x86.c 117 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <trace/events/kvm.h>
  39. #undef TRACE_INCLUDE_FILE
  40. #define CREATE_TRACE_POINTS
  41. #include "trace.h"
  42. #include <asm/uaccess.h>
  43. #include <asm/msr.h>
  44. #include <asm/desc.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/mce.h>
  47. #define MAX_IO_MSRS 256
  48. #define CR0_RESERVED_BITS \
  49. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  50. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  51. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  52. #define CR4_RESERVED_BITS \
  53. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  54. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  55. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  56. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  57. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  58. #define KVM_MAX_MCE_BANKS 32
  59. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  60. /* EFER defaults:
  61. * - enable syscall per default because its emulated by KVM
  62. * - enable LME and LMA per default on 64 bit KVM
  63. */
  64. #ifdef CONFIG_X86_64
  65. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  66. #else
  67. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  68. #endif
  69. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  70. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  71. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  72. struct kvm_cpuid_entry2 __user *entries);
  73. struct kvm_x86_ops *kvm_x86_ops;
  74. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  75. int ignore_msrs = 0;
  76. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  77. struct kvm_stats_debugfs_item debugfs_entries[] = {
  78. { "pf_fixed", VCPU_STAT(pf_fixed) },
  79. { "pf_guest", VCPU_STAT(pf_guest) },
  80. { "tlb_flush", VCPU_STAT(tlb_flush) },
  81. { "invlpg", VCPU_STAT(invlpg) },
  82. { "exits", VCPU_STAT(exits) },
  83. { "io_exits", VCPU_STAT(io_exits) },
  84. { "mmio_exits", VCPU_STAT(mmio_exits) },
  85. { "signal_exits", VCPU_STAT(signal_exits) },
  86. { "irq_window", VCPU_STAT(irq_window_exits) },
  87. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  88. { "halt_exits", VCPU_STAT(halt_exits) },
  89. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  90. { "hypercalls", VCPU_STAT(hypercalls) },
  91. { "request_irq", VCPU_STAT(request_irq_exits) },
  92. { "irq_exits", VCPU_STAT(irq_exits) },
  93. { "host_state_reload", VCPU_STAT(host_state_reload) },
  94. { "efer_reload", VCPU_STAT(efer_reload) },
  95. { "fpu_reload", VCPU_STAT(fpu_reload) },
  96. { "insn_emulation", VCPU_STAT(insn_emulation) },
  97. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  98. { "irq_injections", VCPU_STAT(irq_injections) },
  99. { "nmi_injections", VCPU_STAT(nmi_injections) },
  100. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  101. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  102. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  103. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  104. { "mmu_flooded", VM_STAT(mmu_flooded) },
  105. { "mmu_recycled", VM_STAT(mmu_recycled) },
  106. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  107. { "mmu_unsync", VM_STAT(mmu_unsync) },
  108. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  109. { "largepages", VM_STAT(lpages) },
  110. { NULL }
  111. };
  112. unsigned long segment_base(u16 selector)
  113. {
  114. struct descriptor_table gdt;
  115. struct desc_struct *d;
  116. unsigned long table_base;
  117. unsigned long v;
  118. if (selector == 0)
  119. return 0;
  120. asm("sgdt %0" : "=m"(gdt));
  121. table_base = gdt.base;
  122. if (selector & 4) { /* from ldt */
  123. u16 ldt_selector;
  124. asm("sldt %0" : "=g"(ldt_selector));
  125. table_base = segment_base(ldt_selector);
  126. }
  127. d = (struct desc_struct *)(table_base + (selector & ~7));
  128. v = d->base0 | ((unsigned long)d->base1 << 16) |
  129. ((unsigned long)d->base2 << 24);
  130. #ifdef CONFIG_X86_64
  131. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  132. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  133. #endif
  134. return v;
  135. }
  136. EXPORT_SYMBOL_GPL(segment_base);
  137. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  138. {
  139. if (irqchip_in_kernel(vcpu->kvm))
  140. return vcpu->arch.apic_base;
  141. else
  142. return vcpu->arch.apic_base;
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  145. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  146. {
  147. /* TODO: reserve bits check */
  148. if (irqchip_in_kernel(vcpu->kvm))
  149. kvm_lapic_set_base(vcpu, data);
  150. else
  151. vcpu->arch.apic_base = data;
  152. }
  153. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  154. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  155. {
  156. WARN_ON(vcpu->arch.exception.pending);
  157. vcpu->arch.exception.pending = true;
  158. vcpu->arch.exception.has_error_code = false;
  159. vcpu->arch.exception.nr = nr;
  160. }
  161. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  162. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  163. u32 error_code)
  164. {
  165. ++vcpu->stat.pf_guest;
  166. if (vcpu->arch.exception.pending) {
  167. switch(vcpu->arch.exception.nr) {
  168. case DF_VECTOR:
  169. /* triple fault -> shutdown */
  170. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  171. return;
  172. case PF_VECTOR:
  173. vcpu->arch.exception.nr = DF_VECTOR;
  174. vcpu->arch.exception.error_code = 0;
  175. return;
  176. default:
  177. /* replace previous exception with a new one in a hope
  178. that instruction re-execution will regenerate lost
  179. exception */
  180. vcpu->arch.exception.pending = false;
  181. break;
  182. }
  183. }
  184. vcpu->arch.cr2 = addr;
  185. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  186. }
  187. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  188. {
  189. vcpu->arch.nmi_pending = 1;
  190. }
  191. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  192. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  193. {
  194. WARN_ON(vcpu->arch.exception.pending);
  195. vcpu->arch.exception.pending = true;
  196. vcpu->arch.exception.has_error_code = true;
  197. vcpu->arch.exception.nr = nr;
  198. vcpu->arch.exception.error_code = error_code;
  199. }
  200. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  201. static void __queue_exception(struct kvm_vcpu *vcpu)
  202. {
  203. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  204. vcpu->arch.exception.has_error_code,
  205. vcpu->arch.exception.error_code);
  206. }
  207. /*
  208. * Load the pae pdptrs. Return true is they are all valid.
