cpuset.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. /*
  61. * Tracks how many cpusets are currently defined in system.
  62. * When there is only one cpuset (the root cpuset) we can
  63. * short circuit some hooks.
  64. */
  65. int number_of_cpusets __read_mostly;
  66. /* Forward declare cgroup structures */
  67. struct cgroup_subsys cpuset_subsys;
  68. struct cpuset;
  69. /* See "Frequency meter" comments, below. */
  70. struct fmeter {
  71. int cnt; /* unprocessed events count */
  72. int val; /* most recent output value */
  73. time_t time; /* clock (secs) when val computed */
  74. spinlock_t lock; /* guards read or write of above */
  75. };
  76. struct cpuset {
  77. struct cgroup_subsys_state css;
  78. unsigned long flags; /* "unsigned long" so bitops work */
  79. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  80. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  81. struct fmeter fmeter; /* memory_pressure filter */
  82. /*
  83. * Tasks are being attached to this cpuset. Used to prevent
  84. * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
  85. */
  86. int attach_in_progress;
  87. /* partition number for rebuild_sched_domains() */
  88. int pn;
  89. /* for custom sched domain */
  90. int relax_domain_level;
  91. struct work_struct hotplug_work;
  92. };
  93. /* Retrieve the cpuset for a cgroup */
  94. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  95. {
  96. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  97. struct cpuset, css);
  98. }
  99. /* Retrieve the cpuset for a task */
  100. static inline struct cpuset *task_cs(struct task_struct *task)
  101. {
  102. return container_of(task_subsys_state(task, cpuset_subsys_id),
  103. struct cpuset, css);
  104. }
  105. static inline struct cpuset *parent_cs(const struct cpuset *cs)
  106. {
  107. struct cgroup *pcgrp = cs->css.cgroup->parent;
  108. if (pcgrp)
  109. return cgroup_cs(pcgrp);
  110. return NULL;
  111. }
  112. #ifdef CONFIG_NUMA
  113. static inline bool task_has_mempolicy(struct task_struct *task)
  114. {
  115. return task->mempolicy;
  116. }
  117. #else
  118. static inline bool task_has_mempolicy(struct task_struct *task)
  119. {
  120. return false;
  121. }
  122. #endif
  123. /* bits in struct cpuset flags field */
  124. typedef enum {
  125. CS_ONLINE,
  126. CS_CPU_EXCLUSIVE,
  127. CS_MEM_EXCLUSIVE,
  128. CS_MEM_HARDWALL,
  129. CS_MEMORY_MIGRATE,
  130. CS_SCHED_LOAD_BALANCE,
  131. CS_SPREAD_PAGE,
  132. CS_SPREAD_SLAB,
  133. } cpuset_flagbits_t;
  134. /* convenient tests for these bits */
  135. static inline bool is_cpuset_online(const struct cpuset *cs)
  136. {
  137. return test_bit(CS_ONLINE, &cs->flags);
  138. }
  139. static inline int is_cpu_exclusive(const struct cpuset *cs)
  140. {
  141. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  142. }
  143. static inline int is_mem_exclusive(const struct cpuset *cs)
  144. {
  145. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  146. }
  147. static inline int is_mem_hardwall(const struct cpuset *cs)
  148. {
  149. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  150. }
  151. static inline int is_sched_load_balance(const struct cpuset *cs)
  152. {
  153. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  154. }
  155. static inline int is_memory_migrate(const struct cpuset *cs)
  156. {
  157. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  158. }
  159. static inline int is_spread_page(const struct cpuset *cs)
  160. {
  161. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  162. }
  163. static inline int is_spread_slab(const struct cpuset *cs)
  164. {
  165. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  166. }
  167. static struct cpuset top_cpuset = {
  168. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  169. (1 << CS_MEM_EXCLUSIVE)),
  170. };
  171. /**
  172. * cpuset_for_each_child - traverse online children of a cpuset
  173. * @child_cs: loop cursor pointing to the current child
  174. * @pos_cgrp: used for iteration
  175. * @parent_cs: target cpuset to walk children of
  176. *
  177. * Walk @child_cs through the online children of @parent_cs. Must be used
  178. * with RCU read locked.
  179. */
  180. #define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
  181. cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
  182. if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
  183. /**
  184. * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
  185. * @des_cs: loop cursor pointing to the current descendant
  186. * @pos_cgrp: used for iteration
  187. * @root_cs: target cpuset to walk ancestor of
  188. *
  189. * Walk @des_cs through the online descendants of @root_cs. Must be used
  190. * with RCU read locked. The caller may modify @pos_cgrp by calling
  191. * cgroup_rightmost_descendant() to skip subtree.
  192. */
  193. #define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
  194. cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
  195. if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
  196. /*
  197. * There are two global mutexes guarding cpuset structures - cpuset_mutex
  198. * and callback_mutex. The latter may nest inside the former. We also
  199. * require taking task_lock() when dereferencing a task's cpuset pointer.
  200. * See "The task_lock() exception", at the end of this comment.
  201. *
  202. * A task must hold both mutexes to modify cpusets. If a task holds
  203. * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
  204. * is the only task able to also acquire callback_mutex and be able to
  205. * modify cpusets. It can perform various checks on the cpuset structure
  206. * first, knowing nothing will change. It can also allocate memory while
  207. * just holding cpuset_mutex. While it is performing these checks, various
  208. * callback routines can briefly acquire callback_mutex to query cpusets.
  209. * Once it is ready to make the changes, it takes callback_mutex, blocking
  210. * everyone else.
  211. *
  212. * Calls to the kernel memory allocator can not be made while holding
  213. * callback_mutex, as that would risk double tripping on callback_mutex
  214. * from one of the callbacks into the cpuset code from within
  215. * __alloc_pages().
  216. *
  217. * If a task is only holding callback_mutex, then it has read-only
  218. * access to cpusets.
  219. *
  220. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  221. * by other task, we use alloc_lock in the task_struct fields to protect
  222. * them.
  223. *
  224. * The cpuset_common_file_read() handlers only hold callback_mutex across
  225. * small pieces of code, such as when reading out possibly multi-word
  226. * cpumasks and nodemasks.
  227. *
  228. * Accessing a task's cpuset should be done in accordance with the
  229. * guidelines for accessing subsystem state in kernel/cgroup.c
  230. */
  231. static DEFINE_MUTEX(cpuset_mutex);
  232. static DEFINE_MUTEX(callback_mutex);
  233. /*
  234. * CPU / memory hotplug is handled asynchronously.
  235. */
  236. static struct workqueue_struct *cpuset_propagate_hotplug_wq;
  237. static void cpuset_hotplug_workfn(struct work_struct *work);
  238. static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
  239. static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
  240. static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
  241. /*
  242. * This is ugly, but preserves the userspace API for existing cpuset
  243. * users. If someone tries to mount the "cpuset" filesystem, we
  244. * silently switch it to mount "cgroup" instead
  245. */
  246. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  247. int flags, const char *unused_dev_name, void *data)
  248. {
  249. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  250. struct dentry *ret = ERR_PTR(-ENODEV);
  251. if (cgroup_fs) {
  252. char mountopts[] =
  253. "cpuset,noprefix,"
  254. "release_agent=/sbin/cpuset_release_agent";
  255. ret = cgroup_fs->mount(cgroup_fs, flags,
  256. unused_dev_name, mountopts);
  257. put_filesystem(cgroup_fs);
  258. }
  259. return ret;
  260. }
  261. static struct file_system_type cpuset_fs_type = {
  262. .name = "cpuset",
  263. .mount = cpuset_mount,
  264. };
  265. /*
  266. * Return in pmask the portion of a cpusets's cpus_allowed that
  267. * are online. If none are online, walk up the cpuset hierarchy
  268. * until we find one that does have some online cpus. If we get
  269. * all the way to the top and still haven't found any online cpus,
  270. * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
  271. * task, return cpu_online_mask.
  272. *
  273. * One way or another, we guarantee to return some non-empty subset
  274. * of cpu_online_mask.
  275. *
  276. * Call with callback_mutex held.
  277. */
  278. static void guarantee_online_cpus(const struct cpuset *cs,
  279. struct cpumask *pmask)
  280. {
  281. while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  282. cs = parent_cs(cs);
  283. if (cs)
  284. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  285. else
  286. cpumask_copy(pmask, cpu_online_mask);
  287. BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
  288. }
  289. /*
  290. * Return in *pmask the portion of a cpusets's mems_allowed that
  291. * are online, with memory. If none are online with memory, walk
  292. * up the cpuset hierarchy until we find one that does have some
  293. * online mems. If we get all the way to the top and still haven't
  294. * found any online mems, return node_states[N_MEMORY].
  295. *
  296. * One way or another, we guarantee to return some non-empty subset
  297. * of node_states[N_MEMORY].
  298. *
  299. * Call with callback_mutex held.
  300. */
  301. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  302. {
  303. while (cs && !nodes_intersects(cs->mems_allowed,
  304. node_states[N_MEMORY]))
  305. cs = parent_cs(cs);
  306. if (cs)
  307. nodes_and(*pmask, cs->mems_allowed,
  308. node_states[N_MEMORY]);
  309. else
  310. *pmask = node_states[N_MEMORY];
  311. BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
  312. }
  313. /*
  314. * update task's spread flag if cpuset's page/slab spread flag is set
  315. *
  316. * Called with callback_mutex/cpuset_mutex held
  317. */
  318. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  319. struct task_struct *tsk)
  320. {
  321. if (is_spread_page(cs))
  322. tsk->flags |= PF_SPREAD_PAGE;
  323. else
  324. tsk->flags &= ~PF_SPREAD_PAGE;
  325. if (is_spread_slab(cs))
  326. tsk->flags |= PF_SPREAD_SLAB;
  327. else
  328. tsk->flags &= ~PF_SPREAD_SLAB;
  329. }
  330. /*
  331. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  332. *
  333. * One cpuset is a subset of another if all its allowed CPUs and
  334. * Memory Nodes are a subset of the other, and its exclusive flags
  335. * are only set if the other's are set. Call holding cpuset_mutex.
