msg.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996
  1. /*
  2. * linux/ipc/msg.c
  3. * Copyright (C) 1992 Krishna Balasubramanian
  4. *
  5. * Removed all the remaining kerneld mess
  6. * Catch the -EFAULT stuff properly
  7. * Use GFP_KERNEL for messages as in 1.2
  8. * Fixed up the unchecked user space derefs
  9. * Copyright (C) 1998 Alan Cox & Andi Kleen
  10. *
  11. * /proc/sysvipc/msg support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
  12. *
  13. * mostly rewritten, threaded and wake-one semantics added
  14. * MSGMAX limit removed, sysctl's added
  15. * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
  16. *
  17. * support for audit of ipc object properties and permission changes
  18. * Dustin Kirkland <dustin.kirkland@us.ibm.com>
  19. *
  20. * namespaces support
  21. * OpenVZ, SWsoft Inc.
  22. * Pavel Emelianov <xemul@openvz.org>
  23. */
  24. #include <linux/capability.h>
  25. #include <linux/msg.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/init.h>
  28. #include <linux/mm.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/list.h>
  31. #include <linux/security.h>
  32. #include <linux/sched.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/audit.h>
  35. #include <linux/seq_file.h>
  36. #include <linux/rwsem.h>
  37. #include <linux/nsproxy.h>
  38. #include <linux/ipc_namespace.h>
  39. #include <asm/current.h>
  40. #include <asm/uaccess.h>
  41. #include "util.h"
  42. /*
  43. * one msg_receiver structure for each sleeping receiver:
  44. */
  45. struct msg_receiver {
  46. struct list_head r_list;
  47. struct task_struct *r_tsk;
  48. int r_mode;
  49. long r_msgtype;
  50. long r_maxsize;
  51. struct msg_msg *volatile r_msg;
  52. };
  53. /* one msg_sender for each sleeping sender */
  54. struct msg_sender {
  55. struct list_head list;
  56. struct task_struct *tsk;
  57. };
  58. #define SEARCH_ANY 1
  59. #define SEARCH_EQUAL 2
  60. #define SEARCH_NOTEQUAL 3
  61. #define SEARCH_LESSEQUAL 4
  62. #define SEARCH_NUMBER 5
  63. #define msg_ids(ns) ((ns)->ids[IPC_MSG_IDS])
  64. #define msg_unlock(msq) ipc_unlock(&(msq)->q_perm)
  65. static void freeque(struct ipc_namespace *, struct kern_ipc_perm *);
  66. static int newque(struct ipc_namespace *, struct ipc_params *);
  67. #ifdef CONFIG_PROC_FS
  68. static int sysvipc_msg_proc_show(struct seq_file *s, void *it);
  69. #endif
  70. /*
  71. * Scale msgmni with the available lowmem size: the memory dedicated to msg
  72. * queues should occupy at most 1/MSG_MEM_SCALE of lowmem.
  73. * Also take into account the number of nsproxies created so far.
  74. * This should be done staying within the (MSGMNI , IPCMNI/nr_ipc_ns) range.
  75. */
  76. void recompute_msgmni(struct ipc_namespace *ns)
  77. {
  78. struct sysinfo i;
  79. unsigned long allowed;
  80. int nb_ns;
  81. si_meminfo(&i);
  82. allowed = (((i.totalram - i.totalhigh) / MSG_MEM_SCALE) * i.mem_unit)
  83. / MSGMNB;
  84. nb_ns = atomic_read(&nr_ipc_ns);
  85. allowed /= nb_ns;
  86. if (allowed < MSGMNI) {
  87. ns->msg_ctlmni = MSGMNI;
  88. return;
  89. }
  90. if (allowed > IPCMNI / nb_ns) {
  91. ns->msg_ctlmni = IPCMNI / nb_ns;
  92. return;
  93. }
  94. ns->msg_ctlmni = allowed;
  95. }
  96. void msg_init_ns(struct ipc_namespace *ns)
  97. {
  98. ns->msg_ctlmax = MSGMAX;
  99. ns->msg_ctlmnb = MSGMNB;
  100. recompute_msgmni(ns);
  101. atomic_set(&ns->msg_bytes, 0);
  102. atomic_set(&ns->msg_hdrs, 0);
  103. ipc_init_ids(&ns->ids[IPC_MSG_IDS]);
  104. }
  105. #ifdef CONFIG_IPC_NS
  106. void msg_exit_ns(struct ipc_namespace *ns)
  107. {
  108. free_ipcs(ns, &msg_ids(ns), freeque);
  109. idr_destroy(&ns->ids[IPC_MSG_IDS].ipcs_idr);
  110. }
  111. #endif
  112. void __init msg_init(void)
  113. {
  114. msg_init_ns(&init_ipc_ns);
  115. printk(KERN_INFO "msgmni has been set to %d\n",
  116. init_ipc_ns.msg_ctlmni);
  117. ipc_init_proc_interface("sysvipc/msg",
  118. " key msqid perms cbytes qnum lspid lrpid uid gid cuid cgid stime rtime ctime\n",
  119. IPC_MSG_IDS, sysvipc_msg_proc_show);
  120. }
  121. /*
  122. * msg_lock_(check_) routines are called in the paths where the rw_mutex
  123. * is not held.