  209. */
  210. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  211. {
  212. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  213. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  214. int i;
  215. int ret;
  216. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  217. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  218. offset * sizeof(u64), sizeof(pdpte));
  219. if (ret < 0) {
  220. ret = 0;
  221. goto out;
  222. }
  223. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  224. if (is_present_gpte(pdpte[i]) &&
  225. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  226. ret = 0;
  227. goto out;
  228. }
  229. }
  230. ret = 1;
  231. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  232. __set_bit(VCPU_EXREG_PDPTR,
  233. (unsigned long *)&vcpu->arch.regs_avail);
  234. __set_bit(VCPU_EXREG_PDPTR,
  235. (unsigned long *)&vcpu->arch.regs_dirty);
  236. out:
  237. return ret;
  238. }
  239. EXPORT_SYMBOL_GPL(load_pdptrs);
  240. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  241. {
  242. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  243. bool changed = true;
  244. int r;
  245. if (is_long_mode(vcpu) || !is_pae(vcpu))
  246. return false;
  247. if (!test_bit(VCPU_EXREG_PDPTR,
  248. (unsigned long *)&vcpu->arch.regs_avail))
  249. return true;
  250. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  251. if (r < 0)
  252. goto out;
  253. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  254. out:
  255. return changed;
  256. }
  257. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  258. {
  259. if (cr0 & CR0_RESERVED_BITS) {
  260. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  261. cr0, vcpu->arch.cr0);
  262. kvm_inject_gp(vcpu, 0);
  263. return;
  264. }
  265. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  266. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  267. kvm_inject_gp(vcpu, 0);
  268. return;
  269. }
  270. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  271. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  272. "and a clear PE flag\n");
  273. kvm_inject_gp(vcpu, 0);
  274. return;
  275. }
  276. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  277. #ifdef CONFIG_X86_64
  278. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  279. int cs_db, cs_l;
  280. if (!is_pae(vcpu)) {
  281. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  282. "in long mode while PAE is disabled\n");
  283. kvm_inject_gp(vcpu, 0);
  284. return;
  285. }
  286. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  287. if (cs_l) {
  288. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  289. "in long mode while CS.L == 1\n");
  290. kvm_inject_gp(vcpu, 0);
  291. return;
  292. }
  293. } else
  294. #endif
  295. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  296. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  297. "reserved bits\n");
  298. kvm_inject_gp(vcpu, 0);
  299. return;
  300. }
  301. }
  302. kvm_x86_ops->set_cr0(vcpu, cr0);
  303. vcpu->arch.cr0 = cr0;
  304. kvm_mmu_reset_context(vcpu);
  305. return;
  306. }
  307. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  308. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  309. {
  310. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  311. }
  312. EXPORT_SYMBOL_GPL(kvm_lmsw);
  313. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  314. {
  315. unsigned long old_cr4 = vcpu->arch.cr4;
  316. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  317. if (cr4 & CR4_RESERVED_BITS) {
  318. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  319. kvm_inject_gp(vcpu, 0);
  320. return;
  321. }
  322. if (is_long_mode(vcpu)) {
  323. if (!(cr4 & X86_CR4_PAE)) {
  324. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  325. "in long mode\n");
  326. kvm_inject_gp(vcpu, 0);
  327. return;
  328. }
  329. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  330. && ((cr4 ^ old_cr4) & pdptr_bits)
  331. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  332. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  333. kvm_inject_gp(vcpu, 0);
  334. return;
  335. }
  336. if (cr4 & X86_CR4_VMXE) {
  337. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  338. kvm_inject_gp(vcpu, 0);
  339. return;
  340. }
  341. kvm_x86_ops->set_cr4(vcpu, cr4);
  342. vcpu->arch.cr4 = cr4;
  343. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  344. kvm_mmu_reset_context(vcpu);
  345. }
  346. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  347. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  348. {
  349. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  350. kvm_mmu_sync_roots(vcpu);
  351. kvm_mmu_flush_tlb(vcpu);
  352. return;
  353. }
  354. if (is_long_mode(vcpu)) {
  355. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  356. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  357. kvm_inject_gp(vcpu, 0);
  358. return;
  359. }
  360. } else {
  361. if (is_pae(vcpu)) {
  362. if (cr3 & CR3_PAE_RESERVED_BITS) {
  363. printk(KERN_DEBUG
  364. "set_cr3: #GP, reserved bits\n");
  365. kvm_inject_gp(vcpu, 0);
  366. return;
  367. }
  368. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  369. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  370. "reserved bits\n");
  371. kvm_inject_gp(vcpu, 0);
  372. return;
  373. }
  374. }
  375. /*
  376. * We don't check reserved bits in nonpae mode, because
  377. * this isn't enforced, and VMware depends on this.
  378. */
  379. }
  380. /*
  381. * Does the new cr3 value map to physical memory? (Note, we
  382. * catch an invalid cr3 even in real-mode, because it would
  383. * cause trouble later on when we turn on paging anyway.)
  384. *
  385. * A real CPU would silently accept an invalid cr3 and would
  386. * attempt to use it - with largely undefined (and often hard
  387. * to debug) behavior on the guest side.
  388. */
  389. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  390. kvm_inject_gp(vcpu, 0);
  391. else {
  392. vcpu->arch.cr3 = cr3;
  393. vcpu->arch.mmu.new_cr3(vcpu);
  394. }
  395. }
  396. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  397. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  398. {
  399. if (cr8 & CR8_RESERVED_BITS) {
  400. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  401. kvm_inject_gp(vcpu, 0);
  402. return;
  403. }
  404. if (irqchip_in_kernel(vcpu->kvm))
  405. kvm_lapic_set_tpr(vcpu, cr8);
  406. else
  407. vcpu->arch.cr8 = cr8;
  408. }
  409. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  410. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  411. {
  412. if (irqchip_in_kernel(vcpu->kvm))
  413. return kvm_lapic_get_cr8(vcpu);
  414. else
  415. return vcpu->arch.cr8;
  416. }
  417. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  418. static inline u32 bit(int bitno)
  419. {
  420. return 1 << (bitno & 31);
  421. }
  422. /*
  423. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  424. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  425. *
  426. * This list is modified at module load time to reflect the
  427. * capabilities of the host cpu.
  428. */
  429. static u32 msrs_to_save[] = {
  430. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  431. MSR_K6_STAR,
  432. #ifdef CONFIG_X86_64
  433. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  434. #endif
  435. MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  436. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  437. };
  438. static unsigned num_msrs_to_save;
  439. static u32 emulated_msrs[] = {
  440. MSR_IA32_MISC_ENABLE,
  441. };
  442. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  443. {
  444. if (efer & efer_reserved_bits) {
  445. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  446. efer);
  447. kvm_inject_gp(vcpu, 0);
  448. return;
  449. }
  450. if (is_paging(vcpu)
  451. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  452. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  453. kvm_inject_gp(vcpu, 0);
  454. return;
  455. }
  456. if (efer & EFER_FFXSR) {
  457. struct kvm_cpuid_entry2 *feat;
  458. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  459. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  460. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  461. kvm_inject_gp(vcpu, 0);
  462. return;
  463. }
  464. }
  465. if (efer & EFER_SVME) {
  466. struct kvm_cpuid_entry2 *feat;
  467. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  468. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  469. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  470. kvm_inject_gp(vcpu, 0);
  471. return;
  472. }
  473. }
  474. kvm_x86_ops->set_efer(vcpu, efer);
  475. efer &= ~EFER_LMA;
  476. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  477. vcpu->arch.shadow_efer = efer;
  478. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  479. kvm_mmu_reset_context(vcpu);
  480. }
  481. void kvm_enable_efer_bits(u64 mask)
  482. {
  483. efer_reserved_bits &= ~mask;
  484. }
  485. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  486. /*
  487. * Writes msr value into into the appropriate "register".
  488. * Returns 0 on success, non-0 otherwise.
  489. * Assumes vcpu_load() was already called.
  490. */
  491. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  492. {
  493. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  494. }
  495. /*
  496. * Adapt set_msr() to msr_io()'s calling convention
  497. */
  498. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  499. {
  500. return kvm_set_msr(vcpu, index, *data);
  501. }
  502. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  503. {
  504. static int version;
  505. struct pvclock_wall_clock wc;
  506. struct timespec now, sys, boot;
  507. if (!wall_clock)
  508. return;
  509. version++;
  510. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  511. /*
  512. * The guest calculates current wall clock time by adding
  513. * system time (updated by kvm_write_guest_time below) to the
  514. * wall clock specified here. guest system time equals host
  515. * system time for us, thus we must fill in host boot time here.