  336. */
  337. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  338. {
  339. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  340. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  341. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  342. is_mem_exclusive(p) <= is_mem_exclusive(q);
  343. }
  344. /**
  345. * alloc_trial_cpuset - allocate a trial cpuset
  346. * @cs: the cpuset that the trial cpuset duplicates
  347. */
  348. static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
  349. {
  350. struct cpuset *trial;
  351. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  352. if (!trial)
  353. return NULL;
  354. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  355. kfree(trial);
  356. return NULL;
  357. }
  358. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  359. return trial;
  360. }
  361. /**
  362. * free_trial_cpuset - free the trial cpuset
  363. * @trial: the trial cpuset to be freed
  364. */
  365. static void free_trial_cpuset(struct cpuset *trial)
  366. {
  367. free_cpumask_var(trial->cpus_allowed);
  368. kfree(trial);
  369. }
  370. /*
  371. * validate_change() - Used to validate that any proposed cpuset change
  372. * follows the structural rules for cpusets.
  373. *
  374. * If we replaced the flag and mask values of the current cpuset
  375. * (cur) with those values in the trial cpuset (trial), would
  376. * our various subset and exclusive rules still be valid? Presumes
  377. * cpuset_mutex held.
  378. *
  379. * 'cur' is the address of an actual, in-use cpuset. Operations
  380. * such as list traversal that depend on the actual address of the
  381. * cpuset in the list must use cur below, not trial.
  382. *
  383. * 'trial' is the address of bulk structure copy of cur, with
  384. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  385. * or flags changed to new, trial values.
  386. *
  387. * Return 0 if valid, -errno if not.
  388. */
  389. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  390. {
  391. struct cgroup *cont;
  392. struct cpuset *c, *par;
  393. int ret;
  394. rcu_read_lock();
  395. /* Each of our child cpusets must be a subset of us */
  396. ret = -EBUSY;
  397. cpuset_for_each_child(c, cont, cur)
  398. if (!is_cpuset_subset(c, trial))
  399. goto out;
  400. /* Remaining checks don't apply to root cpuset */
  401. ret = 0;
  402. if (cur == &top_cpuset)
  403. goto out;
  404. par = parent_cs(cur);
  405. /* We must be a subset of our parent cpuset */
  406. ret = -EACCES;
  407. if (!is_cpuset_subset(trial, par))
  408. goto out;
  409. /*
  410. * If either I or some sibling (!= me) is exclusive, we can't
  411. * overlap
  412. */
  413. ret = -EINVAL;
  414. cpuset_for_each_child(c, cont, par) {
  415. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  416. c != cur &&
  417. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  418. goto out;
  419. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  420. c != cur &&
  421. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  422. goto out;
  423. }
  424. /*
  425. * Cpusets with tasks - existing or newly being attached - can't
  426. * have empty cpus_allowed or mems_allowed.
  427. */
  428. ret = -ENOSPC;
  429. if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
  430. (cpumask_empty(trial->cpus_allowed) ||
  431. nodes_empty(trial->mems_allowed)))
  432. goto out;
  433. ret = 0;
  434. out:
  435. rcu_read_unlock();
  436. return ret;
  437. }
  438. #ifdef CONFIG_SMP
  439. /*
  440. * Helper routine for generate_sched_domains().
  441. * Do cpusets a, b have overlapping cpus_allowed masks?
  442. */
  443. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  444. {
  445. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  446. }
  447. static void
  448. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  449. {
  450. if (dattr->relax_domain_level < c->relax_domain_level)
  451. dattr->relax_domain_level = c->relax_domain_level;
  452. return;
  453. }
  454. static void update_domain_attr_tree(struct sched_domain_attr *dattr,
  455. struct cpuset *root_cs)
  456. {
  457. struct cpuset *cp;
  458. struct cgroup *pos_cgrp;
  459. rcu_read_lock();
  460. cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
  461. /* skip the whole subtree if @cp doesn't have any CPU */
  462. if (cpumask_empty(cp->cpus_allowed)) {
  463. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  464. continue;
  465. }
  466. if (is_sched_load_balance(cp))
  467. update_domain_attr(dattr, cp);
  468. }
  469. rcu_read_unlock();
  470. }
  471. /*
  472. * generate_sched_domains()
  473. *
  474. * This function builds a partial partition of the systems CPUs
  475. * A 'partial partition' is a set of non-overlapping subsets whose
  476. * union is a subset of that set.
  477. * The output of this function needs to be passed to kernel/sched.c
  478. * partition_sched_domains() routine, which will rebuild the scheduler's
  479. * load balancing domains (sched domains) as specified by that partial
  480. * partition.
  481. *
  482. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  483. * for a background explanation of this.
  484. *
  485. * Does not return errors, on the theory that the callers of this
  486. * routine would rather not worry about failures to rebuild sched
  487. * domains when operating in the severe memory shortage situations
  488. * that could cause allocation failures below.
  489. *
  490. * Must be called with cpuset_mutex held.
  491. *
  492. * The three key local variables below are:
  493. * q - a linked-list queue of cpuset pointers, used to implement a
  494. * top-down scan of all cpusets. This scan loads a pointer
  495. * to each cpuset marked is_sched_load_balance into the
  496. * array 'csa'. For our purposes, rebuilding the schedulers
  497. * sched domains, we can ignore !is_sched_load_balance cpusets.
  498. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  499. * that need to be load balanced, for convenient iterative
  500. * access by the subsequent code that finds the best partition,
  501. * i.e the set of domains (subsets) of CPUs such that the
  502. * cpus_allowed of every cpuset marked is_sched_load_balance
  503. * is a subset of one of these domains, while there are as
  504. * many such domains as possible, each as small as possible.
  505. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  506. * the kernel/sched.c routine partition_sched_domains() in a
  507. * convenient format, that can be easily compared to the prior
  508. * value to determine what partition elements (sched domains)
  509. * were changed (added or removed.)
  510. *
  511. * Finding the best partition (set of domains):
  512. * The triple nested loops below over i, j, k scan over the
  513. * load balanced cpusets (using the array of cpuset pointers in
  514. * csa[]) looking for pairs of cpusets that have overlapping
  515. * cpus_allowed, but which don't have the same 'pn' partition
  516. * number and gives them in the same partition number. It keeps
  517. * looping on the 'restart' label until it can no longer find
  518. * any such pairs.
  519. *
  520. * The union of the cpus_allowed masks from the set of
  521. * all cpusets having the same 'pn' value then form the one
  522. * element of the partition (one sched domain) to be passed to
  523. * partition_sched_domains().
  524. */
  525. static int generate_sched_domains(cpumask_var_t **domains,
  526. struct sched_domain_attr **attributes)
  527. {
  528. struct cpuset *cp; /* scans q */
  529. struct cpuset **csa; /* array of all cpuset ptrs */
  530. int csn; /* how many cpuset ptrs in csa so far */
  531. int i, j, k; /* indices for partition finding loops */
  532. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  533. struct sched_domain_attr *dattr; /* attributes for custom domains */
  534. int ndoms = 0; /* number of sched domains in result */
  535. int nslot; /* next empty doms[] struct cpumask slot */
  536. struct cgroup *pos_cgrp;
  537. doms = NULL;
  538. dattr = NULL;
  539. csa = NULL;
  540. /* Special case for the 99% of systems with one, full, sched domain */
  541. if (is_sched_load_balance(&top_cpuset)) {
  542. ndoms = 1;
  543. doms = alloc_sched_domains(ndoms);
  544. if (!doms)
  545. goto done;
  546. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  547. if (dattr) {
  548. *dattr = SD_ATTR_INIT;
  549. update_domain_attr_tree(dattr, &top_cpuset);
  550. }
  551. cpumask_copy(doms[0], top_cpuset.cpus_allowed);
  552. goto done;
  553. }
  554. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  555. if (!csa)
  556. goto done;
  557. csn = 0;
  558. rcu_read_lock();
  559. cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
  560. /*
  561. * Continue traversing beyond @cp iff @cp has some CPUs and
  562. * isn't load balancing. The former is obvious. The
  563. * latter: All child cpusets contain a subset of the
  564. * parent's cpus, so just skip them, and then we call
  565. * update_domain_attr_tree() to calc relax_domain_level of
  566. * the corresponding sched domain.
  567. */
  568. if (!cpumask_empty(cp->cpus_allowed) &&
  569. !is_sched_load_balance(cp))
  570. continue;
  571. if (is_sched_load_balance(cp))
  572. csa[csn++] = cp;
  573. /* skip @cp's subtree */
  574. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  575. }
  576. rcu_read_unlock();
  577. for (i = 0; i < csn; i++)
  578. csa[i]->pn = i;
  579. ndoms = csn;
  580. restart:
  581. /* Find the best partition (set of sched domains) */
  582. for (i = 0; i < csn; i++) {
  583. struct cpuset *a = csa[i];
  584. int apn = a->pn;
  585. for (j = 0; j < csn; j++) {
  586. struct cpuset *b = csa[j];
  587. int bpn = b->pn;
  588. if (apn != bpn && cpusets_overlap(a, b)) {
  589. for (k = 0; k < csn; k++) {
  590. struct cpuset *c = csa[k];
  591. if (c->pn == bpn)
  592. c->pn = apn;
  593. }
  594. ndoms--; /* one less element */
  595. goto restart;
  596. }
  597. }
  598. }
  599. /*
  600. * Now we know how many domains to create.
  601. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  602. */
  603. doms = alloc_sched_domains(ndoms);
  604. if (!doms)
  605. goto done;
  606. /*
  607. * The rest of the code, including the scheduler, can deal with
  608. * dattr==NULL case. No need to abort if alloc fails.
