pid.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5. * (C) 2004 Nadia Yvette Chambers, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/proc_ns.h>
  39. #include <linux/proc_fs.h>
  40. #define pid_hashfn(nr, ns) \
  41. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  42. static struct hlist_head *pid_hash;
  43. static unsigned int pidhash_shift = 4;
  44. struct pid init_struct_pid = INIT_STRUCT_PID;
  45. int pid_max = PID_MAX_DEFAULT;
  46. #define RESERVED_PIDS 300
  47. int pid_max_min = RESERVED_PIDS + 1;
  48. int pid_max_max = PID_MAX_LIMIT;
  49. static inline int mk_pid(struct pid_namespace *pid_ns,
  50. struct pidmap *map, int off)
  51. {
  52. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  53. }
  54. #define find_next_offset(map, off) \
  55. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  56. /*
  57. * PID-map pages start out as NULL, they get allocated upon
  58. * first use and are never deallocated. This way a low pid_max
  59. * value does not cause lots of bitmaps to be allocated, but
  60. * the scheme scales to up to 4 million PIDs, runtime.
  61. */
  62. struct pid_namespace init_pid_ns = {
  63. .kref = {
  64. .refcount = ATOMIC_INIT(2),
  65. },
  66. .pidmap = {
  67. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  68. },
  69. .last_pid = 0,
  70. .level = 0,
  71. .child_reaper = &init_task,
  72. .user_ns = &init_user_ns,
  73. .proc_inum = PROC_PID_INIT_INO,
  74. };
  75. EXPORT_SYMBOL_GPL(init_pid_ns);
  76. /*
  77. * Note: disable interrupts while the pidmap_lock is held as an
  78. * interrupt might come in and do read_lock(&tasklist_lock).
  79. *
  80. * If we don't disable interrupts there is a nasty deadlock between
  81. * detach_pid()->free_pid() and another cpu that does
  82. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  83. * read_lock(&tasklist_lock);
  84. *
  85. * After we clean up the tasklist_lock and know there are no
  86. * irq handlers that take it we can leave the interrupts enabled.
  87. * For now it is easier to be safe than to prove it can't happen.
  88. */
  89. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  90. static void free_pidmap(struct upid *upid)
  91. {
  92. int nr = upid->nr;
  93. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  94. int offset = nr & BITS_PER_PAGE_MASK;
  95. clear_bit(offset, map->page);
  96. atomic_inc(&map->nr_free);
  97. }
  98. /*
  99. * If we started walking pids at 'base', is 'a' seen before 'b'?
  100. */
  101. static int pid_before(int base, int a, int b)
  102. {
  103. /*
  104. * This is the same as saying
  105. *
  106. * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  107. * and that mapping orders 'a' and 'b' with respect to 'base'.
  108. */
  109. return (unsigned)(a - base) < (unsigned)(b - base);
  110. }
  111. /*
  112. * We might be racing with someone else trying to set pid_ns->last_pid
  113. * at the pid allocation time (there's also a sysctl for this, but racing
  114. * with this one is OK, see comment in kernel/pid_namespace.c about it).
  115. * We want the winner to have the "later" value, because if the
  116. * "earlier" value prevails, then a pid may get reused immediately.
  117. *
  118. * Since pids rollover, it is not sufficient to just pick the bigger
  119. * value. We have to consider where we started counting from.
  120. *
  121. * 'base' is the value of pid_ns->last_pid that we observed when
  122. * we started looking for a pid.
  123. *
  124. * 'pid' is the pid that we eventually found.
  125. */
  126. static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  127. {
  128. int prev;
  129. int last_write = base;
  130. do {
  131. prev = last_write;
  132. last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  133. } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  134. }
  135. static int alloc_pidmap(struct pid_namespace *pid_ns)
  136. {
  137. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  138. struct pidmap *map;
  139. pid = last + 1;
  140. if (pid >= pid_max)
  141. pid = RESERVED_PIDS;
  142. offset = pid & BITS_PER_PAGE_MASK;
  143. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  144. /*
  145. * If last_pid points into the middle of the map->page we
  146. * want to scan this bitmap block twice, the second time
  147. * we start with offset == 0 (or RESERVED_PIDS).