  124. */
  125. static inline struct msg_queue *msg_lock(struct ipc_namespace *ns, int id)
  126. {
  127. struct kern_ipc_perm *ipcp = ipc_lock(&msg_ids(ns), id);
  128. if (IS_ERR(ipcp))
  129. return (struct msg_queue *)ipcp;
  130. return container_of(ipcp, struct msg_queue, q_perm);
  131. }
  132. static inline struct msg_queue *msg_lock_check(struct ipc_namespace *ns,
  133. int id)
  134. {
  135. struct kern_ipc_perm *ipcp = ipc_lock_check(&msg_ids(ns), id);
  136. if (IS_ERR(ipcp))
  137. return (struct msg_queue *)ipcp;
  138. return container_of(ipcp, struct msg_queue, q_perm);
  139. }
  140. static inline void msg_rmid(struct ipc_namespace *ns, struct msg_queue *s)
  141. {
  142. ipc_rmid(&msg_ids(ns), &s->q_perm);
  143. }
  144. /**
  145. * newque - Create a new msg queue
  146. * @ns: namespace
  147. * @params: ptr to the structure that contains the key and msgflg
  148. *
  149. * Called with msg_ids.rw_mutex held (writer)
  150. */
  151. static int newque(struct ipc_namespace *ns, struct ipc_params *params)
  152. {
  153. struct msg_queue *msq;
  154. int id, retval;
  155. key_t key = params->key;
  156. int msgflg = params->flg;
  157. msq = ipc_rcu_alloc(sizeof(*msq));
  158. if (!msq)
  159. return -ENOMEM;
  160. msq->q_perm.mode = msgflg & S_IRWXUGO;
  161. msq->q_perm.key = key;
  162. msq->q_perm.security = NULL;
  163. retval = security_msg_queue_alloc(msq);
  164. if (retval) {
  165. ipc_rcu_putref(msq);
  166. return retval;
  167. }
  168. /*
  169. * ipc_addid() locks msq
  170. */
  171. id = ipc_addid(&msg_ids(ns), &msq->q_perm, ns->msg_ctlmni);
  172. if (id < 0) {
  173. security_msg_queue_free(msq);
  174. ipc_rcu_putref(msq);
  175. return id;
  176. }
  177. msq->q_stime = msq->q_rtime = 0;
  178. msq->q_ctime = get_seconds();
  179. msq->q_cbytes = msq->q_qnum = 0;
  180. msq->q_qbytes = ns->msg_ctlmnb;
  181. msq->q_lspid = msq->q_lrpid = 0;
  182. INIT_LIST_HEAD(&msq->q_messages);
  183. INIT_LIST_HEAD(&msq->q_receivers);
  184. INIT_LIST_HEAD(&msq->q_senders);
  185. msg_unlock(msq);
  186. return msq->q_perm.id;
  187. }
  188. static inline void ss_add(struct msg_queue *msq, struct msg_sender *mss)
  189. {
  190. mss->tsk = current;
  191. current->state = TASK_INTERRUPTIBLE;
  192. list_add_tail(&mss->list, &msq->q_senders);
  193. }
  194. static inline void ss_del(struct msg_sender *mss)
  195. {
  196. if (mss->list.next != NULL)
  197. list_del(&mss->list);
  198. }
  199. static void ss_wakeup(struct list_head *h, int kill)
  200. {
  201. struct msg_sender *mss, *t;
  202. list_for_each_entry_safe(mss, t, h, list) {
  203. if (kill)
  204. mss->list.next = NULL;
  205. wake_up_process(mss->tsk);
  206. }
  207. }
  208. static void expunge_all(struct msg_queue *msq, int res)
  209. {
  210. struct msg_receiver *msr, *t;
  211. list_for_each_entry_safe(msr, t, &msq->q_receivers, r_list) {
  212. msr->r_msg = NULL;
  213. wake_up_process(msr->r_tsk);
  214. smp_mb();
  215. msr->r_msg = ERR_PTR(res);
  216. }
  217. }
  218. /*
  219. * freeque() wakes up waiters on the sender and receiver waiting queue,
  220. * removes the message queue from message queue ID IDR, and cleans up all the
  221. * messages associated with this queue.