  609. */
  610. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  611. for (nslot = 0, i = 0; i < csn; i++) {
  612. struct cpuset *a = csa[i];
  613. struct cpumask *dp;
  614. int apn = a->pn;
  615. if (apn < 0) {
  616. /* Skip completed partitions */
  617. continue;
  618. }
  619. dp = doms[nslot];
  620. if (nslot == ndoms) {
  621. static int warnings = 10;
  622. if (warnings) {
  623. printk(KERN_WARNING
  624. "rebuild_sched_domains confused:"
  625. " nslot %d, ndoms %d, csn %d, i %d,"
  626. " apn %d\n",
  627. nslot, ndoms, csn, i, apn);
  628. warnings--;
  629. }
  630. continue;
  631. }
  632. cpumask_clear(dp);
  633. if (dattr)
  634. *(dattr + nslot) = SD_ATTR_INIT;
  635. for (j = i; j < csn; j++) {
  636. struct cpuset *b = csa[j];
  637. if (apn == b->pn) {
  638. cpumask_or(dp, dp, b->cpus_allowed);
  639. if (dattr)
  640. update_domain_attr_tree(dattr + nslot, b);
  641. /* Done with this partition */
  642. b->pn = -1;
  643. }
  644. }
  645. nslot++;
  646. }
  647. BUG_ON(nslot != ndoms);
  648. done:
  649. kfree(csa);
  650. /*
  651. * Fallback to the default domain if kmalloc() failed.
  652. * See comments in partition_sched_domains().
  653. */
  654. if (doms == NULL)
  655. ndoms = 1;
  656. *domains = doms;
  657. *attributes = dattr;
  658. return ndoms;
  659. }
  660. /*
  661. * Rebuild scheduler domains.
  662. *
  663. * If the flag 'sched_load_balance' of any cpuset with non-empty
  664. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  665. * which has that flag enabled, or if any cpuset with a non-empty
  666. * 'cpus' is removed, then call this routine to rebuild the
  667. * scheduler's dynamic sched domains.
  668. *
  669. * Call with cpuset_mutex held. Takes get_online_cpus().
  670. */
  671. static void rebuild_sched_domains_locked(void)
  672. {
  673. struct sched_domain_attr *attr;
  674. cpumask_var_t *doms;
  675. int ndoms;
  676. lockdep_assert_held(&cpuset_mutex);
  677. get_online_cpus();
  678. /*
  679. * We have raced with CPU hotplug. Don't do anything to avoid
  680. * passing doms with offlined cpu to partition_sched_domains().
  681. * Anyways, hotplug work item will rebuild sched domains.
  682. */
  683. if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
  684. goto out;
  685. /* Generate domain masks and attrs */
  686. ndoms = generate_sched_domains(&doms, &attr);
  687. /* Have scheduler rebuild the domains */
  688. partition_sched_domains(ndoms, doms, attr);
  689. out:
  690. put_online_cpus();
  691. }
  692. #else /* !CONFIG_SMP */
  693. static void rebuild_sched_domains_locked(void)
  694. {
  695. }
  696. #endif /* CONFIG_SMP */
  697. void rebuild_sched_domains(void)
  698. {
  699. mutex_lock(&cpuset_mutex);
  700. rebuild_sched_domains_locked();
  701. mutex_unlock(&cpuset_mutex);
  702. }
  703. /**
  704. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  705. * @tsk: task to test
  706. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  707. *
  708. * Call with cpuset_mutex held. May take callback_mutex during call.
  709. * Called for each task in a cgroup by cgroup_scan_tasks().
  710. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  711. * words, if its mask is not equal to its cpuset's mask).
  712. */
  713. static int cpuset_test_cpumask(struct task_struct *tsk,
  714. struct cgroup_scanner *scan)
  715. {
  716. return !cpumask_equal(&tsk->cpus_allowed,
  717. (cgroup_cs(scan->cg))->cpus_allowed);
  718. }
  719. /**
  720. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  721. * @tsk: task to test
  722. * @scan: struct cgroup_scanner containing the cgroup of the task
  723. *
  724. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  725. * cpus_allowed mask needs to be changed.
  726. *
  727. * We don't need to re-check for the cgroup/cpuset membership, since we're
  728. * holding cpuset_mutex at this point.
  729. */
  730. static void cpuset_change_cpumask(struct task_struct *tsk,
  731. struct cgroup_scanner *scan)
  732. {
  733. set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
  734. }
  735. /**
  736. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  737. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  738. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  739. *
  740. * Called with cpuset_mutex held
  741. *
  742. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  743. * calling callback functions for each.
  744. *
  745. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  746. * if @heap != NULL.
  747. */
  748. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  749. {
  750. struct cgroup_scanner scan;
  751. scan.cg = cs->css.cgroup;
  752. scan.test_task = cpuset_test_cpumask;
  753. scan.process_task = cpuset_change_cpumask;
  754. scan.heap = heap;
  755. cgroup_scan_tasks(&scan);
  756. }
  757. /**
  758. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  759. * @cs: the cpuset to consider
  760. * @buf: buffer of cpu numbers written to this cpuset
  761. */
  762. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  763. const char *buf)
  764. {
  765. struct ptr_heap heap;
  766. int retval;
  767. int is_load_balanced;
  768. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  769. if (cs == &top_cpuset)
  770. return -EACCES;
  771. /*
  772. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  773. * Since cpulist_parse() fails on an empty mask, we special case
  774. * that parsing. The validate_change() call ensures that cpusets
  775. * with tasks have cpus.
  776. */
  777. if (!*buf) {
  778. cpumask_clear(trialcs->cpus_allowed);
  779. } else {
  780. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  781. if (retval < 0)
  782. return retval;
  783. if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
  784. return -EINVAL;
  785. }
  786. retval = validate_change(cs, trialcs);
  787. if (retval < 0)
  788. return retval;
  789. /* Nothing to do if the cpus didn't change */
  790. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  791. return 0;
  792. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  793. if (retval)
  794. return retval;
  795. is_load_balanced = is_sched_load_balance(trialcs);
  796. mutex_lock(&callback_mutex);
  797. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  798. mutex_unlock(&callback_mutex);
  799. /*
  800. * Scan tasks in the cpuset, and update the cpumasks of any
  801. * that need an update.
  802. */
  803. update_tasks_cpumask(cs, &heap);
  804. heap_free(&heap);
  805. if (is_load_balanced)
  806. rebuild_sched_domains_locked();
  807. return 0;
  808. }
  809. /*
  810. * cpuset_migrate_mm
  811. *
  812. * Migrate memory region from one set of nodes to another.
  813. *
  814. * Temporarilly set tasks mems_allowed to target nodes of migration,
  815. * so that the migration code can allocate pages on these nodes.
  816. *
  817. * Call holding cpuset_mutex, so current's cpuset won't change
  818. * during this call, as manage_mutex holds off any cpuset_attach()
  819. * calls. Therefore we don't need to take task_lock around the
  820. * call to guarantee_online_mems(), as we know no one is changing
  821. * our task's cpuset.
  822. *
  823. * While the mm_struct we are migrating is typically from some
  824. * other task, the task_struct mems_allowed that we are hacking
  825. * is for our current task, which must allocate new pages for that
  826. * migrating memory region.
  827. */
  828. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  829. const nodemask_t *to)
  830. {
  831. struct task_struct *tsk = current;
  832. tsk->mems_allowed = *to;
  833. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  834. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  835. }
  836. /*
  837. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  838. * @tsk: the task to change
  839. * @newmems: new nodes that the task will be set
  840. *
  841. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  842. * we structure updates as setting all new allowed nodes, then clearing newly
  843. * disallowed ones.
  844. */
  845. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  846. nodemask_t *newmems)
  847. {
  848. bool need_loop;
  849. /*
  850. * Allow tasks that have access to memory reserves because they have
  851. * been OOM killed to get memory anywhere.
  852. */
  853. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  854. return;
  855. if (current->flags & PF_EXITING) /* Let dying task have memory */
  856. return;
  857. task_lock(tsk);
  858. /*
  859. * Determine if a loop is necessary if another thread is doing
  860. * get_mems_allowed(). If at least one node remains unchanged and
  861. * tsk does not have a mempolicy, then an empty nodemask will not be
  862. * possible when mems_allowed is larger than a word.
  863. */
  864. need_loop = task_has_mempolicy(tsk) ||
  865. !nodes_intersects(*newmems, tsk->mems_allowed);
  866. if (need_loop)
  867. write_seqcount_begin(&tsk->mems_allowed_seq);
  868. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  869. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  870. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  871. tsk->mems_allowed = *newmems;
  872. if (need_loop)
  873. write_seqcount_end(&tsk->mems_allowed_seq);
  874. task_unlock(tsk);
  875. }
  876. /*
  877. * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
  878. * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
  879. * memory_migrate flag is set. Called with cpuset_mutex held.
  880. */
  881. static void cpuset_change_nodemask(struct task_struct *p,
  882. struct cgroup_scanner *scan)
  883. {
  884. struct mm_struct *mm;
  885. struct cpuset *cs;
  886. int migrate;
  887. const nodemask_t *oldmem = scan->data;
  888. static nodemask_t newmems; /* protected by cpuset_mutex */
  889. cs = cgroup_cs(scan->cg);
  890. guarantee_online_mems(cs, &newmems);
  891. cpuset_change_task_nodemask(p, &newmems);
  892. mm = get_task_mm(p);
  893. if (!mm)
  894. return;
  895. migrate = is_memory_migrate(cs);
  896. mpol_rebind_mm(mm, &cs->mems_allowed);
  897. if (migrate)
  898. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  899. mmput(mm);
  900. }
  901. static void *cpuset_being_rebound;
  902. /**
  903. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  904. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  905. * @oldmem: old mems_allowed of cpuset cs
  906. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  907. *
  908. * Called with cpuset_mutex held
  909. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  910. * if @heap != NULL.
  911. */
  912. static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
  913. struct ptr_heap *heap)
  914. {
  915. struct cgroup_scanner scan;
  916. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  917. scan.cg = cs->css.cgroup;
  918. scan.test_task = NULL;
  919. scan.process_task = cpuset_change_nodemask;
  920. scan.heap = heap;
  921. scan.data = (nodemask_t *)oldmem;
  922. /*
  923. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  924. * take while holding tasklist_lock. Forks can happen - the
  925. * mpol_dup() cpuset_being_rebound check will catch such forks,
  926. * and rebind their vma mempolicies too. Because we still hold
  927. * the global cpuset_mutex, we know that no other rebind effort
  928. * will be contending for the global variable cpuset_being_rebound.