  516. */
  517. now = current_kernel_time();
  518. ktime_get_ts(&sys);
  519. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  520. wc.sec = boot.tv_sec;
  521. wc.nsec = boot.tv_nsec;
  522. wc.version = version;
  523. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  524. version++;
  525. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  526. }
  527. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  528. {
  529. uint32_t quotient, remainder;
  530. /* Don't try to replace with do_div(), this one calculates
  531. * "(dividend << 32) / divisor" */
  532. __asm__ ( "divl %4"
  533. : "=a" (quotient), "=d" (remainder)
  534. : "0" (0), "1" (dividend), "r" (divisor) );
  535. return quotient;
  536. }
  537. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  538. {
  539. uint64_t nsecs = 1000000000LL;
  540. int32_t shift = 0;
  541. uint64_t tps64;
  542. uint32_t tps32;
  543. tps64 = tsc_khz * 1000LL;
  544. while (tps64 > nsecs*2) {
  545. tps64 >>= 1;
  546. shift--;
  547. }
  548. tps32 = (uint32_t)tps64;
  549. while (tps32 <= (uint32_t)nsecs) {
  550. tps32 <<= 1;
  551. shift++;
  552. }
  553. hv_clock->tsc_shift = shift;
  554. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  555. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  556. __func__, tsc_khz, hv_clock->tsc_shift,
  557. hv_clock->tsc_to_system_mul);
  558. }
  559. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  560. static void kvm_write_guest_time(struct kvm_vcpu *v)
  561. {
  562. struct timespec ts;
  563. unsigned long flags;
  564. struct kvm_vcpu_arch *vcpu = &v->arch;
  565. void *shared_kaddr;
  566. unsigned long this_tsc_khz;
  567. if ((!vcpu->time_page))
  568. return;
  569. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  570. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  571. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  572. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  573. }
  574. put_cpu_var(cpu_tsc_khz);
  575. /* Keep irq disabled to prevent changes to the clock */
  576. local_irq_save(flags);
  577. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  578. ktime_get_ts(&ts);
  579. local_irq_restore(flags);
  580. /* With all the info we got, fill in the values */
  581. vcpu->hv_clock.system_time = ts.tv_nsec +
  582. (NSEC_PER_SEC * (u64)ts.tv_sec);
  583. /*
  584. * The interface expects us to write an even number signaling that the
  585. * update is finished. Since the guest won't see the intermediate
  586. * state, we just increase by 2 at the end.
  587. */
  588. vcpu->hv_clock.version += 2;
  589. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  590. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  591. sizeof(vcpu->hv_clock));
  592. kunmap_atomic(shared_kaddr, KM_USER0);
  593. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  594. }
  595. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  596. {
  597. struct kvm_vcpu_arch *vcpu = &v->arch;
  598. if (!vcpu->time_page)
  599. return 0;
  600. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  601. return 1;
  602. }
  603. static bool msr_mtrr_valid(unsigned msr)
  604. {
  605. switch (msr) {
  606. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  607. case MSR_MTRRfix64K_00000:
  608. case MSR_MTRRfix16K_80000:
  609. case MSR_MTRRfix16K_A0000:
  610. case MSR_MTRRfix4K_C0000:
  611. case MSR_MTRRfix4K_C8000:
  612. case MSR_MTRRfix4K_D0000:
  613. case MSR_MTRRfix4K_D8000:
  614. case MSR_MTRRfix4K_E0000:
  615. case MSR_MTRRfix4K_E8000:
  616. case MSR_MTRRfix4K_F0000:
  617. case MSR_MTRRfix4K_F8000:
  618. case MSR_MTRRdefType:
  619. case MSR_IA32_CR_PAT:
  620. return true;
  621. case 0x2f8:
  622. return true;
  623. }
  624. return false;
  625. }
  626. static bool valid_pat_type(unsigned t)
  627. {
  628. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  629. }
  630. static bool valid_mtrr_type(unsigned t)
  631. {
  632. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  633. }
  634. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  635. {
  636. int i;
  637. if (!msr_mtrr_valid(msr))
  638. return false;
  639. if (msr == MSR_IA32_CR_PAT) {
  640. for (i = 0; i < 8; i++)
  641. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  642. return false;
  643. return true;
  644. } else if (msr == MSR_MTRRdefType) {
  645. if (data & ~0xcff)
  646. return false;
  647. return valid_mtrr_type(data & 0xff);
  648. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  649. for (i = 0; i < 8 ; i++)
  650. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  651. return false;
  652. return true;
  653. }
  654. /* variable MTRRs */
  655. return valid_mtrr_type(data & 0xff);
  656. }
  657. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  658. {
  659. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  660. if (!mtrr_valid(vcpu, msr, data))
  661. return 1;
  662. if (msr == MSR_MTRRdefType) {
  663. vcpu->arch.mtrr_state.def_type = data;
  664. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  665. } else if (msr == MSR_MTRRfix64K_00000)
  666. p[0] = data;
  667. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  668. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  669. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  670. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  671. else if (msr == MSR_IA32_CR_PAT)
  672. vcpu->arch.pat = data;
  673. else { /* Variable MTRRs */
  674. int idx, is_mtrr_mask;
  675. u64 *pt;
  676. idx = (msr - 0x200) / 2;
  677. is_mtrr_mask = msr - 0x200 - 2 * idx;
  678. if (!is_mtrr_mask)
  679. pt =
  680. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  681. else
  682. pt =
  683. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  684. *pt = data;
  685. }
  686. kvm_mmu_reset_context(vcpu);
  687. return 0;
  688. }
  689. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  690. {
  691. u64 mcg_cap = vcpu->arch.mcg_cap;
  692. unsigned bank_num = mcg_cap & 0xff;
  693. switch (msr) {
  694. case MSR_IA32_MCG_STATUS:
  695. vcpu->arch.mcg_status = data;
  696. break;
  697. case MSR_IA32_MCG_CTL:
  698. if (!(mcg_cap & MCG_CTL_P))
  699. return 1;
  700. if (data != 0 && data != ~(u64)0)
  701. return -1;
  702. vcpu->arch.mcg_ctl = data;
  703. break;
  704. default:
  705. if (msr >= MSR_IA32_MC0_CTL &&
  706. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  707. u32 offset = msr - MSR_IA32_MC0_CTL;
  708. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  709. if ((offset & 0x3) == 0 &&
  710. data != 0 && data != ~(u64)0)
  711. return -1;
  712. vcpu->arch.mce_banks[offset] = data;
  713. break;
  714. }
  715. return 1;
  716. }
  717. return 0;
  718. }
  719. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  720. {
  721. switch (msr) {
  722. case MSR_EFER:
  723. set_efer(vcpu, data);
  724. break;
  725. case MSR_K7_HWCR:
  726. data &= ~(u64)0x40; /* ignore flush filter disable */
  727. if (data != 0) {
  728. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  729. data);
  730. return 1;
  731. }
  732. break;
  733. case MSR_AMD64_NB_CFG:
  734. break;
  735. case MSR_IA32_DEBUGCTLMSR:
  736. if (!data) {
  737. /* We support the non-activated case already */
  738. break;
  739. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  740. /* Values other than LBR and BTF are vendor-specific,
  741. thus reserved and should throw a #GP */
  742. return 1;
  743. }
  744. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  745. __func__, data);
  746. break;
  747. case MSR_IA32_UCODE_REV:
  748. case MSR_IA32_UCODE_WRITE:
  749. case MSR_VM_HSAVE_PA:
  750. break;
  751. case 0x200 ... 0x2ff:
  752. return set_msr_mtrr(vcpu, msr, data);
  753. case MSR_IA32_APICBASE:
  754. kvm_set_apic_base(vcpu, data);
  755. break;
  756. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  757. return kvm_x2apic_msr_write(vcpu, msr, data);
  758. case MSR_IA32_MISC_ENABLE:
  759. vcpu->arch.ia32_misc_enable_msr = data;
  760. break;
  761. case MSR_KVM_WALL_CLOCK:
  762. vcpu->kvm->arch.wall_clock = data;
  763. kvm_write_wall_clock(vcpu->kvm, data);
  764. break;
  765. case MSR_KVM_SYSTEM_TIME: {
  766. if (vcpu->arch.time_page) {
  767. kvm_release_page_dirty(vcpu->arch.time_page);
  768. vcpu->arch.time_page = NULL;
  769. }
  770. vcpu->arch.time = data;
  771. /* we verify if the enable bit is set... */
  772. if (!(data & 1))
  773. break;
  774. /* ...but clean it before doing the actual write */
  775. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  776. vcpu->arch.time_page =
  777. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  778. if (is_error_page(vcpu->arch.time_page)) {
  779. kvm_release_page_clean(vcpu->arch.time_page);
  780. vcpu->arch.time_page = NULL;
  781. }
  782. kvm_request_guest_time_update(vcpu);
  783. break;
  784. }
  785. case MSR_IA32_MCG_CTL:
  786. case MSR_IA32_MCG_STATUS:
  787. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  788. return set_msr_mce(vcpu, msr, data);
  789. /* Performance counters are not protected by a CPUID bit,
  790. * so we should check all of them in the generic path for the sake of
  791. * cross vendor migration.
