x86.c 150 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <trace/events/kvm.h>
  45. #define CREATE_TRACE_POINTS
  46. #include "trace.h"
  47. #include <asm/debugreg.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <asm/mtrr.h>
  51. #include <asm/mce.h>
  52. #include <asm/i387.h>
  53. #include <asm/xcr.h>
  54. #include <asm/pvclock.h>
  55. #include <asm/div64.h>
  56. #define MAX_IO_MSRS 256
  57. #define CR0_RESERVED_BITS \
  58. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  59. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  60. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  61. #define CR4_RESERVED_BITS \
  62. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  63. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  64. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  65. | X86_CR4_OSXSAVE \
  66. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  67. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  68. #define KVM_MAX_MCE_BANKS 32
  69. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  70. /* EFER defaults:
  71. * - enable syscall per default because its emulated by KVM
  72. * - enable LME and LMA per default on 64 bit KVM
  73. */
  74. #ifdef CONFIG_X86_64
  75. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  76. #else
  77. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  78. #endif
  79. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  80. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  81. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  82. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  83. struct kvm_cpuid_entry2 __user *entries);
  84. struct kvm_x86_ops *kvm_x86_ops;
  85. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  86. int ignore_msrs = 0;
  87. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  88. #define KVM_NR_SHARED_MSRS 16
  89. struct kvm_shared_msrs_global {
  90. int nr;
  91. u32 msrs[KVM_NR_SHARED_MSRS];
  92. };
  93. struct kvm_shared_msrs {
  94. struct user_return_notifier urn;
  95. bool registered;
  96. struct kvm_shared_msr_values {
  97. u64 host;
  98. u64 curr;
  99. } values[KVM_NR_SHARED_MSRS];
  100. };
  101. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  102. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  103. struct kvm_stats_debugfs_item debugfs_entries[] = {
  104. { "pf_fixed", VCPU_STAT(pf_fixed) },
  105. { "pf_guest", VCPU_STAT(pf_guest) },
  106. { "tlb_flush", VCPU_STAT(tlb_flush) },
  107. { "invlpg", VCPU_STAT(invlpg) },
  108. { "exits", VCPU_STAT(exits) },
  109. { "io_exits", VCPU_STAT(io_exits) },
  110. { "mmio_exits", VCPU_STAT(mmio_exits) },
  111. { "signal_exits", VCPU_STAT(signal_exits) },
  112. { "irq_window", VCPU_STAT(irq_window_exits) },
  113. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  114. { "halt_exits", VCPU_STAT(halt_exits) },
  115. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  116. { "hypercalls", VCPU_STAT(hypercalls) },
  117. { "request_irq", VCPU_STAT(request_irq_exits) },
  118. { "irq_exits", VCPU_STAT(irq_exits) },
  119. { "host_state_reload", VCPU_STAT(host_state_reload) },
  120. { "efer_reload", VCPU_STAT(efer_reload) },
  121. { "fpu_reload", VCPU_STAT(fpu_reload) },
  122. { "insn_emulation", VCPU_STAT(insn_emulation) },
  123. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  124. { "irq_injections", VCPU_STAT(irq_injections) },
  125. { "nmi_injections", VCPU_STAT(nmi_injections) },
  126. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  127. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  128. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  129. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  130. { "mmu_flooded", VM_STAT(mmu_flooded) },
  131. { "mmu_recycled", VM_STAT(mmu_recycled) },
  132. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  133. { "mmu_unsync", VM_STAT(mmu_unsync) },
  134. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  135. { "largepages", VM_STAT(lpages) },
  136. { NULL }
  137. };
  138. u64 __read_mostly host_xcr0;
  139. static void kvm_on_user_return(struct user_return_notifier *urn)
  140. {
  141. unsigned slot;
  142. struct kvm_shared_msrs *locals
  143. = container_of(urn, struct kvm_shared_msrs, urn);
  144. struct kvm_shared_msr_values *values;
  145. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  146. values = &locals->values[slot];
  147. if (values->host != values->curr) {
  148. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  149. values->curr = values->host;
  150. }
  151. }
  152. locals->registered = false;
  153. user_return_notifier_unregister(urn);
  154. }
  155. static void shared_msr_update(unsigned slot, u32 msr)
  156. {
  157. struct kvm_shared_msrs *smsr;
  158. u64 value;
  159. smsr = &__get_cpu_var(shared_msrs);
  160. /* only read, and nobody should modify it at this time,
  161. * so don't need lock */
  162. if (slot >= shared_msrs_global.nr) {
  163. printk(KERN_ERR "kvm: invalid MSR slot!");
  164. return;
  165. }
  166. rdmsrl_safe(msr, &value);
  167. smsr->values[slot].host = value;
  168. smsr->values[slot].curr = value;
  169. }
  170. void kvm_define_shared_msr(unsigned slot, u32 msr)
  171. {
  172. if (slot >= shared_msrs_global.nr)
  173. shared_msrs_global.nr = slot + 1;
  174. shared_msrs_global.msrs[slot] = msr;
  175. /* we need ensured the shared_msr_global have been updated */
  176. smp_wmb();
  177. }
  178. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  179. static void kvm_shared_msr_cpu_online(void)
  180. {
  181. unsigned i;
  182. for (i = 0; i < shared_msrs_global.nr; ++i)
  183. shared_msr_update(i, shared_msrs_global.msrs[i]);
  184. }
  185. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  186. {
  187. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  188. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  189. return;
  190. smsr->values[slot].curr = value;
  191. wrmsrl(shared_msrs_global.msrs[slot], value);
  192. if (!smsr->registered) {
  193. smsr->urn.on_user_return = kvm_on_user_return;
  194. user_return_notifier_register(&smsr->urn);
  195. smsr->registered = true;
  196. }
  197. }
  198. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  199. static void drop_user_return_notifiers(void *ignore)
  200. {
  201. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  202. if (smsr->registered)
  203. kvm_on_user_return(&smsr->urn);
  204. }
  205. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  206. {
  207. if (irqchip_in_kernel(vcpu->kvm))
  208. return vcpu->arch.apic_base;
  209. else
  210. return vcpu->arch.apic_base;
  211. }
  212. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  213. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  214. {
  215. /* TODO: reserve bits check */
  216. if (irqchip_in_kernel(vcpu->kvm))
  217. kvm_lapic_set_base(vcpu, data);
  218. else
  219. vcpu->arch.apic_base = data;
  220. }
  221. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  222. #define EXCPT_BENIGN 0
  223. #define EXCPT_CONTRIBUTORY 1
  224. #define EXCPT_PF 2
  225. static int exception_class(int vector)
  226. {
  227. switch (vector) {
  228. case PF_VECTOR:
  229. return EXCPT_PF;
  230. case DE_VECTOR:
  231. case TS_VECTOR:
  232. case NP_VECTOR:
  233. case SS_VECTOR:
  234. case GP_VECTOR:
  235. return EXCPT_CONTRIBUTORY;
  236. default:
  237. break;
  238. }
  239. return EXCPT_BENIGN;
  240. }
  241. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  242. unsigned nr, bool has_error, u32 error_code,
  243. bool reinject)
  244. {
  245. u32 prev_nr;
  246. int class1, class2;
  247. kvm_make_request(KVM_REQ_EVENT, vcpu);
  248. if (!vcpu->arch.exception.pending) {
  249. queue:
  250. vcpu->arch.exception.pending = true;
  251. vcpu->arch.exception.has_error_code = has_error;
  252. vcpu->arch.exception.nr = nr;
  253. vcpu->arch.exception.error_code = error_code;
  254. vcpu->arch.exception.reinject = reinject;
  255. return;
  256. }
  257. /* to check exception */
  258. prev_nr = vcpu->arch.exception.nr;
  259. if (prev_nr == DF_VECTOR) {
  260. /* triple fault -> shutdown */
  261. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  262. return;
  263. }
  264. class1 = exception_class(prev_nr);
  265. class2 = exception_class(nr);
  266. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  267. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  268. /* generate double fault per SDM Table 5-5 */
  269. vcpu->arch.exception.pending = true;
  270. vcpu->arch.exception.has_error_code = true;
  271. vcpu->arch.exception.nr = DF_VECTOR;
  272. vcpu->arch.exception.error_code = 0;
  273. } else
  274. /* replace previous exception with a new one in a hope
  275. that instruction re-execution will regenerate lost
  276. exception */
  277. goto queue;
  278. }
  279. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  280. {
  281. kvm_multiple_exception(vcpu, nr, false, 0, false);
  282. }
  283. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  284. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  285. {
  286. kvm_multiple_exception(vcpu, nr, false, 0, true);
  287. }
  288. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  289. void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
  290. {
  291. unsigned error_code = vcpu->arch.fault.error_code;
  292. ++vcpu->stat.pf_guest;
  293. vcpu->arch.cr2 = vcpu->arch.fault.address;
  294. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  295. }
  296. void kvm_propagate_fault(struct kvm_vcpu *vcpu)
  297. {
  298. if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
  299. vcpu->arch.nested_mmu.inject_page_fault(vcpu);
  300. else
  301. vcpu->arch.mmu.inject_page_fault(vcpu);
  302. vcpu->arch.fault.nested = false;
  303. }
  304. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  305. {
  306. kvm_make_request(KVM_REQ_EVENT, vcpu);
  307. vcpu->arch.nmi_pending = 1;
  308. }
  309. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  310. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  311. {
  312. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  313. }
  314. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  315. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  316. {
  317. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  318. }
  319. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  320. /*
  321. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  322. * a #GP and return false.
  323. */
  324. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  325. {
  326. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  327. return true;
  328. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  329. return false;
  330. }
  331. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  332. /*
  333. * This function will be used to read from the physical memory of the currently
  334. * running guest. The difference to kvm_read_guest_page is that this function
  335. * can read from guest physical or from the guest's guest physical memory.
  336. */
  337. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  338. gfn_t ngfn, void *data, int offset, int len,
  339. u32 access)
  340. {
  341. gfn_t real_gfn;
  342. gpa_t ngpa;
  343. ngpa = gfn_to_gpa(ngfn);
  344. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  345. if (real_gfn == UNMAPPED_GVA)
  346. return -EFAULT;
  347. real_gfn = gpa_to_gfn(real_gfn);
  348. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  349. }
  350. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  351. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  352. void *data, int offset, int len, u32 access)
  353. {
  354. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  355. data, offset, len, access);
  356. }
  357. /*
  358. * Load the pae pdptrs. Return true is they are all valid.
  359. */
  360. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  361. {
  362. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  363. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  364. int i;
  365. int ret;
  366. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  367. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  368. offset * sizeof(u64), sizeof(pdpte),
  369. PFERR_USER_MASK|PFERR_WRITE_MASK);
  370. if (ret < 0) {
  371. ret = 0;
  372. goto out;
  373. }
  374. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  375. if (is_present_gpte(pdpte[i]) &&
  376. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  377. ret = 0;
  378. goto out;
  379. }
  380. }
  381. ret = 1;
  382. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  383. __set_bit(VCPU_EXREG_PDPTR,
  384. (unsigned long *)&vcpu->arch.regs_avail);
  385. __set_bit(VCPU_EXREG_PDPTR,
  386. (unsigned long *)&vcpu->arch.regs_dirty);
  387. out:
  388. return ret;
  389. }
  390. EXPORT_SYMBOL_GPL(load_pdptrs);
  391. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  392. {
  393. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  394. bool changed = true;
  395. int offset;
  396. gfn_t gfn;
  397. int r;
  398. if (is_long_mode(vcpu) || !is_pae(vcpu))
  399. return false;
  400. if (!test_bit(VCPU_EXREG_PDPTR,
  401. (unsigned long *)&vcpu->arch.regs_avail))
  402. return true;
  403. gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
  404. offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
  405. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  406. PFERR_USER_MASK | PFERR_WRITE_MASK);
  407. if (r < 0)
  408. goto out;
  409. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  410. out:
  411. return changed;
  412. }
  413. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  414. {
  415. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  416. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  417. X86_CR0_CD | X86_CR0_NW;
  418. cr0 |= X86_CR0_ET;
  419. #ifdef CONFIG_X86_64
  420. if (cr0 & 0xffffffff00000000UL)
  421. return 1;
  422. #endif
  423. cr0 &= ~CR0_RESERVED_BITS;
  424. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  425. return 1;
  426. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  427. return 1;
  428. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  429. #ifdef CONFIG_X86_64
  430. if ((vcpu->arch.efer & EFER_LME)) {
  431. int cs_db, cs_l;
  432. if (!is_pae(vcpu))
  433. return 1;
  434. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  435. if (cs_l)
  436. return 1;
  437. } else
  438. #endif
  439. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  440. vcpu->arch.cr3))
  441. return 1;
  442. }
  443. kvm_x86_ops->set_cr0(vcpu, cr0);
  444. if ((cr0 ^ old_cr0) & update_bits)
  445. kvm_mmu_reset_context(vcpu);
  446. return 0;
  447. }
  448. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  449. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  450. {
  451. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  452. }
  453. EXPORT_SYMBOL_GPL(kvm_lmsw);
  454. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  455. {
  456. u64 xcr0;
  457. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  458. if (index != XCR_XFEATURE_ENABLED_MASK)
  459. return 1;
  460. xcr0 = xcr;
  461. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  462. return 1;
  463. if (!(xcr0 & XSTATE_FP))
  464. return 1;
  465. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  466. return 1;
  467. if (xcr0 & ~host_xcr0)
  468. return 1;
  469. vcpu->arch.xcr0 = xcr0;
  470. vcpu->guest_xcr0_loaded = 0;
  471. return 0;
  472. }
  473. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  474. {
  475. if (__kvm_set_xcr(vcpu, index, xcr)) {
  476. kvm_inject_gp(vcpu, 0);
  477. return 1;
  478. }
  479. return 0;
  480. }
  481. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  482. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  483. {
  484. struct kvm_cpuid_entry2 *best;
  485. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  486. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  487. }
  488. static void update_cpuid(struct kvm_vcpu *vcpu)
  489. {
  490. struct kvm_cpuid_entry2 *best;
  491. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  492. if (!best)
  493. return;
  494. /* Update OSXSAVE bit */
  495. if (cpu_has_xsave && best->function == 0x1) {
  496. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  497. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  498. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  499. }
  500. }
  501. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  502. {
  503. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  504. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  505. if (cr4 & CR4_RESERVED_BITS)
  506. return 1;
  507. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  508. return 1;
  509. if (is_long_mode(vcpu)) {
  510. if (!(cr4 & X86_CR4_PAE))
  511. return 1;
  512. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  513. && ((cr4 ^ old_cr4) & pdptr_bits)
  514. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
  515. return 1;
  516. if (cr4 & X86_CR4_VMXE)
  517. return 1;
  518. kvm_x86_ops->set_cr4(vcpu, cr4);
  519. if ((cr4 ^ old_cr4) & pdptr_bits)
  520. kvm_mmu_reset_context(vcpu);
  521. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  522. update_cpuid(vcpu);
  523. return 0;
  524. }
  525. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  526. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  527. {
  528. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  529. kvm_mmu_sync_roots(vcpu);
  530. kvm_mmu_flush_tlb(vcpu);
  531. return 0;
  532. }
  533. if (is_long_mode(vcpu)) {
  534. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  535. return 1;
  536. } else {
  537. if (is_pae(vcpu)) {
  538. if (cr3 & CR3_PAE_RESERVED_BITS)
  539. return 1;
  540. if (is_paging(vcpu) &&
  541. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  542. return 1;
  543. }
  544. /*
  545. * We don't check reserved bits in nonpae mode, because
  546. * this isn't enforced, and VMware depends on this.
  547. */
  548. }
  549. /*
  550. * Does the new cr3 value map to physical memory? (Note, we
  551. * catch an invalid cr3 even in real-mode, because it would
  552. * cause trouble later on when we turn on paging anyway.)
  553. *
  554. * A real CPU would silently accept an invalid cr3 and would
  555. * attempt to use it - with largely undefined (and often hard
  556. * to debug) behavior on the guest side.
  557. */
  558. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  559. return 1;
  560. vcpu->arch.cr3 = cr3;
  561. vcpu->arch.mmu.new_cr3(vcpu);
  562. return 0;
  563. }
  564. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  565. int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  566. {
  567. if (cr8 & CR8_RESERVED_BITS)
  568. return 1;
  569. if (irqchip_in_kernel(vcpu->kvm))
  570. kvm_lapic_set_tpr(vcpu, cr8);
  571. else
  572. vcpu->arch.cr8 = cr8;
  573. return 0;
  574. }
  575. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  576. {
  577. if (__kvm_set_cr8(vcpu, cr8))
  578. kvm_inject_gp(vcpu, 0);
  579. }
  580. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  581. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  582. {
  583. if (irqchip_in_kernel(vcpu->kvm))
  584. return kvm_lapic_get_cr8(vcpu);
  585. else
  586. return vcpu->arch.cr8;
  587. }
  588. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  589. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  590. {
  591. switch (dr) {
  592. case 0 ... 3:
  593. vcpu->arch.db[dr] = val;
  594. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  595. vcpu->arch.eff_db[dr] = val;
  596. break;
  597. case 4:
  598. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  599. return 1; /* #UD */
  600. /* fall through */
  601. case 6:
  602. if (val & 0xffffffff00000000ULL)
  603. return -1; /* #GP */
  604. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  605. break;
  606. case 5:
  607. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  608. return 1; /* #UD */
  609. /* fall through */
  610. default: /* 7 */
  611. if (val & 0xffffffff00000000ULL)
  612. return -1; /* #GP */
  613. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  614. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  615. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  616. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  617. }
  618. break;
  619. }
  620. return 0;
  621. }
  622. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  623. {
  624. int res;
  625. res = __kvm_set_dr(vcpu, dr, val);
  626. if (res > 0)
  627. kvm_queue_exception(vcpu, UD_VECTOR);
  628. else if (res < 0)
  629. kvm_inject_gp(vcpu, 0);
  630. return res;
  631. }
  632. EXPORT_SYMBOL_GPL(kvm_set_dr);
  633. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  634. {
  635. switch (dr) {
  636. case 0 ... 3:
  637. *val = vcpu->arch.db[dr];
  638. break;
  639. case 4:
  640. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  641. return 1;
  642. /* fall through */
  643. case 6:
  644. *val = vcpu->arch.dr6;
  645. break;
  646. case 5:
  647. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  648. return 1;
  649. /* fall through */
  650. default: /* 7 */
  651. *val = vcpu->arch.dr7;
  652. break;
  653. }
  654. return 0;
  655. }
  656. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  657. {
  658. if (_kvm_get_dr(vcpu, dr, val)) {
  659. kvm_queue_exception(vcpu, UD_VECTOR);
  660. return 1;
  661. }
  662. return 0;
  663. }
  664. EXPORT_SYMBOL_GPL(kvm_get_dr);
  665. /*
  666. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  667. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  668. *
  669. * This list is modified at module load time to reflect the
  670. * capabilities of the host cpu. This capabilities test skips MSRs that are
  671. * kvm-specific. Those are put in the beginning of the list.
  672. */
  673. #define KVM_SAVE_MSRS_BEGIN 7
  674. static u32 msrs_to_save[] = {
  675. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  676. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  677. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  678. HV_X64_MSR_APIC_ASSIST_PAGE,
  679. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  680. MSR_STAR,
  681. #ifdef CONFIG_X86_64
  682. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  683. #endif
  684. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  685. };
  686. static unsigned num_msrs_to_save;
  687. static u32 emulated_msrs[] = {
  688. MSR_IA32_MISC_ENABLE,
  689. MSR_IA32_MCG_STATUS,
  690. MSR_IA32_MCG_CTL,
  691. };
  692. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  693. {
  694. u64 old_efer = vcpu->arch.efer;
  695. if (efer & efer_reserved_bits)
  696. return 1;
  697. if (is_paging(vcpu)
  698. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  699. return 1;
  700. if (efer & EFER_FFXSR) {
  701. struct kvm_cpuid_entry2 *feat;
  702. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  703. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  704. return 1;
  705. }
  706. if (efer & EFER_SVME) {
  707. struct kvm_cpuid_entry2 *feat;
  708. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  709. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  710. return 1;
  711. }
  712. efer &= ~EFER_LMA;
  713. efer |= vcpu->arch.efer & EFER_LMA;
  714. kvm_x86_ops->set_efer(vcpu, efer);
  715. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  716. /* Update reserved bits */
  717. if ((efer ^ old_efer) & EFER_NX)
  718. kvm_mmu_reset_context(vcpu);
  719. return 0;
  720. }
  721. void kvm_enable_efer_bits(u64 mask)
  722. {
  723. efer_reserved_bits &= ~mask;
  724. }
  725. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  726. /*
  727. * Writes msr value into into the appropriate "register".
  728. * Returns 0 on success, non-0 otherwise.
  729. * Assumes vcpu_load() was already called.