  222. *
  223. * msg_ids.rw_mutex (writer) and the spinlock for this message queue are held
  224. * before freeque() is called. msg_ids.rw_mutex remains locked on exit.
  225. */
  226. static void freeque(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
  227. {
  228. struct msg_msg *msg, *t;
  229. struct msg_queue *msq = container_of(ipcp, struct msg_queue, q_perm);
  230. expunge_all(msq, -EIDRM);
  231. ss_wakeup(&msq->q_senders, 1);
  232. msg_rmid(ns, msq);
  233. msg_unlock(msq);
  234. list_for_each_entry_safe(msg, t, &msq->q_messages, m_list) {
  235. atomic_dec(&ns->msg_hdrs);
  236. free_msg(msg);
  237. }
  238. atomic_sub(msq->q_cbytes, &ns->msg_bytes);
  239. security_msg_queue_free(msq);
  240. ipc_rcu_putref(msq);
  241. }
  242. /*
  243. * Called with msg_ids.rw_mutex and ipcp locked.
  244. */
  245. static inline int msg_security(struct kern_ipc_perm *ipcp, int msgflg)
  246. {
  247. struct msg_queue *msq = container_of(ipcp, struct msg_queue, q_perm);
  248. return security_msg_queue_associate(msq, msgflg);
  249. }
  250. SYSCALL_DEFINE2(msgget, key_t, key, int, msgflg)
  251. {
  252. struct ipc_namespace *ns;
  253. struct ipc_ops msg_ops;
  254. struct ipc_params msg_params;
  255. ns = current->nsproxy->ipc_ns;
  256. msg_ops.getnew = newque;
  257. msg_ops.associate = msg_security;
  258. msg_ops.more_checks = NULL;
  259. msg_params.key = key;
  260. msg_params.flg = msgflg;
  261. return ipcget(ns, &msg_ids(ns), &msg_ops, &msg_params);
  262. }
  263. static inline unsigned long
  264. copy_msqid_to_user(void __user *buf, struct msqid64_ds *in, int version)
  265. {
  266. switch(version) {
  267. case IPC_64:
  268. return copy_to_user(buf, in, sizeof(*in));
  269. case IPC_OLD:
  270. {
  271. struct msqid_ds out;
  272. memset(&out, 0, sizeof(out));
  273. ipc64_perm_to_ipc_perm(&in->msg_perm, &out.msg_perm);
  274. out.msg_stime = in->msg_stime;
  275. out.msg_rtime = in->msg_rtime;
  276. out.msg_ctime = in->msg_ctime;
  277. if (in->msg_cbytes > USHRT_MAX)
  278. out.msg_cbytes = USHRT_MAX;
  279. else
  280. out.msg_cbytes = in->msg_cbytes;
  281. out.msg_lcbytes = in->msg_cbytes;
  282. if (in->msg_qnum > USHRT_MAX)
  283. out.msg_qnum = USHRT_MAX;
  284. else
  285. out.msg_qnum = in->msg_qnum;
  286. if (in->msg_qbytes > USHRT_MAX)
  287. out.msg_qbytes = USHRT_MAX;
  288. else
  289. out.msg_qbytes = in->msg_qbytes;
  290. out.msg_lqbytes = in->msg_qbytes;
  291. out.msg_lspid = in->msg_lspid;
  292. out.msg_lrpid = in->msg_lrpid;
  293. return copy_to_user(buf, &out, sizeof(out));
  294. }
  295. default:
  296. return -EINVAL;
  297. }
  298. }
  299. static inline unsigned long
  300. copy_msqid_from_user(struct msqid64_ds *out, void __user *buf, int version)
  301. {
  302. switch(version) {
  303. case IPC_64:
  304. if (copy_from_user(out, buf, sizeof(*out)))
  305. return -EFAULT;
  306. return 0;
  307. case IPC_OLD:
  308. {
  309. struct msqid_ds tbuf_old;
  310. if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
  311. return -EFAULT;
  312. out->msg_perm.uid = tbuf_old.msg_perm.uid;
  313. out->msg_perm.gid = tbuf_old.msg_perm.gid;
  314. out->msg_perm.mode = tbuf_old.msg_perm.mode;
  315. if (tbuf_old.msg_qbytes == 0)
  316. out->msg_qbytes = tbuf_old.msg_lqbytes;
  317. else
  318. out->msg_qbytes = tbuf_old.msg_qbytes;
  319. return 0;
  320. }
  321. default:
  322. return -EINVAL;
  323. }
  324. }
  325. /*
  326. * This function handles some msgctl commands which require the rw_mutex
  327. * to be held in write mode.
