mutex.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642
  1. /*
  2. * kernel/mutex.c
  3. *
  4. * Mutexes: blocking mutual exclusion locks
  5. *
  6. * Started by Ingo Molnar:
  7. *
  8. * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  9. *
  10. * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  11. * David Howells for suggestions and improvements.
  12. *
  13. * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  14. * from the -rt tree, where it was originally implemented for rtmutexes
  15. * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  16. * and Sven Dietrich.
  17. *
  18. * Also see Documentation/mutex-design.txt.
  19. */
  20. #include <linux/mutex.h>
  21. #include <linux/sched.h>
  22. #include <linux/sched/rt.h>
  23. #include <linux/export.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/debug_locks.h>
  27. /*
  28. * In the DEBUG case we are using the "NULL fastpath" for mutexes,
  29. * which forces all calls into the slowpath:
  30. */
  31. #ifdef CONFIG_DEBUG_MUTEXES
  32. # include "mutex-debug.h"
  33. # include <asm-generic/mutex-null.h>
  34. #else
  35. # include "mutex.h"
  36. # include <asm/mutex.h>
  37. #endif
  38. /*
  39. * A negative mutex count indicates that waiters are sleeping waiting for the
  40. * mutex.
  41. */
  42. #define MUTEX_SHOW_NO_WAITER(mutex) (atomic_read(&(mutex)->count) >= 0)
  43. void
  44. __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  45. {
  46. atomic_set(&lock->count, 1);
  47. spin_lock_init(&lock->wait_lock);
  48. INIT_LIST_HEAD(&lock->wait_list);
  49. mutex_clear_owner(lock);
  50. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  51. lock->spin_mlock = NULL;
  52. #endif
  53. debug_mutex_init(lock, name, key);
  54. }
  55. EXPORT_SYMBOL(__mutex_init);
  56. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  57. /*
  58. * We split the mutex lock/unlock logic into separate fastpath and
  59. * slowpath functions, to reduce the register pressure on the fastpath.
  60. * We also put the fastpath first in the kernel image, to make sure the
  61. * branch is predicted by the CPU as default-untaken.
  62. */
  63. static __used noinline void __sched
  64. __mutex_lock_slowpath(atomic_t *lock_count);
  65. /**
  66. * mutex_lock - acquire the mutex
  67. * @lock: the mutex to be acquired
  68. *
  69. * Lock the mutex exclusively for this task. If the mutex is not
  70. * available right now, it will sleep until it can get it.
  71. *
  72. * The mutex must later on be released by the same task that
  73. * acquired it. Recursive locking is not allowed. The task
  74. * may not exit without first unlocking the mutex. Also, kernel
  75. * memory where the mutex resides mutex must not be freed with
  76. * the mutex still locked. The mutex must first be initialized
  77. * (or statically defined) before it can be locked. memset()-ing
  78. * the mutex to 0 is not allowed.
  79. *
  80. * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
  81. * checks that will enforce the restrictions and will also do
  82. * deadlock debugging. )
  83. *
  84. * This function is similar to (but not equivalent to) down().
  85. */
  86. void __sched mutex_lock(struct mutex *lock)
  87. {
  88. might_sleep();
  89. /*
  90. * The locking fastpath is the 1->0 transition from
  91. * 'unlocked' into 'locked' state.
  92. */
  93. __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
  94. mutex_set_owner(lock);
  95. }
  96. EXPORT_SYMBOL(mutex_lock);
  97. #endif
  98. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  99. /*
  100. * In order to avoid a stampede of mutex spinners from acquiring the mutex
  101. * more or less simultaneously, the spinners need to acquire a MCS lock
  102. * first before spinning on the owner field.
  103. *
  104. * We don't inline mspin_lock() so that perf can correctly account for the
  105. * time spent in this lock function.