  730. */
  731. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  732. {
  733. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  734. }
  735. /*
  736. * Adapt set_msr() to msr_io()'s calling convention
  737. */
  738. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  739. {
  740. return kvm_set_msr(vcpu, index, *data);
  741. }
  742. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  743. {
  744. int version;
  745. int r;
  746. struct pvclock_wall_clock wc;
  747. struct timespec boot;
  748. if (!wall_clock)
  749. return;
  750. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  751. if (r)
  752. return;
  753. if (version & 1)
  754. ++version; /* first time write, random junk */
  755. ++version;
  756. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  757. /*
  758. * The guest calculates current wall clock time by adding
  759. * system time (updated by kvm_guest_time_update below) to the
  760. * wall clock specified here. guest system time equals host
  761. * system time for us, thus we must fill in host boot time here.
  762. */
  763. getboottime(&boot);
  764. wc.sec = boot.tv_sec;
  765. wc.nsec = boot.tv_nsec;
  766. wc.version = version;
  767. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  768. version++;
  769. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  770. }
  771. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  772. {
  773. uint32_t quotient, remainder;
  774. /* Don't try to replace with do_div(), this one calculates
  775. * "(dividend << 32) / divisor" */
  776. __asm__ ( "divl %4"
  777. : "=a" (quotient), "=d" (remainder)
  778. : "0" (0), "1" (dividend), "r" (divisor) );
  779. return quotient;
  780. }
  781. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  782. s8 *pshift, u32 *pmultiplier)
  783. {
  784. uint64_t scaled64;
  785. int32_t shift = 0;
  786. uint64_t tps64;
  787. uint32_t tps32;
  788. tps64 = base_khz * 1000LL;
  789. scaled64 = scaled_khz * 1000LL;
  790. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  791. tps64 >>= 1;
  792. shift--;
  793. }
  794. tps32 = (uint32_t)tps64;
  795. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  796. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  797. scaled64 >>= 1;
  798. else
  799. tps32 <<= 1;
  800. shift++;
  801. }
  802. *pshift = shift;
  803. *pmultiplier = div_frac(scaled64, tps32);
  804. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  805. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  806. }
  807. static inline u64 get_kernel_ns(void)
  808. {
  809. struct timespec ts;
  810. WARN_ON(preemptible());
  811. ktime_get_ts(&ts);
  812. monotonic_to_bootbased(&ts);
  813. return timespec_to_ns(&ts);
  814. }
  815. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  816. unsigned long max_tsc_khz;
  817. static inline int kvm_tsc_changes_freq(void)
  818. {
  819. int cpu = get_cpu();
  820. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  821. cpufreq_quick_get(cpu) != 0;
  822. put_cpu();
  823. return ret;
  824. }
  825. static inline u64 nsec_to_cycles(u64 nsec)
  826. {
  827. u64 ret;
  828. WARN_ON(preemptible());
  829. if (kvm_tsc_changes_freq())
  830. printk_once(KERN_WARNING
  831. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  832. ret = nsec * __get_cpu_var(cpu_tsc_khz);
  833. do_div(ret, USEC_PER_SEC);
  834. return ret;
  835. }
  836. static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
  837. {
  838. /* Compute a scale to convert nanoseconds in TSC cycles */
  839. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  840. &kvm->arch.virtual_tsc_shift,
  841. &kvm->arch.virtual_tsc_mult);
  842. kvm->arch.virtual_tsc_khz = this_tsc_khz;
  843. }
  844. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  845. {
  846. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
  847. vcpu->kvm->arch.virtual_tsc_mult,
  848. vcpu->kvm->arch.virtual_tsc_shift);
  849. tsc += vcpu->arch.last_tsc_write;
  850. return tsc;
  851. }
  852. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  853. {
  854. struct kvm *kvm = vcpu->kvm;
  855. u64 offset, ns, elapsed;
  856. unsigned long flags;
  857. s64 sdiff;
  858. spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  859. offset = data - native_read_tsc();
  860. ns = get_kernel_ns();
  861. elapsed = ns - kvm->arch.last_tsc_nsec;
  862. sdiff = data - kvm->arch.last_tsc_write;
  863. if (sdiff < 0)
  864. sdiff = -sdiff;
  865. /*
  866. * Special case: close write to TSC within 5 seconds of
  867. * another CPU is interpreted as an attempt to synchronize
  868. * The 5 seconds is to accomodate host load / swapping as
  869. * well as any reset of TSC during the boot process.
  870. *
  871. * In that case, for a reliable TSC, we can match TSC offsets,
  872. * or make a best guest using elapsed value.
  873. */
  874. if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
  875. elapsed < 5ULL * NSEC_PER_SEC) {
  876. if (!check_tsc_unstable()) {
  877. offset = kvm->arch.last_tsc_offset;
  878. pr_debug("kvm: matched tsc offset for %llu\n", data);
  879. } else {
  880. u64 delta = nsec_to_cycles(elapsed);
  881. offset += delta;
  882. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  883. }
  884. ns = kvm->arch.last_tsc_nsec;
  885. }
  886. kvm->arch.last_tsc_nsec = ns;
  887. kvm->arch.last_tsc_write = data;
  888. kvm->arch.last_tsc_offset = offset;
  889. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  890. spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  891. /* Reset of TSC must disable overshoot protection below */
  892. vcpu->arch.hv_clock.tsc_timestamp = 0;
  893. vcpu->arch.last_tsc_write = data;
  894. vcpu->arch.last_tsc_nsec = ns;
  895. }
  896. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  897. static int kvm_guest_time_update(struct kvm_vcpu *v)
  898. {
  899. unsigned long flags;
  900. struct kvm_vcpu_arch *vcpu = &v->arch;
  901. void *shared_kaddr;
  902. unsigned long this_tsc_khz;
  903. s64 kernel_ns, max_kernel_ns;
  904. u64 tsc_timestamp;
  905. /* Keep irq disabled to prevent changes to the clock */
  906. local_irq_save(flags);
  907. kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
  908. kernel_ns = get_kernel_ns();
  909. this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  910. if (unlikely(this_tsc_khz == 0)) {
  911. local_irq_restore(flags);
  912. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  913. return 1;
  914. }
  915. /*
  916. * We may have to catch up the TSC to match elapsed wall clock
  917. * time for two reasons, even if kvmclock is used.
  918. * 1) CPU could have been running below the maximum TSC rate
  919. * 2) Broken TSC compensation resets the base at each VCPU
  920. * entry to avoid unknown leaps of TSC even when running
  921. * again on the same CPU. This may cause apparent elapsed
  922. * time to disappear, and the guest to stand still or run
  923. * very slowly.
  924. */
  925. if (vcpu->tsc_catchup) {
  926. u64 tsc = compute_guest_tsc(v, kernel_ns);
  927. if (tsc > tsc_timestamp) {
  928. kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
  929. tsc_timestamp = tsc;
  930. }
  931. }
  932. local_irq_restore(flags);
  933. if (!vcpu->time_page)
  934. return 0;
  935. /*
  936. * Time as measured by the TSC may go backwards when resetting the base
  937. * tsc_timestamp. The reason for this is that the TSC resolution is
  938. * higher than the resolution of the other clock scales. Thus, many
  939. * possible measurments of the TSC correspond to one measurement of any
  940. * other clock, and so a spread of values is possible. This is not a
  941. * problem for the computation of the nanosecond clock; with TSC rates
  942. * around 1GHZ, there can only be a few cycles which correspond to one
  943. * nanosecond value, and any path through this code will inevitably
  944. * take longer than that. However, with the kernel_ns value itself,
  945. * the precision may be much lower, down to HZ granularity. If the
  946. * first sampling of TSC against kernel_ns ends in the low part of the
  947. * range, and the second in the high end of the range, we can get:
  948. *
  949. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  950. *
  951. * As the sampling errors potentially range in the thousands of cycles,
  952. * it is possible such a time value has already been observed by the
  953. * guest. To protect against this, we must compute the system time as
  954. * observed by the guest and ensure the new system time is greater.
  955. */
  956. max_kernel_ns = 0;
  957. if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
  958. max_kernel_ns = vcpu->last_guest_tsc -
  959. vcpu->hv_clock.tsc_timestamp;
  960. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  961. vcpu->hv_clock.tsc_to_system_mul,
  962. vcpu->hv_clock.tsc_shift);
  963. max_kernel_ns += vcpu->last_kernel_ns;
  964. }
  965. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  966. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  967. &vcpu->hv_clock.tsc_shift,
  968. &vcpu->hv_clock.tsc_to_system_mul);
  969. vcpu->hw_tsc_khz = this_tsc_khz;
  970. }
  971. if (max_kernel_ns > kernel_ns)
  972. kernel_ns = max_kernel_ns;
  973. /* With all the info we got, fill in the values */
  974. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  975. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  976. vcpu->last_kernel_ns = kernel_ns;
  977. vcpu->last_guest_tsc = tsc_timestamp;
  978. vcpu->hv_clock.flags = 0;
  979. /*
  980. * The interface expects us to write an even number signaling that the
  981. * update is finished. Since the guest won't see the intermediate
  982. * state, we just increase by 2 at the end.
  983. */
  984. vcpu->hv_clock.version += 2;
  985. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  986. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  987. sizeof(vcpu->hv_clock));
  988. kunmap_atomic(shared_kaddr, KM_USER0);
  989. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  990. return 0;
  991. }
  992. static bool msr_mtrr_valid(unsigned msr)
  993. {
  994. switch (msr) {
  995. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  996. case MSR_MTRRfix64K_00000:
  997. case MSR_MTRRfix16K_80000:
  998. case MSR_MTRRfix16K_A0000:
  999. case MSR_MTRRfix4K_C0000:
  1000. case MSR_MTRRfix4K_C8000:
  1001. case MSR_MTRRfix4K_D0000:
  1002. case MSR_MTRRfix4K_D8000:
  1003. case MSR_MTRRfix4K_E0000:
  1004. case MSR_MTRRfix4K_E8000:
  1005. case MSR_MTRRfix4K_F0000:
  1006. case MSR_MTRRfix4K_F8000:
  1007. case MSR_MTRRdefType:
  1008. case MSR_IA32_CR_PAT:
  1009. return true;
  1010. case 0x2f8:
  1011. return true;
  1012. }
  1013. return false;
  1014. }
  1015. static bool valid_pat_type(unsigned t)
  1016. {
  1017. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1018. }
  1019. static bool valid_mtrr_type(unsigned t)
  1020. {
  1021. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1022. }
  1023. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1024. {
  1025. int i;
  1026. if (!msr_mtrr_valid(msr))
  1027. return false;
  1028. if (msr == MSR_IA32_CR_PAT) {
  1029. for (i = 0; i < 8; i++)
  1030. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1031. return false;
  1032. return true;
  1033. } else if (msr == MSR_MTRRdefType) {
  1034. if (data & ~0xcff)
  1035. return false;
  1036. return valid_mtrr_type(data & 0xff);
  1037. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1038. for (i = 0; i < 8 ; i++)
  1039. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1040. return false;
  1041. return true;
  1042. }
  1043. /* variable MTRRs */
  1044. return valid_mtrr_type(data & 0xff);
  1045. }
  1046. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1047. {
  1048. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1049. if (!mtrr_valid(vcpu, msr, data))
  1050. return 1;
  1051. if (msr == MSR_MTRRdefType) {
  1052. vcpu->arch.mtrr_state.def_type = data;
  1053. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1054. } else if (msr == MSR_MTRRfix64K_00000)
  1055. p[0] = data;
  1056. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1057. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1058. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1059. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1060. else if (msr == MSR_IA32_CR_PAT)
  1061. vcpu->arch.pat = data;
  1062. else { /* Variable MTRRs */
  1063. int idx, is_mtrr_mask;
  1064. u64 *pt;
  1065. idx = (msr - 0x200) / 2;
  1066. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1067. if (!is_mtrr_mask)
  1068. pt =
  1069. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1070. else
  1071. pt =
  1072. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1073. *pt = data;
  1074. }
  1075. kvm_mmu_reset_context(vcpu);
  1076. return 0;
  1077. }
  1078. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1079. {
  1080. u64 mcg_cap = vcpu->arch.mcg_cap;
  1081. unsigned bank_num = mcg_cap & 0xff;
  1082. switch (msr) {
  1083. case MSR_IA32_MCG_STATUS:
  1084. vcpu->arch.mcg_status = data;
  1085. break;
  1086. case MSR_IA32_MCG_CTL:
  1087. if (!(mcg_cap & MCG_CTL_P))
  1088. return 1;
  1089. if (data != 0 && data != ~(u64)0)
  1090. return -1;
  1091. vcpu->arch.mcg_ctl = data;
  1092. break;
  1093. default:
  1094. if (msr >= MSR_IA32_MC0_CTL &&
  1095. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1096. u32 offset = msr - MSR_IA32_MC0_CTL;
  1097. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1098. * some Linux kernels though clear bit 10 in bank 4 to
  1099. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1100. * this to avoid an uncatched #GP in the guest
  1101. */
  1102. if ((offset & 0x3) == 0 &&
  1103. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1104. return -1;
  1105. vcpu->arch.mce_banks[offset] = data;
  1106. break;
  1107. }
  1108. return 1;
  1109. }
  1110. return 0;
  1111. }
  1112. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1113. {
  1114. struct kvm *kvm = vcpu->kvm;
  1115. int lm = is_long_mode(vcpu);
  1116. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1117. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1118. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1119. : kvm->arch.xen_hvm_config.blob_size_32;
  1120. u32 page_num = data & ~PAGE_MASK;
  1121. u64 page_addr = data & PAGE_MASK;
  1122. u8 *page;
  1123. int r;
  1124. r = -E2BIG;
  1125. if (page_num >= blob_size)
  1126. goto out;
  1127. r = -ENOMEM;
  1128. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1129. if (!page)
  1130. goto out;
  1131. r = -EFAULT;
  1132. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1133. goto out_free;
  1134. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1135. goto out_free;
  1136. r = 0;
  1137. out_free:
  1138. kfree(page);
  1139. out:
  1140. return r;
  1141. }
  1142. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1143. {
  1144. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1145. }
  1146. static bool kvm_hv_msr_partition_wide(u32 msr)
  1147. {
  1148. bool r = false;
  1149. switch (msr) {
  1150. case HV_X64_MSR_GUEST_OS_ID:
  1151. case HV_X64_MSR_HYPERCALL:
  1152. r = true;
  1153. break;
  1154. }
  1155. return r;
  1156. }
  1157. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1158. {
  1159. struct kvm *kvm = vcpu->kvm;
  1160. switch (msr) {
  1161. case HV_X64_MSR_GUEST_OS_ID:
  1162. kvm->arch.hv_guest_os_id = data;
  1163. /* setting guest os id to zero disables hypercall page */
  1164. if (!kvm->arch.hv_guest_os_id)
  1165. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1166. break;
  1167. case HV_X64_MSR_HYPERCALL: {
  1168. u64 gfn;
  1169. unsigned long addr;
  1170. u8 instructions[4];
  1171. /* if guest os id is not set hypercall should remain disabled */
  1172. if (!kvm->arch.hv_guest_os_id)
  1173. break;
  1174. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1175. kvm->arch.hv_hypercall = data;
  1176. break;
  1177. }
  1178. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1179. addr = gfn_to_hva(kvm, gfn);
  1180. if (kvm_is_error_hva(addr))
  1181. return 1;
  1182. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1183. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1184. if (copy_to_user((void __user *)addr, instructions, 4))
  1185. return 1;
  1186. kvm->arch.hv_hypercall = data;
  1187. break;
  1188. }
  1189. default:
  1190. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1191. "data 0x%llx\n", msr, data);
  1192. return 1;
  1193. }
  1194. return 0;
  1195. }
  1196. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1197. {
  1198. switch (msr) {
  1199. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1200. unsigned long addr;
  1201. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1202. vcpu->arch.hv_vapic = data;
  1203. break;
  1204. }
  1205. addr = gfn_to_hva(vcpu->kvm, data >>
  1206. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1207. if (kvm_is_error_hva(addr))
  1208. return 1;
  1209. if (clear_user((void __user *)addr, PAGE_SIZE))
  1210. return 1;
  1211. vcpu->arch.hv_vapic = data;
  1212. break;
  1213. }
  1214. case HV_X64_MSR_EOI:
  1215. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1216. case HV_X64_MSR_ICR:
  1217. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1218. case HV_X64_MSR_TPR:
  1219. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1220. default:
  1221. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1222. "data 0x%llx\n", msr, data);
  1223. return 1;
  1224. }
  1225. return 0;
  1226. }
  1227. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1228. {
  1229. switch (msr) {
  1230. case MSR_EFER:
  1231. return set_efer(vcpu, data);
  1232. case MSR_K7_HWCR:
  1233. data &= ~(u64)0x40; /* ignore flush filter disable */
  1234. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1235. if (data != 0) {
  1236. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1237. data);
  1238. return 1;
  1239. }
  1240. break;
  1241. case MSR_FAM10H_MMIO_CONF_BASE:
  1242. if (data != 0) {
  1243. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1244. "0x%llx\n", data);
  1245. return 1;
  1246. }
  1247. break;
  1248. case MSR_AMD64_NB_CFG:
  1249. break;
  1250. case MSR_IA32_DEBUGCTLMSR:
  1251. if (!data) {
  1252. /* We support the non-activated case already */
  1253. break;
  1254. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1255. /* Values other than LBR and BTF are vendor-specific,
  1256. thus reserved and should throw a #GP */
  1257. return 1;
  1258. }
  1259. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1260. __func__, data);
  1261. break;
  1262. case MSR_IA32_UCODE_REV:
  1263. case MSR_IA32_UCODE_WRITE:
  1264. case MSR_VM_HSAVE_PA:
  1265. case MSR_AMD64_PATCH_LOADER:
  1266. break;
  1267. case 0x200 ... 0x2ff:
  1268. return set_msr_mtrr(vcpu, msr, data);
  1269. case MSR_IA32_APICBASE:
  1270. kvm_set_apic_base(vcpu, data);
  1271. break;
  1272. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1273. return kvm_x2apic_msr_write(vcpu, msr, data);
  1274. case MSR_IA32_MISC_ENABLE:
  1275. vcpu->arch.ia32_misc_enable_msr = data;
  1276. break;
  1277. case MSR_KVM_WALL_CLOCK_NEW:
  1278. case MSR_KVM_WALL_CLOCK:
  1279. vcpu->kvm->arch.wall_clock = data;
  1280. kvm_write_wall_clock(vcpu->kvm, data);
  1281. break;
  1282. case MSR_KVM_SYSTEM_TIME_NEW:
  1283. case MSR_KVM_SYSTEM_TIME: {
  1284. if (vcpu->arch.time_page) {
  1285. kvm_release_page_dirty(vcpu->arch.time_page);
  1286. vcpu->arch.time_page = NULL;
  1287. }
  1288. vcpu->arch.time = data;
  1289. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1290. /* we verify if the enable bit is set... */
  1291. if (!(data & 1))
  1292. break;
  1293. /* ...but clean it before doing the actual write */
  1294. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1295. vcpu->arch.time_page =
  1296. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1297. if (is_error_page(vcpu->arch.time_page)) {
  1298. kvm_release_page_clean(vcpu->arch.time_page);
  1299. vcpu->arch.time_page = NULL;
  1300. }
  1301. break;
  1302. }
  1303. case MSR_IA32_MCG_CTL:
  1304. case MSR_IA32_MCG_STATUS:
  1305. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1306. return set_msr_mce(vcpu, msr, data);
  1307. /* Performance counters are not protected by a CPUID bit,
  1308. * so we should check all of them in the generic path for the sake of
  1309. * cross vendor migration.
  1310. * Writing a zero into the event select MSRs disables them,
  1311. * which we perfectly emulate ;-). Any other value should be at least
  1312. * reported, some guests depend on them.
  1313. */
  1314. case MSR_P6_EVNTSEL0:
  1315. case MSR_P6_EVNTSEL1:
  1316. case MSR_K7_EVNTSEL0:
  1317. case MSR_K7_EVNTSEL1:
  1318. case MSR_K7_EVNTSEL2:
  1319. case MSR_K7_EVNTSEL3:
  1320. if (data != 0)
  1321. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1322. "0x%x data 0x%llx\n", msr, data);
  1323. break;
  1324. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1325. * so we ignore writes to make it happy.
  1326. */
  1327. case MSR_P6_PERFCTR0:
  1328. case MSR_P6_PERFCTR1:
  1329. case MSR_K7_PERFCTR0:
  1330. case MSR_K7_PERFCTR1:
  1331. case MSR_K7_PERFCTR2:
  1332. case MSR_K7_PERFCTR3:
  1333. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1334. "0x%x data 0x%llx\n", msr, data);
  1335. break;
  1336. case MSR_K7_CLK_CTL:
  1337. /*
  1338. * Ignore all writes to this no longer documented MSR.