  929. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  930. * is idempotent. Also migrate pages in each mm to new nodes.
  931. */
  932. cgroup_scan_tasks(&scan);
  933. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  934. cpuset_being_rebound = NULL;
  935. }
  936. /*
  937. * Handle user request to change the 'mems' memory placement
  938. * of a cpuset. Needs to validate the request, update the
  939. * cpusets mems_allowed, and for each task in the cpuset,
  940. * update mems_allowed and rebind task's mempolicy and any vma
  941. * mempolicies and if the cpuset is marked 'memory_migrate',
  942. * migrate the tasks pages to the new memory.
  943. *
  944. * Call with cpuset_mutex held. May take callback_mutex during call.
  945. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  946. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  947. * their mempolicies to the cpusets new mems_allowed.
  948. */
  949. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  950. const char *buf)
  951. {
  952. NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
  953. int retval;
  954. struct ptr_heap heap;
  955. if (!oldmem)
  956. return -ENOMEM;
  957. /*
  958. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  959. * it's read-only
  960. */
  961. if (cs == &top_cpuset) {
  962. retval = -EACCES;
  963. goto done;
  964. }
  965. /*
  966. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  967. * Since nodelist_parse() fails on an empty mask, we special case
  968. * that parsing. The validate_change() call ensures that cpusets
  969. * with tasks have memory.
  970. */
  971. if (!*buf) {
  972. nodes_clear(trialcs->mems_allowed);
  973. } else {
  974. retval = nodelist_parse(buf, trialcs->mems_allowed);
  975. if (retval < 0)
  976. goto done;
  977. if (!nodes_subset(trialcs->mems_allowed,
  978. node_states[N_MEMORY])) {
  979. retval = -EINVAL;
  980. goto done;
  981. }
  982. }
  983. *oldmem = cs->mems_allowed;
  984. if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
  985. retval = 0; /* Too easy - nothing to do */
  986. goto done;
  987. }
  988. retval = validate_change(cs, trialcs);
  989. if (retval < 0)
  990. goto done;
  991. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  992. if (retval < 0)
  993. goto done;
  994. mutex_lock(&callback_mutex);
  995. cs->mems_allowed = trialcs->mems_allowed;
  996. mutex_unlock(&callback_mutex);
  997. update_tasks_nodemask(cs, oldmem, &heap);
  998. heap_free(&heap);
  999. done:
  1000. NODEMASK_FREE(oldmem);
  1001. return retval;
  1002. }
  1003. int current_cpuset_is_being_rebound(void)
  1004. {
  1005. return task_cs(current) == cpuset_being_rebound;
  1006. }
  1007. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1008. {
  1009. #ifdef CONFIG_SMP
  1010. if (val < -1 || val >= sched_domain_level_max)
  1011. return -EINVAL;
  1012. #endif
  1013. if (val != cs->relax_domain_level) {
  1014. cs->relax_domain_level = val;
  1015. if (!cpumask_empty(cs->cpus_allowed) &&
  1016. is_sched_load_balance(cs))
  1017. rebuild_sched_domains_locked();
  1018. }
  1019. return 0;
  1020. }
  1021. /*
  1022. * cpuset_change_flag - make a task's spread flags the same as its cpuset's
  1023. * @tsk: task to be updated
  1024. * @scan: struct cgroup_scanner containing the cgroup of the task
  1025. *
  1026. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1027. *
  1028. * We don't need to re-check for the cgroup/cpuset membership, since we're
  1029. * holding cpuset_mutex at this point.
  1030. */
  1031. static void cpuset_change_flag(struct task_struct *tsk,
  1032. struct cgroup_scanner *scan)
  1033. {
  1034. cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
  1035. }
  1036. /*
  1037. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1038. * @cs: the cpuset in which each task's spread flags needs to be changed
  1039. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  1040. *
  1041. * Called with cpuset_mutex held
  1042. *
  1043. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1044. * calling callback functions for each.
  1045. *
  1046. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  1047. * if @heap != NULL.
  1048. */
  1049. static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
  1050. {
  1051. struct cgroup_scanner scan;
  1052. scan.cg = cs->css.cgroup;
  1053. scan.test_task = NULL;
  1054. scan.process_task = cpuset_change_flag;
  1055. scan.heap = heap;
  1056. cgroup_scan_tasks(&scan);
  1057. }
  1058. /*
  1059. * update_flag - read a 0 or a 1 in a file and update associated flag
  1060. * bit: the bit to update (see cpuset_flagbits_t)
  1061. * cs: the cpuset to update
  1062. * turning_on: whether the flag is being set or cleared
  1063. *
  1064. * Call with cpuset_mutex held.
  1065. */
  1066. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1067. int turning_on)
  1068. {
  1069. struct cpuset *trialcs;
  1070. int balance_flag_changed;
  1071. int spread_flag_changed;
  1072. struct ptr_heap heap;
  1073. int err;
  1074. trialcs = alloc_trial_cpuset(cs);
  1075. if (!trialcs)
  1076. return -ENOMEM;
  1077. if (turning_on)
  1078. set_bit(bit, &trialcs->flags);
  1079. else
  1080. clear_bit(bit, &trialcs->flags);
  1081. err = validate_change(cs, trialcs);
  1082. if (err < 0)
  1083. goto out;
  1084. err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1085. if (err < 0)
  1086. goto out;
  1087. balance_flag_changed = (is_sched_load_balance(cs) !=
  1088. is_sched_load_balance(trialcs));
  1089. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1090. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1091. mutex_lock(&callback_mutex);
  1092. cs->flags = trialcs->flags;
  1093. mutex_unlock(&callback_mutex);
  1094. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1095. rebuild_sched_domains_locked();
  1096. if (spread_flag_changed)
  1097. update_tasks_flags(cs, &heap);
  1098. heap_free(&heap);
  1099. out:
  1100. free_trial_cpuset(trialcs);
  1101. return err;
  1102. }
  1103. /*
  1104. * Frequency meter - How fast is some event occurring?
  1105. *
  1106. * These routines manage a digitally filtered, constant time based,
  1107. * event frequency meter. There are four routines:
  1108. * fmeter_init() - initialize a frequency meter.
  1109. * fmeter_markevent() - called each time the event happens.
  1110. * fmeter_getrate() - returns the recent rate of such events.
  1111. * fmeter_update() - internal routine used to update fmeter.
  1112. *
  1113. * A common data structure is passed to each of these routines,
  1114. * which is used to keep track of the state required to manage the
  1115. * frequency meter and its digital filter.
  1116. *
  1117. * The filter works on the number of events marked per unit time.
  1118. * The filter is single-pole low-pass recursive (IIR). The time unit
  1119. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1120. * simulate 3 decimal digits of precision (multiplied by 1000).
  1121. *
  1122. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1123. * has a half-life of 10 seconds, meaning that if the events quit
  1124. * happening, then the rate returned from the fmeter_getrate()
  1125. * will be cut in half each 10 seconds, until it converges to zero.
  1126. *
  1127. * It is not worth doing a real infinitely recursive filter. If more
  1128. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1129. * just compute FM_MAXTICKS ticks worth, by which point the level
  1130. * will be stable.
  1131. *
  1132. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1133. * arithmetic overflow in the fmeter_update() routine.
  1134. *
  1135. * Given the simple 32 bit integer arithmetic used, this meter works
  1136. * best for reporting rates between one per millisecond (msec) and
  1137. * one per 32 (approx) seconds. At constant rates faster than one
  1138. * per msec it maxes out at values just under 1,000,000. At constant
  1139. * rates between one per msec, and one per second it will stabilize
  1140. * to a value N*1000, where N is the rate of events per second.
  1141. * At constant rates between one per second and one per 32 seconds,
  1142. * it will be choppy, moving up on the seconds that have an event,
  1143. * and then decaying until the next event. At rates slower than
  1144. * about one in 32 seconds, it decays all the way back to zero between
  1145. * each event.
  1146. */
  1147. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1148. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1149. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1150. #define FM_SCALE 1000 /* faux fixed point scale */
  1151. /* Initialize a frequency meter */
  1152. static void fmeter_init(struct fmeter *fmp)
  1153. {
  1154. fmp->cnt = 0;
  1155. fmp->val = 0;
  1156. fmp->time = 0;
  1157. spin_lock_init(&fmp->lock);
  1158. }
  1159. /* Internal meter update - process cnt events and update value */
  1160. static void fmeter_update(struct fmeter *fmp)
  1161. {
  1162. time_t now = get_seconds();
  1163. time_t ticks = now - fmp->time;
  1164. if (ticks == 0)
  1165. return;
  1166. ticks = min(FM_MAXTICKS, ticks);
  1167. while (ticks-- > 0)
  1168. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1169. fmp->time = now;
  1170. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1171. fmp->cnt = 0;
  1172. }
  1173. /* Process any previous ticks, then bump cnt by one (times scale). */
  1174. static void fmeter_markevent(struct fmeter *fmp)
  1175. {
  1176. spin_lock(&fmp->lock);
  1177. fmeter_update(fmp);
  1178. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1179. spin_unlock(&fmp->lock);
  1180. }
  1181. /* Process any previous ticks, then return current value. */
  1182. static int fmeter_getrate(struct fmeter *fmp)
  1183. {
  1184. int val;
  1185. spin_lock(&fmp->lock);
  1186. fmeter_update(fmp);
  1187. val = fmp->val;
  1188. spin_unlock(&fmp->lock);
  1189. return val;
  1190. }
  1191. /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
  1192. static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1193. {
  1194. struct cpuset *cs = cgroup_cs(cgrp);
  1195. struct task_struct *task;
  1196. int ret;
  1197. mutex_lock(&cpuset_mutex);
  1198. ret = -ENOSPC;
  1199. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1200. goto out_unlock;
  1201. cgroup_taskset_for_each(task, cgrp, tset) {
  1202. /*
  1203. * Kthreads which disallow setaffinity shouldn't be moved
  1204. * to a new cpuset; we don't want to change their cpu
  1205. * affinity and isolating such threads by their set of
  1206. * allowed nodes is unnecessary. Thus, cpusets are not
  1207. * applicable for such threads. This prevents checking for
  1208. * success of set_cpus_allowed_ptr() on all attached tasks
  1209. * before cpus_allowed may be changed.