  792. * Writing a zero into the event select MSRs disables them,
  793. * which we perfectly emulate ;-). Any other value should be at least
  794. * reported, some guests depend on them.
  795. */
  796. case MSR_P6_EVNTSEL0:
  797. case MSR_P6_EVNTSEL1:
  798. case MSR_K7_EVNTSEL0:
  799. case MSR_K7_EVNTSEL1:
  800. case MSR_K7_EVNTSEL2:
  801. case MSR_K7_EVNTSEL3:
  802. if (data != 0)
  803. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  804. "0x%x data 0x%llx\n", msr, data);
  805. break;
  806. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  807. * so we ignore writes to make it happy.
  808. */
  809. case MSR_P6_PERFCTR0:
  810. case MSR_P6_PERFCTR1:
  811. case MSR_K7_PERFCTR0:
  812. case MSR_K7_PERFCTR1:
  813. case MSR_K7_PERFCTR2:
  814. case MSR_K7_PERFCTR3:
  815. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  816. "0x%x data 0x%llx\n", msr, data);
  817. break;
  818. default:
  819. if (!ignore_msrs) {
  820. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  821. msr, data);
  822. return 1;
  823. } else {
  824. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  825. msr, data);
  826. break;
  827. }
  828. }
  829. return 0;
  830. }
  831. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  832. /*
  833. * Reads an msr value (of 'msr_index') into 'pdata'.
  834. * Returns 0 on success, non-0 otherwise.
  835. * Assumes vcpu_load() was already called.
  836. */
  837. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  838. {
  839. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  840. }
  841. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  842. {
  843. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  844. if (!msr_mtrr_valid(msr))
  845. return 1;
  846. if (msr == MSR_MTRRdefType)
  847. *pdata = vcpu->arch.mtrr_state.def_type +
  848. (vcpu->arch.mtrr_state.enabled << 10);
  849. else if (msr == MSR_MTRRfix64K_00000)
  850. *pdata = p[0];
  851. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  852. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  853. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  854. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  855. else if (msr == MSR_IA32_CR_PAT)
  856. *pdata = vcpu->arch.pat;
  857. else { /* Variable MTRRs */
  858. int idx, is_mtrr_mask;
  859. u64 *pt;
  860. idx = (msr - 0x200) / 2;
  861. is_mtrr_mask = msr - 0x200 - 2 * idx;
  862. if (!is_mtrr_mask)
  863. pt =
  864. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  865. else
  866. pt =
  867. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  868. *pdata = *pt;
  869. }
  870. return 0;
  871. }
  872. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  873. {
  874. u64 data;
  875. u64 mcg_cap = vcpu->arch.mcg_cap;
  876. unsigned bank_num = mcg_cap & 0xff;
  877. switch (msr) {
  878. case MSR_IA32_P5_MC_ADDR:
  879. case MSR_IA32_P5_MC_TYPE:
  880. data = 0;
  881. break;
  882. case MSR_IA32_MCG_CAP:
  883. data = vcpu->arch.mcg_cap;
  884. break;
  885. case MSR_IA32_MCG_CTL:
  886. if (!(mcg_cap & MCG_CTL_P))
  887. return 1;
  888. data = vcpu->arch.mcg_ctl;
  889. break;
  890. case MSR_IA32_MCG_STATUS:
  891. data = vcpu->arch.mcg_status;
  892. break;
  893. default:
  894. if (msr >= MSR_IA32_MC0_CTL &&
  895. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  896. u32 offset = msr - MSR_IA32_MC0_CTL;
  897. data = vcpu->arch.mce_banks[offset];
  898. break;
  899. }
  900. return 1;
  901. }
  902. *pdata = data;
  903. return 0;
  904. }
  905. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  906. {
  907. u64 data;
  908. switch (msr) {
  909. case MSR_IA32_PLATFORM_ID:
  910. case MSR_IA32_UCODE_REV:
  911. case MSR_IA32_EBL_CR_POWERON:
  912. case MSR_IA32_DEBUGCTLMSR:
  913. case MSR_IA32_LASTBRANCHFROMIP:
  914. case MSR_IA32_LASTBRANCHTOIP:
  915. case MSR_IA32_LASTINTFROMIP:
  916. case MSR_IA32_LASTINTTOIP:
  917. case MSR_K8_SYSCFG:
  918. case MSR_K7_HWCR:
  919. case MSR_VM_HSAVE_PA:
  920. case MSR_P6_EVNTSEL0:
  921. case MSR_P6_EVNTSEL1:
  922. case MSR_K7_EVNTSEL0:
  923. case MSR_K8_INT_PENDING_MSG:
  924. case MSR_AMD64_NB_CFG:
  925. data = 0;
  926. break;
  927. case MSR_MTRRcap:
  928. data = 0x500 | KVM_NR_VAR_MTRR;
  929. break;
  930. case 0x200 ... 0x2ff:
  931. return get_msr_mtrr(vcpu, msr, pdata);
  932. case 0xcd: /* fsb frequency */
  933. data = 3;
  934. break;
  935. case MSR_IA32_APICBASE:
  936. data = kvm_get_apic_base(vcpu);
  937. break;
  938. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  939. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  940. break;
  941. case MSR_IA32_MISC_ENABLE:
  942. data = vcpu->arch.ia32_misc_enable_msr;
  943. break;
  944. case MSR_IA32_PERF_STATUS:
  945. /* TSC increment by tick */
  946. data = 1000ULL;
  947. /* CPU multiplier */
  948. data |= (((uint64_t)4ULL) << 40);
  949. break;
  950. case MSR_EFER:
  951. data = vcpu->arch.shadow_efer;
  952. break;
  953. case MSR_KVM_WALL_CLOCK:
  954. data = vcpu->kvm->arch.wall_clock;
  955. break;
  956. case MSR_KVM_SYSTEM_TIME:
  957. data = vcpu->arch.time;
  958. break;
  959. case MSR_IA32_P5_MC_ADDR:
  960. case MSR_IA32_P5_MC_TYPE:
  961. case MSR_IA32_MCG_CAP:
  962. case MSR_IA32_MCG_CTL:
  963. case MSR_IA32_MCG_STATUS:
  964. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  965. return get_msr_mce(vcpu, msr, pdata);
  966. default:
  967. if (!ignore_msrs) {
  968. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  969. return 1;
  970. } else {
  971. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  972. data = 0;
  973. }
  974. break;
  975. }
  976. *pdata = data;
  977. return 0;
  978. }
  979. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  980. /*
  981. * Read or write a bunch of msrs. All parameters are kernel addresses.
