futex.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/export.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <linux/ptrace.h>
  63. #include <linux/sched/rt.h>
  64. #include <asm/futex.h>
  65. #include "rtmutex_common.h"
  66. int __read_mostly futex_cmpxchg_enabled;
  67. #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  68. /*
  69. * Futex flags used to encode options to functions and preserve them across
  70. * restarts.
  71. */
  72. #define FLAGS_SHARED 0x01
  73. #define FLAGS_CLOCKRT 0x02
  74. #define FLAGS_HAS_TIMEOUT 0x04
  75. /*
  76. * Priority Inheritance state:
  77. */
  78. struct futex_pi_state {
  79. /*
  80. * list of 'owned' pi_state instances - these have to be
  81. * cleaned up in do_exit() if the task exits prematurely:
  82. */
  83. struct list_head list;
  84. /*
  85. * The PI object:
  86. */
  87. struct rt_mutex pi_mutex;
  88. struct task_struct *owner;
  89. atomic_t refcount;
  90. union futex_key key;
  91. };
  92. /**
  93. * struct futex_q - The hashed futex queue entry, one per waiting task
  94. * @list: priority-sorted list of tasks waiting on this futex
  95. * @task: the task waiting on the futex
  96. * @lock_ptr: the hash bucket lock
  97. * @key: the key the futex is hashed on
  98. * @pi_state: optional priority inheritance state
  99. * @rt_waiter: rt_waiter storage for use with requeue_pi
  100. * @requeue_pi_key: the requeue_pi target futex key
  101. * @bitset: bitset for the optional bitmasked wakeup
  102. *
  103. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  104. * we can wake only the relevant ones (hashed queues may be shared).
  105. *
  106. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  107. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  108. * The order of wakeup is always to make the first condition true, then
  109. * the second.
  110. *
  111. * PI futexes are typically woken before they are removed from the hash list via
  112. * the rt_mutex code. See unqueue_me_pi().
  113. */
  114. struct futex_q {
  115. struct plist_node list;
  116. struct task_struct *task;
  117. spinlock_t *lock_ptr;
  118. union futex_key key;
  119. struct futex_pi_state *pi_state;
  120. struct rt_mutex_waiter *rt_waiter;
  121. union futex_key *requeue_pi_key;
  122. u32 bitset;
  123. };
  124. static const struct futex_q futex_q_init = {
  125. /* list gets initialized in queue_me()*/
  126. .key = FUTEX_KEY_INIT,
  127. .bitset = FUTEX_BITSET_MATCH_ANY
  128. };
  129. /*
  130. * Hash buckets are shared by all the futex_keys that hash to the same
  131. * location. Each key may have multiple futex_q structures, one for each task
  132. * waiting on a futex.
  133. */
  134. struct futex_hash_bucket {
  135. spinlock_t lock;
  136. struct plist_head chain;
  137. };
  138. static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
  139. /*
  140. * We hash on the keys returned from get_futex_key (see below).
  141. */
  142. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  143. {
  144. u32 hash = jhash2((u32*)&key->both.word,
  145. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  146. key->both.offset);
  147. return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
  148. }
  149. /*
  150. * Return 1 if two futex_keys are equal, 0 otherwise.
  151. */
  152. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  153. {
  154. return (key1 && key2
  155. && key1->both.word == key2->both.word
  156. && key1->both.ptr == key2->both.ptr
  157. && key1->both.offset == key2->both.offset);
  158. }
  159. /*
  160. * Take a reference to the resource addressed by a key.
  161. * Can be called while holding spinlocks.
  162. *
  163. */
  164. static void get_futex_key_refs(union futex_key *key)
  165. {
  166. if (!key->both.ptr)
  167. return;
  168. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  169. case FUT_OFF_INODE:
  170. ihold(key->shared.inode);
  171. break;
  172. case FUT_OFF_MMSHARED:
  173. atomic_inc(&key->private.mm->mm_count);
  174. break;
  175. }
  176. }
  177. /*
  178. * Drop a reference to the resource addressed by a key.
  179. * The hash bucket spinlock must not be held.
  180. */
  181. static void drop_futex_key_refs(union futex_key *key)
  182. {
  183. if (!key->both.ptr) {
  184. /* If we're here then we tried to put a key we failed to get */
  185. WARN_ON_ONCE(1);
  186. return;
  187. }
  188. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  189. case FUT_OFF_INODE:
  190. iput(key->shared.inode);
  191. break;
  192. case FUT_OFF_MMSHARED:
  193. mmdrop(key->private.mm);
  194. break;
  195. }
  196. }
  197. /**
  198. * get_futex_key() - Get parameters which are the keys for a futex
  199. * @uaddr: virtual address of the futex
  200. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  201. * @key: address where result is stored.
  202. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  203. * VERIFY_WRITE)
  204. *
  205. * Return: a negative error code or 0
  206. *
  207. * The key words are stored in *key on success.
  208. *
  209. * For shared mappings, it's (page->index, file_inode(vma->vm_file),
  210. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  211. * We can usually work out the index without swapping in the page.
  212. *
  213. * lock_page() might sleep, the caller should not hold a spinlock.
  214. */
  215. static int
  216. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  217. {
  218. unsigned long address = (unsigned long)uaddr;
  219. struct mm_struct *mm = current->mm;
  220. struct page *page, *page_head;
  221. int err, ro = 0;
  222. /*
  223. * The futex address must be "naturally" aligned.
  224. */
  225. key->both.offset = address % PAGE_SIZE;
  226. if (unlikely((address % sizeof(u32)) != 0))
  227. return -EINVAL;
  228. address -= key->both.offset;
  229. /*
  230. * PROCESS_PRIVATE futexes are fast.
  231. * As the mm cannot disappear under us and the 'key' only needs
  232. * virtual address, we dont even have to find the underlying vma.
  233. * Note : We do have to check 'uaddr' is a valid user address,
  234. * but access_ok() should be faster than find_vma()
  235. */
  236. if (!fshared) {
  237. if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
  238. return -EFAULT;
  239. key->private.mm = mm;
  240. key->private.address = address;
  241. get_futex_key_refs(key);
  242. return 0;
  243. }
  244. again:
  245. err = get_user_pages_fast(address, 1, 1, &page);
  246. /*
  247. * If write access is not required (eg. FUTEX_WAIT), try
  248. * and get read-only access.
  249. */
  250. if (err == -EFAULT && rw == VERIFY_READ) {
  251. err = get_user_pages_fast(address, 1, 0, &page);
  252. ro = 1;
  253. }
  254. if (err < 0)
  255. return err;
  256. else
  257. err = 0;
  258. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  259. page_head = page;
  260. if (unlikely(PageTail(page))) {
  261. put_page(page);
  262. /* serialize against __split_huge_page_splitting() */
  263. local_irq_disable();
  264. if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
  265. page_head = compound_head(page);
  266. /*
  267. * page_head is valid pointer but we must pin
  268. * it before taking the PG_lock and/or
  269. * PG_compound_lock. The moment we re-enable
  270. * irqs __split_huge_page_splitting() can
  271. * return and the head page can be freed from
  272. * under us. We can't take the PG_lock and/or
  273. * PG_compound_lock on a page that could be
  274. * freed from under us.
  275. */
  276. if (page != page_head) {
  277. get_page(page_head);
  278. put_page(page);
  279. }
  280. local_irq_enable();
  281. } else {
  282. local_irq_enable();
  283. goto again;
  284. }
  285. }
  286. #else
  287. page_head = compound_head(page);
  288. if (page != page_head) {
  289. get_page(page_head);
  290. put_page(page);
  291. }
  292. #endif
  293. lock_page(page_head);
  294. /*
  295. * If page_head->mapping is NULL, then it cannot be a PageAnon
  296. * page; but it might be the ZERO_PAGE or in the gate area or
  297. * in a special mapping (all cases which we are happy to fail);
  298. * or it may have been a good file page when get_user_pages_fast
  299. * found it, but truncated or holepunched or subjected to
  300. * invalidate_complete_page2 before we got the page lock (also
  301. * cases which we are happy to fail). And we hold a reference,
  302. * so refcount care in invalidate_complete_page's remove_mapping
  303. * prevents drop_caches from setting mapping to NULL beneath us.
  304. *
  305. * The case we do have to guard against is when memory pressure made
  306. * shmem_writepage move it from filecache to swapcache beneath us:
  307. * an unlikely race, but we do need to retry for page_head->mapping.
  308. */
  309. if (!page_head->mapping) {
  310. int shmem_swizzled = PageSwapCache(page_head);
  311. unlock_page(page_head);
  312. put_page(page_head);
  313. if (shmem_swizzled)
  314. goto again;
  315. return -EFAULT;
  316. }
  317. /*
  318. * Private mappings are handled in a simple way.
  319. *
  320. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  321. * it's a read-only handle, it's expected that futexes attach to
  322. * the object not the particular process.
  323. */
  324. if (PageAnon(page_head)) {
  325. /*
  326. * A RO anonymous page will never change and thus doesn't make
  327. * sense for futex operations.
  328. */
  329. if (ro) {
  330. err = -EFAULT;
  331. goto out;
  332. }
  333. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  334. key->private.mm = mm;
  335. key->private.address = address;
  336. } else {
  337. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  338. key->shared.inode = page_head->mapping->host;
  339. key->shared.pgoff = page_head->index;
  340. }
  341. get_futex_key_refs(key);
  342. out:
  343. unlock_page(page_head);
  344. put_page(page_head);
  345. return err;
  346. }
  347. static inline void put_futex_key(union futex_key *key)
  348. {
  349. drop_futex_key_refs(key);
  350. }
  351. /**
  352. * fault_in_user_writeable() - Fault in user address and verify RW access
  353. * @uaddr: pointer to faulting user space address
  354. *
  355. * Slow path to fixup the fault we just took in the atomic write
  356. * access to @uaddr.
  357. *
  358. * We have no generic implementation of a non-destructive write to the
  359. * user address. We know that we faulted in the atomic pagefault
  360. * disabled section so we can as well avoid the #PF overhead by
  361. * calling get_user_pages() right away.