  1339. * Writes are only relevant for old K7 processors,
  1340. * all pre-dating SVM, but a recommended workaround from
  1341. * AMD for these chips. It is possible to speicify the
  1342. * affected processor models on the command line, hence
  1343. * the need to ignore the workaround.
  1344. */
  1345. break;
  1346. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1347. if (kvm_hv_msr_partition_wide(msr)) {
  1348. int r;
  1349. mutex_lock(&vcpu->kvm->lock);
  1350. r = set_msr_hyperv_pw(vcpu, msr, data);
  1351. mutex_unlock(&vcpu->kvm->lock);
  1352. return r;
  1353. } else
  1354. return set_msr_hyperv(vcpu, msr, data);
  1355. break;
  1356. default:
  1357. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1358. return xen_hvm_config(vcpu, data);
  1359. if (!ignore_msrs) {
  1360. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1361. msr, data);
  1362. return 1;
  1363. } else {
  1364. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1365. msr, data);
  1366. break;
  1367. }
  1368. }
  1369. return 0;
  1370. }
  1371. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1372. /*
  1373. * Reads an msr value (of 'msr_index') into 'pdata'.
  1374. * Returns 0 on success, non-0 otherwise.
  1375. * Assumes vcpu_load() was already called.
  1376. */
  1377. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1378. {
  1379. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1380. }
  1381. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1382. {
  1383. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1384. if (!msr_mtrr_valid(msr))
  1385. return 1;
  1386. if (msr == MSR_MTRRdefType)
  1387. *pdata = vcpu->arch.mtrr_state.def_type +
  1388. (vcpu->arch.mtrr_state.enabled << 10);
  1389. else if (msr == MSR_MTRRfix64K_00000)
  1390. *pdata = p[0];
  1391. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1392. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1393. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1394. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1395. else if (msr == MSR_IA32_CR_PAT)
  1396. *pdata = vcpu->arch.pat;
  1397. else { /* Variable MTRRs */
  1398. int idx, is_mtrr_mask;
  1399. u64 *pt;
  1400. idx = (msr - 0x200) / 2;
  1401. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1402. if (!is_mtrr_mask)
  1403. pt =
  1404. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1405. else
  1406. pt =
  1407. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1408. *pdata = *pt;
  1409. }
  1410. return 0;
  1411. }
  1412. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1413. {
  1414. u64 data;
  1415. u64 mcg_cap = vcpu->arch.mcg_cap;
  1416. unsigned bank_num = mcg_cap & 0xff;
  1417. switch (msr) {
  1418. case MSR_IA32_P5_MC_ADDR:
  1419. case MSR_IA32_P5_MC_TYPE:
  1420. data = 0;
  1421. break;
  1422. case MSR_IA32_MCG_CAP:
  1423. data = vcpu->arch.mcg_cap;
  1424. break;
  1425. case MSR_IA32_MCG_CTL:
  1426. if (!(mcg_cap & MCG_CTL_P))
  1427. return 1;
  1428. data = vcpu->arch.mcg_ctl;
  1429. break;
  1430. case MSR_IA32_MCG_STATUS:
  1431. data = vcpu->arch.mcg_status;
  1432. break;
  1433. default:
  1434. if (msr >= MSR_IA32_MC0_CTL &&
  1435. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1436. u32 offset = msr - MSR_IA32_MC0_CTL;
  1437. data = vcpu->arch.mce_banks[offset];
  1438. break;
  1439. }
  1440. return 1;
  1441. }
  1442. *pdata = data;
  1443. return 0;
  1444. }
  1445. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1446. {
  1447. u64 data = 0;
  1448. struct kvm *kvm = vcpu->kvm;
  1449. switch (msr) {
  1450. case HV_X64_MSR_GUEST_OS_ID:
  1451. data = kvm->arch.hv_guest_os_id;
  1452. break;
  1453. case HV_X64_MSR_HYPERCALL:
  1454. data = kvm->arch.hv_hypercall;
  1455. break;
  1456. default:
  1457. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1458. return 1;
  1459. }
  1460. *pdata = data;
  1461. return 0;
  1462. }
  1463. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1464. {
  1465. u64 data = 0;
  1466. switch (msr) {
  1467. case HV_X64_MSR_VP_INDEX: {
  1468. int r;
  1469. struct kvm_vcpu *v;
  1470. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1471. if (v == vcpu)
  1472. data = r;
  1473. break;
  1474. }
  1475. case HV_X64_MSR_EOI:
  1476. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1477. case HV_X64_MSR_ICR:
  1478. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1479. case HV_X64_MSR_TPR:
  1480. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1481. default:
  1482. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1483. return 1;
  1484. }
  1485. *pdata = data;
  1486. return 0;
  1487. }
  1488. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1489. {
  1490. u64 data;
  1491. switch (msr) {
  1492. case MSR_IA32_PLATFORM_ID:
  1493. case MSR_IA32_UCODE_REV:
  1494. case MSR_IA32_EBL_CR_POWERON:
  1495. case MSR_IA32_DEBUGCTLMSR:
  1496. case MSR_IA32_LASTBRANCHFROMIP:
  1497. case MSR_IA32_LASTBRANCHTOIP:
  1498. case MSR_IA32_LASTINTFROMIP:
  1499. case MSR_IA32_LASTINTTOIP:
  1500. case MSR_K8_SYSCFG:
  1501. case MSR_K7_HWCR:
  1502. case MSR_VM_HSAVE_PA:
  1503. case MSR_P6_PERFCTR0:
  1504. case MSR_P6_PERFCTR1:
  1505. case MSR_P6_EVNTSEL0:
  1506. case MSR_P6_EVNTSEL1:
  1507. case MSR_K7_EVNTSEL0:
  1508. case MSR_K7_PERFCTR0:
  1509. case MSR_K8_INT_PENDING_MSG:
  1510. case MSR_AMD64_NB_CFG:
  1511. case MSR_FAM10H_MMIO_CONF_BASE:
  1512. data = 0;
  1513. break;
  1514. case MSR_MTRRcap:
  1515. data = 0x500 | KVM_NR_VAR_MTRR;
  1516. break;
  1517. case 0x200 ... 0x2ff:
  1518. return get_msr_mtrr(vcpu, msr, pdata);
  1519. case 0xcd: /* fsb frequency */
  1520. data = 3;
  1521. break;
  1522. /*
  1523. * MSR_EBC_FREQUENCY_ID
  1524. * Conservative value valid for even the basic CPU models.
  1525. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1526. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1527. * and 266MHz for model 3, or 4. Set Core Clock
  1528. * Frequency to System Bus Frequency Ratio to 1 (bits
  1529. * 31:24) even though these are only valid for CPU
  1530. * models > 2, however guests may end up dividing or
  1531. * multiplying by zero otherwise.
  1532. */
  1533. case MSR_EBC_FREQUENCY_ID:
  1534. data = 1 << 24;
  1535. break;
  1536. case MSR_IA32_APICBASE:
  1537. data = kvm_get_apic_base(vcpu);
  1538. break;
  1539. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1540. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1541. break;
  1542. case MSR_IA32_MISC_ENABLE:
  1543. data = vcpu->arch.ia32_misc_enable_msr;
  1544. break;
  1545. case MSR_IA32_PERF_STATUS:
  1546. /* TSC increment by tick */
  1547. data = 1000ULL;
  1548. /* CPU multiplier */
  1549. data |= (((uint64_t)4ULL) << 40);
  1550. break;
  1551. case MSR_EFER:
  1552. data = vcpu->arch.efer;
  1553. break;
  1554. case MSR_KVM_WALL_CLOCK:
  1555. case MSR_KVM_WALL_CLOCK_NEW:
  1556. data = vcpu->kvm->arch.wall_clock;
  1557. break;
  1558. case MSR_KVM_SYSTEM_TIME:
  1559. case MSR_KVM_SYSTEM_TIME_NEW:
  1560. data = vcpu->arch.time;
  1561. break;
  1562. case MSR_IA32_P5_MC_ADDR:
  1563. case MSR_IA32_P5_MC_TYPE:
  1564. case MSR_IA32_MCG_CAP:
  1565. case MSR_IA32_MCG_CTL:
  1566. case MSR_IA32_MCG_STATUS:
  1567. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1568. return get_msr_mce(vcpu, msr, pdata);
  1569. case MSR_K7_CLK_CTL:
  1570. /*
  1571. * Provide expected ramp-up count for K7. All other
  1572. * are set to zero, indicating minimum divisors for
  1573. * every field.
  1574. *
  1575. * This prevents guest kernels on AMD host with CPU
  1576. * type 6, model 8 and higher from exploding due to
  1577. * the rdmsr failing.
  1578. */
  1579. data = 0x20000000;
  1580. break;
  1581. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1582. if (kvm_hv_msr_partition_wide(msr)) {
  1583. int r;
  1584. mutex_lock(&vcpu->kvm->lock);
  1585. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1586. mutex_unlock(&vcpu->kvm->lock);
  1587. return r;
  1588. } else
  1589. return get_msr_hyperv(vcpu, msr, pdata);
  1590. break;
  1591. default:
  1592. if (!ignore_msrs) {
  1593. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1594. return 1;
  1595. } else {
  1596. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1597. data = 0;
  1598. }
  1599. break;
  1600. }
  1601. *pdata = data;
  1602. return 0;
  1603. }
  1604. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1605. /*
  1606. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1607. *
  1608. * @return number of msrs set successfully.
  1609. */
  1610. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1611. struct kvm_msr_entry *entries,
  1612. int (*do_msr)(struct kvm_vcpu *vcpu,
  1613. unsigned index, u64 *data))
  1614. {
  1615. int i, idx;
  1616. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1617. for (i = 0; i < msrs->nmsrs; ++i)
  1618. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1619. break;
  1620. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1621. return i;
  1622. }
  1623. /*
  1624. * Read or write a bunch of msrs. Parameters are user addresses.
  1625. *
  1626. * @return number of msrs set successfully.
  1627. */
  1628. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1629. int (*do_msr)(struct kvm_vcpu *vcpu,
  1630. unsigned index, u64 *data),
  1631. int writeback)
  1632. {
  1633. struct kvm_msrs msrs;
  1634. struct kvm_msr_entry *entries;
  1635. int r, n;
  1636. unsigned size;
  1637. r = -EFAULT;
  1638. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1639. goto out;
  1640. r = -E2BIG;
  1641. if (msrs.nmsrs >= MAX_IO_MSRS)
  1642. goto out;
  1643. r = -ENOMEM;
  1644. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1645. entries = kmalloc(size, GFP_KERNEL);
  1646. if (!entries)
  1647. goto out;
  1648. r = -EFAULT;
  1649. if (copy_from_user(entries, user_msrs->entries, size))
  1650. goto out_free;
  1651. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1652. if (r < 0)
  1653. goto out_free;
  1654. r = -EFAULT;
  1655. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1656. goto out_free;
  1657. r = n;
  1658. out_free:
  1659. kfree(entries);
  1660. out:
  1661. return r;
  1662. }
  1663. int kvm_dev_ioctl_check_extension(long ext)
  1664. {
  1665. int r;
  1666. switch (ext) {
  1667. case KVM_CAP_IRQCHIP:
  1668. case KVM_CAP_HLT:
  1669. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1670. case KVM_CAP_SET_TSS_ADDR:
  1671. case KVM_CAP_EXT_CPUID:
  1672. case KVM_CAP_CLOCKSOURCE:
  1673. case KVM_CAP_PIT:
  1674. case KVM_CAP_NOP_IO_DELAY:
  1675. case KVM_CAP_MP_STATE:
  1676. case KVM_CAP_SYNC_MMU:
  1677. case KVM_CAP_REINJECT_CONTROL:
  1678. case KVM_CAP_IRQ_INJECT_STATUS:
  1679. case KVM_CAP_ASSIGN_DEV_IRQ:
  1680. case KVM_CAP_IRQFD:
  1681. case KVM_CAP_IOEVENTFD:
  1682. case KVM_CAP_PIT2:
  1683. case KVM_CAP_PIT_STATE2:
  1684. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1685. case KVM_CAP_XEN_HVM:
  1686. case KVM_CAP_ADJUST_CLOCK:
  1687. case KVM_CAP_VCPU_EVENTS:
  1688. case KVM_CAP_HYPERV:
  1689. case KVM_CAP_HYPERV_VAPIC:
  1690. case KVM_CAP_HYPERV_SPIN:
  1691. case KVM_CAP_PCI_SEGMENT:
  1692. case KVM_CAP_DEBUGREGS:
  1693. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1694. case KVM_CAP_XSAVE:
  1695. r = 1;
  1696. break;
  1697. case KVM_CAP_COALESCED_MMIO:
  1698. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1699. break;
  1700. case KVM_CAP_VAPIC:
  1701. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1702. break;
  1703. case KVM_CAP_NR_VCPUS:
  1704. r = KVM_MAX_VCPUS;
  1705. break;
  1706. case KVM_CAP_NR_MEMSLOTS:
  1707. r = KVM_MEMORY_SLOTS;
  1708. break;
  1709. case KVM_CAP_PV_MMU: /* obsolete */
  1710. r = 0;
  1711. break;
  1712. case KVM_CAP_IOMMU:
  1713. r = iommu_found();
  1714. break;
  1715. case KVM_CAP_MCE:
  1716. r = KVM_MAX_MCE_BANKS;
  1717. break;
  1718. case KVM_CAP_XCRS:
  1719. r = cpu_has_xsave;
  1720. break;
  1721. default:
  1722. r = 0;
  1723. break;
  1724. }
  1725. return r;
  1726. }
  1727. long kvm_arch_dev_ioctl(struct file *filp,
  1728. unsigned int ioctl, unsigned long arg)
  1729. {
  1730. void __user *argp = (void __user *)arg;
  1731. long r;
  1732. switch (ioctl) {
  1733. case KVM_GET_MSR_INDEX_LIST: {
  1734. struct kvm_msr_list __user *user_msr_list = argp;
  1735. struct kvm_msr_list msr_list;
  1736. unsigned n;
  1737. r = -EFAULT;
  1738. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1739. goto out;
  1740. n = msr_list.nmsrs;
  1741. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1742. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1743. goto out;
  1744. r = -E2BIG;
  1745. if (n < msr_list.nmsrs)
  1746. goto out;
  1747. r = -EFAULT;
  1748. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1749. num_msrs_to_save * sizeof(u32)))
  1750. goto out;
  1751. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1752. &emulated_msrs,
  1753. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1754. goto out;
  1755. r = 0;
  1756. break;
  1757. }
  1758. case KVM_GET_SUPPORTED_CPUID: {
  1759. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1760. struct kvm_cpuid2 cpuid;
  1761. r = -EFAULT;
  1762. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1763. goto out;
  1764. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1765. cpuid_arg->entries);
  1766. if (r)
  1767. goto out;
  1768. r = -EFAULT;
  1769. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1770. goto out;
  1771. r = 0;
  1772. break;
  1773. }
  1774. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1775. u64 mce_cap;
  1776. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1777. r = -EFAULT;
  1778. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1779. goto out;
  1780. r = 0;
  1781. break;
  1782. }
  1783. default:
  1784. r = -EINVAL;
  1785. }
  1786. out:
  1787. return r;
  1788. }
  1789. static void wbinvd_ipi(void *garbage)
  1790. {
  1791. wbinvd();
  1792. }
  1793. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1794. {
  1795. return vcpu->kvm->arch.iommu_domain &&
  1796. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1797. }
  1798. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1799. {
  1800. /* Address WBINVD may be executed by guest */
  1801. if (need_emulate_wbinvd(vcpu)) {
  1802. if (kvm_x86_ops->has_wbinvd_exit())
  1803. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1804. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1805. smp_call_function_single(vcpu->cpu,
  1806. wbinvd_ipi, NULL, 1);
  1807. }
  1808. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1809. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1810. /* Make sure TSC doesn't go backwards */
  1811. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  1812. native_read_tsc() - vcpu->arch.last_host_tsc;
  1813. if (tsc_delta < 0)
  1814. mark_tsc_unstable("KVM discovered backwards TSC");
  1815. if (check_tsc_unstable()) {
  1816. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1817. vcpu->arch.tsc_catchup = 1;
  1818. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1819. }
  1820. if (vcpu->cpu != cpu)
  1821. kvm_migrate_timers(vcpu);
  1822. vcpu->cpu = cpu;
  1823. }
  1824. }
  1825. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1826. {
  1827. kvm_x86_ops->vcpu_put(vcpu);
  1828. kvm_put_guest_fpu(vcpu);
  1829. vcpu->arch.last_host_tsc = native_read_tsc();
  1830. }
  1831. static int is_efer_nx(void)
  1832. {
  1833. unsigned long long efer = 0;
  1834. rdmsrl_safe(MSR_EFER, &efer);
  1835. return efer & EFER_NX;
  1836. }
  1837. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1838. {
  1839. int i;
  1840. struct kvm_cpuid_entry2 *e, *entry;
  1841. entry = NULL;
  1842. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1843. e = &vcpu->arch.cpuid_entries[i];
  1844. if (e->function == 0x80000001) {
  1845. entry = e;
  1846. break;
  1847. }
  1848. }
  1849. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1850. entry->edx &= ~(1 << 20);
  1851. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1852. }
  1853. }
  1854. /* when an old userspace process fills a new kernel module */
  1855. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1856. struct kvm_cpuid *cpuid,
  1857. struct kvm_cpuid_entry __user *entries)
  1858. {
  1859. int r, i;
  1860. struct kvm_cpuid_entry *cpuid_entries;
  1861. r = -E2BIG;
  1862. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1863. goto out;
  1864. r = -ENOMEM;
  1865. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1866. if (!cpuid_entries)
  1867. goto out;
  1868. r = -EFAULT;
  1869. if (copy_from_user(cpuid_entries, entries,
  1870. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1871. goto out_free;
  1872. for (i = 0; i < cpuid->nent; i++) {
  1873. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1874. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1875. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1876. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1877. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1878. vcpu->arch.cpuid_entries[i].index = 0;
  1879. vcpu->arch.cpuid_entries[i].flags = 0;
  1880. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1881. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1882. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1883. }
  1884. vcpu->arch.cpuid_nent = cpuid->nent;
  1885. cpuid_fix_nx_cap(vcpu);
  1886. r = 0;
  1887. kvm_apic_set_version(vcpu);
  1888. kvm_x86_ops->cpuid_update(vcpu);
  1889. update_cpuid(vcpu);
  1890. out_free:
  1891. vfree(cpuid_entries);
  1892. out:
  1893. return r;
  1894. }
  1895. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1896. struct kvm_cpuid2 *cpuid,
  1897. struct kvm_cpuid_entry2 __user *entries)
  1898. {
  1899. int r;
  1900. r = -E2BIG;
  1901. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1902. goto out;
  1903. r = -EFAULT;
  1904. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1905. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1906. goto out;
  1907. vcpu->arch.cpuid_nent = cpuid->nent;
  1908. kvm_apic_set_version(vcpu);
  1909. kvm_x86_ops->cpuid_update(vcpu);
  1910. update_cpuid(vcpu);
  1911. return 0;
  1912. out:
  1913. return r;
  1914. }
  1915. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1916. struct kvm_cpuid2 *cpuid,
  1917. struct kvm_cpuid_entry2 __user *entries)
  1918. {
  1919. int r;
  1920. r = -E2BIG;
  1921. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1922. goto out;
  1923. r = -EFAULT;
  1924. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1925. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1926. goto out;
  1927. return 0;
  1928. out:
  1929. cpuid->nent = vcpu->arch.cpuid_nent;
  1930. return r;
  1931. }
  1932. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1933. u32 index)
  1934. {
  1935. entry->function = function;
  1936. entry->index = index;
  1937. cpuid_count(entry->function, entry->index,
  1938. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1939. entry->flags = 0;
  1940. }
  1941. #define F(x) bit(X86_FEATURE_##x)
  1942. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1943. u32 index, int *nent, int maxnent)
  1944. {
  1945. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1946. #ifdef CONFIG_X86_64
  1947. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1948. ? F(GBPAGES) : 0;
  1949. unsigned f_lm = F(LM);
  1950. #else
  1951. unsigned f_gbpages = 0;
  1952. unsigned f_lm = 0;
  1953. #endif
  1954. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1955. /* cpuid 1.edx */
  1956. const u32 kvm_supported_word0_x86_features =
  1957. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1958. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1959. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1960. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1961. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1962. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1963. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1964. 0 /* HTT, TM, Reserved, PBE */;
  1965. /* cpuid 0x80000001.edx */
  1966. const u32 kvm_supported_word1_x86_features =
  1967. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1968. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1969. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1970. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1971. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1972. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1973. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1974. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1975. /* cpuid 1.ecx */
  1976. const u32 kvm_supported_word4_x86_features =
  1977. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  1978. 0 /* DS-CPL, VMX, SMX, EST */ |
  1979. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1980. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1981. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1982. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1983. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  1984. F(F16C);
  1985. /* cpuid 0x80000001.ecx */
  1986. const u32 kvm_supported_word6_x86_features =
  1987. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  1988. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1989. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
  1990. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  1991. /* all calls to cpuid_count() should be made on the same cpu */
  1992. get_cpu();
  1993. do_cpuid_1_ent(entry, function, index);
  1994. ++*nent;
  1995. switch (function) {
  1996. case 0:
  1997. entry->eax = min(entry->eax, (u32)0xd);
  1998. break;
  1999. case 1:
  2000. entry->edx &= kvm_supported_word0_x86_features;
  2001. entry->ecx &= kvm_supported_word4_x86_features;
  2002. /* we support x2apic emulation even if host does not support
  2003. * it since we emulate x2apic in software */
  2004. entry->ecx |= F(X2APIC);
  2005. break;
  2006. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  2007. * may return different values. This forces us to get_cpu() before
  2008. * issuing the first command, and also to emulate this annoying behavior
  2009. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  2010. case 2: {
  2011. int t, times = entry->eax & 0xff;
  2012. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2013. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2014. for (t = 1; t < times && *nent < maxnent; ++t) {
  2015. do_cpuid_1_ent(&entry[t], function, 0);
  2016. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2017. ++*nent;
  2018. }
  2019. break;
  2020. }
  2021. /* function 4 and 0xb have additional index. */
  2022. case 4: {
  2023. int i, cache_type;
  2024. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2025. /* read more entries until cache_type is zero */
  2026. for (i = 1; *nent < maxnent; ++i) {
  2027. cache_type = entry[i - 1].eax & 0x1f;
  2028. if (!cache_type)
  2029. break;
  2030. do_cpuid_1_ent(&entry[i], function, i);
  2031. entry[i].flags |=
  2032. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2033. ++*nent;
  2034. }
  2035. break;
  2036. }
  2037. case 0xb: {
  2038. int i, level_type;
  2039. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2040. /* read more entries until level_type is zero */
  2041. for (i = 1; *nent < maxnent; ++i) {
  2042. level_type = entry[i - 1].ecx & 0xff00;
  2043. if (!level_type)
  2044. break;
  2045. do_cpuid_1_ent(&entry[i], function, i);
  2046. entry[i].flags |=