  982. *
  983. * @return number of msrs set successfully.
  984. */
  985. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  986. struct kvm_msr_entry *entries,
  987. int (*do_msr)(struct kvm_vcpu *vcpu,
  988. unsigned index, u64 *data))
  989. {
  990. int i;
  991. vcpu_load(vcpu);
  992. down_read(&vcpu->kvm->slots_lock);
  993. for (i = 0; i < msrs->nmsrs; ++i)
  994. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  995. break;
  996. up_read(&vcpu->kvm->slots_lock);
  997. vcpu_put(vcpu);
  998. return i;
  999. }
  1000. /*
  1001. * Read or write a bunch of msrs. Parameters are user addresses.
  1002. *
  1003. * @return number of msrs set successfully.
  1004. */
  1005. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1006. int (*do_msr)(struct kvm_vcpu *vcpu,
  1007. unsigned index, u64 *data),
  1008. int writeback)
  1009. {
  1010. struct kvm_msrs msrs;
  1011. struct kvm_msr_entry *entries;
  1012. int r, n;
  1013. unsigned size;
  1014. r = -EFAULT;
  1015. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1016. goto out;
  1017. r = -E2BIG;
  1018. if (msrs.nmsrs >= MAX_IO_MSRS)
  1019. goto out;
  1020. r = -ENOMEM;
  1021. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1022. entries = vmalloc(size);
  1023. if (!entries)
  1024. goto out;
  1025. r = -EFAULT;
  1026. if (copy_from_user(entries, user_msrs->entries, size))
  1027. goto out_free;
  1028. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1029. if (r < 0)
  1030. goto out_free;
  1031. r = -EFAULT;
  1032. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1033. goto out_free;
  1034. r = n;
  1035. out_free:
  1036. vfree(entries);
  1037. out:
  1038. return r;
  1039. }
  1040. int kvm_dev_ioctl_check_extension(long ext)
  1041. {
  1042. int r;
  1043. switch (ext) {
  1044. case KVM_CAP_IRQCHIP:
  1045. case KVM_CAP_HLT:
  1046. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1047. case KVM_CAP_SET_TSS_ADDR:
  1048. case KVM_CAP_EXT_CPUID:
  1049. case KVM_CAP_CLOCKSOURCE:
  1050. case KVM_CAP_PIT:
  1051. case KVM_CAP_NOP_IO_DELAY:
  1052. case KVM_CAP_MP_STATE:
  1053. case KVM_CAP_SYNC_MMU:
  1054. case KVM_CAP_REINJECT_CONTROL:
  1055. case KVM_CAP_IRQ_INJECT_STATUS:
  1056. case KVM_CAP_ASSIGN_DEV_IRQ:
  1057. case KVM_CAP_IRQFD:
  1058. case KVM_CAP_PIT2:
  1059. r = 1;
  1060. break;
  1061. case KVM_CAP_COALESCED_MMIO:
  1062. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1063. break;
  1064. case KVM_CAP_VAPIC:
  1065. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1066. break;
  1067. case KVM_CAP_NR_VCPUS:
  1068. r = KVM_MAX_VCPUS;
  1069. break;
  1070. case KVM_CAP_NR_MEMSLOTS:
  1071. r = KVM_MEMORY_SLOTS;
  1072. break;
  1073. case KVM_CAP_PV_MMU:
  1074. r = !tdp_enabled;
  1075. break;
  1076. case KVM_CAP_IOMMU:
  1077. r = iommu_found();
  1078. break;
  1079. case KVM_CAP_MCE:
  1080. r = KVM_MAX_MCE_BANKS;
  1081. break;
  1082. default:
  1083. r = 0;
  1084. break;
  1085. }
  1086. return r;
  1087. }
  1088. long kvm_arch_dev_ioctl(struct file *filp,
  1089. unsigned int ioctl, unsigned long arg)
  1090. {
  1091. void __user *argp = (void __user *)arg;
  1092. long r;
  1093. switch (ioctl) {
  1094. case KVM_GET_MSR_INDEX_LIST: {
  1095. struct kvm_msr_list __user *user_msr_list = argp;
  1096. struct kvm_msr_list msr_list;
  1097. unsigned n;
  1098. r = -EFAULT;
  1099. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1100. goto out;
  1101. n = msr_list.nmsrs;
  1102. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1103. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1104. goto out;
  1105. r = -E2BIG;
  1106. if (n < msr_list.nmsrs)
  1107. goto out;
  1108. r = -EFAULT;
  1109. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1110. num_msrs_to_save * sizeof(u32)))
  1111. goto out;
  1112. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1113. &emulated_msrs,
  1114. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1115. goto out;
  1116. r = 0;
  1117. break;
  1118. }
  1119. case KVM_GET_SUPPORTED_CPUID: {
  1120. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1121. struct kvm_cpuid2 cpuid;
  1122. r = -EFAULT;
  1123. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1124. goto out;
  1125. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1126. cpuid_arg->entries);
  1127. if (r)
  1128. goto out;
  1129. r = -EFAULT;
  1130. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1131. goto out;
  1132. r = 0;
  1133. break;
  1134. }
  1135. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1136. u64 mce_cap;
  1137. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1138. r = -EFAULT;
  1139. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1140. goto out;
  1141. r = 0;
  1142. break;
  1143. }
  1144. default:
  1145. r = -EINVAL;
  1146. }
  1147. out:
  1148. return r;
  1149. }
  1150. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1151. {
  1152. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1153. kvm_request_guest_time_update(vcpu);
  1154. }
  1155. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1156. {
  1157. kvm_x86_ops->vcpu_put(vcpu);
  1158. kvm_put_guest_fpu(vcpu);
  1159. }
  1160. static int is_efer_nx(void)
  1161. {
  1162. unsigned long long efer = 0;
  1163. rdmsrl_safe(MSR_EFER, &efer);
  1164. return efer & EFER_NX;
  1165. }
  1166. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1167. {
  1168. int i;
  1169. struct kvm_cpuid_entry2 *e, *entry;
  1170. entry = NULL;
  1171. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1172. e = &vcpu->arch.cpuid_entries[i];
  1173. if (e->function == 0x80000001) {
  1174. entry = e;
  1175. break;
  1176. }
  1177. }
  1178. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1179. entry->edx &= ~(1 << 20);
  1180. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1181. }
  1182. }
  1183. /* when an old userspace process fills a new kernel module */
  1184. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1185. struct kvm_cpuid *cpuid,
  1186. struct kvm_cpuid_entry __user *entries)
  1187. {
  1188. int r, i;
  1189. struct kvm_cpuid_entry *cpuid_entries;
  1190. r = -E2BIG;
  1191. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1192. goto out;
  1193. r = -ENOMEM;
  1194. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1195. if (!cpuid_entries)
  1196. goto out;
  1197. r = -EFAULT;
  1198. if (copy_from_user(cpuid_entries, entries,
  1199. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1200. goto out_free;
  1201. for (i = 0; i < cpuid->nent; i++) {
  1202. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1203. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1204. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1205. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1206. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1207. vcpu->arch.cpuid_entries[i].index = 0;
  1208. vcpu->arch.cpuid_entries[i].flags = 0;
  1209. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1210. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1211. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1212. }
  1213. vcpu->arch.cpuid_nent = cpuid->nent;
  1214. cpuid_fix_nx_cap(vcpu);
  1215. r = 0;
  1216. kvm_apic_set_version(vcpu);
  1217. out_free:
  1218. vfree(cpuid_entries);
  1219. out:
  1220. return r;
  1221. }
  1222. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1223. struct kvm_cpuid2 *cpuid,
  1224. struct kvm_cpuid_entry2 __user *entries)
  1225. {
  1226. int r;
  1227. r = -E2BIG;
  1228. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1229. goto out;
  1230. r = -EFAULT;
  1231. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1232. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1233. goto out;
  1234. vcpu->arch.cpuid_nent = cpuid->nent;
  1235. kvm_apic_set_version(vcpu);
  1236. return 0;
  1237. out:
  1238. return r;
  1239. }