  362. */
  363. static int fault_in_user_writeable(u32 __user *uaddr)
  364. {
  365. struct mm_struct *mm = current->mm;
  366. int ret;
  367. down_read(&mm->mmap_sem);
  368. ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  369. FAULT_FLAG_WRITE);
  370. up_read(&mm->mmap_sem);
  371. return ret < 0 ? ret : 0;
  372. }
  373. /**
  374. * futex_top_waiter() - Return the highest priority waiter on a futex
  375. * @hb: the hash bucket the futex_q's reside in
  376. * @key: the futex key (to distinguish it from other futex futex_q's)
  377. *
  378. * Must be called with the hb lock held.
  379. */
  380. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  381. union futex_key *key)
  382. {
  383. struct futex_q *this;
  384. plist_for_each_entry(this, &hb->chain, list) {
  385. if (match_futex(&this->key, key))
  386. return this;
  387. }
  388. return NULL;
  389. }
  390. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  391. u32 uval, u32 newval)
  392. {
  393. int ret;
  394. pagefault_disable();
  395. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  396. pagefault_enable();
  397. return ret;
  398. }
  399. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  400. {
  401. int ret;
  402. pagefault_disable();
  403. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  404. pagefault_enable();
  405. return ret ? -EFAULT : 0;
  406. }
  407. /*
  408. * PI code:
  409. */
  410. static int refill_pi_state_cache(void)
  411. {
  412. struct futex_pi_state *pi_state;
  413. if (likely(current->pi_state_cache))
  414. return 0;
  415. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  416. if (!pi_state)
  417. return -ENOMEM;
  418. INIT_LIST_HEAD(&pi_state->list);
  419. /* pi_mutex gets initialized later */
  420. pi_state->owner = NULL;
  421. atomic_set(&pi_state->refcount, 1);
  422. pi_state->key = FUTEX_KEY_INIT;
  423. current->pi_state_cache = pi_state;
  424. return 0;
  425. }
  426. static struct futex_pi_state * alloc_pi_state(void)
  427. {
  428. struct futex_pi_state *pi_state = current->pi_state_cache;
  429. WARN_ON(!pi_state);
  430. current->pi_state_cache = NULL;
  431. return pi_state;
  432. }
  433. static void free_pi_state(struct futex_pi_state *pi_state)
  434. {
  435. if (!atomic_dec_and_test(&pi_state->refcount))
  436. return;
  437. /*
  438. * If pi_state->owner is NULL, the owner is most probably dying
  439. * and has cleaned up the pi_state already
  440. */
  441. if (pi_state->owner) {
  442. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  443. list_del_init(&pi_state->list);
  444. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  445. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  446. }
  447. if (current->pi_state_cache)
  448. kfree(pi_state);
  449. else {
  450. /*
  451. * pi_state->list is already empty.
  452. * clear pi_state->owner.
  453. * refcount is at 0 - put it back to 1.
  454. */
  455. pi_state->owner = NULL;
  456. atomic_set(&pi_state->refcount, 1);
  457. current->pi_state_cache = pi_state;
  458. }
  459. }
  460. /*
  461. * Look up the task based on what TID userspace gave us.
  462. * We dont trust it.
  463. */
  464. static struct task_struct * futex_find_get_task(pid_t pid)
  465. {
  466. struct task_struct *p;
  467. rcu_read_lock();
  468. p = find_task_by_vpid(pid);
  469. if (p)
  470. get_task_struct(p);
  471. rcu_read_unlock();
  472. return p;
  473. }
  474. /*
  475. * This task is holding PI mutexes at exit time => bad.
  476. * Kernel cleans up PI-state, but userspace is likely hosed.
  477. * (Robust-futex cleanup is separate and might save the day for userspace.)
  478. */
  479. void exit_pi_state_list(struct task_struct *curr)
  480. {
  481. struct list_head *next, *head = &curr->pi_state_list;
  482. struct futex_pi_state *pi_state;
  483. struct futex_hash_bucket *hb;
  484. union futex_key key = FUTEX_KEY_INIT;
  485. if (!futex_cmpxchg_enabled)
  486. return;
  487. /*
  488. * We are a ZOMBIE and nobody can enqueue itself on
  489. * pi_state_list anymore, but we have to be careful
  490. * versus waiters unqueueing themselves:
  491. */
  492. raw_spin_lock_irq(&curr->pi_lock);
  493. while (!list_empty(head)) {
  494. next = head->next;
  495. pi_state = list_entry(next, struct futex_pi_state, list);
  496. key = pi_state->key;
  497. hb = hash_futex(&key);
  498. raw_spin_unlock_irq(&curr->pi_lock);
  499. spin_lock(&hb->lock);
  500. raw_spin_lock_irq(&curr->pi_lock);
  501. /*
  502. * We dropped the pi-lock, so re-check whether this
  503. * task still owns the PI-state:
  504. */
  505. if (head->next != next) {
  506. spin_unlock(&hb->lock);
  507. continue;
  508. }
  509. WARN_ON(pi_state->owner != curr);
  510. WARN_ON(list_empty(&pi_state->list));
  511. list_del_init(&pi_state->list);
  512. pi_state->owner = NULL;
  513. raw_spin_unlock_irq(&curr->pi_lock);
  514. rt_mutex_unlock(&pi_state->pi_mutex);
  515. spin_unlock(&hb->lock);
  516. raw_spin_lock_irq(&curr->pi_lock);
  517. }
  518. raw_spin_unlock_irq(&curr->pi_lock);
  519. }
  520. static int
  521. lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  522. union futex_key *key, struct futex_pi_state **ps)
  523. {
  524. struct futex_pi_state *pi_state = NULL;
  525. struct futex_q *this, *next;
  526. struct plist_head *head;
  527. struct task_struct *p;
  528. pid_t pid = uval & FUTEX_TID_MASK;
  529. head = &hb->chain;
  530. plist_for_each_entry_safe(this, next, head, list) {
  531. if (match_futex(&this->key, key)) {
  532. /*
  533. * Another waiter already exists - bump up
  534. * the refcount and return its pi_state:
  535. */
  536. pi_state = this->pi_state;
  537. /*
  538. * Userspace might have messed up non-PI and PI futexes
  539. */
  540. if (unlikely(!pi_state))
  541. return -EINVAL;
  542. WARN_ON(!atomic_read(&pi_state->refcount));
  543. /*
  544. * When pi_state->owner is NULL then the owner died
  545. * and another waiter is on the fly. pi_state->owner
  546. * is fixed up by the task which acquires
  547. * pi_state->rt_mutex.
  548. *
  549. * We do not check for pid == 0 which can happen when
  550. * the owner died and robust_list_exit() cleared the
  551. * TID.
  552. */
  553. if (pid && pi_state->owner) {
  554. /*
  555. * Bail out if user space manipulated the
  556. * futex value.
  557. */
  558. if (pid != task_pid_vnr(pi_state->owner))
  559. return -EINVAL;
  560. }
  561. atomic_inc(&pi_state->refcount);
  562. *ps = pi_state;
  563. return 0;
  564. }
  565. }
  566. /*
  567. * We are the first waiter - try to look up the real owner and attach
  568. * the new pi_state to it, but bail out when TID = 0
  569. */
  570. if (!pid)
  571. return -ESRCH;
  572. p = futex_find_get_task(pid);
  573. if (!p)
  574. return -ESRCH;
  575. /*
  576. * We need to look at the task state flags to figure out,
  577. * whether the task is exiting. To protect against the do_exit
  578. * change of the task flags, we do this protected by
  579. * p->pi_lock:
  580. */
  581. raw_spin_lock_irq(&p->pi_lock);
  582. if (unlikely(p->flags & PF_EXITING)) {
  583. /*
  584. * The task is on the way out. When PF_EXITPIDONE is
  585. * set, we know that the task has finished the
  586. * cleanup:
  587. */
  588. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  589. raw_spin_unlock_irq(&p->pi_lock);
  590. put_task_struct(p);
  591. return ret;
  592. }
  593. pi_state = alloc_pi_state();
  594. /*
  595. * Initialize the pi_mutex in locked state and make 'p'
  596. * the owner of it:
  597. */
  598. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  599. /* Store the key for possible exit cleanups: */
  600. pi_state->key = *key;
  601. WARN_ON(!list_empty(&pi_state->list));
  602. list_add(&pi_state->list, &p->pi_state_list);
  603. pi_state->owner = p;
  604. raw_spin_unlock_irq(&p->pi_lock);
  605. put_task_struct(p);
  606. *ps = pi_state;
  607. return 0;
  608. }
  609. /**
  610. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  611. * @uaddr: the pi futex user address
  612. * @hb: the pi futex hash bucket
  613. * @key: the futex key associated with uaddr and hb
  614. * @ps: the pi_state pointer where we store the result of the
  615. * lookup
  616. * @task: the task to perform the atomic lock work for. This will
  617. * be "current" except in the case of requeue pi.
  618. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  619. *
  620. * Return:
  621. * 0 - ready to wait;
  622. * 1 - acquired the lock;
  623. * <0 - error
  624. *
  625. * The hb->lock and futex_key refs shall be held by the caller.
  626. */
  627. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  628. union futex_key *key,
  629. struct futex_pi_state **ps,
  630. struct task_struct *task, int set_waiters)
  631. {
  632. int lock_taken, ret, force_take = 0;
  633. u32 uval, newval, curval, vpid = task_pid_vnr(task);
  634. retry:
  635. ret = lock_taken = 0;
  636. /*
  637. * To avoid races, we attempt to take the lock here again
  638. * (by doing a 0 -> TID atomic cmpxchg), while holding all
  639. * the locks. It will most likely not succeed.
  640. */
  641. newval = vpid;
  642. if (set_waiters)
  643. newval |= FUTEX_WAITERS;
  644. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
  645. return -EFAULT;
  646. /*
  647. * Detect deadlocks.
  648. */
  649. if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
  650. return -EDEADLK;
  651. /*
  652. * Surprise - we got the lock. Just return to userspace:
  653. */
  654. if (unlikely(!curval))
  655. return 1;
  656. uval = curval;
  657. /*
  658. * Set the FUTEX_WAITERS flag, so the owner will know it has someone
  659. * to wake at the next unlock.
  660. */
  661. newval = curval | FUTEX_WAITERS;
  662. /*
  663. * Should we force take the futex? See below.