  1210. */
  1211. ret = -EINVAL;
  1212. if (task->flags & PF_NO_SETAFFINITY)
  1213. goto out_unlock;
  1214. ret = security_task_setscheduler(task);
  1215. if (ret)
  1216. goto out_unlock;
  1217. }
  1218. /*
  1219. * Mark attach is in progress. This makes validate_change() fail
  1220. * changes which zero cpus/mems_allowed.
  1221. */
  1222. cs->attach_in_progress++;
  1223. ret = 0;
  1224. out_unlock:
  1225. mutex_unlock(&cpuset_mutex);
  1226. return ret;
  1227. }
  1228. static void cpuset_cancel_attach(struct cgroup *cgrp,
  1229. struct cgroup_taskset *tset)
  1230. {
  1231. mutex_lock(&cpuset_mutex);
  1232. cgroup_cs(cgrp)->attach_in_progress--;
  1233. mutex_unlock(&cpuset_mutex);
  1234. }
  1235. /*
  1236. * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
  1237. * but we can't allocate it dynamically there. Define it global and
  1238. * allocate from cpuset_init().
  1239. */
  1240. static cpumask_var_t cpus_attach;
  1241. static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1242. {
  1243. /* static bufs protected by cpuset_mutex */
  1244. static nodemask_t cpuset_attach_nodemask_from;
  1245. static nodemask_t cpuset_attach_nodemask_to;
  1246. struct mm_struct *mm;
  1247. struct task_struct *task;
  1248. struct task_struct *leader = cgroup_taskset_first(tset);
  1249. struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
  1250. struct cpuset *cs = cgroup_cs(cgrp);
  1251. struct cpuset *oldcs = cgroup_cs(oldcgrp);
  1252. mutex_lock(&cpuset_mutex);
  1253. /* prepare for attach */
  1254. if (cs == &top_cpuset)
  1255. cpumask_copy(cpus_attach, cpu_possible_mask);
  1256. else
  1257. guarantee_online_cpus(cs, cpus_attach);
  1258. guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
  1259. cgroup_taskset_for_each(task, cgrp, tset) {
  1260. /*
  1261. * can_attach beforehand should guarantee that this doesn't
  1262. * fail. TODO: have a better way to handle failure here
  1263. */
  1264. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1265. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1266. cpuset_update_task_spread_flag(cs, task);
  1267. }
  1268. /*
  1269. * Change mm, possibly for multiple threads in a threadgroup. This is
  1270. * expensive and may sleep.
  1271. */
  1272. cpuset_attach_nodemask_from = oldcs->mems_allowed;
  1273. cpuset_attach_nodemask_to = cs->mems_allowed;
  1274. mm = get_task_mm(leader);
  1275. if (mm) {
  1276. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1277. if (is_memory_migrate(cs))
  1278. cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
  1279. &cpuset_attach_nodemask_to);
  1280. mmput(mm);
  1281. }
  1282. cs->attach_in_progress--;
  1283. /*
  1284. * We may have raced with CPU/memory hotunplug. Trigger hotplug
  1285. * propagation if @cs doesn't have any CPU or memory. It will move
  1286. * the newly added tasks to the nearest parent which can execute.
  1287. */
  1288. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1289. schedule_cpuset_propagate_hotplug(cs);
  1290. mutex_unlock(&cpuset_mutex);
  1291. }
  1292. /* The various types of files and directories in a cpuset file system */
  1293. typedef enum {
  1294. FILE_MEMORY_MIGRATE,
  1295. FILE_CPULIST,
  1296. FILE_MEMLIST,
  1297. FILE_CPU_EXCLUSIVE,
  1298. FILE_MEM_EXCLUSIVE,
  1299. FILE_MEM_HARDWALL,
  1300. FILE_SCHED_LOAD_BALANCE,
  1301. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1302. FILE_MEMORY_PRESSURE_ENABLED,
  1303. FILE_MEMORY_PRESSURE,
  1304. FILE_SPREAD_PAGE,
  1305. FILE_SPREAD_SLAB,
  1306. } cpuset_filetype_t;
  1307. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1308. {
  1309. struct cpuset *cs = cgroup_cs(cgrp);
  1310. cpuset_filetype_t type = cft->private;
  1311. int retval = -ENODEV;
  1312. mutex_lock(&cpuset_mutex);
  1313. if (!is_cpuset_online(cs))
  1314. goto out_unlock;
  1315. switch (type) {
  1316. case FILE_CPU_EXCLUSIVE:
  1317. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1318. break;
  1319. case FILE_MEM_EXCLUSIVE:
  1320. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1321. break;
  1322. case FILE_MEM_HARDWALL:
  1323. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1324. break;
  1325. case FILE_SCHED_LOAD_BALANCE:
  1326. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1327. break;
  1328. case FILE_MEMORY_MIGRATE:
  1329. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1330. break;
  1331. case FILE_MEMORY_PRESSURE_ENABLED:
  1332. cpuset_memory_pressure_enabled = !!val;
  1333. break;
  1334. case FILE_MEMORY_PRESSURE:
  1335. retval = -EACCES;
  1336. break;
  1337. case FILE_SPREAD_PAGE:
  1338. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1339. break;
  1340. case FILE_SPREAD_SLAB:
  1341. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1342. break;
  1343. default:
  1344. retval = -EINVAL;
  1345. break;
  1346. }
  1347. out_unlock:
  1348. mutex_unlock(&cpuset_mutex);
  1349. return retval;
  1350. }
  1351. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1352. {
  1353. struct cpuset *cs = cgroup_cs(cgrp);
  1354. cpuset_filetype_t type = cft->private;
  1355. int retval = -ENODEV;
  1356. mutex_lock(&cpuset_mutex);
  1357. if (!is_cpuset_online(cs))
  1358. goto out_unlock;
  1359. switch (type) {
  1360. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1361. retval = update_relax_domain_level(cs, val);
  1362. break;
  1363. default:
  1364. retval = -EINVAL;
  1365. break;
  1366. }
  1367. out_unlock:
  1368. mutex_unlock(&cpuset_mutex);
  1369. return retval;
  1370. }
  1371. /*
  1372. * Common handling for a write to a "cpus" or "mems" file.
  1373. */
  1374. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1375. const char *buf)
  1376. {
  1377. struct cpuset *cs = cgroup_cs(cgrp);
  1378. struct cpuset *trialcs;
  1379. int retval = -ENODEV;
  1380. /*
  1381. * CPU or memory hotunplug may leave @cs w/o any execution
  1382. * resources, in which case the hotplug code asynchronously updates
  1383. * configuration and transfers all tasks to the nearest ancestor
  1384. * which can execute.
  1385. *
  1386. * As writes to "cpus" or "mems" may restore @cs's execution
  1387. * resources, wait for the previously scheduled operations before
  1388. * proceeding, so that we don't end up keep removing tasks added
  1389. * after execution capability is restored.
  1390. *
  1391. * Flushing cpuset_hotplug_work is enough to synchronize against
  1392. * hotplug hanlding; however, cpuset_attach() may schedule
  1393. * propagation work directly. Flush the workqueue too.
  1394. */
  1395. flush_work(&cpuset_hotplug_work);
  1396. flush_workqueue(cpuset_propagate_hotplug_wq);
  1397. mutex_lock(&cpuset_mutex);
  1398. if (!is_cpuset_online(cs))
  1399. goto out_unlock;
  1400. trialcs = alloc_trial_cpuset(cs);
  1401. if (!trialcs) {
  1402. retval = -ENOMEM;
  1403. goto out_unlock;
  1404. }
  1405. switch (cft->private) {
  1406. case FILE_CPULIST:
  1407. retval = update_cpumask(cs, trialcs, buf);
  1408. break;
  1409. case FILE_MEMLIST:
  1410. retval = update_nodemask(cs, trialcs, buf);
  1411. break;
  1412. default:
  1413. retval = -EINVAL;
  1414. break;
  1415. }
  1416. free_trial_cpuset(trialcs);
  1417. out_unlock:
  1418. mutex_unlock(&cpuset_mutex);
  1419. return retval;
  1420. }
  1421. /*
  1422. * These ascii lists should be read in a single call, by using a user
  1423. * buffer large enough to hold the entire map. If read in smaller
  1424. * chunks, there is no guarantee of atomicity. Since the display format
  1425. * used, list of ranges of sequential numbers, is variable length,
  1426. * and since these maps can change value dynamically, one could read
  1427. * gibberish by doing partial reads while a list was changing.
  1428. * A single large read to a buffer that crosses a page boundary is
  1429. * ok, because the result being copied to user land is not recomputed
  1430. * across a page fault.