  1240. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1241. struct kvm_cpuid2 *cpuid,
  1242. struct kvm_cpuid_entry2 __user *entries)
  1243. {
  1244. int r;
  1245. r = -E2BIG;
  1246. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1247. goto out;
  1248. r = -EFAULT;
  1249. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1250. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1251. goto out;
  1252. return 0;
  1253. out:
  1254. cpuid->nent = vcpu->arch.cpuid_nent;
  1255. return r;
  1256. }
  1257. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1258. u32 index)
  1259. {
  1260. entry->function = function;
  1261. entry->index = index;
  1262. cpuid_count(entry->function, entry->index,
  1263. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1264. entry->flags = 0;
  1265. }
  1266. #define F(x) bit(X86_FEATURE_##x)
  1267. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1268. u32 index, int *nent, int maxnent)
  1269. {
  1270. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1271. #ifdef CONFIG_X86_64
  1272. unsigned f_lm = F(LM);
  1273. #else
  1274. unsigned f_lm = 0;
  1275. #endif
  1276. /* cpuid 1.edx */
  1277. const u32 kvm_supported_word0_x86_features =
  1278. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1279. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1280. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1281. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1282. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1283. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1284. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1285. 0 /* HTT, TM, Reserved, PBE */;
  1286. /* cpuid 0x80000001.edx */
  1287. const u32 kvm_supported_word1_x86_features =
  1288. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1289. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1290. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1291. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1292. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1293. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1294. F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
  1295. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1296. /* cpuid 1.ecx */
  1297. const u32 kvm_supported_word4_x86_features =
  1298. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1299. 0 /* DS-CPL, VMX, SMX, EST */ |
  1300. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1301. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1302. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1303. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1304. 0 /* Reserved, XSAVE, OSXSAVE */;
  1305. /* cpuid 0x80000001.ecx */
  1306. const u32 kvm_supported_word6_x86_features =
  1307. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1308. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1309. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1310. 0 /* SKINIT */ | 0 /* WDT */;
  1311. /* all calls to cpuid_count() should be made on the same cpu */
  1312. get_cpu();
  1313. do_cpuid_1_ent(entry, function, index);
  1314. ++*nent;
  1315. switch (function) {
  1316. case 0:
  1317. entry->eax = min(entry->eax, (u32)0xb);
  1318. break;
  1319. case 1:
  1320. entry->edx &= kvm_supported_word0_x86_features;
  1321. entry->ecx &= kvm_supported_word4_x86_features;
  1322. break;
  1323. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1324. * may return different values. This forces us to get_cpu() before
  1325. * issuing the first command, and also to emulate this annoying behavior
  1326. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1327. case 2: {
  1328. int t, times = entry->eax & 0xff;
  1329. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1330. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1331. for (t = 1; t < times && *nent < maxnent; ++t) {
  1332. do_cpuid_1_ent(&entry[t], function, 0);
  1333. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1334. ++*nent;
  1335. }
  1336. break;
  1337. }
  1338. /* function 4 and 0xb have additional index. */
  1339. case 4: {
  1340. int i, cache_type;
  1341. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1342. /* read more entries until cache_type is zero */
  1343. for (i = 1; *nent < maxnent; ++i) {
  1344. cache_type = entry[i - 1].eax & 0x1f;
  1345. if (!cache_type)
  1346. break;
  1347. do_cpuid_1_ent(&entry[i], function, i);
  1348. entry[i].flags |=
  1349. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1350. ++*nent;
  1351. }
  1352. break;
  1353. }
  1354. case 0xb: {
  1355. int i, level_type;
  1356. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1357. /* read more entries until level_type is zero */
  1358. for (i = 1; *nent < maxnent; ++i) {
  1359. level_type = entry[i - 1].ecx & 0xff00;
  1360. if (!level_type)
  1361. break;
  1362. do_cpuid_1_ent(&entry[i], function, i);
  1363. entry[i].flags |=
  1364. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1365. ++*nent;
  1366. }
  1367. break;
  1368. }
  1369. case 0x80000000:
  1370. entry->eax = min(entry->eax, 0x8000001a);
  1371. break;
  1372. case 0x80000001:
  1373. entry->edx &= kvm_supported_word1_x86_features;
  1374. entry->ecx &= kvm_supported_word6_x86_features;
  1375. break;
  1376. }
  1377. put_cpu();
  1378. }
  1379. #undef F
  1380. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1381. struct kvm_cpuid_entry2 __user *entries)
  1382. {
  1383. struct kvm_cpuid_entry2 *cpuid_entries;
  1384. int limit, nent = 0, r = -E2BIG;
  1385. u32 func;
  1386. if (cpuid->nent < 1)
  1387. goto out;
  1388. r = -ENOMEM;
  1389. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1390. if (!cpuid_entries)
  1391. goto out;
  1392. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1393. limit = cpuid_entries[0].eax;
  1394. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1395. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1396. &nent, cpuid->nent);
  1397. r = -E2BIG;
  1398. if (nent >= cpuid->nent)
  1399. goto out_free;
  1400. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1401. limit = cpuid_entries[nent - 1].eax;
  1402. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1403. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1404. &nent, cpuid->nent);
  1405. r = -E2BIG;
  1406. if (nent >= cpuid->nent)
  1407. goto out_free;
  1408. r = -EFAULT;
  1409. if (copy_to_user(entries, cpuid_entries,
  1410. nent * sizeof(struct kvm_cpuid_entry2)))
  1411. goto out_free;
  1412. cpuid->nent = nent;
  1413. r = 0;
  1414. out_free:
  1415. vfree(cpuid_entries);
  1416. out:
  1417. return r;
  1418. }
  1419. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1420. struct kvm_lapic_state *s)
  1421. {
  1422. vcpu_load(vcpu);
  1423. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1424. vcpu_put(vcpu);
  1425. return 0;
  1426. }
  1427. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1428. struct kvm_lapic_state *s)
  1429. {
  1430. vcpu_load(vcpu);
  1431. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1432. kvm_apic_post_state_restore(vcpu);
  1433. vcpu_put(vcpu);
  1434. return 0;
  1435. }
  1436. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1437. struct kvm_interrupt *irq)
  1438. {
  1439. if (irq->irq < 0 || irq->irq >= 256)
  1440. return -EINVAL;
  1441. if (irqchip_in_kernel(vcpu->kvm))
  1442. return -ENXIO;
  1443. vcpu_load(vcpu);
  1444. kvm_queue_interrupt(vcpu, irq->irq, false);
  1445. vcpu_put(vcpu);
  1446. return 0;
  1447. }
  1448. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1449. {
  1450. vcpu_load(vcpu);
  1451. kvm_inject_nmi(vcpu);
  1452. vcpu_put(vcpu);
  1453. return 0;
  1454. }
  1455. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1456. struct kvm_tpr_access_ctl *tac)
  1457. {
  1458. if (tac->flags)
  1459. return -EINVAL;
  1460. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1461. return 0;
  1462. }