  328. * NOTE: no locks must be held, the rw_mutex is taken inside this function.
  329. */
  330. static int msgctl_down(struct ipc_namespace *ns, int msqid, int cmd,
  331. struct msqid_ds __user *buf, int version)
  332. {
  333. struct kern_ipc_perm *ipcp;
  334. struct msqid64_ds uninitialized_var(msqid64);
  335. struct msg_queue *msq;
  336. int err;
  337. if (cmd == IPC_SET) {
  338. if (copy_msqid_from_user(&msqid64, buf, version))
  339. return -EFAULT;
  340. }
  341. ipcp = ipcctl_pre_down(ns, &msg_ids(ns), msqid, cmd,
  342. &msqid64.msg_perm, msqid64.msg_qbytes);
  343. if (IS_ERR(ipcp))
  344. return PTR_ERR(ipcp);
  345. msq = container_of(ipcp, struct msg_queue, q_perm);
  346. err = security_msg_queue_msgctl(msq, cmd);
  347. if (err)
  348. goto out_unlock;
  349. switch (cmd) {
  350. case IPC_RMID:
  351. freeque(ns, ipcp);
  352. goto out_up;
  353. case IPC_SET:
  354. if (msqid64.msg_qbytes > ns->msg_ctlmnb &&
  355. !capable(CAP_SYS_RESOURCE)) {
  356. err = -EPERM;
  357. goto out_unlock;
  358. }
  359. err = ipc_update_perm(&msqid64.msg_perm, ipcp);
  360. if (err)
  361. goto out_unlock;
  362. msq->q_qbytes = msqid64.msg_qbytes;
  363. msq->q_ctime = get_seconds();
  364. /* sleeping receivers might be excluded by
  365. * stricter permissions.
  366. */
  367. expunge_all(msq, -EAGAIN);
  368. /* sleeping senders might be able to send
  369. * due to a larger queue size.
  370. */
  371. ss_wakeup(&msq->q_senders, 0);
  372. break;
  373. default:
  374. err = -EINVAL;
  375. }
  376. out_unlock:
  377. msg_unlock(msq);
  378. out_up:
  379. up_write(&msg_ids(ns).rw_mutex);
  380. return err;
  381. }
  382. SYSCALL_DEFINE3(msgctl, int, msqid, int, cmd, struct msqid_ds __user *, buf)
  383. {
  384. struct msg_queue *msq;
  385. int err, version;
  386. struct ipc_namespace *ns;
  387. if (msqid < 0 || cmd < 0)
  388. return -EINVAL;
  389. version = ipc_parse_version(&cmd);
  390. ns = current->nsproxy->ipc_ns;
  391. switch (cmd) {
  392. case IPC_INFO:
  393. case MSG_INFO:
  394. {
  395. struct msginfo msginfo;
  396. int max_id;
  397. if (!buf)
  398. return -EFAULT;
  399. /*
  400. * We must not return kernel stack data.
  401. * due to padding, it's not enough
  402. * to set all member fields.