  664. */
  665. if (unlikely(force_take)) {
  666. /*
  667. * Keep the OWNER_DIED and the WAITERS bit and set the
  668. * new TID value.
  669. */
  670. newval = (curval & ~FUTEX_TID_MASK) | vpid;
  671. force_take = 0;
  672. lock_taken = 1;
  673. }
  674. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  675. return -EFAULT;
  676. if (unlikely(curval != uval))
  677. goto retry;
  678. /*
  679. * We took the lock due to forced take over.
  680. */
  681. if (unlikely(lock_taken))
  682. return 1;
  683. /*
  684. * We dont have the lock. Look up the PI state (or create it if
  685. * we are the first waiter):
  686. */
  687. ret = lookup_pi_state(uval, hb, key, ps);
  688. if (unlikely(ret)) {
  689. switch (ret) {
  690. case -ESRCH:
  691. /*
  692. * We failed to find an owner for this
  693. * futex. So we have no pi_state to block
  694. * on. This can happen in two cases:
  695. *
  696. * 1) The owner died
  697. * 2) A stale FUTEX_WAITERS bit
  698. *
  699. * Re-read the futex value.
  700. */
  701. if (get_futex_value_locked(&curval, uaddr))
  702. return -EFAULT;
  703. /*
  704. * If the owner died or we have a stale
  705. * WAITERS bit the owner TID in the user space
  706. * futex is 0.
  707. */
  708. if (!(curval & FUTEX_TID_MASK)) {
  709. force_take = 1;
  710. goto retry;
  711. }
  712. default:
  713. break;
  714. }
  715. }
  716. return ret;
  717. }
  718. /**
  719. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  720. * @q: The futex_q to unqueue
  721. *
  722. * The q->lock_ptr must not be NULL and must be held by the caller.
  723. */
  724. static void __unqueue_futex(struct futex_q *q)
  725. {
  726. struct futex_hash_bucket *hb;
  727. if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  728. || WARN_ON(plist_node_empty(&q->list)))
  729. return;
  730. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  731. plist_del(&q->list, &hb->chain);
  732. }
  733. /*
  734. * The hash bucket lock must be held when this is called.
  735. * Afterwards, the futex_q must not be accessed.
  736. */
  737. static void wake_futex(struct futex_q *q)
  738. {
  739. struct task_struct *p = q->task;
  740. if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  741. return;
  742. /*
  743. * We set q->lock_ptr = NULL _before_ we wake up the task. If
  744. * a non-futex wake up happens on another CPU then the task
  745. * might exit and p would dereference a non-existing task
  746. * struct. Prevent this by holding a reference on p across the
  747. * wake up.
  748. */
  749. get_task_struct(p);
  750. __unqueue_futex(q);
  751. /*
  752. * The waiting task can free the futex_q as soon as
  753. * q->lock_ptr = NULL is written, without taking any locks. A
  754. * memory barrier is required here to prevent the following
  755. * store to lock_ptr from getting ahead of the plist_del.
  756. */
  757. smp_wmb();
  758. q->lock_ptr = NULL;
  759. wake_up_state(p, TASK_NORMAL);
  760. put_task_struct(p);
  761. }
  762. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  763. {
  764. struct task_struct *new_owner;
  765. struct futex_pi_state *pi_state = this->pi_state;
  766. u32 uninitialized_var(curval), newval;
  767. if (!pi_state)
  768. return -EINVAL;
  769. /*
  770. * If current does not own the pi_state then the futex is
  771. * inconsistent and user space fiddled with the futex value.
  772. */
  773. if (pi_state->owner != current)
  774. return -EINVAL;
  775. raw_spin_lock(&pi_state->pi_mutex.wait_lock);
  776. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  777. /*
  778. * It is possible that the next waiter (the one that brought
  779. * this owner to the kernel) timed out and is no longer
  780. * waiting on the lock.
  781. */
  782. if (!new_owner)
  783. new_owner = this->task;
  784. /*
  785. * We pass it to the next owner. (The WAITERS bit is always
  786. * kept enabled while there is PI state around. We must also
  787. * preserve the owner died bit.)
  788. */
  789. if (!(uval & FUTEX_OWNER_DIED)) {
  790. int ret = 0;
  791. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  792. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  793. ret = -EFAULT;
  794. else if (curval != uval)
  795. ret = -EINVAL;
  796. if (ret) {
  797. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  798. return ret;
  799. }
  800. }
  801. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  802. WARN_ON(list_empty(&pi_state->list));
  803. list_del_init(&pi_state->list);
  804. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  805. raw_spin_lock_irq(&new_owner->pi_lock);
  806. WARN_ON(!list_empty(&pi_state->list));
  807. list_add(&pi_state->list, &new_owner->pi_state_list);
  808. pi_state->owner = new_owner;
  809. raw_spin_unlock_irq(&new_owner->pi_lock);
  810. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  811. rt_mutex_unlock(&pi_state->pi_mutex);
  812. return 0;
  813. }
  814. static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  815. {
  816. u32 uninitialized_var(oldval);
  817. /*
  818. * There is no waiter, so we unlock the futex. The owner died
  819. * bit has not to be preserved here. We are the owner:
  820. */
  821. if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
  822. return -EFAULT;
  823. if (oldval != uval)
  824. return -EAGAIN;
  825. return 0;
  826. }
  827. /*
  828. * Express the locking dependencies for lockdep:
  829. */
  830. static inline void
  831. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  832. {
  833. if (hb1 <= hb2) {
  834. spin_lock(&hb1->lock);
  835. if (hb1 < hb2)
  836. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  837. } else { /* hb1 > hb2 */
  838. spin_lock(&hb2->lock);
  839. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  840. }
  841. }
  842. static inline void
  843. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  844. {
  845. spin_unlock(&hb1->lock);
  846. if (hb1 != hb2)
  847. spin_unlock(&hb2->lock);
  848. }
  849. /*
  850. * Wake up waiters matching bitset queued on this futex (uaddr).
  851. */
  852. static int
  853. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  854. {
  855. struct futex_hash_bucket *hb;
  856. struct futex_q *this, *next;
  857. struct plist_head *head;
  858. union futex_key key = FUTEX_KEY_INIT;
  859. int ret;
  860. if (!bitset)
  861. return -EINVAL;
  862. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  863. if (unlikely(ret != 0))
  864. goto out;
  865. hb = hash_futex(&key);
  866. spin_lock(&hb->lock);
  867. head = &hb->chain;
  868. plist_for_each_entry_safe(this, next, head, list) {
  869. if (match_futex (&this->key, &key)) {
  870. if (this->pi_state || this->rt_waiter) {
  871. ret = -EINVAL;
  872. break;
  873. }
  874. /* Check if one of the bits is set in both bitsets */
  875. if (!(this->bitset & bitset))
  876. continue;
  877. wake_futex(this);
  878. if (++ret >= nr_wake)
  879. break;
  880. }
  881. }
  882. spin_unlock(&hb->lock);
  883. put_futex_key(&key);
  884. out:
  885. return ret;
  886. }
  887. /*
  888. * Wake up all waiters hashed on the physical page that is mapped
  889. * to this virtual address:
  890. */
  891. static int
  892. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  893. int nr_wake, int nr_wake2, int op)
  894. {
  895. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  896. struct futex_hash_bucket *hb1, *hb2;
  897. struct plist_head *head;
  898. struct futex_q *this, *next;
  899. int ret, op_ret;
  900. retry:
  901. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  902. if (unlikely(ret != 0))
  903. goto out;
  904. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  905. if (unlikely(ret != 0))
  906. goto out_put_key1;
  907. hb1 = hash_futex(&key1);
  908. hb2 = hash_futex(&key2);
  909. retry_private:
  910. double_lock_hb(hb1, hb2);
  911. op_ret = futex_atomic_op_inuser(op, uaddr2);
  912. if (unlikely(op_ret < 0)) {
  913. double_unlock_hb(hb1, hb2);
  914. #ifndef CONFIG_MMU
  915. /*
  916. * we don't get EFAULT from MMU faults if we don't have an MMU,
  917. * but we might get them from range checking
  918. */
  919. ret = op_ret;
  920. goto out_put_keys;
  921. #endif
  922. if (unlikely(op_ret != -EFAULT)) {
  923. ret = op_ret;
  924. goto out_put_keys;
  925. }
  926. ret = fault_in_user_writeable(uaddr2);
  927. if (ret)
  928. goto out_put_keys;
  929. if (!(flags & FLAGS_SHARED))
  930. goto retry_private;
  931. put_futex_key(&key2);
  932. put_futex_key(&key1);
  933. goto retry;
  934. }
  935. head = &hb1->chain;
  936. plist_for_each_entry_safe(this, next, head, list) {
  937. if (match_futex (&this->key, &key1)) {
  938. if (this->pi_state || this->rt_waiter) {
  939. ret = -EINVAL;
  940. goto out_unlock;
  941. }
  942. wake_futex(this);
  943. if (++ret >= nr_wake)
  944. break;
  945. }
  946. }
  947. if (op_ret > 0) {
  948. head = &hb2->chain;
  949. op_ret = 0;
  950. plist_for_each_entry_safe(this, next, head, list) {
  951. if (match_futex (&this->key, &key2)) {
  952. if (this->pi_state || this->rt_waiter) {
  953. ret = -EINVAL;
  954. goto out_unlock;
  955. }
  956. wake_futex(this);
  957. if (++op_ret >= nr_wake2)
  958. break;
  959. }
  960. }
  961. ret += op_ret;
  962. }
  963. out_unlock:
  964. double_unlock_hb(hb1, hb2);
  965. out_put_keys:
  966. put_futex_key(&key2);
  967. out_put_key1:
  968. put_futex_key(&key1);
  969. out:
  970. return ret;
  971. }
  972. /**
  973. * requeue_futex() - Requeue a futex_q from one hb to another
  974. * @q: the futex_q to requeue
  975. * @hb1: the source hash_bucket
  976. * @hb2: the target hash_bucket
  977. * @key2: the new key for the requeued futex_q
  978. */
  979. static inline
  980. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  981. struct futex_hash_bucket *hb2, union futex_key *key2)
  982. {
  983. /*
  984. * If key1 and key2 hash to the same bucket, no need to
  985. * requeue.