  148. */
  149. max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  150. for (i = 0; i <= max_scan; ++i) {
  151. if (unlikely(!map->page)) {
  152. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  153. /*
  154. * Free the page if someone raced with us
  155. * installing it:
  156. */
  157. spin_lock_irq(&pidmap_lock);
  158. if (!map->page) {
  159. map->page = page;
  160. page = NULL;
  161. }
  162. spin_unlock_irq(&pidmap_lock);
  163. kfree(page);
  164. if (unlikely(!map->page))
  165. break;
  166. }
  167. if (likely(atomic_read(&map->nr_free))) {
  168. for ( ; ; ) {
  169. if (!test_and_set_bit(offset, map->page)) {
  170. atomic_dec(&map->nr_free);
  171. set_last_pid(pid_ns, last, pid);
  172. return pid;
  173. }
  174. offset = find_next_offset(map, offset);
  175. if (offset >= BITS_PER_PAGE)
  176. break;
  177. pid = mk_pid(pid_ns, map, offset);
  178. if (pid >= pid_max)
  179. break;
  180. }
  181. }
  182. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  183. ++map;
  184. offset = 0;
  185. } else {
  186. map = &pid_ns->pidmap[0];
  187. offset = RESERVED_PIDS;
  188. if (unlikely(last == offset))
  189. break;
  190. }
  191. pid = mk_pid(pid_ns, map, offset);
  192. }
  193. return -1;
  194. }
  195. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
  196. {
  197. int offset;
  198. struct pidmap *map, *end;
  199. if (last >= PID_MAX_LIMIT)
  200. return -1;
  201. offset = (last + 1) & BITS_PER_PAGE_MASK;
  202. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  203. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  204. for (; map < end; map++, offset = 0) {
  205. if (unlikely(!map->page))
  206. continue;
  207. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  208. if (offset < BITS_PER_PAGE)
  209. return mk_pid(pid_ns, map, offset);
  210. }
  211. return -1;
  212. }
  213. void put_pid(struct pid *pid)
  214. {
  215. struct pid_namespace *ns;
  216. if (!pid)
  217. return;
  218. ns = pid->numbers[pid->level].ns;
  219. if ((atomic_read(&pid->count) == 1) ||
  220. atomic_dec_and_test(&pid->count)) {
  221. kmem_cache_free(ns->pid_cachep, pid);
  222. put_pid_ns(ns);
  223. }
  224. }
  225. EXPORT_SYMBOL_GPL(put_pid);
  226. static void delayed_put_pid(struct rcu_head *rhp)
  227. {
  228. struct pid *pid = container_of(rhp, struct pid, rcu);
  229. put_pid(pid);
  230. }
  231. void free_pid(struct pid *pid)
  232. {
  233. /* We can be called with write_lock_irq(&tasklist_lock) held */
  234. int i;
  235. unsigned long flags;
  236. spin_lock_irqsave(&pidmap_lock, flags);
  237. for (i = 0; i <= pid->level; i++) {
  238. struct upid *upid = pid->numbers + i;
  239. struct pid_namespace *ns = upid->ns;
  240. hlist_del_rcu(&upid->pid_chain);
  241. switch(--ns->nr_hashed) {
  242. case 1:
  243. /* When all that is left in the pid namespace
  244. * is the reaper wake up the reaper. The reaper
  245. * may be sleeping in zap_pid_ns_processes().