  106. */
  107. struct mspin_node {
  108. struct mspin_node *next ;
  109. int locked; /* 1 if lock acquired */
  110. };
  111. #define MLOCK(mutex) ((struct mspin_node **)&((mutex)->spin_mlock))
  112. static noinline
  113. void mspin_lock(struct mspin_node **lock, struct mspin_node *node)
  114. {
  115. struct mspin_node *prev;
  116. /* Init node */
  117. node->locked = 0;
  118. node->next = NULL;
  119. prev = xchg(lock, node);
  120. if (likely(prev == NULL)) {
  121. /* Lock acquired */
  122. node->locked = 1;
  123. return;
  124. }
  125. ACCESS_ONCE(prev->next) = node;
  126. smp_wmb();
  127. /* Wait until the lock holder passes the lock down */
  128. while (!ACCESS_ONCE(node->locked))
  129. arch_mutex_cpu_relax();
  130. }
  131. static void mspin_unlock(struct mspin_node **lock, struct mspin_node *node)
  132. {
  133. struct mspin_node *next = ACCESS_ONCE(node->next);
  134. if (likely(!next)) {
  135. /*
  136. * Release the lock by setting it to NULL
  137. */
  138. if (cmpxchg(lock, node, NULL) == node)
  139. return;
  140. /* Wait until the next pointer is set */
  141. while (!(next = ACCESS_ONCE(node->next)))
  142. arch_mutex_cpu_relax();
  143. }
  144. ACCESS_ONCE(next->locked) = 1;
  145. smp_wmb();
  146. }
  147. /*
  148. * Mutex spinning code migrated from kernel/sched/core.c
  149. */
  150. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  151. {
  152. if (lock->owner != owner)
  153. return false;
  154. /*
  155. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  156. * lock->owner still matches owner, if that fails, owner might
  157. * point to free()d memory, if it still matches, the rcu_read_lock()
  158. * ensures the memory stays valid.
  159. */
  160. barrier();
  161. return owner->on_cpu;
  162. }
  163. /*
  164. * Look out! "owner" is an entirely speculative pointer
  165. * access and not reliable.
  166. */
  167. static noinline
  168. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  169. {
  170. rcu_read_lock();
  171. while (owner_running(lock, owner)) {
  172. if (need_resched())
  173. break;
  174. arch_mutex_cpu_relax();
  175. }
  176. rcu_read_unlock();
  177. /*
  178. * We break out the loop above on need_resched() and when the
  179. * owner changed, which is a sign for heavy contention. Return
  180. * success only when lock->owner is NULL.
  181. */
  182. return lock->owner == NULL;
  183. }
  184. /*
  185. * Initial check for entering the mutex spinning loop
  186. */
  187. static inline int mutex_can_spin_on_owner(struct mutex *lock)
  188. {
  189. int retval = 1;
  190. rcu_read_lock();
  191. if (lock->owner)
  192. retval = lock->owner->on_cpu;
  193. rcu_read_unlock();
  194. /*
  195. * if lock->owner is not set, the mutex owner may have just acquired
  196. * it and not set the owner yet or the mutex has been released.
  197. */
  198. return retval;
  199. }
  200. #endif
  201. static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
  202. /**
  203. * mutex_unlock - release the mutex
  204. * @lock: the mutex to be released
  205. *
  206. * Unlock a mutex that has been locked by this task previously.
  207. *
  208. * This function must not be used in interrupt context. Unlocking
  209. * of a not locked mutex is not allowed.
  210. *
  211. * This function is similar to (but not equivalent to) up().
  212. */
  213. void __sched mutex_unlock(struct mutex *lock)
  214. {
  215. /*
  216. * The unlocking fastpath is the 0->1 transition from 'locked'
  217. * into 'unlocked' state:
  218. */
  219. #ifndef CONFIG_DEBUG_MUTEXES
  220. /*
  221. * When debugging is enabled we must not clear the owner before time,
  222. * the slow path will always be taken, and that clears the owner field
  223. * after verifying that it was indeed current.