  986. */
  987. if (likely(&hb1->chain != &hb2->chain)) {
  988. plist_del(&q->list, &hb1->chain);
  989. plist_add(&q->list, &hb2->chain);
  990. q->lock_ptr = &hb2->lock;
  991. }
  992. get_futex_key_refs(key2);
  993. q->key = *key2;
  994. }
  995. /**
  996. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  997. * @q: the futex_q
  998. * @key: the key of the requeue target futex
  999. * @hb: the hash_bucket of the requeue target futex
  1000. *
  1001. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  1002. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  1003. * to the requeue target futex so the waiter can detect the wakeup on the right
  1004. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  1005. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  1006. * to protect access to the pi_state to fixup the owner later. Must be called
  1007. * with both q->lock_ptr and hb->lock held.
  1008. */
  1009. static inline
  1010. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  1011. struct futex_hash_bucket *hb)
  1012. {
  1013. get_futex_key_refs(key);
  1014. q->key = *key;
  1015. __unqueue_futex(q);
  1016. WARN_ON(!q->rt_waiter);
  1017. q->rt_waiter = NULL;
  1018. q->lock_ptr = &hb->lock;
  1019. wake_up_state(q->task, TASK_NORMAL);
  1020. }
  1021. /**
  1022. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  1023. * @pifutex: the user address of the to futex
  1024. * @hb1: the from futex hash bucket, must be locked by the caller
  1025. * @hb2: the to futex hash bucket, must be locked by the caller
  1026. * @key1: the from futex key
  1027. * @key2: the to futex key
  1028. * @ps: address to store the pi_state pointer
  1029. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1030. *
  1031. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  1032. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  1033. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  1034. * hb1 and hb2 must be held by the caller.
  1035. *
  1036. * Return:
  1037. * 0 - failed to acquire the lock atomically;
  1038. * 1 - acquired the lock;
  1039. * <0 - error
  1040. */
  1041. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  1042. struct futex_hash_bucket *hb1,
  1043. struct futex_hash_bucket *hb2,
  1044. union futex_key *key1, union futex_key *key2,
  1045. struct futex_pi_state **ps, int set_waiters)
  1046. {
  1047. struct futex_q *top_waiter = NULL;
  1048. u32 curval;
  1049. int ret;
  1050. if (get_futex_value_locked(&curval, pifutex))
  1051. return -EFAULT;
  1052. /*
  1053. * Find the top_waiter and determine if there are additional waiters.
  1054. * If the caller intends to requeue more than 1 waiter to pifutex,
  1055. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1056. * as we have means to handle the possible fault. If not, don't set
  1057. * the bit unecessarily as it will force the subsequent unlock to enter
  1058. * the kernel.
  1059. */
  1060. top_waiter = futex_top_waiter(hb1, key1);
  1061. /* There are no waiters, nothing for us to do. */
  1062. if (!top_waiter)
  1063. return 0;
  1064. /* Ensure we requeue to the expected futex. */
  1065. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1066. return -EINVAL;
  1067. /*
  1068. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1069. * the contended case or if set_waiters is 1. The pi_state is returned
  1070. * in ps in contended cases.
  1071. */
  1072. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1073. set_waiters);
  1074. if (ret == 1)
  1075. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1076. return ret;
  1077. }
  1078. /**
  1079. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1080. * @uaddr1: source futex user address
  1081. * @flags: futex flags (FLAGS_SHARED, etc.)
  1082. * @uaddr2: target futex user address
  1083. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1084. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1085. * @cmpval: @uaddr1 expected value (or %NULL)
  1086. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1087. * pi futex (pi to pi requeue is not supported)
  1088. *
  1089. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1090. * uaddr2 atomically on behalf of the top waiter.
  1091. *
  1092. * Return:
  1093. * >=0 - on success, the number of tasks requeued or woken;
  1094. * <0 - on error
  1095. */
  1096. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1097. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1098. u32 *cmpval, int requeue_pi)
  1099. {
  1100. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1101. int drop_count = 0, task_count = 0, ret;
  1102. struct futex_pi_state *pi_state = NULL;
  1103. struct futex_hash_bucket *hb1, *hb2;
  1104. struct plist_head *head1;
  1105. struct futex_q *this, *next;
  1106. u32 curval2;
  1107. if (requeue_pi) {
  1108. /*
  1109. * requeue_pi requires a pi_state, try to allocate it now
  1110. * without any locks in case it fails.
  1111. */
  1112. if (refill_pi_state_cache())
  1113. return -ENOMEM;
  1114. /*
  1115. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1116. * + nr_requeue, since it acquires the rt_mutex prior to
  1117. * returning to userspace, so as to not leave the rt_mutex with
  1118. * waiters and no owner. However, second and third wake-ups
  1119. * cannot be predicted as they involve race conditions with the
  1120. * first wake and a fault while looking up the pi_state. Both
  1121. * pthread_cond_signal() and pthread_cond_broadcast() should
  1122. * use nr_wake=1.
  1123. */
  1124. if (nr_wake != 1)
  1125. return -EINVAL;
  1126. }
  1127. retry:
  1128. if (pi_state != NULL) {
  1129. /*
  1130. * We will have to lookup the pi_state again, so free this one
  1131. * to keep the accounting correct.
  1132. */
  1133. free_pi_state(pi_state);
  1134. pi_state = NULL;
  1135. }
  1136. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1137. if (unlikely(ret != 0))
  1138. goto out;
  1139. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
  1140. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1141. if (unlikely(ret != 0))
  1142. goto out_put_key1;
  1143. hb1 = hash_futex(&key1);
  1144. hb2 = hash_futex(&key2);
  1145. retry_private:
  1146. double_lock_hb(hb1, hb2);
  1147. if (likely(cmpval != NULL)) {
  1148. u32 curval;
  1149. ret = get_futex_value_locked(&curval, uaddr1);
  1150. if (unlikely(ret)) {
  1151. double_unlock_hb(hb1, hb2);
  1152. ret = get_user(curval, uaddr1);
  1153. if (ret)
  1154. goto out_put_keys;
  1155. if (!(flags & FLAGS_SHARED))
  1156. goto retry_private;
  1157. put_futex_key(&key2);
  1158. put_futex_key(&key1);
  1159. goto retry;
  1160. }
  1161. if (curval != *cmpval) {
  1162. ret = -EAGAIN;
  1163. goto out_unlock;
  1164. }
  1165. }
  1166. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1167. /*
  1168. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1169. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1170. * bit. We force this here where we are able to easily handle
  1171. * faults rather in the requeue loop below.
  1172. */
  1173. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1174. &key2, &pi_state, nr_requeue);
  1175. /*
  1176. * At this point the top_waiter has either taken uaddr2 or is
  1177. * waiting on it. If the former, then the pi_state will not
  1178. * exist yet, look it up one more time to ensure we have a
  1179. * reference to it.
  1180. */
  1181. if (ret == 1) {
  1182. WARN_ON(pi_state);
  1183. drop_count++;
  1184. task_count++;
  1185. ret = get_futex_value_locked(&curval2, uaddr2);
  1186. if (!ret)
  1187. ret = lookup_pi_state(curval2, hb2, &key2,
  1188. &pi_state);
  1189. }
  1190. switch (ret) {
  1191. case 0:
  1192. break;
  1193. case -EFAULT:
  1194. double_unlock_hb(hb1, hb2);
  1195. put_futex_key(&key2);
  1196. put_futex_key(&key1);
  1197. ret = fault_in_user_writeable(uaddr2);
  1198. if (!ret)
  1199. goto retry;
  1200. goto out;
  1201. case -EAGAIN:
  1202. /* The owner was exiting, try again. */
  1203. double_unlock_hb(hb1, hb2);
  1204. put_futex_key(&key2);
  1205. put_futex_key(&key1);
  1206. cond_resched();
  1207. goto retry;
  1208. default:
  1209. goto out_unlock;
  1210. }
  1211. }
  1212. head1 = &hb1->chain;
  1213. plist_for_each_entry_safe(this, next, head1, list) {
  1214. if (task_count - nr_wake >= nr_requeue)
  1215. break;
  1216. if (!match_futex(&this->key, &key1))
  1217. continue;
  1218. /*
  1219. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1220. * be paired with each other and no other futex ops.
  1221. *
  1222. * We should never be requeueing a futex_q with a pi_state,
  1223. * which is awaiting a futex_unlock_pi().
  1224. */
  1225. if ((requeue_pi && !this->rt_waiter) ||
  1226. (!requeue_pi && this->rt_waiter) ||
  1227. this->pi_state) {
  1228. ret = -EINVAL;
  1229. break;
  1230. }
  1231. /*
  1232. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1233. * lock, we already woke the top_waiter. If not, it will be
  1234. * woken by futex_unlock_pi().
  1235. */
  1236. if (++task_count <= nr_wake && !requeue_pi) {
  1237. wake_futex(this);
  1238. continue;
  1239. }
  1240. /* Ensure we requeue to the expected futex for requeue_pi. */
  1241. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1242. ret = -EINVAL;
  1243. break;
  1244. }
  1245. /*
  1246. * Requeue nr_requeue waiters and possibly one more in the case
  1247. * of requeue_pi if we couldn't acquire the lock atomically.
  1248. */
  1249. if (requeue_pi) {
  1250. /* Prepare the waiter to take the rt_mutex. */
  1251. atomic_inc(&pi_state->refcount);
  1252. this->pi_state = pi_state;
  1253. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1254. this->rt_waiter,
  1255. this->task, 1);
  1256. if (ret == 1) {
  1257. /* We got the lock. */
  1258. requeue_pi_wake_futex(this, &key2, hb2);
  1259. drop_count++;
  1260. continue;
  1261. } else if (ret) {
  1262. /* -EDEADLK */
  1263. this->pi_state = NULL;
  1264. free_pi_state(pi_state);
  1265. goto out_unlock;
  1266. }
  1267. }
  1268. requeue_futex(this, hb1, hb2, &key2);
  1269. drop_count++;
  1270. }
  1271. out_unlock:
  1272. double_unlock_hb(hb1, hb2);
  1273. /*
  1274. * drop_futex_key_refs() must be called outside the spinlocks. During
  1275. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1276. * one at key2 and updated their key pointer. We no longer need to
  1277. * hold the references to key1.