  246. */
  247. wake_up_process(ns->child_reaper);
  248. break;
  249. case 0:
  250. schedule_work(&ns->proc_work);
  251. break;
  252. }
  253. }
  254. spin_unlock_irqrestore(&pidmap_lock, flags);
  255. for (i = 0; i <= pid->level; i++)
  256. free_pidmap(pid->numbers + i);
  257. call_rcu(&pid->rcu, delayed_put_pid);
  258. }
  259. struct pid *alloc_pid(struct pid_namespace *ns)
  260. {
  261. struct pid *pid;
  262. enum pid_type type;
  263. int i, nr;
  264. struct pid_namespace *tmp;
  265. struct upid *upid;
  266. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  267. if (!pid)
  268. goto out;
  269. tmp = ns;
  270. pid->level = ns->level;
  271. for (i = ns->level; i >= 0; i--) {
  272. nr = alloc_pidmap(tmp);
  273. if (nr < 0)
  274. goto out_free;
  275. pid->numbers[i].nr = nr;
  276. pid->numbers[i].ns = tmp;
  277. tmp = tmp->parent;
  278. }
  279. if (unlikely(is_child_reaper(pid))) {
  280. if (pid_ns_prepare_proc(ns))
  281. goto out_free;
  282. }
  283. get_pid_ns(ns);
  284. atomic_set(&pid->count, 1);
  285. for (type = 0; type < PIDTYPE_MAX; ++type)
  286. INIT_HLIST_HEAD(&pid->tasks[type]);
  287. upid = pid->numbers + ns->level;
  288. spin_lock_irq(&pidmap_lock);
  289. if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
  290. goto out_unlock;
  291. for ( ; upid >= pid->numbers; --upid) {
  292. hlist_add_head_rcu(&upid->pid_chain,
  293. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  294. upid->ns->nr_hashed++;
  295. }
  296. spin_unlock_irq(&pidmap_lock);
  297. out:
  298. return pid;
  299. out_unlock:
  300. spin_unlock_irq(&pidmap_lock);
  301. out_free:
  302. while (++i <= ns->level)
  303. free_pidmap(pid->numbers + i);
  304. kmem_cache_free(ns->pid_cachep, pid);
  305. pid = NULL;
  306. goto out;
  307. }
  308. void disable_pid_allocation(struct pid_namespace *ns)
  309. {
  310. spin_lock_irq(&pidmap_lock);
  311. ns->nr_hashed &= ~PIDNS_HASH_ADDING;
  312. spin_unlock_irq(&pidmap_lock);
  313. }
  314. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  315. {
  316. struct upid *pnr;
  317. hlist_for_each_entry_rcu(pnr,
  318. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  319. if (pnr->nr == nr && pnr->ns == ns)
  320. return container_of(pnr, struct pid,
  321. numbers[ns->level]);
  322. return NULL;
  323. }
  324. EXPORT_SYMBOL_GPL(find_pid_ns);
  325. struct pid *find_vpid(int nr)
  326. {
  327. return find_pid_ns(nr, task_active_pid_ns(current));
  328. }
  329. EXPORT_SYMBOL_GPL(find_vpid);
  330. /*
  331. * attach_pid() must be called with the tasklist_lock write-held.
  332. */
  333. void attach_pid(struct task_struct *task, enum pid_type type,
  334. struct pid *pid)
  335. {
  336. struct pid_link *link;
  337. link = &task->pids[type];
  338. link->pid = pid;
  339. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  340. }
  341. static void __change_pid(struct task_struct *task, enum pid_type type,
  342. struct pid *new)
  343. {
  344. struct pid_link *link;
  345. struct pid *pid;
  346. int tmp;
  347. link = &task->pids[type];
  348. pid = link->pid;
  349. hlist_del_rcu(&link->node);
  350. link->pid = new;
  351. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  352. if (!hlist_empty(&pid->tasks[tmp]))
  353. return;
  354. free_pid(pid);
  355. }
  356. void detach_pid(struct task_struct *task, enum pid_type type)
  357. {
  358. __change_pid(task, type, NULL);
  359. }
  360. void change_pid(struct task_struct *task, enum pid_type type,
  361. struct pid *pid)
  362. {
  363. __change_pid(task, type, pid);
  364. attach_pid(task, type, pid);
  365. }
  366. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  367. void transfer_pid(struct task_struct *old, struct task_struct *new,
  368. enum pid_type type)
  369. {
  370. new->pids[type].pid = old->pids[type].pid;
  371. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  372. }
  373. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  374. {
  375. struct task_struct *result = NULL;
  376. if (pid) {
  377. struct hlist_node *first;
  378. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  379. lockdep_tasklist_lock_is_held());
  380. if (first)
  381. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  382. }
  383. return result;
  384. }
  385. EXPORT_SYMBOL(pid_task);
  386. /*
  387. * Must be called under rcu_read_lock().