  2047. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2048. ++*nent;
  2049. }
  2050. break;
  2051. }
  2052. case 0xd: {
  2053. int i;
  2054. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2055. for (i = 1; *nent < maxnent; ++i) {
  2056. if (entry[i - 1].eax == 0 && i != 2)
  2057. break;
  2058. do_cpuid_1_ent(&entry[i], function, i);
  2059. entry[i].flags |=
  2060. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2061. ++*nent;
  2062. }
  2063. break;
  2064. }
  2065. case KVM_CPUID_SIGNATURE: {
  2066. char signature[12] = "KVMKVMKVM\0\0";
  2067. u32 *sigptr = (u32 *)signature;
  2068. entry->eax = 0;
  2069. entry->ebx = sigptr[0];
  2070. entry->ecx = sigptr[1];
  2071. entry->edx = sigptr[2];
  2072. break;
  2073. }
  2074. case KVM_CPUID_FEATURES:
  2075. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  2076. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  2077. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  2078. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  2079. entry->ebx = 0;
  2080. entry->ecx = 0;
  2081. entry->edx = 0;
  2082. break;
  2083. case 0x80000000:
  2084. entry->eax = min(entry->eax, 0x8000001a);
  2085. break;
  2086. case 0x80000001:
  2087. entry->edx &= kvm_supported_word1_x86_features;
  2088. entry->ecx &= kvm_supported_word6_x86_features;
  2089. break;
  2090. }
  2091. kvm_x86_ops->set_supported_cpuid(function, entry);
  2092. put_cpu();
  2093. }
  2094. #undef F
  2095. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  2096. struct kvm_cpuid_entry2 __user *entries)
  2097. {
  2098. struct kvm_cpuid_entry2 *cpuid_entries;
  2099. int limit, nent = 0, r = -E2BIG;
  2100. u32 func;
  2101. if (cpuid->nent < 1)
  2102. goto out;
  2103. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2104. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  2105. r = -ENOMEM;
  2106. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  2107. if (!cpuid_entries)
  2108. goto out;
  2109. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  2110. limit = cpuid_entries[0].eax;
  2111. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  2112. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2113. &nent, cpuid->nent);
  2114. r = -E2BIG;
  2115. if (nent >= cpuid->nent)
  2116. goto out_free;
  2117. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  2118. limit = cpuid_entries[nent - 1].eax;
  2119. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  2120. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2121. &nent, cpuid->nent);
  2122. r = -E2BIG;
  2123. if (nent >= cpuid->nent)
  2124. goto out_free;
  2125. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  2126. cpuid->nent);
  2127. r = -E2BIG;
  2128. if (nent >= cpuid->nent)
  2129. goto out_free;
  2130. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  2131. cpuid->nent);
  2132. r = -E2BIG;
  2133. if (nent >= cpuid->nent)
  2134. goto out_free;
  2135. r = -EFAULT;
  2136. if (copy_to_user(entries, cpuid_entries,
  2137. nent * sizeof(struct kvm_cpuid_entry2)))
  2138. goto out_free;
  2139. cpuid->nent = nent;
  2140. r = 0;
  2141. out_free:
  2142. vfree(cpuid_entries);
  2143. out:
  2144. return r;
  2145. }
  2146. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2147. struct kvm_lapic_state *s)
  2148. {
  2149. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2150. return 0;
  2151. }
  2152. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2153. struct kvm_lapic_state *s)
  2154. {
  2155. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2156. kvm_apic_post_state_restore(vcpu);
  2157. update_cr8_intercept(vcpu);
  2158. return 0;
  2159. }
  2160. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2161. struct kvm_interrupt *irq)
  2162. {
  2163. if (irq->irq < 0 || irq->irq >= 256)
  2164. return -EINVAL;
  2165. if (irqchip_in_kernel(vcpu->kvm))
  2166. return -ENXIO;
  2167. kvm_queue_interrupt(vcpu, irq->irq, false);
  2168. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2169. return 0;
  2170. }
  2171. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2172. {
  2173. kvm_inject_nmi(vcpu);
  2174. return 0;
  2175. }
  2176. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2177. struct kvm_tpr_access_ctl *tac)
  2178. {
  2179. if (tac->flags)
  2180. return -EINVAL;
  2181. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2182. return 0;
  2183. }
  2184. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2185. u64 mcg_cap)
  2186. {
  2187. int r;
  2188. unsigned bank_num = mcg_cap & 0xff, bank;
  2189. r = -EINVAL;
  2190. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2191. goto out;
  2192. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2193. goto out;
  2194. r = 0;
  2195. vcpu->arch.mcg_cap = mcg_cap;
  2196. /* Init IA32_MCG_CTL to all 1s */
  2197. if (mcg_cap & MCG_CTL_P)
  2198. vcpu->arch.mcg_ctl = ~(u64)0;
  2199. /* Init IA32_MCi_CTL to all 1s */
  2200. for (bank = 0; bank < bank_num; bank++)
  2201. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2202. out:
  2203. return r;
  2204. }
  2205. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2206. struct kvm_x86_mce *mce)
  2207. {
  2208. u64 mcg_cap = vcpu->arch.mcg_cap;
  2209. unsigned bank_num = mcg_cap & 0xff;
  2210. u64 *banks = vcpu->arch.mce_banks;
  2211. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2212. return -EINVAL;
  2213. /*
  2214. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2215. * reporting is disabled
  2216. */
  2217. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2218. vcpu->arch.mcg_ctl != ~(u64)0)
  2219. return 0;
  2220. banks += 4 * mce->bank;
  2221. /*
  2222. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2223. * reporting is disabled for the bank
  2224. */
  2225. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2226. return 0;
  2227. if (mce->status & MCI_STATUS_UC) {
  2228. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2229. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2230. printk(KERN_DEBUG "kvm: set_mce: "
  2231. "injects mce exception while "
  2232. "previous one is in progress!\n");
  2233. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2234. return 0;
  2235. }
  2236. if (banks[1] & MCI_STATUS_VAL)
  2237. mce->status |= MCI_STATUS_OVER;
  2238. banks[2] = mce->addr;
  2239. banks[3] = mce->misc;
  2240. vcpu->arch.mcg_status = mce->mcg_status;
  2241. banks[1] = mce->status;
  2242. kvm_queue_exception(vcpu, MC_VECTOR);
  2243. } else if (!(banks[1] & MCI_STATUS_VAL)
  2244. || !(banks[1] & MCI_STATUS_UC)) {
  2245. if (banks[1] & MCI_STATUS_VAL)
  2246. mce->status |= MCI_STATUS_OVER;
  2247. banks[2] = mce->addr;
  2248. banks[3] = mce->misc;
  2249. banks[1] = mce->status;
  2250. } else
  2251. banks[1] |= MCI_STATUS_OVER;
  2252. return 0;
  2253. }
  2254. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2255. struct kvm_vcpu_events *events)
  2256. {
  2257. events->exception.injected =
  2258. vcpu->arch.exception.pending &&
  2259. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2260. events->exception.nr = vcpu->arch.exception.nr;
  2261. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2262. events->exception.pad = 0;
  2263. events->exception.error_code = vcpu->arch.exception.error_code;
  2264. events->interrupt.injected =
  2265. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2266. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2267. events->interrupt.soft = 0;
  2268. events->interrupt.shadow =
  2269. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2270. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2271. events->nmi.injected = vcpu->arch.nmi_injected;
  2272. events->nmi.pending = vcpu->arch.nmi_pending;
  2273. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2274. events->nmi.pad = 0;
  2275. events->sipi_vector = vcpu->arch.sipi_vector;
  2276. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2277. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2278. | KVM_VCPUEVENT_VALID_SHADOW);
  2279. memset(&events->reserved, 0, sizeof(events->reserved));
  2280. }
  2281. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2282. struct kvm_vcpu_events *events)
  2283. {
  2284. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2285. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2286. | KVM_VCPUEVENT_VALID_SHADOW))
  2287. return -EINVAL;
  2288. vcpu->arch.exception.pending = events->exception.injected;
  2289. vcpu->arch.exception.nr = events->exception.nr;
  2290. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2291. vcpu->arch.exception.error_code = events->exception.error_code;
  2292. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2293. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2294. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2295. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  2296. kvm_pic_clear_isr_ack(vcpu->kvm);
  2297. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2298. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2299. events->interrupt.shadow);
  2300. vcpu->arch.nmi_injected = events->nmi.injected;
  2301. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2302. vcpu->arch.nmi_pending = events->nmi.pending;
  2303. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2304. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2305. vcpu->arch.sipi_vector = events->sipi_vector;
  2306. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2307. return 0;
  2308. }
  2309. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2310. struct kvm_debugregs *dbgregs)
  2311. {
  2312. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2313. dbgregs->dr6 = vcpu->arch.dr6;
  2314. dbgregs->dr7 = vcpu->arch.dr7;
  2315. dbgregs->flags = 0;
  2316. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2317. }
  2318. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2319. struct kvm_debugregs *dbgregs)
  2320. {
  2321. if (dbgregs->flags)
  2322. return -EINVAL;
  2323. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2324. vcpu->arch.dr6 = dbgregs->dr6;
  2325. vcpu->arch.dr7 = dbgregs->dr7;
  2326. return 0;
  2327. }
  2328. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2329. struct kvm_xsave *guest_xsave)
  2330. {
  2331. if (cpu_has_xsave)
  2332. memcpy(guest_xsave->region,
  2333. &vcpu->arch.guest_fpu.state->xsave,
  2334. xstate_size);
  2335. else {
  2336. memcpy(guest_xsave->region,
  2337. &vcpu->arch.guest_fpu.state->fxsave,
  2338. sizeof(struct i387_fxsave_struct));
  2339. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2340. XSTATE_FPSSE;
  2341. }
  2342. }
  2343. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2344. struct kvm_xsave *guest_xsave)
  2345. {
  2346. u64 xstate_bv =
  2347. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2348. if (cpu_has_xsave)
  2349. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2350. guest_xsave->region, xstate_size);
  2351. else {
  2352. if (xstate_bv & ~XSTATE_FPSSE)
  2353. return -EINVAL;
  2354. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2355. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2356. }
  2357. return 0;
  2358. }
  2359. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2360. struct kvm_xcrs *guest_xcrs)
  2361. {
  2362. if (!cpu_has_xsave) {
  2363. guest_xcrs->nr_xcrs = 0;
  2364. return;
  2365. }
  2366. guest_xcrs->nr_xcrs = 1;
  2367. guest_xcrs->flags = 0;
  2368. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2369. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2370. }
  2371. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2372. struct kvm_xcrs *guest_xcrs)
  2373. {
  2374. int i, r = 0;
  2375. if (!cpu_has_xsave)
  2376. return -EINVAL;
  2377. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2378. return -EINVAL;
  2379. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2380. /* Only support XCR0 currently */
  2381. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2382. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2383. guest_xcrs->xcrs[0].value);
  2384. break;
  2385. }
  2386. if (r)
  2387. r = -EINVAL;
  2388. return r;
  2389. }
  2390. long kvm_arch_vcpu_ioctl(struct file *filp,
  2391. unsigned int ioctl, unsigned long arg)
  2392. {
  2393. struct kvm_vcpu *vcpu = filp->private_data;
  2394. void __user *argp = (void __user *)arg;
  2395. int r;
  2396. union {
  2397. struct kvm_lapic_state *lapic;
  2398. struct kvm_xsave *xsave;
  2399. struct kvm_xcrs *xcrs;
  2400. void *buffer;
  2401. } u;
  2402. u.buffer = NULL;
  2403. switch (ioctl) {
  2404. case KVM_GET_LAPIC: {
  2405. r = -EINVAL;
  2406. if (!vcpu->arch.apic)
  2407. goto out;
  2408. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2409. r = -ENOMEM;
  2410. if (!u.lapic)
  2411. goto out;
  2412. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2413. if (r)
  2414. goto out;
  2415. r = -EFAULT;
  2416. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2417. goto out;
  2418. r = 0;
  2419. break;
  2420. }
  2421. case KVM_SET_LAPIC: {
  2422. r = -EINVAL;
  2423. if (!vcpu->arch.apic)
  2424. goto out;
  2425. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2426. r = -ENOMEM;
  2427. if (!u.lapic)
  2428. goto out;
  2429. r = -EFAULT;
  2430. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2431. goto out;
  2432. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2433. if (r)
  2434. goto out;
  2435. r = 0;
  2436. break;
  2437. }
  2438. case KVM_INTERRUPT: {
  2439. struct kvm_interrupt irq;
  2440. r = -EFAULT;
  2441. if (copy_from_user(&irq, argp, sizeof irq))
  2442. goto out;
  2443. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2444. if (r)
  2445. goto out;
  2446. r = 0;
  2447. break;
  2448. }
  2449. case KVM_NMI: {
  2450. r = kvm_vcpu_ioctl_nmi(vcpu);
  2451. if (r)
  2452. goto out;
  2453. r = 0;
  2454. break;
  2455. }
  2456. case KVM_SET_CPUID: {
  2457. struct kvm_cpuid __user *cpuid_arg = argp;
  2458. struct kvm_cpuid cpuid;
  2459. r = -EFAULT;
  2460. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2461. goto out;
  2462. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2463. if (r)
  2464. goto out;
  2465. break;
  2466. }
  2467. case KVM_SET_CPUID2: {
  2468. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2469. struct kvm_cpuid2 cpuid;
  2470. r = -EFAULT;
  2471. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2472. goto out;
  2473. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2474. cpuid_arg->entries);
  2475. if (r)
  2476. goto out;
  2477. break;
  2478. }
  2479. case KVM_GET_CPUID2: {
  2480. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2481. struct kvm_cpuid2 cpuid;
  2482. r = -EFAULT;
  2483. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2484. goto out;
  2485. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2486. cpuid_arg->entries);
  2487. if (r)
  2488. goto out;
  2489. r = -EFAULT;
  2490. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2491. goto out;
  2492. r = 0;
  2493. break;
  2494. }
  2495. case KVM_GET_MSRS:
  2496. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2497. break;
  2498. case KVM_SET_MSRS:
  2499. r = msr_io(vcpu, argp, do_set_msr, 0);
  2500. break;
  2501. case KVM_TPR_ACCESS_REPORTING: {
  2502. struct kvm_tpr_access_ctl tac;
  2503. r = -EFAULT;
  2504. if (copy_from_user(&tac, argp, sizeof tac))
  2505. goto out;
  2506. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2507. if (r)
  2508. goto out;
  2509. r = -EFAULT;
  2510. if (copy_to_user(argp, &tac, sizeof tac))
  2511. goto out;
  2512. r = 0;
  2513. break;
  2514. };
  2515. case KVM_SET_VAPIC_ADDR: {
  2516. struct kvm_vapic_addr va;
  2517. r = -EINVAL;
  2518. if (!irqchip_in_kernel(vcpu->kvm))
  2519. goto out;
  2520. r = -EFAULT;
  2521. if (copy_from_user(&va, argp, sizeof va))
  2522. goto out;
  2523. r = 0;
  2524. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2525. break;
  2526. }
  2527. case KVM_X86_SETUP_MCE: {
  2528. u64 mcg_cap;
  2529. r = -EFAULT;
  2530. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2531. goto out;
  2532. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2533. break;
  2534. }
  2535. case KVM_X86_SET_MCE: {
  2536. struct kvm_x86_mce mce;
  2537. r = -EFAULT;
  2538. if (copy_from_user(&mce, argp, sizeof mce))
  2539. goto out;
  2540. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2541. break;
  2542. }
  2543. case KVM_GET_VCPU_EVENTS: {
  2544. struct kvm_vcpu_events events;
  2545. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2546. r = -EFAULT;
  2547. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2548. break;
  2549. r = 0;
  2550. break;
  2551. }
  2552. case KVM_SET_VCPU_EVENTS: {
  2553. struct kvm_vcpu_events events;
  2554. r = -EFAULT;
  2555. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2556. break;
  2557. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2558. break;
  2559. }
  2560. case KVM_GET_DEBUGREGS: {
  2561. struct kvm_debugregs dbgregs;
  2562. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2563. r = -EFAULT;
  2564. if (copy_to_user(argp, &dbgregs,
  2565. sizeof(struct kvm_debugregs)))
  2566. break;
  2567. r = 0;
  2568. break;
  2569. }
  2570. case KVM_SET_DEBUGREGS: {
  2571. struct kvm_debugregs dbgregs;
  2572. r = -EFAULT;
  2573. if (copy_from_user(&dbgregs, argp,
  2574. sizeof(struct kvm_debugregs)))
  2575. break;
  2576. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2577. break;
  2578. }
  2579. case KVM_GET_XSAVE: {
  2580. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2581. r = -ENOMEM;
  2582. if (!u.xsave)
  2583. break;
  2584. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2585. r = -EFAULT;
  2586. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2587. break;
  2588. r = 0;
  2589. break;
  2590. }
  2591. case KVM_SET_XSAVE: {
  2592. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2593. r = -ENOMEM;
  2594. if (!u.xsave)
  2595. break;
  2596. r = -EFAULT;
  2597. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2598. break;
  2599. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2600. break;
  2601. }
  2602. case KVM_GET_XCRS: {
  2603. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2604. r = -ENOMEM;
  2605. if (!u.xcrs)
  2606. break;
  2607. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2608. r = -EFAULT;
  2609. if (copy_to_user(argp, u.xcrs,
  2610. sizeof(struct kvm_xcrs)))
  2611. break;
  2612. r = 0;
  2613. break;
  2614. }
  2615. case KVM_SET_XCRS: {
  2616. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2617. r = -ENOMEM;
  2618. if (!u.xcrs)
  2619. break;
  2620. r = -EFAULT;
  2621. if (copy_from_user(u.xcrs, argp,
  2622. sizeof(struct kvm_xcrs)))
  2623. break;
  2624. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2625. break;
  2626. }
  2627. default:
  2628. r = -EINVAL;
  2629. }
  2630. out:
  2631. kfree(u.buffer);
  2632. return r;
  2633. }
  2634. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2635. {
  2636. int ret;
  2637. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2638. return -1;
  2639. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2640. return ret;
  2641. }
  2642. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2643. u64 ident_addr)
  2644. {
  2645. kvm->arch.ept_identity_map_addr = ident_addr;
  2646. return 0;
  2647. }
  2648. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2649. u32 kvm_nr_mmu_pages)
  2650. {
  2651. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2652. return -EINVAL;
  2653. mutex_lock(&kvm->slots_lock);
  2654. spin_lock(&kvm->mmu_lock);
  2655. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2656. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2657. spin_unlock(&kvm->mmu_lock);
  2658. mutex_unlock(&kvm->slots_lock);
  2659. return 0;
  2660. }
  2661. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2662. {
  2663. return kvm->arch.n_max_mmu_pages;
  2664. }
  2665. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2666. {
  2667. int r;
  2668. r = 0;
  2669. switch (chip->chip_id) {
  2670. case KVM_IRQCHIP_PIC_MASTER:
  2671. memcpy(&chip->chip.pic,
  2672. &pic_irqchip(kvm)->pics[0],
  2673. sizeof(struct kvm_pic_state));
  2674. break;
  2675. case KVM_IRQCHIP_PIC_SLAVE:
  2676. memcpy(&chip->chip.pic,
  2677. &pic_irqchip(kvm)->pics[1],
  2678. sizeof(struct kvm_pic_state));
  2679. break;
  2680. case KVM_IRQCHIP_IOAPIC:
  2681. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2682. break;
  2683. default:
  2684. r = -EINVAL;
  2685. break;
  2686. }
  2687. return r;
  2688. }
  2689. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2690. {
  2691. int r;
  2692. r = 0;
  2693. switch (chip->chip_id) {
  2694. case KVM_IRQCHIP_PIC_MASTER:
  2695. spin_lock(&pic_irqchip(kvm)->lock);
  2696. memcpy(&pic_irqchip(kvm)->pics[0],
  2697. &chip->chip.pic,
  2698. sizeof(struct kvm_pic_state));
  2699. spin_unlock(&pic_irqchip(kvm)->lock);
  2700. break;
  2701. case KVM_IRQCHIP_PIC_SLAVE:
  2702. spin_lock(&pic_irqchip(kvm)->lock);
  2703. memcpy(&pic_irqchip(kvm)->pics[1],
  2704. &chip->chip.pic,
  2705. sizeof(struct kvm_pic_state));
  2706. spin_unlock(&pic_irqchip(kvm)->lock);
  2707. break;
  2708. case KVM_IRQCHIP_IOAPIC:
  2709. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2710. break;
  2711. default:
  2712. r = -EINVAL;
  2713. break;
  2714. }
  2715. kvm_pic_update_irq(pic_irqchip(kvm));
  2716. return r;
  2717. }
  2718. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2719. {
  2720. int r = 0;
  2721. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2722. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2723. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2724. return r;
  2725. }
  2726. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2727. {
  2728. int r = 0;
  2729. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2730. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2731. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2732. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2733. return r;
  2734. }
  2735. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2736. {
  2737. int r = 0;
  2738. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2739. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2740. sizeof(ps->channels));
  2741. ps->flags = kvm->arch.vpit->pit_state.flags;
  2742. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2743. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2744. return r;
  2745. }
  2746. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2747. {
  2748. int r = 0, start = 0;
  2749. u32 prev_legacy, cur_legacy;
  2750. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2751. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2752. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2753. if (!prev_legacy && cur_legacy)
  2754. start = 1;
  2755. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2756. sizeof(kvm->arch.vpit->pit_state.channels));
  2757. kvm->arch.vpit->pit_state.flags = ps->flags;
  2758. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2759. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2760. return r;
  2761. }
  2762. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2763. struct kvm_reinject_control *control)
  2764. {
  2765. if (!kvm->arch.vpit)
  2766. return -ENXIO;
  2767. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2768. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2769. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2770. return 0;
  2771. }
  2772. /*
  2773. * Get (and clear) the dirty memory log for a memory slot.