  1278. */
  1279. while (--drop_count >= 0)
  1280. drop_futex_key_refs(&key1);
  1281. out_put_keys:
  1282. put_futex_key(&key2);
  1283. out_put_key1:
  1284. put_futex_key(&key1);
  1285. out:
  1286. if (pi_state != NULL)
  1287. free_pi_state(pi_state);
  1288. return ret ? ret : task_count;
  1289. }
  1290. /* The key must be already stored in q->key. */
  1291. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1292. __acquires(&hb->lock)
  1293. {
  1294. struct futex_hash_bucket *hb;
  1295. hb = hash_futex(&q->key);
  1296. q->lock_ptr = &hb->lock;
  1297. spin_lock(&hb->lock);
  1298. return hb;
  1299. }
  1300. static inline void
  1301. queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
  1302. __releases(&hb->lock)
  1303. {
  1304. spin_unlock(&hb->lock);
  1305. }
  1306. /**
  1307. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1308. * @q: The futex_q to enqueue
  1309. * @hb: The destination hash bucket
  1310. *
  1311. * The hb->lock must be held by the caller, and is released here. A call to
  1312. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1313. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1314. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1315. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1316. * an example).
  1317. */
  1318. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1319. __releases(&hb->lock)
  1320. {
  1321. int prio;
  1322. /*
  1323. * The priority used to register this element is
  1324. * - either the real thread-priority for the real-time threads
  1325. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1326. * - or MAX_RT_PRIO for non-RT threads.
  1327. * Thus, all RT-threads are woken first in priority order, and
  1328. * the others are woken last, in FIFO order.
  1329. */
  1330. prio = min(current->normal_prio, MAX_RT_PRIO);
  1331. plist_node_init(&q->list, prio);
  1332. plist_add(&q->list, &hb->chain);
  1333. q->task = current;
  1334. spin_unlock(&hb->lock);
  1335. }
  1336. /**
  1337. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1338. * @q: The futex_q to unqueue
  1339. *
  1340. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1341. * be paired with exactly one earlier call to queue_me().
  1342. *
  1343. * Return:
  1344. * 1 - if the futex_q was still queued (and we removed unqueued it);
  1345. * 0 - if the futex_q was already removed by the waking thread
  1346. */
  1347. static int unqueue_me(struct futex_q *q)
  1348. {
  1349. spinlock_t *lock_ptr;
  1350. int ret = 0;
  1351. /* In the common case we don't take the spinlock, which is nice. */
  1352. retry:
  1353. lock_ptr = q->lock_ptr;
  1354. barrier();
  1355. if (lock_ptr != NULL) {
  1356. spin_lock(lock_ptr);
  1357. /*
  1358. * q->lock_ptr can change between reading it and
  1359. * spin_lock(), causing us to take the wrong lock. This
  1360. * corrects the race condition.
  1361. *
  1362. * Reasoning goes like this: if we have the wrong lock,
  1363. * q->lock_ptr must have changed (maybe several times)
  1364. * between reading it and the spin_lock(). It can
  1365. * change again after the spin_lock() but only if it was
  1366. * already changed before the spin_lock(). It cannot,
  1367. * however, change back to the original value. Therefore
  1368. * we can detect whether we acquired the correct lock.
  1369. */
  1370. if (unlikely(lock_ptr != q->lock_ptr)) {
  1371. spin_unlock(lock_ptr);
  1372. goto retry;
  1373. }
  1374. __unqueue_futex(q);
  1375. BUG_ON(q->pi_state);
  1376. spin_unlock(lock_ptr);
  1377. ret = 1;
  1378. }
  1379. drop_futex_key_refs(&q->key);
  1380. return ret;
  1381. }
  1382. /*
  1383. * PI futexes can not be requeued and must remove themself from the
  1384. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1385. * and dropped here.
  1386. */
  1387. static void unqueue_me_pi(struct futex_q *q)
  1388. __releases(q->lock_ptr)
  1389. {
  1390. __unqueue_futex(q);
  1391. BUG_ON(!q->pi_state);
  1392. free_pi_state(q->pi_state);
  1393. q->pi_state = NULL;
  1394. spin_unlock(q->lock_ptr);
  1395. }
  1396. /*
  1397. * Fixup the pi_state owner with the new owner.
  1398. *
  1399. * Must be called with hash bucket lock held and mm->sem held for non
  1400. * private futexes.
  1401. */
  1402. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1403. struct task_struct *newowner)
  1404. {
  1405. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1406. struct futex_pi_state *pi_state = q->pi_state;
  1407. struct task_struct *oldowner = pi_state->owner;
  1408. u32 uval, uninitialized_var(curval), newval;
  1409. int ret;
  1410. /* Owner died? */
  1411. if (!pi_state->owner)
  1412. newtid |= FUTEX_OWNER_DIED;
  1413. /*
  1414. * We are here either because we stole the rtmutex from the
  1415. * previous highest priority waiter or we are the highest priority
  1416. * waiter but failed to get the rtmutex the first time.
  1417. * We have to replace the newowner TID in the user space variable.
  1418. * This must be atomic as we have to preserve the owner died bit here.
  1419. *
  1420. * Note: We write the user space value _before_ changing the pi_state
  1421. * because we can fault here. Imagine swapped out pages or a fork
  1422. * that marked all the anonymous memory readonly for cow.
  1423. *
  1424. * Modifying pi_state _before_ the user space value would
  1425. * leave the pi_state in an inconsistent state when we fault
  1426. * here, because we need to drop the hash bucket lock to
  1427. * handle the fault. This might be observed in the PID check
  1428. * in lookup_pi_state.
  1429. */
  1430. retry:
  1431. if (get_futex_value_locked(&uval, uaddr))
  1432. goto handle_fault;
  1433. while (1) {
  1434. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1435. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1436. goto handle_fault;
  1437. if (curval == uval)
  1438. break;
  1439. uval = curval;
  1440. }
  1441. /*
  1442. * We fixed up user space. Now we need to fix the pi_state
  1443. * itself.
  1444. */
  1445. if (pi_state->owner != NULL) {
  1446. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1447. WARN_ON(list_empty(&pi_state->list));
  1448. list_del_init(&pi_state->list);
  1449. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1450. }
  1451. pi_state->owner = newowner;
  1452. raw_spin_lock_irq(&newowner->pi_lock);
  1453. WARN_ON(!list_empty(&pi_state->list));
  1454. list_add(&pi_state->list, &newowner->pi_state_list);
  1455. raw_spin_unlock_irq(&newowner->pi_lock);
  1456. return 0;
  1457. /*
  1458. * To handle the page fault we need to drop the hash bucket
  1459. * lock here. That gives the other task (either the highest priority
  1460. * waiter itself or the task which stole the rtmutex) the
  1461. * chance to try the fixup of the pi_state. So once we are
  1462. * back from handling the fault we need to check the pi_state
  1463. * after reacquiring the hash bucket lock and before trying to
  1464. * do another fixup. When the fixup has been done already we
  1465. * simply return.
  1466. */
  1467. handle_fault:
  1468. spin_unlock(q->lock_ptr);
  1469. ret = fault_in_user_writeable(uaddr);
  1470. spin_lock(q->lock_ptr);
  1471. /*
  1472. * Check if someone else fixed it for us:
  1473. */
  1474. if (pi_state->owner != oldowner)
  1475. return 0;
  1476. if (ret)
  1477. return ret;
  1478. goto retry;
  1479. }
  1480. static long futex_wait_restart(struct restart_block *restart);
  1481. /**
  1482. * fixup_owner() - Post lock pi_state and corner case management
  1483. * @uaddr: user address of the futex
  1484. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1485. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1486. *
  1487. * After attempting to lock an rt_mutex, this function is called to cleanup
  1488. * the pi_state owner as well as handle race conditions that may allow us to
  1489. * acquire the lock. Must be called with the hb lock held.
  1490. *
  1491. * Return:
  1492. * 1 - success, lock taken;
  1493. * 0 - success, lock not taken;
  1494. * <0 - on error (-EFAULT)
  1495. */
  1496. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  1497. {
  1498. struct task_struct *owner;
  1499. int ret = 0;
  1500. if (locked) {
  1501. /*
  1502. * Got the lock. We might not be the anticipated owner if we
  1503. * did a lock-steal - fix up the PI-state in that case:
  1504. */
  1505. if (q->pi_state->owner != current)
  1506. ret = fixup_pi_state_owner(uaddr, q, current);
  1507. goto out;
  1508. }
  1509. /*
  1510. * Catch the rare case, where the lock was released when we were on the
  1511. * way back before we locked the hash bucket.
  1512. */
  1513. if (q->pi_state->owner == current) {
  1514. /*
  1515. * Try to get the rt_mutex now. This might fail as some other
  1516. * task acquired the rt_mutex after we removed ourself from the
  1517. * rt_mutex waiters list.
  1518. */
  1519. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1520. locked = 1;
  1521. goto out;
  1522. }
  1523. /*
  1524. * pi_state is incorrect, some other task did a lock steal and
  1525. * we returned due to timeout or signal without taking the
  1526. * rt_mutex. Too late.
  1527. */
  1528. raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
  1529. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  1530. if (!owner)
  1531. owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
  1532. raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
  1533. ret = fixup_pi_state_owner(uaddr, q, owner);
  1534. goto out;
  1535. }
  1536. /*
  1537. * Paranoia check. If we did not take the lock, then we should not be
  1538. * the owner of the rt_mutex.
  1539. */
  1540. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  1541. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  1542. "pi-state %p\n", ret,
  1543. q->pi_state->pi_mutex.owner,
  1544. q->pi_state->owner);
  1545. out:
  1546. return ret ? ret : locked;
  1547. }
  1548. /**
  1549. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  1550. * @hb: the futex hash bucket, must be locked by the caller
  1551. * @q: the futex_q to queue up on
  1552. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  1553. */
  1554. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  1555. struct hrtimer_sleeper *timeout)
  1556. {
  1557. /*
  1558. * The task state is guaranteed to be set before another task can
  1559. * wake it. set_current_state() is implemented using set_mb() and
  1560. * queue_me() calls spin_unlock() upon completion, both serializing
  1561. * access to the hash list and forcing another memory barrier.