  224. */
  225. mutex_clear_owner(lock);
  226. #endif
  227. __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
  228. }
  229. EXPORT_SYMBOL(mutex_unlock);
  230. /*
  231. * Lock a mutex (possibly interruptible), slowpath:
  232. */
  233. static inline int __sched
  234. __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
  235. struct lockdep_map *nest_lock, unsigned long ip)
  236. {
  237. struct task_struct *task = current;
  238. struct mutex_waiter waiter;
  239. unsigned long flags;
  240. preempt_disable();
  241. mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
  242. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  243. /*
  244. * Optimistic spinning.
  245. *
  246. * We try to spin for acquisition when we find that there are no
  247. * pending waiters and the lock owner is currently running on a
  248. * (different) CPU.
  249. *
  250. * The rationale is that if the lock owner is running, it is likely to
  251. * release the lock soon.
  252. *
  253. * Since this needs the lock owner, and this mutex implementation
  254. * doesn't track the owner atomically in the lock field, we need to
  255. * track it non-atomically.
  256. *
  257. * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
  258. * to serialize everything.
  259. *
  260. * The mutex spinners are queued up using MCS lock so that only one
  261. * spinner can compete for the mutex. However, if mutex spinning isn't
  262. * going to happen, there is no point in going through the lock/unlock
  263. * overhead.
  264. */
  265. if (!mutex_can_spin_on_owner(lock))
  266. goto slowpath;
  267. for (;;) {
  268. struct task_struct *owner;
  269. struct mspin_node node;
  270. /*
  271. * If there's an owner, wait for it to either
  272. * release the lock or go to sleep.
  273. */
  274. mspin_lock(MLOCK(lock), &node);
  275. owner = ACCESS_ONCE(lock->owner);
  276. if (owner && !mutex_spin_on_owner(lock, owner)) {
  277. mspin_unlock(MLOCK(lock), &node);
  278. break;
  279. }
  280. if ((atomic_read(&lock->count) == 1) &&
  281. (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
  282. lock_acquired(&lock->dep_map, ip);
  283. mutex_set_owner(lock);
  284. mspin_unlock(MLOCK(lock), &node);
  285. preempt_enable();
  286. return 0;
  287. }
  288. mspin_unlock(MLOCK(lock), &node);
  289. /*
  290. * When there's no owner, we might have preempted between the
  291. * owner acquiring the lock and setting the owner field. If
  292. * we're an RT task that will live-lock because we won't let
  293. * the owner complete.
  294. */
  295. if (!owner && (need_resched() || rt_task(task)))
  296. break;
  297. /*
  298. * The cpu_relax() call is a compiler barrier which forces
  299. * everything in this loop to be re-loaded. We don't need
  300. * memory barriers as we'll eventually observe the right
  301. * values at the cost of a few extra spins.
  302. */
  303. arch_mutex_cpu_relax();
  304. }
  305. slowpath:
  306. #endif
  307. spin_lock_mutex(&lock->wait_lock, flags);
  308. debug_mutex_lock_common(lock, &waiter);
  309. debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
  310. /* add waiting tasks to the end of the waitqueue (FIFO): */
  311. list_add_tail(&waiter.list, &lock->wait_list);
  312. waiter.task = task;
  313. if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, -1) == 1))
  314. goto done;
  315. lock_contended(&lock->dep_map, ip);
  316. for (;;) {
  317. /*
  318. * Lets try to take the lock again - this is needed even if
  319. * we get here for the first time (shortly after failing to
  320. * acquire the lock), to make sure that we get a wakeup once
  321. * it's unlocked. Later on, if we sleep, this is the
  322. * operation that gives us the lock. We xchg it to -1, so
  323. * that when we release the lock, we properly wake up the
  324. * other waiters:
  325. */
  326. if (MUTEX_SHOW_NO_WAITER(lock) &&
  327. (atomic_xchg(&lock->count, -1) == 1))
  328. break;
  329. /*
  330. * got a signal? (This code gets eliminated in the
  331. * TASK_UNINTERRUPTIBLE case.)