  2774. */
  2775. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2776. struct kvm_dirty_log *log)
  2777. {
  2778. int r, i;
  2779. struct kvm_memory_slot *memslot;
  2780. unsigned long n;
  2781. unsigned long is_dirty = 0;
  2782. mutex_lock(&kvm->slots_lock);
  2783. r = -EINVAL;
  2784. if (log->slot >= KVM_MEMORY_SLOTS)
  2785. goto out;
  2786. memslot = &kvm->memslots->memslots[log->slot];
  2787. r = -ENOENT;
  2788. if (!memslot->dirty_bitmap)
  2789. goto out;
  2790. n = kvm_dirty_bitmap_bytes(memslot);
  2791. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2792. is_dirty = memslot->dirty_bitmap[i];
  2793. /* If nothing is dirty, don't bother messing with page tables. */
  2794. if (is_dirty) {
  2795. struct kvm_memslots *slots, *old_slots;
  2796. unsigned long *dirty_bitmap;
  2797. r = -ENOMEM;
  2798. dirty_bitmap = vmalloc(n);
  2799. if (!dirty_bitmap)
  2800. goto out;
  2801. memset(dirty_bitmap, 0, n);
  2802. r = -ENOMEM;
  2803. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2804. if (!slots) {
  2805. vfree(dirty_bitmap);
  2806. goto out;
  2807. }
  2808. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2809. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2810. old_slots = kvm->memslots;
  2811. rcu_assign_pointer(kvm->memslots, slots);
  2812. synchronize_srcu_expedited(&kvm->srcu);
  2813. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2814. kfree(old_slots);
  2815. spin_lock(&kvm->mmu_lock);
  2816. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2817. spin_unlock(&kvm->mmu_lock);
  2818. r = -EFAULT;
  2819. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
  2820. vfree(dirty_bitmap);
  2821. goto out;
  2822. }
  2823. vfree(dirty_bitmap);
  2824. } else {
  2825. r = -EFAULT;
  2826. if (clear_user(log->dirty_bitmap, n))
  2827. goto out;
  2828. }
  2829. r = 0;
  2830. out:
  2831. mutex_unlock(&kvm->slots_lock);
  2832. return r;
  2833. }
  2834. long kvm_arch_vm_ioctl(struct file *filp,
  2835. unsigned int ioctl, unsigned long arg)
  2836. {
  2837. struct kvm *kvm = filp->private_data;
  2838. void __user *argp = (void __user *)arg;
  2839. int r = -ENOTTY;
  2840. /*
  2841. * This union makes it completely explicit to gcc-3.x
  2842. * that these two variables' stack usage should be
  2843. * combined, not added together.
  2844. */
  2845. union {
  2846. struct kvm_pit_state ps;
  2847. struct kvm_pit_state2 ps2;
  2848. struct kvm_pit_config pit_config;
  2849. } u;
  2850. switch (ioctl) {
  2851. case KVM_SET_TSS_ADDR:
  2852. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2853. if (r < 0)
  2854. goto out;
  2855. break;
  2856. case KVM_SET_IDENTITY_MAP_ADDR: {
  2857. u64 ident_addr;
  2858. r = -EFAULT;
  2859. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2860. goto out;
  2861. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2862. if (r < 0)
  2863. goto out;
  2864. break;
  2865. }
  2866. case KVM_SET_NR_MMU_PAGES:
  2867. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2868. if (r)
  2869. goto out;
  2870. break;
  2871. case KVM_GET_NR_MMU_PAGES:
  2872. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2873. break;
  2874. case KVM_CREATE_IRQCHIP: {
  2875. struct kvm_pic *vpic;
  2876. mutex_lock(&kvm->lock);
  2877. r = -EEXIST;
  2878. if (kvm->arch.vpic)
  2879. goto create_irqchip_unlock;
  2880. r = -ENOMEM;
  2881. vpic = kvm_create_pic(kvm);
  2882. if (vpic) {
  2883. r = kvm_ioapic_init(kvm);
  2884. if (r) {
  2885. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2886. &vpic->dev);
  2887. kfree(vpic);
  2888. goto create_irqchip_unlock;
  2889. }
  2890. } else
  2891. goto create_irqchip_unlock;
  2892. smp_wmb();
  2893. kvm->arch.vpic = vpic;
  2894. smp_wmb();
  2895. r = kvm_setup_default_irq_routing(kvm);
  2896. if (r) {
  2897. mutex_lock(&kvm->irq_lock);
  2898. kvm_ioapic_destroy(kvm);
  2899. kvm_destroy_pic(kvm);
  2900. mutex_unlock(&kvm->irq_lock);
  2901. }
  2902. create_irqchip_unlock:
  2903. mutex_unlock(&kvm->lock);
  2904. break;
  2905. }
  2906. case KVM_CREATE_PIT:
  2907. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2908. goto create_pit;
  2909. case KVM_CREATE_PIT2:
  2910. r = -EFAULT;
  2911. if (copy_from_user(&u.pit_config, argp,
  2912. sizeof(struct kvm_pit_config)))
  2913. goto out;
  2914. create_pit:
  2915. mutex_lock(&kvm->slots_lock);
  2916. r = -EEXIST;
  2917. if (kvm->arch.vpit)
  2918. goto create_pit_unlock;
  2919. r = -ENOMEM;
  2920. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2921. if (kvm->arch.vpit)
  2922. r = 0;
  2923. create_pit_unlock:
  2924. mutex_unlock(&kvm->slots_lock);
  2925. break;
  2926. case KVM_IRQ_LINE_STATUS:
  2927. case KVM_IRQ_LINE: {
  2928. struct kvm_irq_level irq_event;
  2929. r = -EFAULT;
  2930. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2931. goto out;
  2932. r = -ENXIO;
  2933. if (irqchip_in_kernel(kvm)) {
  2934. __s32 status;
  2935. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2936. irq_event.irq, irq_event.level);
  2937. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2938. r = -EFAULT;
  2939. irq_event.status = status;
  2940. if (copy_to_user(argp, &irq_event,
  2941. sizeof irq_event))
  2942. goto out;
  2943. }
  2944. r = 0;
  2945. }
  2946. break;
  2947. }
  2948. case KVM_GET_IRQCHIP: {
  2949. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2950. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2951. r = -ENOMEM;
  2952. if (!chip)
  2953. goto out;
  2954. r = -EFAULT;
  2955. if (copy_from_user(chip, argp, sizeof *chip))
  2956. goto get_irqchip_out;
  2957. r = -ENXIO;
  2958. if (!irqchip_in_kernel(kvm))
  2959. goto get_irqchip_out;
  2960. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2961. if (r)
  2962. goto get_irqchip_out;
  2963. r = -EFAULT;
  2964. if (copy_to_user(argp, chip, sizeof *chip))
  2965. goto get_irqchip_out;
  2966. r = 0;
  2967. get_irqchip_out:
  2968. kfree(chip);
  2969. if (r)
  2970. goto out;
  2971. break;
  2972. }
  2973. case KVM_SET_IRQCHIP: {
  2974. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2975. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2976. r = -ENOMEM;
  2977. if (!chip)
  2978. goto out;
  2979. r = -EFAULT;
  2980. if (copy_from_user(chip, argp, sizeof *chip))
  2981. goto set_irqchip_out;
  2982. r = -ENXIO;
  2983. if (!irqchip_in_kernel(kvm))
  2984. goto set_irqchip_out;
  2985. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2986. if (r)
  2987. goto set_irqchip_out;
  2988. r = 0;
  2989. set_irqchip_out:
  2990. kfree(chip);
  2991. if (r)
  2992. goto out;
  2993. break;
  2994. }
  2995. case KVM_GET_PIT: {
  2996. r = -EFAULT;
  2997. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2998. goto out;
  2999. r = -ENXIO;
  3000. if (!kvm->arch.vpit)
  3001. goto out;
  3002. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3003. if (r)
  3004. goto out;
  3005. r = -EFAULT;
  3006. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3007. goto out;
  3008. r = 0;
  3009. break;
  3010. }
  3011. case KVM_SET_PIT: {
  3012. r = -EFAULT;
  3013. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3014. goto out;
  3015. r = -ENXIO;
  3016. if (!kvm->arch.vpit)
  3017. goto out;
  3018. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3019. if (r)
  3020. goto out;
  3021. r = 0;
  3022. break;
  3023. }
  3024. case KVM_GET_PIT2: {
  3025. r = -ENXIO;
  3026. if (!kvm->arch.vpit)
  3027. goto out;
  3028. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3029. if (r)
  3030. goto out;
  3031. r = -EFAULT;
  3032. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3033. goto out;
  3034. r = 0;
  3035. break;
  3036. }
  3037. case KVM_SET_PIT2: {
  3038. r = -EFAULT;
  3039. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3040. goto out;
  3041. r = -ENXIO;
  3042. if (!kvm->arch.vpit)
  3043. goto out;
  3044. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3045. if (r)
  3046. goto out;
  3047. r = 0;
  3048. break;
  3049. }
  3050. case KVM_REINJECT_CONTROL: {
  3051. struct kvm_reinject_control control;
  3052. r = -EFAULT;
  3053. if (copy_from_user(&control, argp, sizeof(control)))
  3054. goto out;
  3055. r = kvm_vm_ioctl_reinject(kvm, &control);
  3056. if (r)
  3057. goto out;
  3058. r = 0;
  3059. break;
  3060. }
  3061. case KVM_XEN_HVM_CONFIG: {
  3062. r = -EFAULT;
  3063. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3064. sizeof(struct kvm_xen_hvm_config)))
  3065. goto out;
  3066. r = -EINVAL;
  3067. if (kvm->arch.xen_hvm_config.flags)
  3068. goto out;
  3069. r = 0;
  3070. break;
  3071. }
  3072. case KVM_SET_CLOCK: {
  3073. struct kvm_clock_data user_ns;
  3074. u64 now_ns;
  3075. s64 delta;
  3076. r = -EFAULT;
  3077. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3078. goto out;
  3079. r = -EINVAL;
  3080. if (user_ns.flags)
  3081. goto out;
  3082. r = 0;
  3083. local_irq_disable();
  3084. now_ns = get_kernel_ns();
  3085. delta = user_ns.clock - now_ns;
  3086. local_irq_enable();
  3087. kvm->arch.kvmclock_offset = delta;
  3088. break;
  3089. }
  3090. case KVM_GET_CLOCK: {
  3091. struct kvm_clock_data user_ns;
  3092. u64 now_ns;
  3093. local_irq_disable();
  3094. now_ns = get_kernel_ns();
  3095. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3096. local_irq_enable();
  3097. user_ns.flags = 0;
  3098. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3099. r = -EFAULT;
  3100. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3101. goto out;
  3102. r = 0;
  3103. break;
  3104. }
  3105. default:
  3106. ;
  3107. }
  3108. out:
  3109. return r;
  3110. }
  3111. static void kvm_init_msr_list(void)
  3112. {
  3113. u32 dummy[2];
  3114. unsigned i, j;
  3115. /* skip the first msrs in the list. KVM-specific */
  3116. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3117. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3118. continue;
  3119. if (j < i)
  3120. msrs_to_save[j] = msrs_to_save[i];
  3121. j++;
  3122. }
  3123. num_msrs_to_save = j;
  3124. }
  3125. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3126. const void *v)
  3127. {
  3128. if (vcpu->arch.apic &&
  3129. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  3130. return 0;
  3131. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3132. }
  3133. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3134. {
  3135. if (vcpu->arch.apic &&
  3136. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  3137. return 0;
  3138. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3139. }
  3140. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3141. struct kvm_segment *var, int seg)
  3142. {
  3143. kvm_x86_ops->set_segment(vcpu, var, seg);
  3144. }
  3145. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3146. struct kvm_segment *var, int seg)
  3147. {
  3148. kvm_x86_ops->get_segment(vcpu, var, seg);
  3149. }
  3150. static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3151. {
  3152. return gpa;
  3153. }
  3154. static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3155. {
  3156. gpa_t t_gpa;
  3157. u32 error;
  3158. BUG_ON(!mmu_is_nested(vcpu));
  3159. /* NPT walks are always user-walks */
  3160. access |= PFERR_USER_MASK;
  3161. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
  3162. if (t_gpa == UNMAPPED_GVA)
  3163. vcpu->arch.fault.nested = true;
  3164. return t_gpa;
  3165. }
  3166. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3167. {
  3168. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3169. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3170. }
  3171. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3172. {
  3173. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3174. access |= PFERR_FETCH_MASK;
  3175. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3176. }
  3177. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3178. {
  3179. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3180. access |= PFERR_WRITE_MASK;
  3181. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3182. }
  3183. /* uses this to access any guest's mapped memory without checking CPL */
  3184. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3185. {
  3186. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
  3187. }
  3188. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3189. struct kvm_vcpu *vcpu, u32 access,
  3190. u32 *error)
  3191. {
  3192. void *data = val;
  3193. int r = X86EMUL_CONTINUE;
  3194. while (bytes) {
  3195. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3196. error);
  3197. unsigned offset = addr & (PAGE_SIZE-1);
  3198. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3199. int ret;
  3200. if (gpa == UNMAPPED_GVA) {
  3201. r = X86EMUL_PROPAGATE_FAULT;
  3202. goto out;
  3203. }
  3204. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3205. if (ret < 0) {
  3206. r = X86EMUL_IO_NEEDED;
  3207. goto out;
  3208. }
  3209. bytes -= toread;
  3210. data += toread;
  3211. addr += toread;
  3212. }
  3213. out:
  3214. return r;
  3215. }
  3216. /* used for instruction fetching */
  3217. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3218. struct kvm_vcpu *vcpu, u32 *error)
  3219. {
  3220. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3221. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3222. access | PFERR_FETCH_MASK, error);
  3223. }
  3224. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3225. struct kvm_vcpu *vcpu, u32 *error)
  3226. {
  3227. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3228. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3229. error);
  3230. }
  3231. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  3232. struct kvm_vcpu *vcpu, u32 *error)
  3233. {
  3234. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  3235. }
  3236. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  3237. unsigned int bytes,
  3238. struct kvm_vcpu *vcpu,
  3239. u32 *error)
  3240. {
  3241. void *data = val;
  3242. int r = X86EMUL_CONTINUE;
  3243. while (bytes) {
  3244. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3245. PFERR_WRITE_MASK,
  3246. error);
  3247. unsigned offset = addr & (PAGE_SIZE-1);
  3248. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3249. int ret;
  3250. if (gpa == UNMAPPED_GVA) {
  3251. r = X86EMUL_PROPAGATE_FAULT;
  3252. goto out;
  3253. }
  3254. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3255. if (ret < 0) {
  3256. r = X86EMUL_IO_NEEDED;
  3257. goto out;
  3258. }
  3259. bytes -= towrite;
  3260. data += towrite;
  3261. addr += towrite;
  3262. }
  3263. out:
  3264. return r;
  3265. }
  3266. static int emulator_read_emulated(unsigned long addr,
  3267. void *val,
  3268. unsigned int bytes,
  3269. unsigned int *error_code,
  3270. struct kvm_vcpu *vcpu)
  3271. {
  3272. gpa_t gpa;
  3273. if (vcpu->mmio_read_completed) {
  3274. memcpy(val, vcpu->mmio_data, bytes);
  3275. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3276. vcpu->mmio_phys_addr, *(u64 *)val);
  3277. vcpu->mmio_read_completed = 0;
  3278. return X86EMUL_CONTINUE;
  3279. }
  3280. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
  3281. if (gpa == UNMAPPED_GVA)
  3282. return X86EMUL_PROPAGATE_FAULT;
  3283. /* For APIC access vmexit */
  3284. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3285. goto mmio;
  3286. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  3287. == X86EMUL_CONTINUE)
  3288. return X86EMUL_CONTINUE;
  3289. mmio:
  3290. /*
  3291. * Is this MMIO handled locally?
  3292. */
  3293. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3294. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3295. return X86EMUL_CONTINUE;
  3296. }
  3297. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3298. vcpu->mmio_needed = 1;
  3299. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3300. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3301. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3302. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3303. return X86EMUL_IO_NEEDED;
  3304. }
  3305. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3306. const void *val, int bytes)
  3307. {
  3308. int ret;
  3309. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3310. if (ret < 0)
  3311. return 0;
  3312. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3313. return 1;
  3314. }
  3315. static int emulator_write_emulated_onepage(unsigned long addr,
  3316. const void *val,
  3317. unsigned int bytes,
  3318. unsigned int *error_code,
  3319. struct kvm_vcpu *vcpu)
  3320. {
  3321. gpa_t gpa;
  3322. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
  3323. if (gpa == UNMAPPED_GVA)
  3324. return X86EMUL_PROPAGATE_FAULT;
  3325. /* For APIC access vmexit */
  3326. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3327. goto mmio;
  3328. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3329. return X86EMUL_CONTINUE;
  3330. mmio:
  3331. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3332. /*
  3333. * Is this MMIO handled locally?