  1562. */
  1563. set_current_state(TASK_INTERRUPTIBLE);
  1564. queue_me(q, hb);
  1565. /* Arm the timer */
  1566. if (timeout) {
  1567. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  1568. if (!hrtimer_active(&timeout->timer))
  1569. timeout->task = NULL;
  1570. }
  1571. /*
  1572. * If we have been removed from the hash list, then another task
  1573. * has tried to wake us, and we can skip the call to schedule().
  1574. */
  1575. if (likely(!plist_node_empty(&q->list))) {
  1576. /*
  1577. * If the timer has already expired, current will already be
  1578. * flagged for rescheduling. Only call schedule if there
  1579. * is no timeout, or if it has yet to expire.
  1580. */
  1581. if (!timeout || timeout->task)
  1582. schedule();
  1583. }
  1584. __set_current_state(TASK_RUNNING);
  1585. }
  1586. /**
  1587. * futex_wait_setup() - Prepare to wait on a futex
  1588. * @uaddr: the futex userspace address
  1589. * @val: the expected value
  1590. * @flags: futex flags (FLAGS_SHARED, etc.)
  1591. * @q: the associated futex_q
  1592. * @hb: storage for hash_bucket pointer to be returned to caller
  1593. *
  1594. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  1595. * compare it with the expected value. Handle atomic faults internally.
  1596. * Return with the hb lock held and a q.key reference on success, and unlocked
  1597. * with no q.key reference on failure.
  1598. *
  1599. * Return:
  1600. * 0 - uaddr contains val and hb has been locked;
  1601. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
  1602. */
  1603. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  1604. struct futex_q *q, struct futex_hash_bucket **hb)
  1605. {
  1606. u32 uval;
  1607. int ret;
  1608. /*
  1609. * Access the page AFTER the hash-bucket is locked.
  1610. * Order is important:
  1611. *
  1612. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  1613. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  1614. *
  1615. * The basic logical guarantee of a futex is that it blocks ONLY
  1616. * if cond(var) is known to be true at the time of blocking, for
  1617. * any cond. If we locked the hash-bucket after testing *uaddr, that
  1618. * would open a race condition where we could block indefinitely with
  1619. * cond(var) false, which would violate the guarantee.
  1620. *
  1621. * On the other hand, we insert q and release the hash-bucket only
  1622. * after testing *uaddr. This guarantees that futex_wait() will NOT
  1623. * absorb a wakeup if *uaddr does not match the desired values
  1624. * while the syscall executes.
  1625. */
  1626. retry:
  1627. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
  1628. if (unlikely(ret != 0))
  1629. return ret;
  1630. retry_private:
  1631. *hb = queue_lock(q);
  1632. ret = get_futex_value_locked(&uval, uaddr);
  1633. if (ret) {
  1634. queue_unlock(q, *hb);
  1635. ret = get_user(uval, uaddr);
  1636. if (ret)
  1637. goto out;
  1638. if (!(flags & FLAGS_SHARED))
  1639. goto retry_private;
  1640. put_futex_key(&q->key);
  1641. goto retry;
  1642. }
  1643. if (uval != val) {
  1644. queue_unlock(q, *hb);
  1645. ret = -EWOULDBLOCK;
  1646. }
  1647. out:
  1648. if (ret)
  1649. put_futex_key(&q->key);
  1650. return ret;
  1651. }
  1652. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  1653. ktime_t *abs_time, u32 bitset)
  1654. {
  1655. struct hrtimer_sleeper timeout, *to = NULL;
  1656. struct restart_block *restart;
  1657. struct futex_hash_bucket *hb;
  1658. struct futex_q q = futex_q_init;
  1659. int ret;
  1660. if (!bitset)
  1661. return -EINVAL;
  1662. q.bitset = bitset;
  1663. if (abs_time) {
  1664. to = &timeout;
  1665. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  1666. CLOCK_REALTIME : CLOCK_MONOTONIC,
  1667. HRTIMER_MODE_ABS);
  1668. hrtimer_init_sleeper(to, current);
  1669. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1670. current->timer_slack_ns);
  1671. }
  1672. retry:
  1673. /*
  1674. * Prepare to wait on uaddr. On success, holds hb lock and increments
  1675. * q.key refs.
  1676. */
  1677. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  1678. if (ret)
  1679. goto out;
  1680. /* queue_me and wait for wakeup, timeout, or a signal. */
  1681. futex_wait_queue_me(hb, &q, to);
  1682. /* If we were woken (and unqueued), we succeeded, whatever. */
  1683. ret = 0;
  1684. /* unqueue_me() drops q.key ref */
  1685. if (!unqueue_me(&q))
  1686. goto out;
  1687. ret = -ETIMEDOUT;
  1688. if (to && !to->task)
  1689. goto out;
  1690. /*
  1691. * We expect signal_pending(current), but we might be the
  1692. * victim of a spurious wakeup as well.
  1693. */
  1694. if (!signal_pending(current))
  1695. goto retry;
  1696. ret = -ERESTARTSYS;
  1697. if (!abs_time)
  1698. goto out;
  1699. restart = &current_thread_info()->restart_block;
  1700. restart->fn = futex_wait_restart;
  1701. restart->futex.uaddr = uaddr;
  1702. restart->futex.val = val;
  1703. restart->futex.time = abs_time->tv64;
  1704. restart->futex.bitset = bitset;
  1705. restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
  1706. ret = -ERESTART_RESTARTBLOCK;
  1707. out:
  1708. if (to) {
  1709. hrtimer_cancel(&to->timer);
  1710. destroy_hrtimer_on_stack(&to->timer);
  1711. }
  1712. return ret;
  1713. }
  1714. static long futex_wait_restart(struct restart_block *restart)
  1715. {
  1716. u32 __user *uaddr = restart->futex.uaddr;
  1717. ktime_t t, *tp = NULL;
  1718. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  1719. t.tv64 = restart->futex.time;
  1720. tp = &t;
  1721. }
  1722. restart->fn = do_no_restart_syscall;
  1723. return (long)futex_wait(uaddr, restart->futex.flags,
  1724. restart->futex.val, tp, restart->futex.bitset);
  1725. }
  1726. /*
  1727. * Userspace tried a 0 -> TID atomic transition of the futex value
  1728. * and failed. The kernel side here does the whole locking operation:
  1729. * if there are waiters then it will block, it does PI, etc. (Due to
  1730. * races the kernel might see a 0 value of the futex too.)
  1731. */
  1732. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
  1733. ktime_t *time, int trylock)
  1734. {
  1735. struct hrtimer_sleeper timeout, *to = NULL;
  1736. struct futex_hash_bucket *hb;
  1737. struct futex_q q = futex_q_init;
  1738. int res, ret;
  1739. if (refill_pi_state_cache())
  1740. return -ENOMEM;
  1741. if (time) {
  1742. to = &timeout;
  1743. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  1744. HRTIMER_MODE_ABS);
  1745. hrtimer_init_sleeper(to, current);
  1746. hrtimer_set_expires(&to->timer, *time);
  1747. }
  1748. retry:
  1749. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
  1750. if (unlikely(ret != 0))
  1751. goto out;
  1752. retry_private:
  1753. hb = queue_lock(&q);
  1754. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  1755. if (unlikely(ret)) {
  1756. switch (ret) {
  1757. case 1:
  1758. /* We got the lock. */
  1759. ret = 0;
  1760. goto out_unlock_put_key;
  1761. case -EFAULT:
  1762. goto uaddr_faulted;
  1763. case -EAGAIN:
  1764. /*
  1765. * Task is exiting and we just wait for the
  1766. * exit to complete.
  1767. */
  1768. queue_unlock(&q, hb);
  1769. put_futex_key(&q.key);
  1770. cond_resched();
  1771. goto retry;
  1772. default:
  1773. goto out_unlock_put_key;
  1774. }
  1775. }
  1776. /*
  1777. * Only actually queue now that the atomic ops are done:
  1778. */
  1779. queue_me(&q, hb);
  1780. WARN_ON(!q.pi_state);
  1781. /*
  1782. * Block on the PI mutex:
  1783. */
  1784. if (!trylock)
  1785. ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
  1786. else {
  1787. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  1788. /* Fixup the trylock return value: */
  1789. ret = ret ? 0 : -EWOULDBLOCK;
  1790. }
  1791. spin_lock(q.lock_ptr);
  1792. /*
  1793. * Fixup the pi_state owner and possibly acquire the lock if we
  1794. * haven't already.
  1795. */
  1796. res = fixup_owner(uaddr, &q, !ret);
  1797. /*
  1798. * If fixup_owner() returned an error, proprogate that. If it acquired
  1799. * the lock, clear our -ETIMEDOUT or -EINTR.
  1800. */
  1801. if (res)
  1802. ret = (res < 0) ? res : 0;
  1803. /*
  1804. * If fixup_owner() faulted and was unable to handle the fault, unlock
  1805. * it and return the fault to userspace.
  1806. */
  1807. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  1808. rt_mutex_unlock(&q.pi_state->pi_mutex);
  1809. /* Unqueue and drop the lock */
  1810. unqueue_me_pi(&q);
  1811. goto out_put_key;
  1812. out_unlock_put_key:
  1813. queue_unlock(&q, hb);
  1814. out_put_key:
  1815. put_futex_key(&q.key);
  1816. out:
  1817. if (to)
  1818. destroy_hrtimer_on_stack(&to->timer);
  1819. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  1820. uaddr_faulted:
  1821. queue_unlock(&q, hb);
  1822. ret = fault_in_user_writeable(uaddr);
  1823. if (ret)
  1824. goto out_put_key;
  1825. if (!(flags & FLAGS_SHARED))
  1826. goto retry_private;
  1827. put_futex_key(&q.key);
  1828. goto retry;
  1829. }
  1830. /*
  1831. * Userspace attempted a TID -> 0 atomic transition, and failed.
  1832. * This is the in-kernel slowpath: we look up the PI state (if any),
  1833. * and do the rt-mutex unlock.