  1431. */
  1432. static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1433. {
  1434. size_t count;
  1435. mutex_lock(&callback_mutex);
  1436. count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1437. mutex_unlock(&callback_mutex);
  1438. return count;
  1439. }
  1440. static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1441. {
  1442. size_t count;
  1443. mutex_lock(&callback_mutex);
  1444. count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
  1445. mutex_unlock(&callback_mutex);
  1446. return count;
  1447. }
  1448. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1449. struct cftype *cft,
  1450. struct file *file,
  1451. char __user *buf,
  1452. size_t nbytes, loff_t *ppos)
  1453. {
  1454. struct cpuset *cs = cgroup_cs(cont);
  1455. cpuset_filetype_t type = cft->private;
  1456. char *page;
  1457. ssize_t retval = 0;
  1458. char *s;
  1459. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1460. return -ENOMEM;
  1461. s = page;
  1462. switch (type) {
  1463. case FILE_CPULIST:
  1464. s += cpuset_sprintf_cpulist(s, cs);
  1465. break;
  1466. case FILE_MEMLIST:
  1467. s += cpuset_sprintf_memlist(s, cs);
  1468. break;
  1469. default:
  1470. retval = -EINVAL;
  1471. goto out;
  1472. }
  1473. *s++ = '\n';
  1474. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1475. out:
  1476. free_page((unsigned long)page);
  1477. return retval;
  1478. }
  1479. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1480. {
  1481. struct cpuset *cs = cgroup_cs(cont);
  1482. cpuset_filetype_t type = cft->private;
  1483. switch (type) {
  1484. case FILE_CPU_EXCLUSIVE:
  1485. return is_cpu_exclusive(cs);
  1486. case FILE_MEM_EXCLUSIVE:
  1487. return is_mem_exclusive(cs);
  1488. case FILE_MEM_HARDWALL:
  1489. return is_mem_hardwall(cs);
  1490. case FILE_SCHED_LOAD_BALANCE:
  1491. return is_sched_load_balance(cs);
  1492. case FILE_MEMORY_MIGRATE:
  1493. return is_memory_migrate(cs);
  1494. case FILE_MEMORY_PRESSURE_ENABLED:
  1495. return cpuset_memory_pressure_enabled;
  1496. case FILE_MEMORY_PRESSURE:
  1497. return fmeter_getrate(&cs->fmeter);
  1498. case FILE_SPREAD_PAGE:
  1499. return is_spread_page(cs);
  1500. case FILE_SPREAD_SLAB:
  1501. return is_spread_slab(cs);
  1502. default:
  1503. BUG();
  1504. }
  1505. /* Unreachable but makes gcc happy */
  1506. return 0;
  1507. }
  1508. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1509. {
  1510. struct cpuset *cs = cgroup_cs(cont);
  1511. cpuset_filetype_t type = cft->private;
  1512. switch (type) {
  1513. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1514. return cs->relax_domain_level;
  1515. default:
  1516. BUG();
  1517. }
  1518. /* Unrechable but makes gcc happy */
  1519. return 0;
  1520. }
  1521. /*
  1522. * for the common functions, 'private' gives the type of file
  1523. */
  1524. static struct cftype files[] = {
  1525. {
  1526. .name = "cpus",
  1527. .read = cpuset_common_file_read,
  1528. .write_string = cpuset_write_resmask,
  1529. .max_write_len = (100U + 6 * NR_CPUS),
  1530. .private = FILE_CPULIST,
  1531. },
  1532. {
  1533. .name = "mems",
  1534. .read = cpuset_common_file_read,
  1535. .write_string = cpuset_write_resmask,
  1536. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1537. .private = FILE_MEMLIST,
  1538. },
  1539. {
  1540. .name = "cpu_exclusive",
  1541. .read_u64 = cpuset_read_u64,
  1542. .write_u64 = cpuset_write_u64,
  1543. .private = FILE_CPU_EXCLUSIVE,
  1544. },
  1545. {
  1546. .name = "mem_exclusive",
  1547. .read_u64 = cpuset_read_u64,
  1548. .write_u64 = cpuset_write_u64,
  1549. .private = FILE_MEM_EXCLUSIVE,
  1550. },
  1551. {
  1552. .name = "mem_hardwall",
  1553. .read_u64 = cpuset_read_u64,
  1554. .write_u64 = cpuset_write_u64,
  1555. .private = FILE_MEM_HARDWALL,
  1556. },
  1557. {
  1558. .name = "sched_load_balance",
  1559. .read_u64 = cpuset_read_u64,
  1560. .write_u64 = cpuset_write_u64,
  1561. .private = FILE_SCHED_LOAD_BALANCE,
  1562. },
  1563. {
  1564. .name = "sched_relax_domain_level",
  1565. .read_s64 = cpuset_read_s64,
  1566. .write_s64 = cpuset_write_s64,
  1567. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1568. },
  1569. {
  1570. .name = "memory_migrate",
  1571. .read_u64 = cpuset_read_u64,
  1572. .write_u64 = cpuset_write_u64,
  1573. .private = FILE_MEMORY_MIGRATE,
  1574. },
  1575. {
  1576. .name = "memory_pressure",
  1577. .read_u64 = cpuset_read_u64,
  1578. .write_u64 = cpuset_write_u64,
  1579. .private = FILE_MEMORY_PRESSURE,
  1580. .mode = S_IRUGO,
  1581. },
  1582. {
  1583. .name = "memory_spread_page",
  1584. .read_u64 = cpuset_read_u64,
  1585. .write_u64 = cpuset_write_u64,
  1586. .private = FILE_SPREAD_PAGE,
  1587. },
  1588. {
  1589. .name = "memory_spread_slab",
  1590. .read_u64 = cpuset_read_u64,
  1591. .write_u64 = cpuset_write_u64,
  1592. .private = FILE_SPREAD_SLAB,
  1593. },
  1594. {
  1595. .name = "memory_pressure_enabled",
  1596. .flags = CFTYPE_ONLY_ON_ROOT,
  1597. .read_u64 = cpuset_read_u64,
  1598. .write_u64 = cpuset_write_u64,
  1599. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1600. },
  1601. { } /* terminate */
  1602. };
  1603. /*
  1604. * cpuset_css_alloc - allocate a cpuset css
  1605. * cont: control group that the new cpuset will be part of
  1606. */
  1607. static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
  1608. {
  1609. struct cpuset *cs;
  1610. if (!cont->parent)
  1611. return &top_cpuset.css;
  1612. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1613. if (!cs)
  1614. return ERR_PTR(-ENOMEM);
  1615. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1616. kfree(cs);
  1617. return ERR_PTR(-ENOMEM);
  1618. }
  1619. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1620. cpumask_clear(cs->cpus_allowed);
  1621. nodes_clear(cs->mems_allowed);
  1622. fmeter_init(&cs->fmeter);
  1623. INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
  1624. cs->relax_domain_level = -1;
  1625. return &cs->css;
  1626. }
  1627. static int cpuset_css_online(struct cgroup *cgrp)
  1628. {
  1629. struct cpuset *cs = cgroup_cs(cgrp);
  1630. struct cpuset *parent = parent_cs(cs);
  1631. struct cpuset *tmp_cs;
  1632. struct cgroup *pos_cg;
  1633. if (!parent)
  1634. return 0;
  1635. mutex_lock(&cpuset_mutex);
  1636. set_bit(CS_ONLINE, &cs->flags);
  1637. if (is_spread_page(parent))
  1638. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1639. if (is_spread_slab(parent))
  1640. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1641. number_of_cpusets++;
  1642. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
  1643. goto out_unlock;
  1644. /*
  1645. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1646. * set. This flag handling is implemented in cgroup core for
  1647. * histrical reasons - the flag may be specified during mount.
  1648. *
  1649. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1650. * refuse to clone the configuration - thereby refusing the task to
  1651. * be entered, and as a result refusing the sys_unshare() or
  1652. * clone() which initiated it. If this becomes a problem for some
  1653. * users who wish to allow that scenario, then this could be
  1654. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1655. * (and likewise for mems) to the new cgroup.
  1656. */
  1657. rcu_read_lock();
  1658. cpuset_for_each_child(tmp_cs, pos_cg, parent) {
  1659. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1660. rcu_read_unlock();
  1661. goto out_unlock;
  1662. }
  1663. }
  1664. rcu_read_unlock();
  1665. mutex_lock(&callback_mutex);
  1666. cs->mems_allowed = parent->mems_allowed;
  1667. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1668. mutex_unlock(&callback_mutex);
  1669. out_unlock:
  1670. mutex_unlock(&cpuset_mutex);
  1671. return 0;
  1672. }
  1673. static void cpuset_css_offline(struct cgroup *cgrp)
  1674. {
  1675. struct cpuset *cs = cgroup_cs(cgrp);
  1676. mutex_lock(&cpuset_mutex);
  1677. if (is_sched_load_balance(cs))
  1678. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1679. number_of_cpusets--;
  1680. clear_bit(CS_ONLINE, &cs->flags);
  1681. mutex_unlock(&cpuset_mutex);
  1682. }
  1683. /*
  1684. * If the cpuset being removed has its flag 'sched_load_balance'
  1685. * enabled, then simulate turning sched_load_balance off, which
  1686. * will call rebuild_sched_domains_locked().
  1687. */
  1688. static void cpuset_css_free(struct cgroup *cont)
  1689. {
  1690. struct cpuset *cs = cgroup_cs(cont);
  1691. free_cpumask_var(cs->cpus_allowed);
  1692. kfree(cs);
  1693. }
  1694. struct cgroup_subsys cpuset_subsys = {
  1695. .name = "cpuset",
  1696. .css_alloc = cpuset_css_alloc,
  1697. .css_online = cpuset_css_online,
  1698. .css_offline = cpuset_css_offline,
  1699. .css_free = cpuset_css_free,
  1700. .can_attach = cpuset_can_attach,
  1701. .cancel_attach = cpuset_cancel_attach,
  1702. .attach = cpuset_attach,
  1703. .subsys_id = cpuset_subsys_id,
  1704. .base_cftypes = files,
  1705. .early_init = 1,
  1706. };
  1707. /**
  1708. * cpuset_init - initialize cpusets at system boot
  1709. *
  1710. * Description: Initialize top_cpuset and the cpuset internal file system,
  1711. **/
  1712. int __init cpuset_init(void)
  1713. {
  1714. int err = 0;
  1715. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1716. BUG();
  1717. cpumask_setall(top_cpuset.cpus_allowed);
  1718. nodes_setall(top_cpuset.mems_allowed);
  1719. fmeter_init(&top_cpuset.fmeter);
  1720. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1721. top_cpuset.relax_domain_level = -1;
  1722. err = register_filesystem(&cpuset_fs_type);
  1723. if (err < 0)
  1724. return err;
  1725. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1726. BUG();
  1727. number_of_cpusets = 1;
  1728. return 0;
  1729. }
  1730. /*
  1731. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1732. * or memory nodes, we need to walk over the cpuset hierarchy,
  1733. * removing that CPU or node from all cpusets. If this removes the
  1734. * last CPU or node from a cpuset, then move the tasks in the empty
  1735. * cpuset to its next-highest non-empty parent.
  1736. */
  1737. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1738. {
  1739. struct cpuset *parent;
  1740. /*
  1741. * Find its next-highest non-empty parent, (top cpuset
  1742. * has online cpus, so can't be empty).