  3334. */
  3335. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3336. return X86EMUL_CONTINUE;
  3337. vcpu->mmio_needed = 1;
  3338. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3339. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3340. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3341. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3342. memcpy(vcpu->run->mmio.data, val, bytes);
  3343. return X86EMUL_CONTINUE;
  3344. }
  3345. int emulator_write_emulated(unsigned long addr,
  3346. const void *val,
  3347. unsigned int bytes,
  3348. unsigned int *error_code,
  3349. struct kvm_vcpu *vcpu)
  3350. {
  3351. /* Crossing a page boundary? */
  3352. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3353. int rc, now;
  3354. now = -addr & ~PAGE_MASK;
  3355. rc = emulator_write_emulated_onepage(addr, val, now, error_code,
  3356. vcpu);
  3357. if (rc != X86EMUL_CONTINUE)
  3358. return rc;
  3359. addr += now;
  3360. val += now;
  3361. bytes -= now;
  3362. }
  3363. return emulator_write_emulated_onepage(addr, val, bytes, error_code,
  3364. vcpu);
  3365. }
  3366. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3367. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3368. #ifdef CONFIG_X86_64
  3369. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3370. #else
  3371. # define CMPXCHG64(ptr, old, new) \
  3372. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3373. #endif
  3374. static int emulator_cmpxchg_emulated(unsigned long addr,
  3375. const void *old,
  3376. const void *new,
  3377. unsigned int bytes,
  3378. unsigned int *error_code,
  3379. struct kvm_vcpu *vcpu)
  3380. {
  3381. gpa_t gpa;
  3382. struct page *page;
  3383. char *kaddr;
  3384. bool exchanged;
  3385. /* guests cmpxchg8b have to be emulated atomically */
  3386. if (bytes > 8 || (bytes & (bytes - 1)))
  3387. goto emul_write;
  3388. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3389. if (gpa == UNMAPPED_GVA ||
  3390. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3391. goto emul_write;
  3392. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3393. goto emul_write;
  3394. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3395. if (is_error_page(page)) {
  3396. kvm_release_page_clean(page);
  3397. goto emul_write;
  3398. }
  3399. kaddr = kmap_atomic(page, KM_USER0);
  3400. kaddr += offset_in_page(gpa);
  3401. switch (bytes) {
  3402. case 1:
  3403. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3404. break;
  3405. case 2:
  3406. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3407. break;
  3408. case 4:
  3409. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3410. break;
  3411. case 8:
  3412. exchanged = CMPXCHG64(kaddr, old, new);
  3413. break;
  3414. default:
  3415. BUG();
  3416. }
  3417. kunmap_atomic(kaddr, KM_USER0);
  3418. kvm_release_page_dirty(page);
  3419. if (!exchanged)
  3420. return X86EMUL_CMPXCHG_FAILED;
  3421. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3422. return X86EMUL_CONTINUE;
  3423. emul_write:
  3424. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3425. return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
  3426. }
  3427. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3428. {
  3429. /* TODO: String I/O for in kernel device */
  3430. int r;
  3431. if (vcpu->arch.pio.in)
  3432. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3433. vcpu->arch.pio.size, pd);
  3434. else
  3435. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3436. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3437. pd);
  3438. return r;
  3439. }
  3440. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3441. unsigned int count, struct kvm_vcpu *vcpu)
  3442. {
  3443. if (vcpu->arch.pio.count)
  3444. goto data_avail;
  3445. trace_kvm_pio(0, port, size, 1);
  3446. vcpu->arch.pio.port = port;
  3447. vcpu->arch.pio.in = 1;
  3448. vcpu->arch.pio.count = count;
  3449. vcpu->arch.pio.size = size;
  3450. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3451. data_avail:
  3452. memcpy(val, vcpu->arch.pio_data, size * count);
  3453. vcpu->arch.pio.count = 0;
  3454. return 1;
  3455. }
  3456. vcpu->run->exit_reason = KVM_EXIT_IO;
  3457. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3458. vcpu->run->io.size = size;
  3459. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3460. vcpu->run->io.count = count;
  3461. vcpu->run->io.port = port;
  3462. return 0;
  3463. }
  3464. static int emulator_pio_out_emulated(int size, unsigned short port,
  3465. const void *val, unsigned int count,
  3466. struct kvm_vcpu *vcpu)
  3467. {
  3468. trace_kvm_pio(1, port, size, 1);
  3469. vcpu->arch.pio.port = port;
  3470. vcpu->arch.pio.in = 0;
  3471. vcpu->arch.pio.count = count;
  3472. vcpu->arch.pio.size = size;
  3473. memcpy(vcpu->arch.pio_data, val, size * count);
  3474. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3475. vcpu->arch.pio.count = 0;
  3476. return 1;
  3477. }
  3478. vcpu->run->exit_reason = KVM_EXIT_IO;
  3479. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3480. vcpu->run->io.size = size;
  3481. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3482. vcpu->run->io.count = count;
  3483. vcpu->run->io.port = port;
  3484. return 0;
  3485. }
  3486. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3487. {
  3488. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3489. }
  3490. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3491. {
  3492. kvm_mmu_invlpg(vcpu, address);
  3493. return X86EMUL_CONTINUE;
  3494. }
  3495. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3496. {
  3497. if (!need_emulate_wbinvd(vcpu))
  3498. return X86EMUL_CONTINUE;
  3499. if (kvm_x86_ops->has_wbinvd_exit()) {
  3500. preempt_disable();
  3501. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3502. wbinvd_ipi, NULL, 1);
  3503. preempt_enable();
  3504. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3505. }
  3506. wbinvd();
  3507. return X86EMUL_CONTINUE;
  3508. }
  3509. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3510. int emulate_clts(struct kvm_vcpu *vcpu)
  3511. {
  3512. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3513. kvm_x86_ops->fpu_activate(vcpu);
  3514. return X86EMUL_CONTINUE;
  3515. }
  3516. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3517. {
  3518. return _kvm_get_dr(vcpu, dr, dest);
  3519. }
  3520. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3521. {
  3522. return __kvm_set_dr(vcpu, dr, value);
  3523. }
  3524. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3525. {
  3526. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3527. }
  3528. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3529. {
  3530. unsigned long value;
  3531. switch (cr) {
  3532. case 0:
  3533. value = kvm_read_cr0(vcpu);
  3534. break;
  3535. case 2:
  3536. value = vcpu->arch.cr2;
  3537. break;
  3538. case 3:
  3539. value = vcpu->arch.cr3;
  3540. break;
  3541. case 4:
  3542. value = kvm_read_cr4(vcpu);
  3543. break;
  3544. case 8:
  3545. value = kvm_get_cr8(vcpu);
  3546. break;
  3547. default:
  3548. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3549. return 0;
  3550. }
  3551. return value;
  3552. }
  3553. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3554. {
  3555. int res = 0;
  3556. switch (cr) {
  3557. case 0:
  3558. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3559. break;
  3560. case 2:
  3561. vcpu->arch.cr2 = val;
  3562. break;
  3563. case 3:
  3564. res = kvm_set_cr3(vcpu, val);
  3565. break;
  3566. case 4:
  3567. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3568. break;
  3569. case 8:
  3570. res = __kvm_set_cr8(vcpu, val & 0xfUL);
  3571. break;
  3572. default:
  3573. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3574. res = -1;
  3575. }
  3576. return res;
  3577. }
  3578. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3579. {
  3580. return kvm_x86_ops->get_cpl(vcpu);
  3581. }
  3582. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3583. {
  3584. kvm_x86_ops->get_gdt(vcpu, dt);
  3585. }
  3586. static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3587. {
  3588. kvm_x86_ops->get_idt(vcpu, dt);
  3589. }
  3590. static unsigned long emulator_get_cached_segment_base(int seg,
  3591. struct kvm_vcpu *vcpu)
  3592. {
  3593. return get_segment_base(vcpu, seg);
  3594. }
  3595. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3596. struct kvm_vcpu *vcpu)
  3597. {
  3598. struct kvm_segment var;
  3599. kvm_get_segment(vcpu, &var, seg);
  3600. if (var.unusable)
  3601. return false;
  3602. if (var.g)
  3603. var.limit >>= 12;
  3604. set_desc_limit(desc, var.limit);
  3605. set_desc_base(desc, (unsigned long)var.base);
  3606. desc->type = var.type;
  3607. desc->s = var.s;
  3608. desc->dpl = var.dpl;
  3609. desc->p = var.present;
  3610. desc->avl = var.avl;
  3611. desc->l = var.l;
  3612. desc->d = var.db;
  3613. desc->g = var.g;
  3614. return true;
  3615. }
  3616. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3617. struct kvm_vcpu *vcpu)
  3618. {
  3619. struct kvm_segment var;
  3620. /* needed to preserve selector */
  3621. kvm_get_segment(vcpu, &var, seg);
  3622. var.base = get_desc_base(desc);
  3623. var.limit = get_desc_limit(desc);
  3624. if (desc->g)
  3625. var.limit = (var.limit << 12) | 0xfff;
  3626. var.type = desc->type;
  3627. var.present = desc->p;
  3628. var.dpl = desc->dpl;
  3629. var.db = desc->d;
  3630. var.s = desc->s;
  3631. var.l = desc->l;
  3632. var.g = desc->g;
  3633. var.avl = desc->avl;
  3634. var.present = desc->p;
  3635. var.unusable = !var.present;
  3636. var.padding = 0;
  3637. kvm_set_segment(vcpu, &var, seg);
  3638. return;
  3639. }
  3640. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3641. {
  3642. struct kvm_segment kvm_seg;
  3643. kvm_get_segment(vcpu, &kvm_seg, seg);
  3644. return kvm_seg.selector;
  3645. }
  3646. static void emulator_set_segment_selector(u16 sel, int seg,
  3647. struct kvm_vcpu *vcpu)
  3648. {
  3649. struct kvm_segment kvm_seg;
  3650. kvm_get_segment(vcpu, &kvm_seg, seg);
  3651. kvm_seg.selector = sel;
  3652. kvm_set_segment(vcpu, &kvm_seg, seg);
  3653. }
  3654. static struct x86_emulate_ops emulate_ops = {
  3655. .read_std = kvm_read_guest_virt_system,
  3656. .write_std = kvm_write_guest_virt_system,
  3657. .fetch = kvm_fetch_guest_virt,
  3658. .read_emulated = emulator_read_emulated,
  3659. .write_emulated = emulator_write_emulated,
  3660. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3661. .pio_in_emulated = emulator_pio_in_emulated,
  3662. .pio_out_emulated = emulator_pio_out_emulated,
  3663. .get_cached_descriptor = emulator_get_cached_descriptor,
  3664. .set_cached_descriptor = emulator_set_cached_descriptor,
  3665. .get_segment_selector = emulator_get_segment_selector,
  3666. .set_segment_selector = emulator_set_segment_selector,
  3667. .get_cached_segment_base = emulator_get_cached_segment_base,
  3668. .get_gdt = emulator_get_gdt,
  3669. .get_idt = emulator_get_idt,
  3670. .get_cr = emulator_get_cr,
  3671. .set_cr = emulator_set_cr,
  3672. .cpl = emulator_get_cpl,
  3673. .get_dr = emulator_get_dr,
  3674. .set_dr = emulator_set_dr,
  3675. .set_msr = kvm_set_msr,
  3676. .get_msr = kvm_get_msr,
  3677. };
  3678. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3679. {
  3680. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3681. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3682. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3683. vcpu->arch.regs_dirty = ~0;
  3684. }
  3685. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3686. {
  3687. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3688. /*
  3689. * an sti; sti; sequence only disable interrupts for the first
  3690. * instruction. So, if the last instruction, be it emulated or
  3691. * not, left the system with the INT_STI flag enabled, it
  3692. * means that the last instruction is an sti. We should not
  3693. * leave the flag on in this case. The same goes for mov ss
  3694. */
  3695. if (!(int_shadow & mask))
  3696. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3697. }
  3698. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3699. {
  3700. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3701. if (ctxt->exception == PF_VECTOR)
  3702. kvm_propagate_fault(vcpu);
  3703. else if (ctxt->error_code_valid)
  3704. kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
  3705. else
  3706. kvm_queue_exception(vcpu, ctxt->exception);
  3707. }
  3708. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3709. {
  3710. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3711. int cs_db, cs_l;
  3712. cache_all_regs(vcpu);
  3713. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3714. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3715. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3716. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3717. vcpu->arch.emulate_ctxt.mode =
  3718. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3719. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3720. ? X86EMUL_MODE_VM86 : cs_l
  3721. ? X86EMUL_MODE_PROT64 : cs_db
  3722. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3723. memset(c, 0, sizeof(struct decode_cache));
  3724. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3725. }
  3726. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
  3727. {
  3728. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3729. int ret;
  3730. init_emulate_ctxt(vcpu);
  3731. vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
  3732. vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
  3733. vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
  3734. ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
  3735. if (ret != X86EMUL_CONTINUE)
  3736. return EMULATE_FAIL;
  3737. vcpu->arch.emulate_ctxt.eip = c->eip;
  3738. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3739. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3740. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3741. if (irq == NMI_VECTOR)
  3742. vcpu->arch.nmi_pending = false;
  3743. else
  3744. vcpu->arch.interrupt.pending = false;
  3745. return EMULATE_DONE;
  3746. }
  3747. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  3748. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3749. {
  3750. ++vcpu->stat.insn_emulation_fail;
  3751. trace_kvm_emulate_insn_failed(vcpu);
  3752. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3753. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3754. vcpu->run->internal.ndata = 0;
  3755. kvm_queue_exception(vcpu, UD_VECTOR);
  3756. return EMULATE_FAIL;
  3757. }
  3758. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3759. {
  3760. gpa_t gpa;
  3761. if (tdp_enabled)
  3762. return false;
  3763. /*
  3764. * if emulation was due to access to shadowed page table
  3765. * and it failed try to unshadow page and re-entetr the
  3766. * guest to let CPU execute the instruction.
  3767. */
  3768. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3769. return true;
  3770. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3771. if (gpa == UNMAPPED_GVA)
  3772. return true; /* let cpu generate fault */
  3773. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3774. return true;
  3775. return false;
  3776. }
  3777. int emulate_instruction(struct kvm_vcpu *vcpu,
  3778. unsigned long cr2,
  3779. u16 error_code,
  3780. int emulation_type)
  3781. {
  3782. int r;
  3783. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3784. kvm_clear_exception_queue(vcpu);
  3785. vcpu->arch.mmio_fault_cr2 = cr2;
  3786. /*
  3787. * TODO: fix emulate.c to use guest_read/write_register
  3788. * instead of direct ->regs accesses, can save hundred cycles
  3789. * on Intel for instructions that don't read/change RSP, for
  3790. * for example.
  3791. */
  3792. cache_all_regs(vcpu);
  3793. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3794. init_emulate_ctxt(vcpu);
  3795. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3796. vcpu->arch.emulate_ctxt.exception = -1;
  3797. vcpu->arch.emulate_ctxt.perm_ok = false;
  3798. r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
  3799. if (r == X86EMUL_PROPAGATE_FAULT)
  3800. goto done;
  3801. trace_kvm_emulate_insn_start(vcpu);
  3802. /* Only allow emulation of specific instructions on #UD
  3803. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3804. if (emulation_type & EMULTYPE_TRAP_UD) {
  3805. if (!c->twobyte)
  3806. return EMULATE_FAIL;
  3807. switch (c->b) {
  3808. case 0x01: /* VMMCALL */
  3809. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3810. return EMULATE_FAIL;
  3811. break;
  3812. case 0x34: /* sysenter */
  3813. case 0x35: /* sysexit */
  3814. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3815. return EMULATE_FAIL;
  3816. break;
  3817. case 0x05: /* syscall */
  3818. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3819. return EMULATE_FAIL;
  3820. break;
  3821. default:
  3822. return EMULATE_FAIL;
  3823. }
  3824. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3825. return EMULATE_FAIL;
  3826. }
  3827. ++vcpu->stat.insn_emulation;
  3828. if (r) {
  3829. if (reexecute_instruction(vcpu, cr2))
  3830. return EMULATE_DONE;
  3831. if (emulation_type & EMULTYPE_SKIP)
  3832. return EMULATE_FAIL;
  3833. return handle_emulation_failure(vcpu);
  3834. }
  3835. }
  3836. if (emulation_type & EMULTYPE_SKIP) {
  3837. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3838. return EMULATE_DONE;
  3839. }
  3840. /* this is needed for vmware backdor interface to work since it
  3841. changes registers values during IO operation */
  3842. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3843. restart:
  3844. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  3845. if (r == EMULATION_FAILED) {
  3846. if (reexecute_instruction(vcpu, cr2))
  3847. return EMULATE_DONE;
  3848. return handle_emulation_failure(vcpu);
  3849. }
  3850. done:
  3851. if (vcpu->arch.emulate_ctxt.exception >= 0) {
  3852. inject_emulated_exception(vcpu);
  3853. r = EMULATE_DONE;
  3854. } else if (vcpu->arch.pio.count) {
  3855. if (!vcpu->arch.pio.in)
  3856. vcpu->arch.pio.count = 0;
  3857. r = EMULATE_DO_MMIO;
  3858. } else if (vcpu->mmio_needed) {
  3859. if (vcpu->mmio_is_write)
  3860. vcpu->mmio_needed = 0;
  3861. r = EMULATE_DO_MMIO;
  3862. } else if (r == EMULATION_RESTART)
  3863. goto restart;
  3864. else
  3865. r = EMULATE_DONE;
  3866. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3867. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3868. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3869. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3870. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3871. return r;
  3872. }
  3873. EXPORT_SYMBOL_GPL(emulate_instruction);
  3874. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3875. {
  3876. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3877. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3878. /* do not return to emulator after return from userspace */
  3879. vcpu->arch.pio.count = 0;
  3880. return ret;
  3881. }
  3882. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3883. static void tsc_bad(void *info)
  3884. {
  3885. __get_cpu_var(cpu_tsc_khz) = 0;
  3886. }
  3887. static void tsc_khz_changed(void *data)
  3888. {
  3889. struct cpufreq_freqs *freq = data;
  3890. unsigned long khz = 0;
  3891. if (data)
  3892. khz = freq->new;
  3893. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3894. khz = cpufreq_quick_get(raw_smp_processor_id());
  3895. if (!khz)
  3896. khz = tsc_khz;
  3897. __get_cpu_var(cpu_tsc_khz) = khz;
  3898. }
  3899. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3900. void *data)
  3901. {
  3902. struct cpufreq_freqs *freq = data;
  3903. struct kvm *kvm;
  3904. struct kvm_vcpu *vcpu;
  3905. int i, send_ipi = 0;
  3906. /*
  3907. * We allow guests to temporarily run on slowing clocks,
  3908. * provided we notify them after, or to run on accelerating
  3909. * clocks, provided we notify them before. Thus time never
  3910. * goes backwards.
  3911. *
  3912. * However, we have a problem. We can't atomically update
  3913. * the frequency of a given CPU from this function; it is
  3914. * merely a notifier, which can be called from any CPU.
  3915. * Changing the TSC frequency at arbitrary points in time
  3916. * requires a recomputation of local variables related to
  3917. * the TSC for each VCPU. We must flag these local variables
  3918. * to be updated and be sure the update takes place with the
  3919. * new frequency before any guests proceed.
  3920. *
  3921. * Unfortunately, the combination of hotplug CPU and frequency
  3922. * change creates an intractable locking scenario; the order
  3923. * of when these callouts happen is undefined with respect to
  3924. * CPU hotplug, and they can race with each other. As such,
  3925. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  3926. * undefined; you can actually have a CPU frequency change take
  3927. * place in between the computation of X and the setting of the
  3928. * variable. To protect against this problem, all updates of
  3929. * the per_cpu tsc_khz variable are done in an interrupt
  3930. * protected IPI, and all callers wishing to update the value
  3931. * must wait for a synchronous IPI to complete (which is trivial
  3932. * if the caller is on the CPU already). This establishes the
  3933. * necessary total order on variable updates.
  3934. *
  3935. * Note that because a guest time update may take place
  3936. * anytime after the setting of the VCPU's request bit, the
  3937. * correct TSC value must be set before the request. However,
  3938. * to ensure the update actually makes it to any guest which
  3939. * starts running in hardware virtualization between the set
  3940. * and the acquisition of the spinlock, we must also ping the
  3941. * CPU after setting the request bit.
  3942. *
  3943. */
  3944. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3945. return 0;
  3946. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3947. return 0;
  3948. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3949. spin_lock(&kvm_lock);
  3950. list_for_each_entry(kvm, &vm_list, vm_list) {
  3951. kvm_for_each_vcpu(i, vcpu, kvm) {
  3952. if (vcpu->cpu != freq->cpu)
  3953. continue;
  3954. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  3955. if (vcpu->cpu != smp_processor_id())
  3956. send_ipi = 1;
  3957. }
  3958. }
  3959. spin_unlock(&kvm_lock);
  3960. if (freq->old < freq->new && send_ipi) {
  3961. /*
  3962. * We upscale the frequency. Must make the guest
  3963. * doesn't see old kvmclock values while running with
  3964. * the new frequency, otherwise we risk the guest sees
  3965. * time go backwards.
  3966. *
  3967. * In case we update the frequency for another cpu
  3968. * (which might be in guest context) send an interrupt
  3969. * to kick the cpu out of guest context. Next time
  3970. * guest context is entered kvmclock will be updated,
  3971. * so the guest will not see stale values.