  403. */
  404. err = security_msg_queue_msgctl(NULL, cmd);
  405. if (err)
  406. return err;
  407. memset(&msginfo, 0, sizeof(msginfo));
  408. msginfo.msgmni = ns->msg_ctlmni;
  409. msginfo.msgmax = ns->msg_ctlmax;
  410. msginfo.msgmnb = ns->msg_ctlmnb;
  411. msginfo.msgssz = MSGSSZ;
  412. msginfo.msgseg = MSGSEG;
  413. down_read(&msg_ids(ns).rw_mutex);
  414. if (cmd == MSG_INFO) {
  415. msginfo.msgpool = msg_ids(ns).in_use;
  416. msginfo.msgmap = atomic_read(&ns->msg_hdrs);
  417. msginfo.msgtql = atomic_read(&ns->msg_bytes);
  418. } else {
  419. msginfo.msgmap = MSGMAP;
  420. msginfo.msgpool = MSGPOOL;
  421. msginfo.msgtql = MSGTQL;
  422. }
  423. max_id = ipc_get_maxid(&msg_ids(ns));
  424. up_read(&msg_ids(ns).rw_mutex);
  425. if (copy_to_user(buf, &msginfo, sizeof(struct msginfo)))
  426. return -EFAULT;
  427. return (max_id < 0) ? 0 : max_id;
  428. }
  429. case MSG_STAT: /* msqid is an index rather than a msg queue id */
  430. case IPC_STAT:
  431. {
  432. struct msqid64_ds tbuf;
  433. int success_return;
  434. if (!buf)
  435. return -EFAULT;
  436. if (cmd == MSG_STAT) {
  437. msq = msg_lock(ns, msqid);
  438. if (IS_ERR(msq))
  439. return PTR_ERR(msq);
  440. success_return = msq->q_perm.id;
  441. } else {
  442. msq = msg_lock_check(ns, msqid);
  443. if (IS_ERR(msq))
  444. return PTR_ERR(msq);
  445. success_return = 0;
  446. }
  447. err = -EACCES;
  448. if (ipcperms(ns, &msq->q_perm, S_IRUGO))
  449. goto out_unlock;
  450. err = security_msg_queue_msgctl(msq, cmd);
  451. if (err)
  452. goto out_unlock;
  453. memset(&tbuf, 0, sizeof(tbuf));
  454. kernel_to_ipc64_perm(&msq->q_perm, &tbuf.msg_perm);
  455. tbuf.msg_stime = msq->q_stime;
  456. tbuf.msg_rtime = msq->q_rtime;
  457. tbuf.msg_ctime = msq->q_ctime;
  458. tbuf.msg_cbytes = msq->q_cbytes;
  459. tbuf.msg_qnum = msq->q_qnum;
  460. tbuf.msg_qbytes = msq->q_qbytes;
  461. tbuf.msg_lspid = msq->q_lspid;
  462. tbuf.msg_lrpid = msq->q_lrpid;
  463. msg_unlock(msq);
  464. if (copy_msqid_to_user(buf, &tbuf, version))
  465. return -EFAULT;
  466. return success_return;
  467. }
  468. case IPC_SET:
  469. case IPC_RMID:
  470. err = msgctl_down(ns, msqid, cmd, buf, version);
  471. return err;
  472. default:
  473. return -EINVAL;
  474. }
  475. out_unlock:
  476. msg_unlock(msq);
  477. return err;
  478. }
  479. static int testmsg(struct msg_msg *msg, long type, int mode)
  480. {
  481. switch(mode)
  482. {
  483. case SEARCH_ANY:
  484. case SEARCH_NUMBER:
  485. return 1;
  486. case SEARCH_LESSEQUAL:
  487. if (msg->m_type <=type)
  488. return 1;
  489. break;
  490. case SEARCH_EQUAL:
  491. if (msg->m_type == type)
  492. return 1;
  493. break;
  494. case SEARCH_NOTEQUAL:
  495. if (msg->m_type != type)
  496. return 1;
  497. break;
  498. }
  499. return 0;
  500. }
  501. static inline int pipelined_send(struct msg_queue *msq, struct msg_msg *msg)
  502. {
  503. struct msg_receiver *msr, *t;
  504. list_for_each_entry_safe(msr, t, &msq->q_receivers, r_list) {
  505. if (testmsg(msg, msr->r_msgtype, msr->r_mode) &&
  506. !security_msg_queue_msgrcv(msq, msg, msr->r_tsk,
  507. msr->r_msgtype, msr->r_mode)) {
  508. list_del(&msr->r_list);
  509. if (msr->r_maxsize < msg->m_ts) {
  510. msr->r_msg = NULL;
  511. wake_up_process(msr->r_tsk);
  512. smp_mb();
  513. msr->r_msg = ERR_PTR(-E2BIG);
  514. } else {
  515. msr->r_msg = NULL;
  516. msq->q_lrpid = task_pid_vnr(msr->r_tsk);
  517. msq->q_rtime = get_seconds();
  518. wake_up_process(msr->r_tsk);
  519. smp_mb();
  520. msr->r_msg = msg;
  521. return 1;
  522. }
  523. }