  1463. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1464. u64 mcg_cap)
  1465. {
  1466. int r;
  1467. unsigned bank_num = mcg_cap & 0xff, bank;
  1468. r = -EINVAL;
  1469. if (!bank_num)
  1470. goto out;
  1471. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1472. goto out;
  1473. r = 0;
  1474. vcpu->arch.mcg_cap = mcg_cap;
  1475. /* Init IA32_MCG_CTL to all 1s */
  1476. if (mcg_cap & MCG_CTL_P)
  1477. vcpu->arch.mcg_ctl = ~(u64)0;
  1478. /* Init IA32_MCi_CTL to all 1s */
  1479. for (bank = 0; bank < bank_num; bank++)
  1480. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1481. out:
  1482. return r;
  1483. }
  1484. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1485. struct kvm_x86_mce *mce)
  1486. {
  1487. u64 mcg_cap = vcpu->arch.mcg_cap;
  1488. unsigned bank_num = mcg_cap & 0xff;
  1489. u64 *banks = vcpu->arch.mce_banks;
  1490. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1491. return -EINVAL;
  1492. /*
  1493. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1494. * reporting is disabled
  1495. */
  1496. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1497. vcpu->arch.mcg_ctl != ~(u64)0)
  1498. return 0;
  1499. banks += 4 * mce->bank;
  1500. /*
  1501. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1502. * reporting is disabled for the bank
  1503. */
  1504. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1505. return 0;
  1506. if (mce->status & MCI_STATUS_UC) {
  1507. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1508. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1509. printk(KERN_DEBUG "kvm: set_mce: "
  1510. "injects mce exception while "
  1511. "previous one is in progress!\n");
  1512. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1513. return 0;
  1514. }
  1515. if (banks[1] & MCI_STATUS_VAL)
  1516. mce->status |= MCI_STATUS_OVER;
  1517. banks[2] = mce->addr;
  1518. banks[3] = mce->misc;
  1519. vcpu->arch.mcg_status = mce->mcg_status;
  1520. banks[1] = mce->status;
  1521. kvm_queue_exception(vcpu, MC_VECTOR);
  1522. } else if (!(banks[1] & MCI_STATUS_VAL)
  1523. || !(banks[1] & MCI_STATUS_UC)) {
  1524. if (banks[1] & MCI_STATUS_VAL)
  1525. mce->status |= MCI_STATUS_OVER;
  1526. banks[2] = mce->addr;
  1527. banks[3] = mce->misc;
  1528. banks[1] = mce->status;
  1529. } else
  1530. banks[1] |= MCI_STATUS_OVER;
  1531. return 0;
  1532. }
  1533. long kvm_arch_vcpu_ioctl(struct file *filp,
  1534. unsigned int ioctl, unsigned long arg)
  1535. {
  1536. struct kvm_vcpu *vcpu = filp->private_data;
  1537. void __user *argp = (void __user *)arg;
  1538. int r;
  1539. struct kvm_lapic_state *lapic = NULL;
  1540. switch (ioctl) {
  1541. case KVM_GET_LAPIC: {
  1542. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1543. r = -ENOMEM;
  1544. if (!lapic)
  1545. goto out;
  1546. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1547. if (r)
  1548. goto out;
  1549. r = -EFAULT;
  1550. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1551. goto out;
  1552. r = 0;
  1553. break;
  1554. }
  1555. case KVM_SET_LAPIC: {
  1556. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1557. r = -ENOMEM;
  1558. if (!lapic)
  1559. goto out;
  1560. r = -EFAULT;
  1561. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1562. goto out;
  1563. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1564. if (r)
  1565. goto out;
  1566. r = 0;
  1567. break;
  1568. }
  1569. case KVM_INTERRUPT: {
  1570. struct kvm_interrupt irq;
  1571. r = -EFAULT;
  1572. if (copy_from_user(&irq, argp, sizeof irq))
  1573. goto out;
  1574. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1575. if (r)
  1576. goto out;
  1577. r = 0;
  1578. break;
  1579. }
  1580. case KVM_NMI: {
  1581. r = kvm_vcpu_ioctl_nmi(vcpu);
  1582. if (r)
  1583. goto out;
  1584. r = 0;
  1585. break;
  1586. }
  1587. case KVM_SET_CPUID: {
  1588. struct kvm_cpuid __user *cpuid_arg = argp;
  1589. struct kvm_cpuid cpuid;
  1590. r = -EFAULT;
  1591. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1592. goto out;
  1593. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1594. if (r)
  1595. goto out;
  1596. break;
  1597. }
  1598. case KVM_SET_CPUID2: {
  1599. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1600. struct kvm_cpuid2 cpuid;
  1601. r = -EFAULT;
  1602. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1603. goto out;
  1604. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1605. cpuid_arg->entries);
  1606. if (r)
  1607. goto out;
  1608. break;
  1609. }
  1610. case KVM_GET_CPUID2: {
  1611. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1612. struct kvm_cpuid2 cpuid;
  1613. r = -EFAULT;
  1614. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1615. goto out;
  1616. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1617. cpuid_arg->entries);
  1618. if (r)
  1619. goto out;
  1620. r = -EFAULT;
  1621. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1622. goto out;
  1623. r = 0;
  1624. break;
  1625. }
  1626. case KVM_GET_MSRS:
  1627. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1628. break;
  1629. case KVM_SET_MSRS:
  1630. r = msr_io(vcpu, argp, do_set_msr, 0);
  1631. break;
  1632. case KVM_TPR_ACCESS_REPORTING: {
  1633. struct kvm_tpr_access_ctl tac;
  1634. r = -EFAULT;
  1635. if (copy_from_user(&tac, argp, sizeof tac))
  1636. goto out;
  1637. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1638. if (r)
  1639. goto out;
  1640. r = -EFAULT;
  1641. if (copy_to_user(argp, &tac, sizeof tac))
  1642. goto out;
  1643. r = 0;
  1644. break;
  1645. };
  1646. case KVM_SET_VAPIC_ADDR: {
  1647. struct kvm_vapic_addr va;
  1648. r = -EINVAL;
  1649. if (!irqchip_in_kernel(vcpu->kvm))
  1650. goto out;
  1651. r = -EFAULT;
  1652. if (copy_from_user(&va, argp, sizeof va))
  1653. goto out;
  1654. r = 0;
  1655. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1656. break;
  1657. }
  1658. case KVM_X86_SETUP_MCE: {
  1659. u64 mcg_cap;
  1660. r = -EFAULT;
  1661. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1662. goto out;
  1663. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1664. break;
  1665. }
  1666. case KVM_X86_SET_MCE: {
  1667. struct kvm_x86_mce mce;
  1668. r = -EFAULT;
  1669. if (copy_from_user(&mce, argp, sizeof mce))
  1670. goto out;
  1671. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1672. break;
  1673. }
  1674. default:
  1675. r = -EINVAL;
  1676. }
  1677. out:
  1678. kfree(lapic);
  1679. return r;
  1680. }
  1681. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1682. {
  1683. int ret;
  1684. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1685. return -1;
  1686. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1687. return ret;
  1688. }
  1689. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1690. u32 kvm_nr_mmu_pages)
  1691. {
  1692. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1693. return -EINVAL;
  1694. down_write(&kvm->slots_lock);
  1695. spin_lock(&kvm->mmu_lock);
  1696. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1697. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1698. spin_unlock(&kvm->mmu_lock);
  1699. up_write(&kvm->slots_lock);
  1700. return 0;
  1701. }
  1702. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1703. {
  1704. return kvm->arch.n_alloc_mmu_pages;
  1705. }
  1706. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1707. {
  1708. int i;
  1709. struct kvm_mem_alias *alias;
  1710. for (i = 0; i < kvm->arch.naliases; ++i) {
  1711. alias = &kvm->arch.aliases[i];
  1712. if (gfn >= alias->base_gfn
  1713. && gfn < alias->base_gfn + alias->npages)
  1714. return alias->target_gfn + gfn - alias->base_gfn;
  1715. }
  1716. return gfn;
  1717. }
  1718. /*
  1719. * Set a new alias region. Aliases map a portion of physical memory into
  1720. * another portion. This is useful for memory windows, for example the PC
  1721. * VGA region.