  3972. */
  3973. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3974. }
  3975. return 0;
  3976. }
  3977. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3978. .notifier_call = kvmclock_cpufreq_notifier
  3979. };
  3980. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  3981. unsigned long action, void *hcpu)
  3982. {
  3983. unsigned int cpu = (unsigned long)hcpu;
  3984. switch (action) {
  3985. case CPU_ONLINE:
  3986. case CPU_DOWN_FAILED:
  3987. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  3988. break;
  3989. case CPU_DOWN_PREPARE:
  3990. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  3991. break;
  3992. }
  3993. return NOTIFY_OK;
  3994. }
  3995. static struct notifier_block kvmclock_cpu_notifier_block = {
  3996. .notifier_call = kvmclock_cpu_notifier,
  3997. .priority = -INT_MAX
  3998. };
  3999. static void kvm_timer_init(void)
  4000. {
  4001. int cpu;
  4002. max_tsc_khz = tsc_khz;
  4003. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4004. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4005. #ifdef CONFIG_CPU_FREQ
  4006. struct cpufreq_policy policy;
  4007. memset(&policy, 0, sizeof(policy));
  4008. cpu = get_cpu();
  4009. cpufreq_get_policy(&policy, cpu);
  4010. if (policy.cpuinfo.max_freq)
  4011. max_tsc_khz = policy.cpuinfo.max_freq;
  4012. put_cpu();
  4013. #endif
  4014. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4015. CPUFREQ_TRANSITION_NOTIFIER);
  4016. }
  4017. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4018. for_each_online_cpu(cpu)
  4019. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4020. }
  4021. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4022. static int kvm_is_in_guest(void)
  4023. {
  4024. return percpu_read(current_vcpu) != NULL;
  4025. }
  4026. static int kvm_is_user_mode(void)
  4027. {
  4028. int user_mode = 3;
  4029. if (percpu_read(current_vcpu))
  4030. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  4031. return user_mode != 0;
  4032. }
  4033. static unsigned long kvm_get_guest_ip(void)
  4034. {
  4035. unsigned long ip = 0;
  4036. if (percpu_read(current_vcpu))
  4037. ip = kvm_rip_read(percpu_read(current_vcpu));
  4038. return ip;
  4039. }
  4040. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4041. .is_in_guest = kvm_is_in_guest,
  4042. .is_user_mode = kvm_is_user_mode,
  4043. .get_guest_ip = kvm_get_guest_ip,
  4044. };
  4045. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4046. {
  4047. percpu_write(current_vcpu, vcpu);
  4048. }
  4049. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4050. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4051. {
  4052. percpu_write(current_vcpu, NULL);
  4053. }
  4054. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4055. int kvm_arch_init(void *opaque)
  4056. {
  4057. int r;
  4058. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4059. if (kvm_x86_ops) {
  4060. printk(KERN_ERR "kvm: already loaded the other module\n");
  4061. r = -EEXIST;
  4062. goto out;
  4063. }
  4064. if (!ops->cpu_has_kvm_support()) {
  4065. printk(KERN_ERR "kvm: no hardware support\n");
  4066. r = -EOPNOTSUPP;
  4067. goto out;
  4068. }
  4069. if (ops->disabled_by_bios()) {
  4070. printk(KERN_ERR "kvm: disabled by bios\n");
  4071. r = -EOPNOTSUPP;
  4072. goto out;
  4073. }
  4074. r = kvm_mmu_module_init();
  4075. if (r)
  4076. goto out;
  4077. kvm_init_msr_list();
  4078. kvm_x86_ops = ops;
  4079. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  4080. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  4081. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4082. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4083. kvm_timer_init();
  4084. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4085. if (cpu_has_xsave)
  4086. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4087. return 0;
  4088. out:
  4089. return r;
  4090. }
  4091. void kvm_arch_exit(void)
  4092. {
  4093. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4094. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4095. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4096. CPUFREQ_TRANSITION_NOTIFIER);
  4097. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4098. kvm_x86_ops = NULL;
  4099. kvm_mmu_module_exit();
  4100. }
  4101. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4102. {
  4103. ++vcpu->stat.halt_exits;
  4104. if (irqchip_in_kernel(vcpu->kvm)) {
  4105. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4106. return 1;
  4107. } else {
  4108. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4109. return 0;
  4110. }
  4111. }
  4112. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4113. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  4114. unsigned long a1)
  4115. {
  4116. if (is_long_mode(vcpu))
  4117. return a0;
  4118. else
  4119. return a0 | ((gpa_t)a1 << 32);
  4120. }
  4121. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4122. {
  4123. u64 param, ingpa, outgpa, ret;
  4124. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4125. bool fast, longmode;
  4126. int cs_db, cs_l;
  4127. /*
  4128. * hypercall generates UD from non zero cpl and real mode
  4129. * per HYPER-V spec
  4130. */
  4131. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4132. kvm_queue_exception(vcpu, UD_VECTOR);
  4133. return 0;
  4134. }
  4135. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4136. longmode = is_long_mode(vcpu) && cs_l == 1;
  4137. if (!longmode) {
  4138. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4139. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4140. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4141. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4142. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4143. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4144. }
  4145. #ifdef CONFIG_X86_64
  4146. else {
  4147. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4148. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4149. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4150. }
  4151. #endif
  4152. code = param & 0xffff;
  4153. fast = (param >> 16) & 0x1;
  4154. rep_cnt = (param >> 32) & 0xfff;
  4155. rep_idx = (param >> 48) & 0xfff;
  4156. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4157. switch (code) {
  4158. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4159. kvm_vcpu_on_spin(vcpu);
  4160. break;
  4161. default:
  4162. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4163. break;
  4164. }
  4165. ret = res | (((u64)rep_done & 0xfff) << 32);
  4166. if (longmode) {
  4167. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4168. } else {
  4169. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4170. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4171. }
  4172. return 1;
  4173. }
  4174. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4175. {
  4176. unsigned long nr, a0, a1, a2, a3, ret;
  4177. int r = 1;
  4178. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4179. return kvm_hv_hypercall(vcpu);
  4180. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4181. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4182. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4183. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4184. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4185. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4186. if (!is_long_mode(vcpu)) {
  4187. nr &= 0xFFFFFFFF;
  4188. a0 &= 0xFFFFFFFF;
  4189. a1 &= 0xFFFFFFFF;
  4190. a2 &= 0xFFFFFFFF;
  4191. a3 &= 0xFFFFFFFF;
  4192. }
  4193. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4194. ret = -KVM_EPERM;
  4195. goto out;
  4196. }
  4197. switch (nr) {
  4198. case KVM_HC_VAPIC_POLL_IRQ:
  4199. ret = 0;
  4200. break;
  4201. case KVM_HC_MMU_OP:
  4202. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  4203. break;
  4204. default:
  4205. ret = -KVM_ENOSYS;
  4206. break;
  4207. }
  4208. out:
  4209. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4210. ++vcpu->stat.hypercalls;
  4211. return r;
  4212. }
  4213. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4214. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  4215. {
  4216. char instruction[3];
  4217. unsigned long rip = kvm_rip_read(vcpu);
  4218. /*
  4219. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4220. * to ensure that the updated hypercall appears atomically across all
  4221. * VCPUs.
  4222. */
  4223. kvm_mmu_zap_all(vcpu->kvm);
  4224. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4225. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  4226. }
  4227. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4228. {
  4229. struct desc_ptr dt = { limit, base };
  4230. kvm_x86_ops->set_gdt(vcpu, &dt);
  4231. }
  4232. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4233. {
  4234. struct desc_ptr dt = { limit, base };
  4235. kvm_x86_ops->set_idt(vcpu, &dt);
  4236. }
  4237. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4238. {
  4239. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4240. int j, nent = vcpu->arch.cpuid_nent;
  4241. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4242. /* when no next entry is found, the current entry[i] is reselected */
  4243. for (j = i + 1; ; j = (j + 1) % nent) {
  4244. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4245. if (ej->function == e->function) {
  4246. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4247. return j;
  4248. }
  4249. }
  4250. return 0; /* silence gcc, even though control never reaches here */
  4251. }
  4252. /* find an entry with matching function, matching index (if needed), and that
  4253. * should be read next (if it's stateful) */
  4254. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4255. u32 function, u32 index)
  4256. {
  4257. if (e->function != function)
  4258. return 0;
  4259. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4260. return 0;
  4261. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4262. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4263. return 0;
  4264. return 1;
  4265. }
  4266. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4267. u32 function, u32 index)
  4268. {
  4269. int i;
  4270. struct kvm_cpuid_entry2 *best = NULL;
  4271. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4272. struct kvm_cpuid_entry2 *e;
  4273. e = &vcpu->arch.cpuid_entries[i];
  4274. if (is_matching_cpuid_entry(e, function, index)) {
  4275. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4276. move_to_next_stateful_cpuid_entry(vcpu, i);
  4277. best = e;
  4278. break;
  4279. }
  4280. /*
  4281. * Both basic or both extended?
  4282. */
  4283. if (((e->function ^ function) & 0x80000000) == 0)
  4284. if (!best || e->function > best->function)
  4285. best = e;
  4286. }
  4287. return best;
  4288. }
  4289. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4290. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4291. {
  4292. struct kvm_cpuid_entry2 *best;
  4293. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4294. if (!best || best->eax < 0x80000008)
  4295. goto not_found;
  4296. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4297. if (best)
  4298. return best->eax & 0xff;
  4299. not_found:
  4300. return 36;
  4301. }
  4302. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4303. {
  4304. u32 function, index;
  4305. struct kvm_cpuid_entry2 *best;
  4306. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4307. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4308. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4309. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4310. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4311. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4312. best = kvm_find_cpuid_entry(vcpu, function, index);
  4313. if (best) {
  4314. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4315. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4316. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4317. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4318. }
  4319. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4320. trace_kvm_cpuid(function,
  4321. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4322. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4323. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4324. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4325. }
  4326. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4327. /*
  4328. * Check if userspace requested an interrupt window, and that the
  4329. * interrupt window is open.
  4330. *
  4331. * No need to exit to userspace if we already have an interrupt queued.
  4332. */
  4333. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4334. {
  4335. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4336. vcpu->run->request_interrupt_window &&
  4337. kvm_arch_interrupt_allowed(vcpu));
  4338. }
  4339. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4340. {
  4341. struct kvm_run *kvm_run = vcpu->run;
  4342. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4343. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4344. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4345. if (irqchip_in_kernel(vcpu->kvm))
  4346. kvm_run->ready_for_interrupt_injection = 1;
  4347. else
  4348. kvm_run->ready_for_interrupt_injection =
  4349. kvm_arch_interrupt_allowed(vcpu) &&
  4350. !kvm_cpu_has_interrupt(vcpu) &&
  4351. !kvm_event_needs_reinjection(vcpu);
  4352. }
  4353. static void vapic_enter(struct kvm_vcpu *vcpu)
  4354. {
  4355. struct kvm_lapic *apic = vcpu->arch.apic;
  4356. struct page *page;
  4357. if (!apic || !apic->vapic_addr)
  4358. return;
  4359. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4360. vcpu->arch.apic->vapic_page = page;
  4361. }
  4362. static void vapic_exit(struct kvm_vcpu *vcpu)
  4363. {
  4364. struct kvm_lapic *apic = vcpu->arch.apic;
  4365. int idx;
  4366. if (!apic || !apic->vapic_addr)
  4367. return;
  4368. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4369. kvm_release_page_dirty(apic->vapic_page);
  4370. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4371. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4372. }
  4373. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4374. {
  4375. int max_irr, tpr;
  4376. if (!kvm_x86_ops->update_cr8_intercept)
  4377. return;
  4378. if (!vcpu->arch.apic)
  4379. return;
  4380. if (!vcpu->arch.apic->vapic_addr)
  4381. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4382. else
  4383. max_irr = -1;
  4384. if (max_irr != -1)
  4385. max_irr >>= 4;
  4386. tpr = kvm_lapic_get_cr8(vcpu);
  4387. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4388. }
  4389. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4390. {
  4391. /* try to reinject previous events if any */
  4392. if (vcpu->arch.exception.pending) {
  4393. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4394. vcpu->arch.exception.has_error_code,
  4395. vcpu->arch.exception.error_code);
  4396. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4397. vcpu->arch.exception.has_error_code,
  4398. vcpu->arch.exception.error_code,
  4399. vcpu->arch.exception.reinject);
  4400. return;
  4401. }
  4402. if (vcpu->arch.nmi_injected) {
  4403. kvm_x86_ops->set_nmi(vcpu);
  4404. return;
  4405. }
  4406. if (vcpu->arch.interrupt.pending) {
  4407. kvm_x86_ops->set_irq(vcpu);
  4408. return;
  4409. }
  4410. /* try to inject new event if pending */
  4411. if (vcpu->arch.nmi_pending) {
  4412. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4413. vcpu->arch.nmi_pending = false;
  4414. vcpu->arch.nmi_injected = true;
  4415. kvm_x86_ops->set_nmi(vcpu);
  4416. }
  4417. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4418. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4419. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4420. false);
  4421. kvm_x86_ops->set_irq(vcpu);
  4422. }
  4423. }
  4424. }
  4425. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4426. {
  4427. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4428. !vcpu->guest_xcr0_loaded) {
  4429. /* kvm_set_xcr() also depends on this */
  4430. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4431. vcpu->guest_xcr0_loaded = 1;
  4432. }
  4433. }
  4434. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4435. {
  4436. if (vcpu->guest_xcr0_loaded) {
  4437. if (vcpu->arch.xcr0 != host_xcr0)
  4438. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4439. vcpu->guest_xcr0_loaded = 0;
  4440. }
  4441. }
  4442. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4443. {
  4444. int r;
  4445. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4446. vcpu->run->request_interrupt_window;
  4447. if (vcpu->requests) {
  4448. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4449. kvm_mmu_unload(vcpu);
  4450. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4451. __kvm_migrate_timers(vcpu);
  4452. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4453. r = kvm_guest_time_update(vcpu);
  4454. if (unlikely(r))
  4455. goto out;
  4456. }
  4457. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4458. kvm_mmu_sync_roots(vcpu);
  4459. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4460. kvm_x86_ops->tlb_flush(vcpu);
  4461. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4462. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4463. r = 0;
  4464. goto out;
  4465. }
  4466. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4467. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4468. r = 0;
  4469. goto out;
  4470. }
  4471. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4472. vcpu->fpu_active = 0;
  4473. kvm_x86_ops->fpu_deactivate(vcpu);
  4474. }
  4475. }
  4476. r = kvm_mmu_reload(vcpu);
  4477. if (unlikely(r))
  4478. goto out;
  4479. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4480. inject_pending_event(vcpu);
  4481. /* enable NMI/IRQ window open exits if needed */
  4482. if (vcpu->arch.nmi_pending)
  4483. kvm_x86_ops->enable_nmi_window(vcpu);
  4484. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4485. kvm_x86_ops->enable_irq_window(vcpu);
  4486. if (kvm_lapic_enabled(vcpu)) {
  4487. update_cr8_intercept(vcpu);
  4488. kvm_lapic_sync_to_vapic(vcpu);
  4489. }
  4490. }
  4491. preempt_disable();
  4492. kvm_x86_ops->prepare_guest_switch(vcpu);
  4493. if (vcpu->fpu_active)
  4494. kvm_load_guest_fpu(vcpu);
  4495. kvm_load_guest_xcr0(vcpu);
  4496. atomic_set(&vcpu->guest_mode, 1);
  4497. smp_wmb();
  4498. local_irq_disable();
  4499. if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
  4500. || need_resched() || signal_pending(current)) {
  4501. atomic_set(&vcpu->guest_mode, 0);
  4502. smp_wmb();
  4503. local_irq_enable();
  4504. preempt_enable();
  4505. kvm_x86_ops->cancel_injection(vcpu);
  4506. r = 1;
  4507. goto out;
  4508. }
  4509. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4510. kvm_guest_enter();
  4511. if (unlikely(vcpu->arch.switch_db_regs)) {
  4512. set_debugreg(0, 7);
  4513. set_debugreg(vcpu->arch.eff_db[0], 0);
  4514. set_debugreg(vcpu->arch.eff_db[1], 1);
  4515. set_debugreg(vcpu->arch.eff_db[2], 2);
  4516. set_debugreg(vcpu->arch.eff_db[3], 3);
  4517. }
  4518. trace_kvm_entry(vcpu->vcpu_id);
  4519. kvm_x86_ops->run(vcpu);
  4520. /*
  4521. * If the guest has used debug registers, at least dr7
  4522. * will be disabled while returning to the host.
  4523. * If we don't have active breakpoints in the host, we don't
  4524. * care about the messed up debug address registers. But if
  4525. * we have some of them active, restore the old state.
  4526. */
  4527. if (hw_breakpoint_active())
  4528. hw_breakpoint_restore();
  4529. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  4530. atomic_set(&vcpu->guest_mode, 0);
  4531. smp_wmb();
  4532. local_irq_enable();
  4533. ++vcpu->stat.exits;
  4534. /*
  4535. * We must have an instruction between local_irq_enable() and
  4536. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4537. * the interrupt shadow. The stat.exits increment will do nicely.