  524. }
  525. return 0;
  526. }
  527. long do_msgsnd(int msqid, long mtype, void __user *mtext,
  528. size_t msgsz, int msgflg)
  529. {
  530. struct msg_queue *msq;
  531. struct msg_msg *msg;
  532. int err;
  533. struct ipc_namespace *ns;
  534. ns = current->nsproxy->ipc_ns;
  535. if (msgsz > ns->msg_ctlmax || (long) msgsz < 0 || msqid < 0)
  536. return -EINVAL;
  537. if (mtype < 1)
  538. return -EINVAL;
  539. msg = load_msg(mtext, msgsz);
  540. if (IS_ERR(msg))
  541. return PTR_ERR(msg);
  542. msg->m_type = mtype;
  543. msg->m_ts = msgsz;
  544. msq = msg_lock_check(ns, msqid);
  545. if (IS_ERR(msq)) {
  546. err = PTR_ERR(msq);
  547. goto out_free;
  548. }
  549. for (;;) {
  550. struct msg_sender s;
  551. err = -EACCES;
  552. if (ipcperms(ns, &msq->q_perm, S_IWUGO))
  553. goto out_unlock_free;
  554. err = security_msg_queue_msgsnd(msq, msg, msgflg);
  555. if (err)
  556. goto out_unlock_free;
  557. if (msgsz + msq->q_cbytes <= msq->q_qbytes &&
  558. 1 + msq->q_qnum <= msq->q_qbytes) {
  559. break;
  560. }
  561. /* queue full, wait: */
  562. if (msgflg & IPC_NOWAIT) {
  563. err = -EAGAIN;
  564. goto out_unlock_free;
  565. }
  566. ss_add(msq, &s);
  567. if (!ipc_rcu_getref(msq)) {
  568. err = -EIDRM;
  569. goto out_unlock_free;
  570. }
  571. msg_unlock(msq);
  572. schedule();
  573. ipc_lock_by_ptr(&msq->q_perm);
  574. ipc_rcu_putref(msq);
  575. if (msq->q_perm.deleted) {
  576. err = -EIDRM;
  577. goto out_unlock_free;
  578. }
  579. ss_del(&s);
  580. if (signal_pending(current)) {
  581. err = -ERESTARTNOHAND;
  582. goto out_unlock_free;
  583. }
  584. }
  585. msq->q_lspid = task_tgid_vnr(current);
  586. msq->q_stime = get_seconds();
  587. if (!pipelined_send(msq, msg)) {
  588. /* no one is waiting for this message, enqueue it */
  589. list_add_tail(&msg->m_list, &msq->q_messages);
  590. msq->q_cbytes += msgsz;
  591. msq->q_qnum++;
  592. atomic_add(msgsz, &ns->msg_bytes);
  593. atomic_inc(&ns->msg_hdrs);
  594. }
  595. err = 0;
  596. msg = NULL;
  597. out_unlock_free:
  598. msg_unlock(msq);
  599. out_free:
  600. if (msg != NULL)
  601. free_msg(msg);
  602. return err;
  603. }
  604. SYSCALL_DEFINE4(msgsnd, int, msqid, struct msgbuf __user *, msgp, size_t, msgsz,
  605. int, msgflg)
  606. {
  607. long mtype;
  608. if (get_user(mtype, &msgp->mtype))
  609. return -EFAULT;
  610. return do_msgsnd(msqid, mtype, msgp->mtext, msgsz, msgflg);
  611. }
  612. static inline int convert_mode(long *msgtyp, int msgflg)
  613. {
  614. if (msgflg & MSG_COPY)
  615. return SEARCH_NUMBER;
  616. /*
  617. * find message of correct type.
  618. * msgtyp = 0 => get first.
  619. * msgtyp > 0 => get first message of matching type.
  620. * msgtyp < 0 => get message with least type must be < abs(msgtype).
  621. */
  622. if (*msgtyp == 0)
  623. return SEARCH_ANY;
  624. if (*msgtyp < 0) {
  625. *msgtyp = -*msgtyp;
  626. return SEARCH_LESSEQUAL;
  627. }
  628. if (msgflg & MSG_EXCEPT)
  629. return SEARCH_NOTEQUAL;
  630. return SEARCH_EQUAL;
  631. }
  632. static long do_msg_fill(void __user *dest, struct msg_msg *msg, size_t bufsz)
  633. {
  634. struct msgbuf __user *msgp = dest;
  635. size_t msgsz;
  636. if (put_user(msg->m_type, &msgp->mtype))
  637. return -EFAULT;
  638. msgsz = (bufsz > msg->m_ts) ? msg->m_ts : bufsz;
  639. if (store_msg(msgp->mtext, msg, msgsz))
  640. return -EFAULT;
  641. return msgsz;
  642. }
  643. #ifdef CONFIG_CHECKPOINT_RESTORE
  644. /*
  645. * This function creates new kernel message structure, large enough to store
  646. * bufsz message bytes.
