_CHECKPOINT_RESTORE */
  234. int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
  235. {
  236. if (pid_ns == &init_pid_ns)
  237. return 0;
  238. switch (cmd) {
  239. case LINUX_REBOOT_CMD_RESTART2:
  240. case LINUX_REBOOT_CMD_RESTART:
  241. pid_ns->reboot = SIGHUP;
  242. break;
  243. case LINUX_REBOOT_CMD_POWER_OFF:
  244. case LINUX_REBOOT_CMD_HALT:
  245. pid_ns->reboot = SIGINT;
  246. break;
  247. default:
  248. return -EINVAL;
  249. }
  250. read_lock(&tasklist_lock);
  251. force_sig(SIGKILL, pid_ns->child_reaper);
  252. read_unlock(&tasklist_lock);
  253. do_exit(0);
  254. /* Not reached */
  255. return 0;
  256. }
  257. static void *pidns_get(struct task_struct *task)
  258. {
  259. struct pid_namespace *ns;
  260. rcu_read_lock();
  261. ns = get_pid_ns(task_active_pid_ns(task));
  262. rcu_read_unlock();
  263. return ns;
  264. }
  265. static void pidns_put(void *ns)
  266. {
  267. put_pid_ns(ns);
  268. }
  269. static int pidns_install(struct nsproxy *nsproxy, void *ns)
  270. {
  271. struct pid_namespace *active = task_active_pid_ns(current);
  272. struct pid_namespace *ancestor, *new = ns;
  273. if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
  274. !nsown_capable(CAP_SYS_ADMIN))
  275. return -EPERM;
  276. /*
  277. * Only allow entering the current active pid namespace
  278. * or a child of the current active pid namespace.
  279. *
  280. * This is required for fork to return a usable pid value and
  281. * this maintains the property that processes and their
  282. * children can not escape their current pid namespace.
  283. */
  284. if (new->level < active->level)
  285. return -EINVAL;
  286. ancestor = new;
  287. while (ancestor->level > active->level)
  288. ancestor = ancestor->parent;
  289. if (ancestor != active)
  290. return -EINVAL;
  291. put_pid_ns(nsproxy->pid_ns);
  292. nsproxy->pid_ns = get_pid_ns(new);
  293. return 0;
  294. }
  295. static unsigned int pidns_inum(void *ns)
  296. {
  297. struct pid_namespace *pid_ns = ns;
  298. return pid_ns->proc_inum;
  299. }
  300. const struct proc_ns_operations pidns_operations = {
  301. .name = "pid",
  302. .type = CLONE_NEWPID,
  303. .get = pidns_get,
  304. .put = pidns_put,
  305. .install = pidns_install,
  306. .inum = pidns_inum,
  307. };
  308. static __init int pid_namespaces_init(void)
  309. {
  310. pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
  311. #ifdef CONFIG_CHECKPOINT_RESTORE
  312. register_sysctl_paths(kern_path, pid_ns_ctl_table);
  313. #endif
  314. return 0;
  315. }
  316. __initcall(pid_namespaces_init);