  1834. */
  1835. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  1836. {
  1837. struct futex_hash_bucket *hb;
  1838. struct futex_q *this, *next;
  1839. struct plist_head *head;
  1840. union futex_key key = FUTEX_KEY_INIT;
  1841. u32 uval, vpid = task_pid_vnr(current);
  1842. int ret;
  1843. retry:
  1844. if (get_user(uval, uaddr))
  1845. return -EFAULT;
  1846. /*
  1847. * We release only a lock we actually own:
  1848. */
  1849. if ((uval & FUTEX_TID_MASK) != vpid)
  1850. return -EPERM;
  1851. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
  1852. if (unlikely(ret != 0))
  1853. goto out;
  1854. hb = hash_futex(&key);
  1855. spin_lock(&hb->lock);
  1856. /*
  1857. * To avoid races, try to do the TID -> 0 atomic transition
  1858. * again. If it succeeds then we can return without waking
  1859. * anyone else up:
  1860. */
  1861. if (!(uval & FUTEX_OWNER_DIED) &&
  1862. cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
  1863. goto pi_faulted;
  1864. /*
  1865. * Rare case: we managed to release the lock atomically,
  1866. * no need to wake anyone else up:
  1867. */
  1868. if (unlikely(uval == vpid))
  1869. goto out_unlock;
  1870. /*
  1871. * Ok, other tasks may need to be woken up - check waiters
  1872. * and do the wakeup if necessary:
  1873. */
  1874. head = &hb->chain;
  1875. plist_for_each_entry_safe(this, next, head, list) {
  1876. if (!match_futex (&this->key, &key))
  1877. continue;
  1878. ret = wake_futex_pi(uaddr, uval, this);
  1879. /*
  1880. * The atomic access to the futex value
  1881. * generated a pagefault, so retry the
  1882. * user-access and the wakeup:
  1883. */
  1884. if (ret == -EFAULT)
  1885. goto pi_faulted;
  1886. goto out_unlock;
  1887. }
  1888. /*
  1889. * No waiters - kernel unlocks the futex:
  1890. */
  1891. if (!(uval & FUTEX_OWNER_DIED)) {
  1892. ret = unlock_futex_pi(uaddr, uval);
  1893. if (ret == -EFAULT)
  1894. goto pi_faulted;
  1895. }
  1896. out_unlock:
  1897. spin_unlock(&hb->lock);
  1898. put_futex_key(&key);
  1899. out:
  1900. return ret;
  1901. pi_faulted:
  1902. spin_unlock(&hb->lock);
  1903. put_futex_key(&key);
  1904. ret = fault_in_user_writeable(uaddr);
  1905. if (!ret)
  1906. goto retry;
  1907. return ret;
  1908. }
  1909. /**
  1910. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  1911. * @hb: the hash_bucket futex_q was original enqueued on
  1912. * @q: the futex_q woken while waiting to be requeued
  1913. * @key2: the futex_key of the requeue target futex
  1914. * @timeout: the timeout associated with the wait (NULL if none)
  1915. *
  1916. * Detect if the task was woken on the initial futex as opposed to the requeue
  1917. * target futex. If so, determine if it was a timeout or a signal that caused
  1918. * the wakeup and return the appropriate error code to the caller. Must be
  1919. * called with the hb lock held.
  1920. *
  1921. * Return:
  1922. * 0 = no early wakeup detected;
  1923. * <0 = -ETIMEDOUT or -ERESTARTNOINTR
  1924. */
  1925. static inline
  1926. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  1927. struct futex_q *q, union futex_key *key2,
  1928. struct hrtimer_sleeper *timeout)
  1929. {
  1930. int ret = 0;
  1931. /*
  1932. * With the hb lock held, we avoid races while we process the wakeup.
  1933. * We only need to hold hb (and not hb2) to ensure atomicity as the
  1934. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  1935. * It can't be requeued from uaddr2 to something else since we don't
  1936. * support a PI aware source futex for requeue.
  1937. */
  1938. if (!match_futex(&q->key, key2)) {
  1939. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  1940. /*
  1941. * We were woken prior to requeue by a timeout or a signal.
  1942. * Unqueue the futex_q and determine which it was.
  1943. */
  1944. plist_del(&q->list, &hb->chain);
  1945. /* Handle spurious wakeups gracefully */
  1946. ret = -EWOULDBLOCK;
  1947. if (timeout && !timeout->task)
  1948. ret = -ETIMEDOUT;
  1949. else if (signal_pending(current))
  1950. ret = -ERESTARTNOINTR;
  1951. }
  1952. return ret;
  1953. }
  1954. /**
  1955. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  1956. * @uaddr: the futex we initially wait on (non-pi)
  1957. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  1958. * the same type, no requeueing from private to shared, etc.
  1959. * @val: the expected value of uaddr
  1960. * @abs_time: absolute timeout
  1961. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  1962. * @uaddr2: the pi futex we will take prior to returning to user-space
  1963. *
  1964. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  1965. * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
  1966. * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
  1967. * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
  1968. * without one, the pi logic would not know which task to boost/deboost, if
  1969. * there was a need to.
  1970. *
  1971. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  1972. * via the following--
  1973. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  1974. * 2) wakeup on uaddr2 after a requeue
  1975. * 3) signal
  1976. * 4) timeout
  1977. *
  1978. * If 3, cleanup and return -ERESTARTNOINTR.
  1979. *
  1980. * If 2, we may then block on trying to take the rt_mutex and return via:
  1981. * 5) successful lock
  1982. * 6) signal
  1983. * 7) timeout
  1984. * 8) other lock acquisition failure
  1985. *
  1986. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  1987. *
  1988. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  1989. *
  1990. * Return:
  1991. * 0 - On success;
  1992. * <0 - On error
  1993. */
  1994. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  1995. u32 val, ktime_t *abs_time, u32 bitset,
  1996. u32 __user *uaddr2)
  1997. {
  1998. struct hrtimer_sleeper timeout, *to = NULL;
  1999. struct rt_mutex_waiter rt_waiter;
  2000. struct rt_mutex *pi_mutex = NULL;
  2001. struct futex_hash_bucket *hb;
  2002. union futex_key key2 = FUTEX_KEY_INIT;
  2003. struct futex_q q = futex_q_init;
  2004. int res, ret;
  2005. if (uaddr == uaddr2)
  2006. return -EINVAL;
  2007. if (!bitset)
  2008. return -EINVAL;
  2009. if (abs_time) {
  2010. to = &timeout;
  2011. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2012. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2013. HRTIMER_MODE_ABS);
  2014. hrtimer_init_sleeper(to, current);
  2015. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2016. current->timer_slack_ns);
  2017. }
  2018. /*
  2019. * The waiter is allocated on our stack, manipulated by the requeue
  2020. * code while we sleep on uaddr.
  2021. */
  2022. debug_rt_mutex_init_waiter(&rt_waiter);
  2023. rt_waiter.task = NULL;
  2024. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  2025. if (unlikely(ret != 0))
  2026. goto out;
  2027. q.bitset = bitset;
  2028. q.rt_waiter = &rt_waiter;
  2029. q.requeue_pi_key = &key2;
  2030. /*
  2031. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  2032. * count.
  2033. */
  2034. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2035. if (ret)
  2036. goto out_key2;
  2037. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  2038. futex_wait_queue_me(hb, &q, to);
  2039. spin_lock(&hb->lock);
  2040. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  2041. spin_unlock(&hb->lock);
  2042. if (ret)
  2043. goto out_put_keys;
  2044. /*
  2045. * In order for us to be here, we know our q.key == key2, and since
  2046. * we took the hb->lock above, we also know that futex_requeue() has
  2047. * completed and we no longer have to concern ourselves with a wakeup
  2048. * race with the atomic proxy lock acquisition by the requeue code. The
  2049. * futex_requeue dropped our key1 reference and incremented our key2
  2050. * reference count.
  2051. */
  2052. /* Check if the requeue code acquired the second futex for us. */
  2053. if (!q.rt_waiter) {
  2054. /*
  2055. * Got the lock. We might not be the anticipated owner if we
  2056. * did a lock-steal - fix up the PI-state in that case.
  2057. */
  2058. if (q.pi_state && (q.pi_state->owner != current)) {
  2059. spin_lock(q.lock_ptr);
  2060. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2061. spin_unlock(q.lock_ptr);
  2062. }
  2063. } else {
  2064. /*
  2065. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2066. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2067. * the pi_state.
  2068. */
  2069. WARN_ON(!q.pi_state);
  2070. pi_mutex = &q.pi_state->pi_mutex;
  2071. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
  2072. debug_rt_mutex_free_waiter(&rt_waiter);
  2073. spin_lock(q.lock_ptr);
  2074. /*
  2075. * Fixup the pi_state owner and possibly acquire the lock if we
  2076. * haven't already.
  2077. */
  2078. res = fixup_owner(uaddr2, &q, !ret);
  2079. /*
  2080. * If fixup_owner() returned an error, proprogate that. If it
  2081. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2082. */
  2083. if (res)
  2084. ret = (res < 0) ? res : 0;
  2085. /* Unqueue and drop the lock. */
  2086. unqueue_me_pi(&q);
  2087. }
  2088. /*
  2089. * If fixup_pi_state_owner() faulted and was unable to handle the
  2090. * fault, unlock the rt_mutex and return the fault to userspace.
  2091. */
  2092. if (ret == -EFAULT) {
  2093. if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
  2094. rt_mutex_unlock(pi_mutex);
  2095. } else if (ret == -EINTR) {
  2096. /*
  2097. * We've already been requeued, but cannot restart by calling
  2098. * futex_lock_pi() directly. We could restart this syscall, but
  2099. * it would detect that the user space "val" changed and return
  2100. * -EWOULDBLOCK. Save the overhead of the restart and return
  2101. * -EWOULDBLOCK directly.
  2102. */
  2103. ret = -EWOULDBLOCK;
  2104. }
  2105. out_put_keys:
  2106. put_futex_key(&q.key);
  2107. out_key2:
  2108. put_futex_key(&key2);
  2109. out:
  2110. if (to) {
  2111. hrtimer_cancel(&to->timer);
  2112. destroy_hrtimer_on_stack(&to->timer);
  2113. }
  2114. return ret;
  2115. }
  2116. /*
  2117. * Support for robust futexes: the kernel cleans up held futexes at
  2118. * thread exit time.