  647. */
  648. static inline struct msg_msg *prepare_copy(void __user *buf, size_t bufsz)
  649. {
  650. struct msg_msg *copy;
  651. /*
  652. * Create dummy message to copy real message to.
  653. */
  654. copy = load_msg(buf, bufsz);
  655. if (!IS_ERR(copy))
  656. copy->m_ts = bufsz;
  657. return copy;
  658. }
  659. static inline void free_copy(struct msg_msg *copy)
  660. {
  661. if (copy)
  662. free_msg(copy);
  663. }
  664. #else
  665. static inline struct msg_msg *prepare_copy(void __user *buf, size_t bufsz)
  666. {
  667. return ERR_PTR(-ENOSYS);
  668. }
  669. static inline void free_copy(struct msg_msg *copy)
  670. {
  671. }
  672. #endif
  673. static struct msg_msg *find_msg(struct msg_queue *msq, long *msgtyp, int mode)
  674. {
  675. struct msg_msg *msg;
  676. long count = 0;
  677. list_for_each_entry(msg, &msq->q_messages, m_list) {
  678. if (testmsg(msg, *msgtyp, mode) &&
  679. !security_msg_queue_msgrcv(msq, msg, current,
  680. *msgtyp, mode)) {
  681. if (mode == SEARCH_LESSEQUAL && msg->m_type != 1) {
  682. *msgtyp = msg->m_type - 1;
  683. } else if (mode == SEARCH_NUMBER) {
  684. if (*msgtyp == count)
  685. return msg;
  686. } else
  687. return msg;
  688. count++;
  689. }
  690. }
  691. return ERR_PTR(-EAGAIN);
  692. }
  693. long do_msgrcv(int msqid, void __user *buf, size_t bufsz, long msgtyp,
  694. int msgflg,
  695. long (*msg_handler)(void __user *, struct msg_msg *, size_t))
  696. {
  697. struct msg_queue *msq;
  698. struct msg_msg *msg;
  699. int mode;
  700. struct ipc_namespace *ns;
  701. struct msg_msg *copy = NULL;
  702. ns = current->nsproxy->ipc_ns;
  703. if (msqid < 0 || (long) bufsz < 0)
  704. return -EINVAL;
  705. if (msgflg & MSG_COPY) {
  706. copy = prepare_copy(buf, min_t(size_t, bufsz, ns->msg_ctlmax));
  707. if (IS_ERR(copy))
  708. return PTR_ERR(copy);
  709. }
  710. mode = convert_mode(&msgtyp, msgflg);
  711. msq = msg_lock_check(ns, msqid);
  712. if (IS_ERR(msq)) {
  713. free_copy(copy);
  714. return PTR_ERR(msq);
  715. }
  716. for (;;) {
  717. struct msg_receiver msr_d;
  718. msg = ERR_PTR(-EACCES);
  719. if (ipcperms(ns, &msq->q_perm, S_IRUGO))
  720. goto out_unlock;
  721. msg = find_msg(msq, &msgtyp, mode);
  722. if (!IS_ERR(msg)) {
  723. /*
  724. * Found a suitable message.
  725. * Unlink it from the queue.
  726. */
  727. if ((bufsz < msg->m_ts) && !(msgflg & MSG_NOERROR)) {
  728. msg = ERR_PTR(-E2BIG);
  729. goto out_unlock;
  730. }
  731. /*
  732. * If we are copying, then do not unlink message and do
  733. * not update queue parameters.