  1743. */
  1744. parent = parent_cs(cs);
  1745. while (cpumask_empty(parent->cpus_allowed) ||
  1746. nodes_empty(parent->mems_allowed))
  1747. parent = parent_cs(parent);
  1748. if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
  1749. rcu_read_lock();
  1750. printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
  1751. cgroup_name(cs->css.cgroup));
  1752. rcu_read_unlock();
  1753. }
  1754. }
  1755. /**
  1756. * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
  1757. * @cs: cpuset in interest
  1758. *
  1759. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1760. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1761. * all its tasks are moved to the nearest ancestor with both resources.
  1762. */
  1763. static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
  1764. {
  1765. static cpumask_t off_cpus;
  1766. static nodemask_t off_mems, tmp_mems;
  1767. struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
  1768. bool is_empty;
  1769. mutex_lock(&cpuset_mutex);
  1770. cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
  1771. nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
  1772. /* remove offline cpus from @cs */
  1773. if (!cpumask_empty(&off_cpus)) {
  1774. mutex_lock(&callback_mutex);
  1775. cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
  1776. mutex_unlock(&callback_mutex);
  1777. update_tasks_cpumask(cs, NULL);
  1778. }
  1779. /* remove offline mems from @cs */
  1780. if (!nodes_empty(off_mems)) {
  1781. tmp_mems = cs->mems_allowed;
  1782. mutex_lock(&callback_mutex);
  1783. nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
  1784. mutex_unlock(&callback_mutex);
  1785. update_tasks_nodemask(cs, &tmp_mems, NULL);
  1786. }
  1787. is_empty = cpumask_empty(cs->cpus_allowed) ||
  1788. nodes_empty(cs->mems_allowed);
  1789. mutex_unlock(&cpuset_mutex);
  1790. /*
  1791. * If @cs became empty, move tasks to the nearest ancestor with
  1792. * execution resources. This is full cgroup operation which will
  1793. * also call back into cpuset. Should be done outside any lock.
  1794. */
  1795. if (is_empty)
  1796. remove_tasks_in_empty_cpuset(cs);
  1797. /* the following may free @cs, should be the last operation */
  1798. css_put(&cs->css);
  1799. }
  1800. /**
  1801. * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
  1802. * @cs: cpuset of interest
  1803. *
  1804. * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
  1805. * memory masks according to top_cpuset.
  1806. */
  1807. static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
  1808. {
  1809. /*
  1810. * Pin @cs. The refcnt will be released when the work item
  1811. * finishes executing.
  1812. */
  1813. if (!css_tryget(&cs->css))
  1814. return;
  1815. /*
  1816. * Queue @cs->hotplug_work. If already pending, lose the css ref.
  1817. * cpuset_propagate_hotplug_wq is ordered and propagation will
  1818. * happen in the order this function is called.
  1819. */
  1820. if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
  1821. css_put(&cs->css);
  1822. }
  1823. /**
  1824. * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
  1825. *
  1826. * This function is called after either CPU or memory configuration has
  1827. * changed and updates cpuset accordingly. The top_cpuset is always
  1828. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1829. * order to make cpusets transparent (of no affect) on systems that are
  1830. * actively using CPU hotplug but making no active use of cpusets.
  1831. *
  1832. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1833. * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
  1834. * descendants.
  1835. *
  1836. * Note that CPU offlining during suspend is ignored. We don't modify
  1837. * cpusets across suspend/resume cycles at all.
  1838. */
  1839. static void cpuset_hotplug_workfn(struct work_struct *work)
  1840. {
  1841. static cpumask_t new_cpus, tmp_cpus;
  1842. static nodemask_t new_mems, tmp_mems;
  1843. bool cpus_updated, mems_updated;
  1844. bool cpus_offlined, mems_offlined;
  1845. mutex_lock(&cpuset_mutex);
  1846. /* fetch the available cpus/mems and find out which changed how */
  1847. cpumask_copy(&new_cpus, cpu_active_mask);
  1848. new_mems = node_states[N_MEMORY];
  1849. cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
  1850. cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
  1851. &new_cpus);
  1852. mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
  1853. nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
  1854. mems_offlined = !nodes_empty(tmp_mems);
  1855. /* synchronize cpus_allowed to cpu_active_mask */
  1856. if (cpus_updated) {
  1857. mutex_lock(&callback_mutex);
  1858. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1859. mutex_unlock(&callback_mutex);
  1860. /* we don't mess with cpumasks of tasks in top_cpuset */
  1861. }
  1862. /* synchronize mems_allowed to N_MEMORY */
  1863. if (mems_updated) {
  1864. tmp_mems = top_cpuset.mems_allowed;
  1865. mutex_lock(&callback_mutex);
  1866. top_cpuset.mems_allowed = new_mems;
  1867. mutex_unlock(&callback_mutex);
  1868. update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
  1869. }
  1870. /* if cpus or mems went down, we need to propagate to descendants */
  1871. if (cpus_offlined || mems_offlined) {
  1872. struct cpuset *cs;
  1873. struct cgroup *pos_cgrp;
  1874. rcu_read_lock();
  1875. cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset)
  1876. schedule_cpuset_propagate_hotplug(cs);
  1877. rcu_read_unlock();
  1878. }
  1879. mutex_unlock(&cpuset_mutex);
  1880. /* wait for propagations to finish */
  1881. flush_workqueue(cpuset_propagate_hotplug_wq);
  1882. /* rebuild sched domains if cpus_allowed has changed */
  1883. if (cpus_updated)
  1884. rebuild_sched_domains();
  1885. }
  1886. void cpuset_update_active_cpus(bool cpu_online)
  1887. {
  1888. /*
  1889. * We're inside cpu hotplug critical region which usually nests
  1890. * inside cgroup synchronization. Bounce actual hotplug processing
  1891. * to a work item to avoid reverse locking order.
  1892. *
  1893. * We still need to do partition_sched_domains() synchronously;
  1894. * otherwise, the scheduler will get confused and put tasks to the
  1895. * dead CPU. Fall back to the default single domain.
  1896. * cpuset_hotplug_workfn() will rebuild it as necessary.
  1897. */
  1898. partition_sched_domains(1, NULL, NULL);
  1899. schedule_work(&cpuset_hotplug_work);
  1900. }
  1901. /*
  1902. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  1903. * Call this routine anytime after node_states[N_MEMORY] changes.
  1904. * See cpuset_update_active_cpus() for CPU hotplug handling.
  1905. */
  1906. static int cpuset_track_online_nodes(struct notifier_block *self,
  1907. unsigned long action, void *arg)
  1908. {
  1909. schedule_work(&cpuset_hotplug_work);
  1910. return NOTIFY_OK;
  1911. }
  1912. static struct notifier_block cpuset_track_online_nodes_nb = {
  1913. .notifier_call = cpuset_track_online_nodes,
  1914. .priority = 10, /* ??! */
  1915. };
  1916. /**
  1917. * cpuset_init_smp - initialize cpus_allowed
  1918. *
  1919. * Description: Finish top cpuset after cpu, node maps are initialized
  1920. */
  1921. void __init cpuset_init_smp(void)
  1922. {
  1923. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  1924. top_cpuset.mems_allowed = node_states[N_MEMORY];
  1925. register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
  1926. cpuset_propagate_hotplug_wq =
  1927. alloc_ordered_workqueue("cpuset_hotplug", 0);
  1928. BUG_ON(!cpuset_propagate_hotplug_wq);
  1929. }
  1930. /**
  1931. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1932. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1933. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  1934. *
  1935. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  1936. * attached to the specified @tsk. Guaranteed to return some non-empty
  1937. * subset of cpu_online_mask, even if this means going outside the
  1938. * tasks cpuset.
  1939. **/
  1940. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  1941. {
  1942. mutex_lock(&callback_mutex);
  1943. task_lock(tsk);
  1944. guarantee_online_cpus(task_cs(tsk), pmask);
  1945. task_unlock(tsk);
  1946. mutex_unlock(&callback_mutex);
  1947. }
  1948. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  1949. {
  1950. const struct cpuset *cs;
  1951. rcu_read_lock();
  1952. cs = task_cs(tsk);
  1953. if (cs)
  1954. do_set_cpus_allowed(tsk, cs->cpus_allowed);
  1955. rcu_read_unlock();
  1956. /*
  1957. * We own tsk->cpus_allowed, nobody can change it under us.
  1958. *
  1959. * But we used cs && cs->cpus_allowed lockless and thus can
  1960. * race with cgroup_attach_task() or update_cpumask() and get
  1961. * the wrong tsk->cpus_allowed. However, both cases imply the
  1962. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  1963. * which takes task_rq_lock().
  1964. *
  1965. * If we are called after it dropped the lock we must see all
  1966. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  1967. * set any mask even if it is not right from task_cs() pov,
  1968. * the pending set_cpus_allowed_ptr() will fix things.
  1969. *
  1970. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  1971. * if required.
  1972. */
  1973. }
  1974. void cpuset_init_current_mems_allowed(void)
  1975. {
  1976. nodes_setall(current->mems_allowed);
  1977. }
  1978. /**
  1979. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1980. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1981. *
  1982. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1983. * attached to the specified @tsk. Guaranteed to return some non-empty
  1984. * subset of node_states[N_MEMORY], even if this means going outside the
  1985. * tasks cpuset.
  1986. **/
  1987. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1988. {
  1989. nodemask_t mask;
  1990. mutex_lock(&callback_mutex);
  1991. task_lock(tsk);
  1992. guarantee_online_mems(task_cs(tsk), &mask);
  1993. task_unlock(tsk);
  1994. mutex_unlock(&callback_mutex);
  1995. return mask;
  1996. }
  1997. /**
  1998. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1999. * @nodemask: the nodemask to be checked
  2000. *
  2001. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  2002. */
  2003. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  2004. {
  2005. return nodes_intersects(*nodemask, current->mems_allowed);
  2006. }
  2007. /*
  2008. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  2009. * mem_hardwall ancestor to the specified cpuset. Call holding
  2010. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  2011. * (an unusual configuration), then returns the root cpuset.
  2012. */
  2013. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  2014. {
  2015. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
  2016. cs = parent_cs(cs);
  2017. return cs;
  2018. }
  2019. /**
  2020. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  2021. * @node: is this an allowed node?