  332. */
  333. if (unlikely(signal_pending_state(state, task))) {
  334. mutex_remove_waiter(lock, &waiter,
  335. task_thread_info(task));
  336. mutex_release(&lock->dep_map, 1, ip);
  337. spin_unlock_mutex(&lock->wait_lock, flags);
  338. debug_mutex_free_waiter(&waiter);
  339. preempt_enable();
  340. return -EINTR;
  341. }
  342. __set_task_state(task, state);
  343. /* didn't get the lock, go to sleep: */
  344. spin_unlock_mutex(&lock->wait_lock, flags);
  345. schedule_preempt_disabled();
  346. spin_lock_mutex(&lock->wait_lock, flags);
  347. }
  348. done:
  349. lock_acquired(&lock->dep_map, ip);
  350. /* got the lock - rejoice! */
  351. mutex_remove_waiter(lock, &waiter, current_thread_info());
  352. mutex_set_owner(lock);
  353. /* set it to 0 if there are no waiters left: */
  354. if (likely(list_empty(&lock->wait_list)))
  355. atomic_set(&lock->count, 0);
  356. spin_unlock_mutex(&lock->wait_lock, flags);
  357. debug_mutex_free_waiter(&waiter);
  358. preempt_enable();
  359. return 0;
  360. }
  361. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  362. void __sched
  363. mutex_lock_nested(struct mutex *lock, unsigned int subclass)
  364. {
  365. might_sleep();
  366. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
  367. }
  368. EXPORT_SYMBOL_GPL(mutex_lock_nested);
  369. void __sched
  370. _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
  371. {
  372. might_sleep();
  373. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
  374. }
  375. EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
  376. int __sched
  377. mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
  378. {
  379. might_sleep();
  380. return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
  381. }
  382. EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
  383. int __sched
  384. mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
  385. {
  386. might_sleep();
  387. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
  388. subclass, NULL, _RET_IP_);
  389. }
  390. EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
  391. #endif
  392. /*
  393. * Release the lock, slowpath:
  394. */
  395. static inline void
  396. __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
  397. {
  398. struct mutex *lock = container_of(lock_count, struct mutex, count);
  399. unsigned long flags;
  400. spin_lock_mutex(&lock->wait_lock, flags);
  401. mutex_release(&lock->dep_map, nested, _RET_IP_);
  402. debug_mutex_unlock(lock);
  403. /*
  404. * some architectures leave the lock unlocked in the fastpath failure
  405. * case, others need to leave it locked. In the later case we have to
  406. * unlock it here
  407. */
  408. if (__mutex_slowpath_needs_to_unlock())
  409. atomic_set(&lock->count, 1);
  410. if (!list_empty(&lock->wait_list)) {
  411. /* get the first entry from the wait-list: */
  412. struct mutex_waiter *waiter =
  413. list_entry(lock->wait_list.next,
  414. struct mutex_waiter, list);
  415. debug_mutex_wake_waiter(lock, waiter);
  416. wake_up_process(waiter->task);
  417. }
  418. spin_unlock_mutex(&lock->wait_lock, flags);
  419. }
  420. /*
  421. * Release the lock, slowpath:
  422. */
  423. static __used noinline void
  424. __mutex_unlock_slowpath(atomic_t *lock_count)
  425. {
  426. __mutex_unlock_common_slowpath(lock_count, 1);
  427. }
  428. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  429. /*
  430. * Here come the less common (and hence less performance-critical) APIs:
  431. * mutex_lock_interruptible() and mutex_trylock().
  432. */
  433. static noinline int __sched
  434. __mutex_lock_killable_slowpath(atomic_t *lock_count);
  435. static noinline int __sched
  436. __mutex_lock_interruptible_slowpath(atomic_t *lock_count);
  437. /**
  438. * mutex_lock_interruptible - acquire the mutex, interruptible
  439. * @lock: the mutex to be acquired
  440. *
  441. * Lock the mutex like mutex_lock(), and return 0 if the mutex has
  442. * been acquired or sleep until the mutex becomes available. If a
  443. * signal arrives while waiting for the lock then this function
  444. * returns -EINTR.
  445. *
  446. * This function is similar to (but not equivalent to) down_interruptible().