  734. */
  735. if (msgflg & MSG_COPY) {
  736. msg = copy_msg(msg, copy);
  737. goto out_unlock;
  738. }
  739. list_del(&msg->m_list);
  740. msq->q_qnum--;
  741. msq->q_rtime = get_seconds();
  742. msq->q_lrpid = task_tgid_vnr(current);
  743. msq->q_cbytes -= msg->m_ts;
  744. atomic_sub(msg->m_ts, &ns->msg_bytes);
  745. atomic_dec(&ns->msg_hdrs);
  746. ss_wakeup(&msq->q_senders, 0);
  747. msg_unlock(msq);
  748. break;
  749. }
  750. /* No message waiting. Wait for a message */
  751. if (msgflg & IPC_NOWAIT) {
  752. msg = ERR_PTR(-ENOMSG);
  753. goto out_unlock;
  754. }
  755. list_add_tail(&msr_d.r_list, &msq->q_receivers);
  756. msr_d.r_tsk = current;
  757. msr_d.r_msgtype = msgtyp;
  758. msr_d.r_mode = mode;
  759. if (msgflg & MSG_NOERROR)
  760. msr_d.r_maxsize = INT_MAX;
  761. else
  762. msr_d.r_maxsize = bufsz;
  763. msr_d.r_msg = ERR_PTR(-EAGAIN);
  764. current->state = TASK_INTERRUPTIBLE;
  765. msg_unlock(msq);
  766. schedule();
  767. /* Lockless receive, part 1:
  768. * Disable preemption. We don't hold a reference to the queue
  769. * and getting a reference would defeat the idea of a lockless
  770. * operation, thus the code relies on rcu to guarantee the
  771. * existence of msq:
  772. * Prior to destruction, expunge_all(-EIRDM) changes r_msg.
  773. * Thus if r_msg is -EAGAIN, then the queue not yet destroyed.
  774. * rcu_read_lock() prevents preemption between reading r_msg
  775. * and the spin_lock() inside ipc_lock_by_ptr().
  776. */
  777. rcu_read_lock();
  778. /* Lockless receive, part 2:
  779. * Wait until pipelined_send or expunge_all are outside of
  780. * wake_up_process(). There is a race with exit(), see
  781. * ipc/mqueue.c for the details.
  782. */
  783. msg = (struct msg_msg*)msr_d.r_msg;
  784. while (msg == NULL) {
  785. cpu_relax();
  786. msg = (struct msg_msg *)msr_d.r_msg;
  787. }
  788. /* Lockless receive, part 3:
  789. * If there is a message or an error then accept it without
  790. * locking.
  791. */
  792. if (msg != ERR_PTR(-EAGAIN)) {
  793. rcu_read_unlock();
  794. break;
  795. }
  796. /* Lockless receive, part 3:
  797. * Acquire the queue spinlock.
  798. */
  799. ipc_lock_by_ptr(&msq->q_perm);
  800. rcu_read_unlock();
  801. /* Lockless receive, part 4:
  802. * Repeat test after acquiring the spinlock.
  803. */
  804. msg = (struct msg_msg*)msr_d.r_msg;
  805. if (msg != ERR_PTR(-EAGAIN))
  806. goto out_unlock;
  807. list_del(&msr_d.r_list);
  808. if (signal_pending(current)) {
  809. msg = ERR_PTR(-ERESTARTNOHAND);
  810. out_unlock:
  811. msg_unlock(msq);
  812. break;
  813. }
  814. }
  815. if (IS_ERR(msg)) {
  816. free_copy(copy);
  817. return PTR_ERR(msg);
  818. }
  819. bufsz = msg_handler(buf, msg, bufsz);
  820. free_msg(msg);
  821. return bufsz;
  822. }
  823. SYSCALL_DEFINE5(msgrcv, int, msqid, struct msgbuf __user *, msgp, size_t, msgsz,
  824. long, msgtyp, int, msgflg)
  825. {
  826. return do_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg, do_msg_fill);
  827. }
  828. #ifdef CONFIG_PROC_FS
  829. static int sysvipc_msg_proc_show(struct seq_file *s, void *it)
  830. {
  831. struct user_namespace *user_ns = seq_user_ns(s);
  832. struct msg_queue *msq = it;
  833. return seq_printf(s,
  834. "%10d %10d %4o %10lu %10lu %5u %5u %5u %5u %5u %5u %10lu %10lu %10lu\n",
  835. msq->q_perm.key,
  836. msq->q_perm.id,
  837. msq->q_perm.mode,
  838. msq->q_cbytes,
  839. msq->q_qnum,
  840. msq->q_lspid,
  841. msq->q_lrpid,
  842. from_kuid_munged(user_ns, msq->q_perm.uid),
  843. from_kgid_munged(user_ns, msq->q_perm.gid),
  844. from_kuid_munged(user_ns, msq->q_perm.cuid),
  845. from_kgid_munged(user_ns, msq->q_perm.cgid),
  846. msq->q_stime,
  847. msq->q_rtime,
  848. msq->q_ctime);
  849. }
  850. #endif