  2022. * @gfp_mask: memory allocation flags
  2023. *
  2024. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2025. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2026. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  2027. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  2028. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  2029. * flag, yes.
  2030. * Otherwise, no.
  2031. *
  2032. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  2033. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  2034. * might sleep, and might allow a node from an enclosing cpuset.
  2035. *
  2036. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  2037. * cpusets, and never sleeps.
  2038. *
  2039. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2040. * by forcibly using a zonelist starting at a specified node, and by
  2041. * (in get_page_from_freelist()) refusing to consider the zones for
  2042. * any node on the zonelist except the first. By the time any such
  2043. * calls get to this routine, we should just shut up and say 'yes'.
  2044. *
  2045. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2046. * and do not allow allocations outside the current tasks cpuset
  2047. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2048. * GFP_KERNEL allocations are not so marked, so can escape to the
  2049. * nearest enclosing hardwalled ancestor cpuset.
  2050. *
  2051. * Scanning up parent cpusets requires callback_mutex. The
  2052. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2053. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2054. * current tasks mems_allowed came up empty on the first pass over
  2055. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2056. * cpuset are short of memory, might require taking the callback_mutex
  2057. * mutex.
  2058. *
  2059. * The first call here from mm/page_alloc:get_page_from_freelist()
  2060. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2061. * so no allocation on a node outside the cpuset is allowed (unless
  2062. * in interrupt, of course).
  2063. *
  2064. * The second pass through get_page_from_freelist() doesn't even call
  2065. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2066. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2067. * in alloc_flags. That logic and the checks below have the combined
  2068. * affect that:
  2069. * in_interrupt - any node ok (current task context irrelevant)
  2070. * GFP_ATOMIC - any node ok
  2071. * TIF_MEMDIE - any node ok
  2072. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2073. * GFP_USER - only nodes in current tasks mems allowed ok.
  2074. *
  2075. * Rule:
  2076. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  2077. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  2078. * the code that might scan up ancestor cpusets and sleep.
  2079. */
  2080. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  2081. {
  2082. const struct cpuset *cs; /* current cpuset ancestors */
  2083. int allowed; /* is allocation in zone z allowed? */
  2084. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2085. return 1;
  2086. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2087. if (node_isset(node, current->mems_allowed))
  2088. return 1;
  2089. /*
  2090. * Allow tasks that have access to memory reserves because they have
  2091. * been OOM killed to get memory anywhere.
  2092. */
  2093. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2094. return 1;
  2095. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2096. return 0;
  2097. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2098. return 1;
  2099. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2100. mutex_lock(&callback_mutex);
  2101. task_lock(current);
  2102. cs = nearest_hardwall_ancestor(task_cs(current));
  2103. task_unlock(current);
  2104. allowed = node_isset(node, cs->mems_allowed);
  2105. mutex_unlock(&callback_mutex);
  2106. return allowed;
  2107. }
  2108. /*
  2109. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2110. * @node: is this an allowed node?
  2111. * @gfp_mask: memory allocation flags
  2112. *
  2113. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2114. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2115. * yes. If the task has been OOM killed and has access to memory reserves as
  2116. * specified by the TIF_MEMDIE flag, yes.
  2117. * Otherwise, no.
  2118. *
  2119. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2120. * by forcibly using a zonelist starting at a specified node, and by
  2121. * (in get_page_from_freelist()) refusing to consider the zones for
  2122. * any node on the zonelist except the first. By the time any such
  2123. * calls get to this routine, we should just shut up and say 'yes'.
  2124. *
  2125. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2126. * this variant requires that the node be in the current task's
  2127. * mems_allowed or that we're in interrupt. It does not scan up the
  2128. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2129. * It never sleeps.
  2130. */
  2131. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2132. {
  2133. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2134. return 1;
  2135. if (node_isset(node, current->mems_allowed))
  2136. return 1;
  2137. /*
  2138. * Allow tasks that have access to memory reserves because they have
  2139. * been OOM killed to get memory anywhere.
  2140. */
  2141. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2142. return 1;
  2143. return 0;
  2144. }
  2145. /**
  2146. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2147. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2148. *
  2149. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2150. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2151. * and if the memory allocation used cpuset_mem_spread_node()
  2152. * to determine on which node to start looking, as it will for
  2153. * certain page cache or slab cache pages such as used for file
  2154. * system buffers and inode caches, then instead of starting on the
  2155. * local node to look for a free page, rather spread the starting
  2156. * node around the tasks mems_allowed nodes.
  2157. *
  2158. * We don't have to worry about the returned node being offline
  2159. * because "it can't happen", and even if it did, it would be ok.
  2160. *
  2161. * The routines calling guarantee_online_mems() are careful to
  2162. * only set nodes in task->mems_allowed that are online. So it
  2163. * should not be possible for the following code to return an
  2164. * offline node. But if it did, that would be ok, as this routine
  2165. * is not returning the node where the allocation must be, only
  2166. * the node where the search should start. The zonelist passed to
  2167. * __alloc_pages() will include all nodes. If the slab allocator
  2168. * is passed an offline node, it will fall back to the local node.
  2169. * See kmem_cache_alloc_node().
  2170. */
  2171. static int cpuset_spread_node(int *rotor)
  2172. {
  2173. int node;
  2174. node = next_node(*rotor, current->mems_allowed);
  2175. if (node == MAX_NUMNODES)
  2176. node = first_node(current->mems_allowed);
  2177. *rotor = node;
  2178. return node;
  2179. }
  2180. int cpuset_mem_spread_node(void)
  2181. {
  2182. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2183. current->cpuset_mem_spread_rotor =
  2184. node_random(&current->mems_allowed);
  2185. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2186. }
  2187. int cpuset_slab_spread_node(void)
  2188. {
  2189. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2190. current->cpuset_slab_spread_rotor =
  2191. node_random(&current->mems_allowed);
  2192. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2193. }
  2194. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2195. /**
  2196. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2197. * @tsk1: pointer to task_struct of some task.
  2198. * @tsk2: pointer to task_struct of some other task.
  2199. *
  2200. * Description: Return true if @tsk1's mems_allowed intersects the
  2201. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2202. * one of the task's memory usage might impact the memory available
  2203. * to the other.
  2204. **/
  2205. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2206. const struct task_struct *tsk2)
  2207. {
  2208. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2209. }
  2210. #define CPUSET_NODELIST_LEN (256)
  2211. /**
  2212. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2213. * @task: pointer to task_struct of some task.
  2214. *
  2215. * Description: Prints @task's name, cpuset name, and cached copy of its
  2216. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2217. * dereferencing task_cs(task).
  2218. */
  2219. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2220. {
  2221. /* Statically allocated to prevent using excess stack. */
  2222. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  2223. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  2224. struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
  2225. rcu_read_lock();
  2226. spin_lock(&cpuset_buffer_lock);
  2227. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2228. tsk->mems_allowed);
  2229. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2230. tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
  2231. spin_unlock(&cpuset_buffer_lock);
  2232. rcu_read_unlock();
  2233. }
  2234. /*
  2235. * Collection of memory_pressure is suppressed unless
  2236. * this flag is enabled by writing "1" to the special
  2237. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2238. */
  2239. int cpuset_memory_pressure_enabled __read_mostly;
  2240. /**
  2241. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2242. *
  2243. * Keep a running average of the rate of synchronous (direct)
  2244. * page reclaim efforts initiated by tasks in each cpuset.
  2245. *
  2246. * This represents the rate at which some task in the cpuset
  2247. * ran low on memory on all nodes it was allowed to use, and
  2248. * had to enter the kernels page reclaim code in an effort to
  2249. * create more free memory by tossing clean pages or swapping
  2250. * or writing dirty pages.
  2251. *
  2252. * Display to user space in the per-cpuset read-only file
  2253. * "memory_pressure". Value displayed is an integer
  2254. * representing the recent rate of entry into the synchronous
  2255. * (direct) page reclaim by any task attached to the cpuset.
  2256. **/
  2257. void __cpuset_memory_pressure_bump(void)
  2258. {
  2259. task_lock(current);
  2260. fmeter_markevent(&task_cs(current)->fmeter);
  2261. task_unlock(current);
  2262. }
  2263. #ifdef CONFIG_PROC_PID_CPUSET
  2264. /*
  2265. * proc_cpuset_show()
  2266. * - Print tasks cpuset path into seq_file.
  2267. * - Used for /proc/<pid>/cpuset.
  2268. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2269. * doesn't really matter if tsk->cpuset changes after we read it,
  2270. * and we take cpuset_mutex, keeping cpuset_attach() from changing it
  2271. * anyway.
  2272. */
  2273. int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2274. {
  2275. struct pid *pid;
  2276. struct task_struct *tsk;
  2277. char *buf;
  2278. struct cgroup_subsys_state *css;
  2279. int retval;
  2280. retval = -ENOMEM;
  2281. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2282. if (!buf)
  2283. goto out;
  2284. retval = -ESRCH;
  2285. pid = m->private;
  2286. tsk = get_pid_task(pid, PIDTYPE_PID);
  2287. if (!tsk)
  2288. goto out_free;
  2289. rcu_read_lock();
  2290. css = task_subsys_state(tsk, cpuset_subsys_id);
  2291. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2292. rcu_read_unlock();
  2293. if (retval < 0)
  2294. goto out_put_task;
  2295. seq_puts(m, buf);
  2296. seq_putc(m, '\n');
  2297. out_put_task:
  2298. put_task_struct(tsk);
  2299. out_free:
  2300. kfree(buf);
  2301. out:
  2302. return retval;
  2303. }
  2304. #endif /* CONFIG_PROC_PID_CPUSET */
  2305. /* Display task mems_allowed in /proc/<pid>/status file. */
  2306. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2307. {
  2308. seq_printf(m, "Mems_allowed:\t");
  2309. seq_nodemask(m, &task->mems_allowed);
  2310. seq_printf(m, "\n");
  2311. seq_printf(m, "Mems_allowed_list:\t");
  2312. seq_nodemask_list(m, &task->mems_allowed);
  2313. seq_printf(m, "\n");
  2314. }