  388. */
  389. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  390. {
  391. rcu_lockdep_assert(rcu_read_lock_held(),
  392. "find_task_by_pid_ns() needs rcu_read_lock()"
  393. " protection");
  394. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  395. }
  396. struct task_struct *find_task_by_vpid(pid_t vnr)
  397. {
  398. return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
  399. }
  400. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  401. {
  402. struct pid *pid;
  403. rcu_read_lock();
  404. if (type != PIDTYPE_PID)
  405. task = task->group_leader;
  406. pid = get_pid(task->pids[type].pid);
  407. rcu_read_unlock();
  408. return pid;
  409. }
  410. EXPORT_SYMBOL_GPL(get_task_pid);
  411. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  412. {
  413. struct task_struct *result;
  414. rcu_read_lock();
  415. result = pid_task(pid, type);
  416. if (result)
  417. get_task_struct(result);
  418. rcu_read_unlock();
  419. return result;
  420. }
  421. EXPORT_SYMBOL_GPL(get_pid_task);
  422. struct pid *find_get_pid(pid_t nr)
  423. {
  424. struct pid *pid;
  425. rcu_read_lock();
  426. pid = get_pid(find_vpid(nr));
  427. rcu_read_unlock();
  428. return pid;
  429. }
  430. EXPORT_SYMBOL_GPL(find_get_pid);
  431. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  432. {
  433. struct upid *upid;
  434. pid_t nr = 0;
  435. if (pid && ns->level <= pid->level) {
  436. upid = &pid->numbers[ns->level];
  437. if (upid->ns == ns)
  438. nr = upid->nr;
  439. }
  440. return nr;
  441. }
  442. EXPORT_SYMBOL_GPL(pid_nr_ns);
  443. pid_t pid_vnr(struct pid *pid)
  444. {
  445. return pid_nr_ns(pid, task_active_pid_ns(current));
  446. }
  447. EXPORT_SYMBOL_GPL(pid_vnr);
  448. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  449. struct pid_namespace *ns)
  450. {
  451. pid_t nr = 0;
  452. rcu_read_lock();
  453. if (!ns)
  454. ns = task_active_pid_ns(current);
  455. if (likely(pid_alive(task))) {
  456. if (type != PIDTYPE_PID)
  457. task = task->group_leader;
  458. nr = pid_nr_ns(task->pids[type].pid, ns);
  459. }
  460. rcu_read_unlock();
  461. return nr;
  462. }
  463. EXPORT_SYMBOL(__task_pid_nr_ns);
  464. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  465. {
  466. return pid_nr_ns(task_tgid(tsk), ns);
  467. }
  468. EXPORT_SYMBOL(task_tgid_nr_ns);
  469. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  470. {
  471. return ns_of_pid(task_pid(tsk));
  472. }
  473. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  474. /*
  475. * Used by proc to find the first pid that is greater than or equal to nr.
  476. *
  477. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  478. */
  479. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  480. {
  481. struct pid *pid;
  482. do {
  483. pid = find_pid_ns(nr, ns);
  484. if (pid)
  485. break;
  486. nr = next_pidmap(ns, nr);
  487. } while (nr > 0);
  488. return pid;
  489. }
  490. /*
  491. * The pid hash table is scaled according to the amount of memory in the
  492. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  493. * more.
  494. */
  495. void __init pidhash_init(void)
  496. {
  497. unsigned int i, pidhash_size;
  498. pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  499. HASH_EARLY | HASH_SMALL,
  500. &pidhash_shift, NULL,
  501. 0, 4096);
  502. pidhash_size = 1U << pidhash_shift;
  503. for (i = 0; i < pidhash_size; i++)
  504. INIT_HLIST_HEAD(&pid_hash[i]);
  505. }
  506. void __init pidmap_init(void)
  507. {
  508. /* Veryify no one has done anything silly */
  509. BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
  510. /* bump default and minimum pid_max based on number of cpus */
  511. pid_max = min(pid_max_max, max_t(int, pid_max,
  512. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  513. pid_max_min = max_t(int, pid_max_min,
  514. PIDS_PER_CPU_MIN * num_possible_cpus());
  515. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  516. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  517. /* Reserve PID 0. We never call free_pidmap(0) */
  518. set_bit(0, init_pid_ns.pidmap[0].page);
  519. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  520. init_pid_ns.nr_hashed = PIDNS_HASH_ADDING;
  521. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  522. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  523. }