  4538. * But we need to prevent reordering, hence this barrier():
  4539. */
  4540. barrier();
  4541. kvm_guest_exit();
  4542. preempt_enable();
  4543. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4544. /*
  4545. * Profile KVM exit RIPs:
  4546. */
  4547. if (unlikely(prof_on == KVM_PROFILING)) {
  4548. unsigned long rip = kvm_rip_read(vcpu);
  4549. profile_hit(KVM_PROFILING, (void *)rip);
  4550. }
  4551. kvm_lapic_sync_from_vapic(vcpu);
  4552. r = kvm_x86_ops->handle_exit(vcpu);
  4553. out:
  4554. return r;
  4555. }
  4556. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4557. {
  4558. int r;
  4559. struct kvm *kvm = vcpu->kvm;
  4560. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4561. pr_debug("vcpu %d received sipi with vector # %x\n",
  4562. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4563. kvm_lapic_reset(vcpu);
  4564. r = kvm_arch_vcpu_reset(vcpu);
  4565. if (r)
  4566. return r;
  4567. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4568. }
  4569. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4570. vapic_enter(vcpu);
  4571. r = 1;
  4572. while (r > 0) {
  4573. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  4574. r = vcpu_enter_guest(vcpu);
  4575. else {
  4576. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4577. kvm_vcpu_block(vcpu);
  4578. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4579. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4580. {
  4581. switch(vcpu->arch.mp_state) {
  4582. case KVM_MP_STATE_HALTED:
  4583. vcpu->arch.mp_state =
  4584. KVM_MP_STATE_RUNNABLE;
  4585. case KVM_MP_STATE_RUNNABLE:
  4586. break;
  4587. case KVM_MP_STATE_SIPI_RECEIVED:
  4588. default:
  4589. r = -EINTR;
  4590. break;
  4591. }
  4592. }
  4593. }
  4594. if (r <= 0)
  4595. break;
  4596. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4597. if (kvm_cpu_has_pending_timer(vcpu))
  4598. kvm_inject_pending_timer_irqs(vcpu);
  4599. if (dm_request_for_irq_injection(vcpu)) {
  4600. r = -EINTR;
  4601. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4602. ++vcpu->stat.request_irq_exits;
  4603. }
  4604. if (signal_pending(current)) {
  4605. r = -EINTR;
  4606. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4607. ++vcpu->stat.signal_exits;
  4608. }
  4609. if (need_resched()) {
  4610. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4611. kvm_resched(vcpu);
  4612. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4613. }
  4614. }
  4615. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4616. vapic_exit(vcpu);
  4617. return r;
  4618. }
  4619. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4620. {
  4621. int r;
  4622. sigset_t sigsaved;
  4623. if (vcpu->sigset_active)
  4624. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4625. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4626. kvm_vcpu_block(vcpu);
  4627. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4628. r = -EAGAIN;
  4629. goto out;
  4630. }
  4631. /* re-sync apic's tpr */
  4632. if (!irqchip_in_kernel(vcpu->kvm))
  4633. kvm_set_cr8(vcpu, kvm_run->cr8);
  4634. if (vcpu->arch.pio.count || vcpu->mmio_needed) {
  4635. if (vcpu->mmio_needed) {
  4636. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4637. vcpu->mmio_read_completed = 1;
  4638. vcpu->mmio_needed = 0;
  4639. }
  4640. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4641. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4642. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4643. if (r != EMULATE_DONE) {
  4644. r = 0;
  4645. goto out;
  4646. }
  4647. }
  4648. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4649. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4650. kvm_run->hypercall.ret);
  4651. r = __vcpu_run(vcpu);
  4652. out:
  4653. post_kvm_run_save(vcpu);
  4654. if (vcpu->sigset_active)
  4655. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4656. return r;
  4657. }
  4658. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4659. {
  4660. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4661. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4662. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4663. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4664. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4665. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4666. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4667. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4668. #ifdef CONFIG_X86_64
  4669. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4670. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4671. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4672. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4673. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4674. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4675. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4676. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4677. #endif
  4678. regs->rip = kvm_rip_read(vcpu);
  4679. regs->rflags = kvm_get_rflags(vcpu);
  4680. return 0;
  4681. }
  4682. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4683. {
  4684. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4685. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4686. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4687. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4688. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4689. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4690. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4691. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4692. #ifdef CONFIG_X86_64
  4693. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4694. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4695. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4696. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4697. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4698. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4699. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4700. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4701. #endif
  4702. kvm_rip_write(vcpu, regs->rip);
  4703. kvm_set_rflags(vcpu, regs->rflags);
  4704. vcpu->arch.exception.pending = false;
  4705. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4706. return 0;
  4707. }
  4708. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4709. {
  4710. struct kvm_segment cs;
  4711. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4712. *db = cs.db;
  4713. *l = cs.l;
  4714. }
  4715. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4716. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4717. struct kvm_sregs *sregs)
  4718. {
  4719. struct desc_ptr dt;
  4720. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4721. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4722. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4723. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4724. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4725. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4726. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4727. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4728. kvm_x86_ops->get_idt(vcpu, &dt);
  4729. sregs->idt.limit = dt.size;
  4730. sregs->idt.base = dt.address;
  4731. kvm_x86_ops->get_gdt(vcpu, &dt);
  4732. sregs->gdt.limit = dt.size;
  4733. sregs->gdt.base = dt.address;
  4734. sregs->cr0 = kvm_read_cr0(vcpu);
  4735. sregs->cr2 = vcpu->arch.cr2;
  4736. sregs->cr3 = vcpu->arch.cr3;
  4737. sregs->cr4 = kvm_read_cr4(vcpu);
  4738. sregs->cr8 = kvm_get_cr8(vcpu);
  4739. sregs->efer = vcpu->arch.efer;
  4740. sregs->apic_base = kvm_get_apic_base(vcpu);
  4741. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4742. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4743. set_bit(vcpu->arch.interrupt.nr,
  4744. (unsigned long *)sregs->interrupt_bitmap);
  4745. return 0;
  4746. }
  4747. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4748. struct kvm_mp_state *mp_state)
  4749. {
  4750. mp_state->mp_state = vcpu->arch.mp_state;
  4751. return 0;
  4752. }
  4753. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4754. struct kvm_mp_state *mp_state)
  4755. {
  4756. vcpu->arch.mp_state = mp_state->mp_state;
  4757. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4758. return 0;
  4759. }
  4760. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4761. bool has_error_code, u32 error_code)
  4762. {
  4763. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4764. int ret;
  4765. init_emulate_ctxt(vcpu);
  4766. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  4767. tss_selector, reason, has_error_code,
  4768. error_code);
  4769. if (ret)
  4770. return EMULATE_FAIL;
  4771. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4772. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4773. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4774. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4775. return EMULATE_DONE;
  4776. }
  4777. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4778. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4779. struct kvm_sregs *sregs)
  4780. {
  4781. int mmu_reset_needed = 0;
  4782. int pending_vec, max_bits;
  4783. struct desc_ptr dt;
  4784. dt.size = sregs->idt.limit;
  4785. dt.address = sregs->idt.base;
  4786. kvm_x86_ops->set_idt(vcpu, &dt);
  4787. dt.size = sregs->gdt.limit;
  4788. dt.address = sregs->gdt.base;
  4789. kvm_x86_ops->set_gdt(vcpu, &dt);
  4790. vcpu->arch.cr2 = sregs->cr2;
  4791. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4792. vcpu->arch.cr3 = sregs->cr3;
  4793. kvm_set_cr8(vcpu, sregs->cr8);
  4794. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4795. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4796. kvm_set_apic_base(vcpu, sregs->apic_base);
  4797. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4798. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4799. vcpu->arch.cr0 = sregs->cr0;
  4800. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4801. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4802. if (sregs->cr4 & X86_CR4_OSXSAVE)
  4803. update_cpuid(vcpu);
  4804. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4805. load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
  4806. mmu_reset_needed = 1;
  4807. }
  4808. if (mmu_reset_needed)
  4809. kvm_mmu_reset_context(vcpu);
  4810. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4811. pending_vec = find_first_bit(
  4812. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4813. if (pending_vec < max_bits) {
  4814. kvm_queue_interrupt(vcpu, pending_vec, false);
  4815. pr_debug("Set back pending irq %d\n", pending_vec);
  4816. if (irqchip_in_kernel(vcpu->kvm))
  4817. kvm_pic_clear_isr_ack(vcpu->kvm);
  4818. }
  4819. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4820. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4821. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4822. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4823. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4824. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4825. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4826. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4827. update_cr8_intercept(vcpu);
  4828. /* Older userspace won't unhalt the vcpu on reset. */
  4829. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4830. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4831. !is_protmode(vcpu))
  4832. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4833. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4834. return 0;
  4835. }
  4836. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4837. struct kvm_guest_debug *dbg)
  4838. {
  4839. unsigned long rflags;
  4840. int i, r;
  4841. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4842. r = -EBUSY;
  4843. if (vcpu->arch.exception.pending)
  4844. goto out;
  4845. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4846. kvm_queue_exception(vcpu, DB_VECTOR);
  4847. else
  4848. kvm_queue_exception(vcpu, BP_VECTOR);
  4849. }
  4850. /*
  4851. * Read rflags as long as potentially injected trace flags are still
  4852. * filtered out.
  4853. */
  4854. rflags = kvm_get_rflags(vcpu);
  4855. vcpu->guest_debug = dbg->control;
  4856. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4857. vcpu->guest_debug = 0;
  4858. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4859. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4860. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4861. vcpu->arch.switch_db_regs =
  4862. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4863. } else {
  4864. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4865. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4866. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4867. }
  4868. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4869. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4870. get_segment_base(vcpu, VCPU_SREG_CS);
  4871. /*
  4872. * Trigger an rflags update that will inject or remove the trace
  4873. * flags.
  4874. */
  4875. kvm_set_rflags(vcpu, rflags);
  4876. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4877. r = 0;
  4878. out:
  4879. return r;
  4880. }
  4881. /*
  4882. * Translate a guest virtual address to a guest physical address.
  4883. */
  4884. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4885. struct kvm_translation *tr)
  4886. {
  4887. unsigned long vaddr = tr->linear_address;
  4888. gpa_t gpa;
  4889. int idx;
  4890. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4891. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4892. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4893. tr->physical_address = gpa;
  4894. tr->valid = gpa != UNMAPPED_GVA;
  4895. tr->writeable = 1;
  4896. tr->usermode = 0;
  4897. return 0;
  4898. }
  4899. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4900. {
  4901. struct i387_fxsave_struct *fxsave =
  4902. &vcpu->arch.guest_fpu.state->fxsave;
  4903. memcpy(fpu->fpr, fxsave->st_space, 128);
  4904. fpu->fcw = fxsave->cwd;
  4905. fpu->fsw = fxsave->swd;
  4906. fpu->ftwx = fxsave->twd;
  4907. fpu->last_opcode = fxsave->fop;
  4908. fpu->last_ip = fxsave->rip;
  4909. fpu->last_dp = fxsave->rdp;
  4910. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4911. return 0;
  4912. }
  4913. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4914. {
  4915. struct i387_fxsave_struct *fxsave =
  4916. &vcpu->arch.guest_fpu.state->fxsave;
  4917. memcpy(fxsave->st_space, fpu->fpr, 128);
  4918. fxsave->cwd = fpu->fcw;
  4919. fxsave->swd = fpu->fsw;
  4920. fxsave->twd = fpu->ftwx;
  4921. fxsave->fop = fpu->last_opcode;
  4922. fxsave->rip = fpu->last_ip;
  4923. fxsave->rdp = fpu->last_dp;
  4924. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4925. return 0;
  4926. }
  4927. int fx_init(struct kvm_vcpu *vcpu)
  4928. {
  4929. int err;
  4930. err = fpu_alloc(&vcpu->arch.guest_fpu);
  4931. if (err)
  4932. return err;
  4933. fpu_finit(&vcpu->arch.guest_fpu);
  4934. /*
  4935. * Ensure guest xcr0 is valid for loading
  4936. */
  4937. vcpu->arch.xcr0 = XSTATE_FP;
  4938. vcpu->arch.cr0 |= X86_CR0_ET;
  4939. return 0;
  4940. }
  4941. EXPORT_SYMBOL_GPL(fx_init);
  4942. static void fx_free(struct kvm_vcpu *vcpu)
  4943. {
  4944. fpu_free(&vcpu->arch.guest_fpu);
  4945. }
  4946. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4947. {
  4948. if (vcpu->guest_fpu_loaded)
  4949. return;
  4950. /*
  4951. * Restore all possible states in the guest,
  4952. * and assume host would use all available bits.
  4953. * Guest xcr0 would be loaded later.
  4954. */
  4955. kvm_put_guest_xcr0(vcpu);
  4956. vcpu->guest_fpu_loaded = 1;
  4957. unlazy_fpu(current);
  4958. fpu_restore_checking(&vcpu->arch.guest_fpu);
  4959. trace_kvm_fpu(1);
  4960. }
  4961. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4962. {
  4963. kvm_put_guest_xcr0(vcpu);
  4964. if (!vcpu->guest_fpu_loaded)
  4965. return;
  4966. vcpu->guest_fpu_loaded = 0;
  4967. fpu_save_init(&vcpu->arch.guest_fpu);
  4968. ++vcpu->stat.fpu_reload;
  4969. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  4970. trace_kvm_fpu(0);
  4971. }
  4972. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4973. {
  4974. if (vcpu->arch.time_page) {
  4975. kvm_release_page_dirty(vcpu->arch.time_page);
  4976. vcpu->arch.time_page = NULL;
  4977. }
  4978. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  4979. fx_free(vcpu);
  4980. kvm_x86_ops->vcpu_free(vcpu);
  4981. }
  4982. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4983. unsigned int id)
  4984. {
  4985. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  4986. printk_once(KERN_WARNING
  4987. "kvm: SMP vm created on host with unstable TSC; "
  4988. "guest TSC will not be reliable\n");
  4989. return kvm_x86_ops->vcpu_create(kvm, id);
  4990. }
  4991. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4992. {
  4993. int r;
  4994. vcpu->arch.mtrr_state.have_fixed = 1;
  4995. vcpu_load(vcpu);
  4996. r = kvm_arch_vcpu_reset(vcpu);
  4997. if (r == 0)
  4998. r = kvm_mmu_setup(vcpu);
  4999. vcpu_put(vcpu);
  5000. if (r < 0)
  5001. goto free_vcpu;
  5002. return 0;
  5003. free_vcpu:
  5004. kvm_x86_ops->vcpu_free(vcpu);
  5005. return r;
  5006. }
  5007. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5008. {
  5009. vcpu_load(vcpu);
  5010. kvm_mmu_unload(vcpu);
  5011. vcpu_put(vcpu);
  5012. fx_free(vcpu);
  5013. kvm_x86_ops->vcpu_free(vcpu);
  5014. }
  5015. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  5016. {
  5017. vcpu->arch.nmi_pending = false;
  5018. vcpu->arch.nmi_injected = false;
  5019. vcpu->arch.switch_db_regs = 0;
  5020. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5021. vcpu->arch.dr6 = DR6_FIXED_1;
  5022. vcpu->arch.dr7 = DR7_FIXED_1;
  5023. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5024. return kvm_x86_ops->vcpu_reset(vcpu);
  5025. }
  5026. int kvm_arch_hardware_enable(void *garbage)
  5027. {
  5028. struct kvm *kvm;
  5029. struct kvm_vcpu *vcpu;
  5030. int i;
  5031. kvm_shared_msr_cpu_online();
  5032. list_for_each_entry(kvm, &vm_list, vm_list)
  5033. kvm_for_each_vcpu(i, vcpu, kvm)
  5034. if (vcpu->cpu == smp_processor_id())
  5035. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5036. return kvm_x86_ops->hardware_enable(garbage);
  5037. }
  5038. void kvm_arch_hardware_disable(void *garbage)
  5039. {
  5040. kvm_x86_ops->hardware_disable(garbage);
  5041. drop_user_return_notifiers(garbage);
  5042. }
  5043. int kvm_arch_hardware_setup(void)
  5044. {
  5045. return kvm_x86_ops->hardware_setup();
  5046. }
  5047. void kvm_arch_hardware_unsetup(void)
  5048. {
  5049. kvm_x86_ops->hardware_unsetup();
  5050. }
  5051. void kvm_arch_check_processor_compat(void *rtn)
  5052. {
  5053. kvm_x86_ops->check_processor_compatibility(rtn);
  5054. }
  5055. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5056. {
  5057. struct page *page;
  5058. struct kvm *kvm;
  5059. int r;
  5060. BUG_ON(vcpu->kvm == NULL);
  5061. kvm = vcpu->kvm;
  5062. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5063. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  5064. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  5065. vcpu->arch.mmu.translate_gpa = translate_gpa;
  5066. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  5067. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5068. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5069. else
  5070. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5071. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5072. if (!page) {
  5073. r = -ENOMEM;
  5074. goto fail;
  5075. }
  5076. vcpu->arch.pio_data = page_address(page);
  5077. if (!kvm->arch.virtual_tsc_khz)
  5078. kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
  5079. r = kvm_mmu_create(vcpu);
  5080. if (r < 0)
  5081. goto fail_free_pio_data;
  5082. if (irqchip_in_kernel(kvm)) {
  5083. r = kvm_create_lapic(vcpu);
  5084. if (r < 0)
  5085. goto fail_mmu_destroy;
  5086. }
  5087. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5088. GFP_KERNEL);
  5089. if (!vcpu->arch.mce_banks) {
  5090. r = -ENOMEM;
  5091. goto fail_free_lapic;
  5092. }
  5093. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5094. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5095. goto fail_free_mce_banks;
  5096. return 0;
  5097. fail_free_mce_banks:
  5098. kfree(vcpu->arch.mce_banks);
  5099. fail_free_lapic:
  5100. kvm_free_lapic(vcpu);
  5101. fail_mmu_destroy:
  5102. kvm_mmu_destroy(vcpu);
  5103. fail_free_pio_data:
  5104. free_page((unsigned long)vcpu->arch.pio_data);
  5105. fail:
  5106. return r;
  5107. }
  5108. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5109. {
  5110. int idx;
  5111. kfree(vcpu->arch.mce_banks);
  5112. kvm_free_lapic(vcpu);
  5113. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5114. kvm_mmu_destroy(vcpu);
  5115. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5116. free_page((unsigned long)vcpu->arch.pio_data);
  5117. }
  5118. struct kvm *kvm_arch_create_vm(void)
  5119. {
  5120. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  5121. if (!kvm)
  5122. return ERR_PTR(-ENOMEM);
  5123. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5124. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5125. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5126. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5127. spin_lock_init(&kvm->arch.tsc_write_lock);
  5128. return kvm;
  5129. }
  5130. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5131. {
  5132. vcpu_load(vcpu);
  5133. kvm_mmu_unload(vcpu);
  5134. vcpu_put(vcpu);
  5135. }
  5136. static void kvm_free_vcpus(struct kvm *kvm)
  5137. {
  5138. unsigned int i;
  5139. struct kvm_vcpu *vcpu;
  5140. /*
  5141. * Unpin any mmu pages first.
  5142. */
  5143. kvm_for_each_vcpu(i, vcpu, kvm)
  5144. kvm_unload_vcpu_mmu(vcpu);
  5145. kvm_for_each_vcpu(i, vcpu, kvm)
  5146. kvm_arch_vcpu_free(vcpu);
  5147. mutex_lock(&kvm->lock);
  5148. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5149. kvm->vcpus[i] = NULL;
  5150. atomic_set(&kvm->online_vcpus, 0);
  5151. mutex_unlock(&kvm->lock);
  5152. }
  5153. void kvm_arch_sync_events(struct kvm *kvm)
  5154. {
  5155. kvm_free_all_assigned_devices(kvm);
  5156. kvm_free_pit(kvm);
  5157. }
  5158. void kvm_arch_destroy_vm(struct kvm *kvm)
  5159. {
  5160. kvm_iommu_unmap_guest(kvm);
  5161. kfree(kvm->arch.vpic);
  5162. kfree(kvm->arch.vioapic);
  5163. kvm_free_vcpus(kvm);
  5164. kvm_free_physmem(kvm);
  5165. if (kvm->arch.apic_access_page)
  5166. put_page(kvm->arch.apic_access_page);
  5167. if (kvm->arch.ept_identity_pagetable)
  5168. put_page(kvm->arch.ept_identity_pagetable);
  5169. cleanup_srcu_struct(&kvm->srcu);
  5170. kfree(kvm);
  5171. }
  5172. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5173. struct kvm_memory_slot *memslot,
  5174. struct kvm_memory_slot old,
  5175. struct kvm_userspace_memory_region *mem,
  5176. int user_alloc)
  5177. {
  5178. int npages = memslot->npages;
  5179. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5180. /* Prevent internal slot pages from being moved by fork()/COW. */
  5181. if (memslot->id >= KVM_MEMORY_SLOTS)
  5182. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5183. /*To keep backward compatibility with older userspace,
  5184. *x86 needs to hanlde !user_alloc case.
  5185. */
  5186. if (!user_alloc) {
  5187. if (npages && !old.rmap) {
  5188. unsigned long userspace_addr;
  5189. down_write(&current->mm->mmap_sem);
  5190. userspace_addr = do_mmap(NULL, 0,
  5191. npages * PAGE_SIZE,
  5192. PROT_READ | PROT_WRITE,
  5193. map_flags,
  5194. 0);
  5195. up_write(&current->mm->mmap_sem);
  5196. if (IS_ERR((void *)userspace_addr))
  5197. return PTR_ERR((void *)userspace_addr);
  5198. memslot->userspace_addr = userspace_addr;
  5199. }
  5200. }
  5201. return 0;
  5202. }
  5203. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5204. struct kvm_userspace_memory_region *mem,
  5205. struct kvm_memory_slot old,
  5206. int user_alloc)
  5207. {
  5208. int npages = mem->memory_size >> PAGE_SHIFT;
  5209. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5210. int ret;
  5211. down_write(&current->mm->mmap_sem);
  5212. ret = do_munmap(current->mm, old.userspace_addr,
  5213. old.npages * PAGE_SIZE);
  5214. up_write(&current->mm->mmap_sem);
  5215. if (ret < 0)
  5216. printk(KERN_WARNING
  5217. "kvm_vm_ioctl_set_memory_region: "
  5218. "failed to munmap memory\n");
  5219. }
  5220. spin_lock(&kvm->mmu_lock);
  5221. if (!kvm->arch.n_requested_mmu_pages) {
  5222. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5223. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5224. }
  5225. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5226. spin_unlock(&kvm->mmu_lock);
  5227. }
  5228. void kvm_arch_flush_shadow(struct kvm *kvm)
  5229. {
  5230. kvm_mmu_zap_all(kvm);
  5231. kvm_reload_remote_mmus(kvm);
  5232. }
  5233. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5234. {
  5235. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  5236. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5237. || vcpu->arch.nmi_pending ||
  5238. (kvm_arch_interrupt_allowed(vcpu) &&
  5239. kvm_cpu_has_interrupt(vcpu));
  5240. }
  5241. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5242. {
  5243. int me;
  5244. int cpu = vcpu->cpu;
  5245. if (waitqueue_active(&vcpu->wq)) {
  5246. wake_up_interruptible(&vcpu->wq);
  5247. ++vcpu->stat.halt_wakeup;
  5248. }
  5249. me = get_cpu();
  5250. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5251. if (atomic_xchg(&vcpu->guest_mode, 0))
  5252. smp_send_reschedule(cpu);
  5253. put_cpu();
  5254. }
  5255. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5256. {
  5257. return kvm_x86_ops->interrupt_allowed(vcpu);
  5258. }
  5259. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5260. {
  5261. unsigned long current_rip = kvm_rip_read(vcpu) +
  5262. get_segment_base(vcpu, VCPU_SREG_CS);
  5263. return current_rip == linear_rip;
  5264. }
  5265. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5266. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5267. {
  5268. unsigned long rflags;
  5269. rflags = kvm_x86_ops->get_rflags(vcpu);
  5270. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5271. rflags &= ~X86_EFLAGS_TF;
  5272. return rflags;
  5273. }
  5274. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5275. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5276. {
  5277. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5278. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5279. rflags |= X86_EFLAGS_TF;
  5280. kvm_x86_ops->set_rflags(vcpu, rflags);
  5281. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5282. }
  5283. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5284. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5285. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5286. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5287. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5288. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5289. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5290. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5291. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5292. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5293. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5294. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5295. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);