  447. */
  448. int __sched mutex_lock_interruptible(struct mutex *lock)
  449. {
  450. int ret;
  451. might_sleep();
  452. ret = __mutex_fastpath_lock_retval
  453. (&lock->count, __mutex_lock_interruptible_slowpath);
  454. if (!ret)
  455. mutex_set_owner(lock);
  456. return ret;
  457. }
  458. EXPORT_SYMBOL(mutex_lock_interruptible);
  459. int __sched mutex_lock_killable(struct mutex *lock)
  460. {
  461. int ret;
  462. might_sleep();
  463. ret = __mutex_fastpath_lock_retval
  464. (&lock->count, __mutex_lock_killable_slowpath);
  465. if (!ret)
  466. mutex_set_owner(lock);
  467. return ret;
  468. }
  469. EXPORT_SYMBOL(mutex_lock_killable);
  470. static __used noinline void __sched
  471. __mutex_lock_slowpath(atomic_t *lock_count)
  472. {
  473. struct mutex *lock = container_of(lock_count, struct mutex, count);
  474. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
  475. }
  476. static noinline int __sched
  477. __mutex_lock_killable_slowpath(atomic_t *lock_count)
  478. {
  479. struct mutex *lock = container_of(lock_count, struct mutex, count);
  480. return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
  481. }
  482. static noinline int __sched
  483. __mutex_lock_interruptible_slowpath(atomic_t *lock_count)
  484. {
  485. struct mutex *lock = container_of(lock_count, struct mutex, count);
  486. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
  487. }
  488. #endif
  489. /*
  490. * Spinlock based trylock, we take the spinlock and check whether we
  491. * can get the lock:
  492. */
  493. static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
  494. {
  495. struct mutex *lock = container_of(lock_count, struct mutex, count);
  496. unsigned long flags;
  497. int prev;
  498. spin_lock_mutex(&lock->wait_lock, flags);
  499. prev = atomic_xchg(&lock->count, -1);
  500. if (likely(prev == 1)) {
  501. mutex_set_owner(lock);
  502. mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
  503. }
  504. /* Set it back to 0 if there are no waiters: */
  505. if (likely(list_empty(&lock->wait_list)))
  506. atomic_set(&lock->count, 0);
  507. spin_unlock_mutex(&lock->wait_lock, flags);
  508. return prev == 1;
  509. }
  510. /**
  511. * mutex_trylock - try to acquire the mutex, without waiting
  512. * @lock: the mutex to be acquired
  513. *
  514. * Try to acquire the mutex atomically. Returns 1 if the mutex
  515. * has been acquired successfully, and 0 on contention.
  516. *
  517. * NOTE: this function follows the spin_trylock() convention, so
  518. * it is negated from the down_trylock() return values! Be careful
  519. * about this when converting semaphore users to mutexes.
  520. *
  521. * This function must not be used in interrupt context. The
  522. * mutex must be released by the same task that acquired it.
  523. */
  524. int __sched mutex_trylock(struct mutex *lock)
  525. {
  526. int ret;
  527. ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
  528. if (ret)
  529. mutex_set_owner(lock);
  530. return ret;
  531. }
  532. EXPORT_SYMBOL(mutex_trylock);
  533. /**
  534. * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
  535. * @cnt: the atomic which we are to dec
  536. * @lock: the mutex to return holding if we dec to 0
  537. *
  538. * return true and hold lock if we dec to 0, return false otherwise
  539. */
  540. int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
  541. {
  542. /* dec if we can't possibly hit 0 */
  543. if (atomic_add_unless(cnt, -1, 1))
  544. return 0;
  545. /* we might hit 0, so take the lock */
  546. mutex_lock(lock);
  547. if (!atomic_dec_and_test(cnt)) {
  548. /* when we actually did the dec, we didn't hit 0 */
  549. mutex_unlock(lock);
  550. return 0;
  551. }
  552. /* we hit 0, and we hold the lock */
  553. return 1;
  554. }
  555. EXPORT_SYMBOL(atomic_dec_and_mutex_lock);