  2119. *
  2120. * Implementation: user-space maintains a per-thread list of locks it
  2121. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2122. * and marks all locks that are owned by this thread with the
  2123. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2124. * always manipulated with the lock held, so the list is private and
  2125. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2126. * field, to allow the kernel to clean up if the thread dies after
  2127. * acquiring the lock, but just before it could have added itself to
  2128. * the list. There can only be one such pending lock.
  2129. */
  2130. /**
  2131. * sys_set_robust_list() - Set the robust-futex list head of a task
  2132. * @head: pointer to the list-head
  2133. * @len: length of the list-head, as userspace expects
  2134. */
  2135. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2136. size_t, len)
  2137. {
  2138. if (!futex_cmpxchg_enabled)
  2139. return -ENOSYS;
  2140. /*
  2141. * The kernel knows only one size for now:
  2142. */
  2143. if (unlikely(len != sizeof(*head)))
  2144. return -EINVAL;
  2145. current->robust_list = head;
  2146. return 0;
  2147. }
  2148. /**
  2149. * sys_get_robust_list() - Get the robust-futex list head of a task
  2150. * @pid: pid of the process [zero for current task]
  2151. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2152. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2153. */
  2154. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2155. struct robust_list_head __user * __user *, head_ptr,
  2156. size_t __user *, len_ptr)
  2157. {
  2158. struct robust_list_head __user *head;
  2159. unsigned long ret;
  2160. struct task_struct *p;
  2161. if (!futex_cmpxchg_enabled)
  2162. return -ENOSYS;
  2163. rcu_read_lock();
  2164. ret = -ESRCH;
  2165. if (!pid)
  2166. p = current;
  2167. else {
  2168. p = find_task_by_vpid(pid);
  2169. if (!p)
  2170. goto err_unlock;
  2171. }
  2172. ret = -EPERM;
  2173. if (!ptrace_may_access(p, PTRACE_MODE_READ))
  2174. goto err_unlock;
  2175. head = p->robust_list;
  2176. rcu_read_unlock();
  2177. if (put_user(sizeof(*head), len_ptr))
  2178. return -EFAULT;
  2179. return put_user(head, head_ptr);
  2180. err_unlock:
  2181. rcu_read_unlock();
  2182. return ret;
  2183. }
  2184. /*
  2185. * Process a futex-list entry, check whether it's owned by the
  2186. * dying task, and do notification if so:
  2187. */
  2188. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2189. {
  2190. u32 uval, uninitialized_var(nval), mval;
  2191. retry:
  2192. if (get_user(uval, uaddr))
  2193. return -1;
  2194. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2195. /*
  2196. * Ok, this dying thread is truly holding a futex
  2197. * of interest. Set the OWNER_DIED bit atomically
  2198. * via cmpxchg, and if the value had FUTEX_WAITERS
  2199. * set, wake up a waiter (if any). (We have to do a
  2200. * futex_wake() even if OWNER_DIED is already set -
  2201. * to handle the rare but possible case of recursive
  2202. * thread-death.) The rest of the cleanup is done in
  2203. * userspace.
  2204. */
  2205. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2206. /*
  2207. * We are not holding a lock here, but we want to have
  2208. * the pagefault_disable/enable() protection because
  2209. * we want to handle the fault gracefully. If the
  2210. * access fails we try to fault in the futex with R/W
  2211. * verification via get_user_pages. get_user() above
  2212. * does not guarantee R/W access. If that fails we
  2213. * give up and leave the futex locked.
  2214. */
  2215. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2216. if (fault_in_user_writeable(uaddr))
  2217. return -1;
  2218. goto retry;
  2219. }
  2220. if (nval != uval)
  2221. goto retry;
  2222. /*
  2223. * Wake robust non-PI futexes here. The wakeup of
  2224. * PI futexes happens in exit_pi_state():
  2225. */
  2226. if (!pi && (uval & FUTEX_WAITERS))
  2227. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2228. }
  2229. return 0;
  2230. }
  2231. /*
  2232. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2233. */
  2234. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2235. struct robust_list __user * __user *head,
  2236. unsigned int *pi)
  2237. {
  2238. unsigned long uentry;
  2239. if (get_user(uentry, (unsigned long __user *)head))
  2240. return -EFAULT;
  2241. *entry = (void __user *)(uentry & ~1UL);
  2242. *pi = uentry & 1;
  2243. return 0;
  2244. }
  2245. /*
  2246. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2247. * and mark any locks found there dead, and notify any waiters.
  2248. *
  2249. * We silently return on any sign of list-walking problem.
  2250. */
  2251. void exit_robust_list(struct task_struct *curr)
  2252. {
  2253. struct robust_list_head __user *head = curr->robust_list;
  2254. struct robust_list __user *entry, *next_entry, *pending;
  2255. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2256. unsigned int uninitialized_var(next_pi);
  2257. unsigned long futex_offset;
  2258. int rc;
  2259. if (!futex_cmpxchg_enabled)
  2260. return;
  2261. /*
  2262. * Fetch the list head (which was registered earlier, via
  2263. * sys_set_robust_list()):
  2264. */
  2265. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2266. return;
  2267. /*
  2268. * Fetch the relative futex offset:
  2269. */
  2270. if (get_user(futex_offset, &head->futex_offset))
  2271. return;
  2272. /*
  2273. * Fetch any possibly pending lock-add first, and handle it
  2274. * if it exists:
  2275. */
  2276. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2277. return;
  2278. next_entry = NULL; /* avoid warning with gcc */
  2279. while (entry != &head->list) {
  2280. /*
  2281. * Fetch the next entry in the list before calling
  2282. * handle_futex_death:
  2283. */
  2284. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2285. /*
  2286. * A pending lock might already be on the list, so
  2287. * don't process it twice:
  2288. */
  2289. if (entry != pending)
  2290. if (handle_futex_death((void __user *)entry + futex_offset,
  2291. curr, pi))
  2292. return;
  2293. if (rc)
  2294. return;
  2295. entry = next_entry;
  2296. pi = next_pi;
  2297. /*
  2298. * Avoid excessively long or circular lists:
  2299. */
  2300. if (!--limit)
  2301. break;
  2302. cond_resched();
  2303. }
  2304. if (pending)
  2305. handle_futex_death((void __user *)pending + futex_offset,
  2306. curr, pip);
  2307. }
  2308. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2309. u32 __user *uaddr2, u32 val2, u32 val3)
  2310. {
  2311. int cmd = op & FUTEX_CMD_MASK;
  2312. unsigned int flags = 0;
  2313. if (!(op & FUTEX_PRIVATE_FLAG))
  2314. flags |= FLAGS_SHARED;
  2315. if (op & FUTEX_CLOCK_REALTIME) {
  2316. flags |= FLAGS_CLOCKRT;
  2317. if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
  2318. return -ENOSYS;
  2319. }
  2320. switch (cmd) {
  2321. case FUTEX_LOCK_PI:
  2322. case FUTEX_UNLOCK_PI:
  2323. case FUTEX_TRYLOCK_PI:
  2324. case FUTEX_WAIT_REQUEUE_PI:
  2325. case FUTEX_CMP_REQUEUE_PI:
  2326. if (!futex_cmpxchg_enabled)
  2327. return -ENOSYS;
  2328. }
  2329. switch (cmd) {
  2330. case FUTEX_WAIT:
  2331. val3 = FUTEX_BITSET_MATCH_ANY;
  2332. case FUTEX_WAIT_BITSET:
  2333. return futex_wait(uaddr, flags, val, timeout, val3);
  2334. case FUTEX_WAKE:
  2335. val3 = FUTEX_BITSET_MATCH_ANY;
  2336. case FUTEX_WAKE_BITSET:
  2337. return futex_wake(uaddr, flags, val, val3);
  2338. case FUTEX_REQUEUE:
  2339. return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  2340. case FUTEX_CMP_REQUEUE:
  2341. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  2342. case FUTEX_WAKE_OP:
  2343. return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  2344. case FUTEX_LOCK_PI:
  2345. return futex_lock_pi(uaddr, flags, val, timeout, 0);
  2346. case FUTEX_UNLOCK_PI:
  2347. return futex_unlock_pi(uaddr, flags);
  2348. case FUTEX_TRYLOCK_PI:
  2349. return futex_lock_pi(uaddr, flags, 0, timeout, 1);
  2350. case FUTEX_WAIT_REQUEUE_PI:
  2351. val3 = FUTEX_BITSET_MATCH_ANY;
  2352. return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  2353. uaddr2);
  2354. case FUTEX_CMP_REQUEUE_PI:
  2355. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  2356. }
  2357. return -ENOSYS;
  2358. }
  2359. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2360. struct timespec __user *, utime, u32 __user *, uaddr2,
  2361. u32, val3)
  2362. {
  2363. struct timespec ts;
  2364. ktime_t t, *tp = NULL;
  2365. u32 val2 = 0;
  2366. int cmd = op & FUTEX_CMD_MASK;
  2367. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2368. cmd == FUTEX_WAIT_BITSET ||
  2369. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2370. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2371. return -EFAULT;
  2372. if (!timespec_valid(&ts))
  2373. return -EINVAL;
  2374. t = timespec_to_ktime(ts);
  2375. if (cmd == FUTEX_WAIT)
  2376. t = ktime_add_safe(ktime_get(), t);
  2377. tp = &t;
  2378. }
  2379. /*
  2380. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2381. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2382. */
  2383. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2384. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2385. val2 = (u32) (unsigned long) utime;
  2386. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2387. }
  2388. static int __init futex_init(void)
  2389. {
  2390. u32 curval;
  2391. int i;
  2392. /*
  2393. * This will fail and we want it. Some arch implementations do
  2394. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2395. * functionality. We want to know that before we call in any
  2396. * of the complex code paths. Also we want to prevent
  2397. * registration of robust lists in that case. NULL is
  2398. * guaranteed to fault and we get -EFAULT on functional
  2399. * implementation, the non-functional ones will return
  2400. * -ENOSYS.
  2401. */
  2402. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  2403. futex_cmpxchg_enabled = 1;
  2404. for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
  2405. plist_head_init(&futex_queues[i].chain);
  2406. spin_lock_init(&futex_queues[i].lock);
  2407. }
  2408. return 0;
  2409. }
  2410. __initcall(futex_init);