  1722. */
  1723. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1724. struct kvm_memory_alias *alias)
  1725. {
  1726. int r, n;
  1727. struct kvm_mem_alias *p;
  1728. r = -EINVAL;
  1729. /* General sanity checks */
  1730. if (alias->memory_size & (PAGE_SIZE - 1))
  1731. goto out;
  1732. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1733. goto out;
  1734. if (alias->slot >= KVM_ALIAS_SLOTS)
  1735. goto out;
  1736. if (alias->guest_phys_addr + alias->memory_size
  1737. < alias->guest_phys_addr)
  1738. goto out;
  1739. if (alias->target_phys_addr + alias->memory_size
  1740. < alias->target_phys_addr)
  1741. goto out;
  1742. down_write(&kvm->slots_lock);
  1743. spin_lock(&kvm->mmu_lock);
  1744. p = &kvm->arch.aliases[alias->slot];
  1745. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1746. p->npages = alias->memory_size >> PAGE_SHIFT;
  1747. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1748. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1749. if (kvm->arch.aliases[n - 1].npages)
  1750. break;
  1751. kvm->arch.naliases = n;
  1752. spin_unlock(&kvm->mmu_lock);
  1753. kvm_mmu_zap_all(kvm);
  1754. up_write(&kvm->slots_lock);
  1755. return 0;
  1756. out:
  1757. return r;
  1758. }
  1759. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1760. {
  1761. int r;
  1762. r = 0;
  1763. switch (chip->chip_id) {
  1764. case KVM_IRQCHIP_PIC_MASTER:
  1765. memcpy(&chip->chip.pic,
  1766. &pic_irqchip(kvm)->pics[0],
  1767. sizeof(struct kvm_pic_state));
  1768. break;
  1769. case KVM_IRQCHIP_PIC_SLAVE:
  1770. memcpy(&chip->chip.pic,
  1771. &pic_irqchip(kvm)->pics[1],
  1772. sizeof(struct kvm_pic_state));
  1773. break;
  1774. case KVM_IRQCHIP_IOAPIC:
  1775. memcpy(&chip->chip.ioapic,
  1776. ioapic_irqchip(kvm),
  1777. sizeof(struct kvm_ioapic_state));
  1778. break;
  1779. default:
  1780. r = -EINVAL;
  1781. break;
  1782. }
  1783. return r;
  1784. }
  1785. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1786. {
  1787. int r;
  1788. r = 0;
  1789. switch (chip->chip_id) {
  1790. case KVM_IRQCHIP_PIC_MASTER:
  1791. spin_lock(&pic_irqchip(kvm)->lock);
  1792. memcpy(&pic_irqchip(kvm)->pics[0],
  1793. &chip->chip.pic,
  1794. sizeof(struct kvm_pic_state));
  1795. spin_unlock(&pic_irqchip(kvm)->lock);
  1796. break;
  1797. case KVM_IRQCHIP_PIC_SLAVE:
  1798. spin_lock(&pic_irqchip(kvm)->lock);
  1799. memcpy(&pic_irqchip(kvm)->pics[1],
  1800. &chip->chip.pic,
  1801. sizeof(struct kvm_pic_state));
  1802. spin_unlock(&pic_irqchip(kvm)->lock);
  1803. break;
  1804. case KVM_IRQCHIP_IOAPIC:
  1805. mutex_lock(&kvm->irq_lock);
  1806. memcpy(ioapic_irqchip(kvm),
  1807. &chip->chip.ioapic,
  1808. sizeof(struct kvm_ioapic_state));
  1809. mutex_unlock(&kvm->irq_lock);
  1810. break;
  1811. default:
  1812. r = -EINVAL;
  1813. break;
  1814. }
  1815. kvm_pic_update_irq(pic_irqchip(kvm));
  1816. return r;
  1817. }
  1818. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1819. {
  1820. int r = 0;
  1821. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1822. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1823. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1824. return r;
  1825. }
  1826. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1827. {
  1828. int r = 0;
  1829. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1830. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1831. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1832. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1833. return r;
  1834. }
  1835. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1836. struct kvm_reinject_control *control)
  1837. {
  1838. if (!kvm->arch.vpit)
  1839. return -ENXIO;
  1840. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1841. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1842. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1843. return 0;
  1844. }
  1845. /*
  1846. * Get (and clear) the dirty memory log for a memory slot.
  1847. */
  1848. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1849. struct kvm_dirty_log *log)
  1850. {
  1851. int r;
  1852. int n;
  1853. struct kvm_memory_slot *memslot;
  1854. int is_dirty = 0;
  1855. down_write(&kvm->slots_lock);
  1856. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1857. if (r)
  1858. goto out;
  1859. /* If nothing is dirty, don't bother messing with page tables. */
  1860. if (is_dirty) {
  1861. spin_lock(&kvm->mmu_lock);
  1862. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1863. spin_unlock(&kvm->mmu_lock);
  1864. kvm_flush_remote_tlbs(kvm);
  1865. memslot = &kvm->memslots[log->slot];
  1866. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1867. memset(memslot->dirty_bitmap, 0, n);
  1868. }
  1869. r = 0;
  1870. out:
  1871. up_write(&kvm->slots_lock);
  1872. return r;
  1873. }
  1874. long kvm_arch_vm_ioctl(struct file *filp,
  1875. unsigned int ioctl, unsigned long arg)
  1876. {
  1877. struct kvm *kvm = filp->private_data;
  1878. void __user *argp = (void __user *)arg;
  1879. int r = -EINVAL;
  1880. /*
  1881. * This union makes it completely explicit to gcc-3.x
  1882. * that these two variables' stack usage should be
  1883. * combined, not added together.
  1884. */
  1885. union {
  1886. struct kvm_pit_state ps;
  1887. struct kvm_memory_alias alias;
  1888. struct kvm_pit_config pit_config;
  1889. } u;
  1890. switch (ioctl) {
  1891. case KVM_SET_TSS_ADDR:
  1892. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1893. if (r < 0)
  1894. goto out;
  1895. break;
  1896. case KVM_SET_MEMORY_REGION: {
  1897. struct kvm_memory_region kvm_mem;
  1898. struct kvm_userspace_memory_region kvm_userspace_mem;
  1899. r = -EFAULT;
  1900. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1901. goto out;
  1902. kvm_userspace_mem.slot = kvm_mem.slot;
  1903. kvm_userspace_mem.flags = kvm_mem.flags;
  1904. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1905. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1906. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1907. if (r)
  1908. goto out;
  1909. break;
  1910. }
  1911. case KVM_SET_NR_MMU_PAGES:
  1912. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1913. if (r)
  1914. goto out;
  1915. break;
  1916. case KVM_GET_NR_MMU_PAGES:
  1917. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1918. break;
  1919. case KVM_SET_MEMORY_ALIAS:
  1920. r = -EFAULT;
  1921. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1922. goto out;
  1923. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1924. if (r)
  1925. goto out;
  1926. break;
  1927. case KVM_CREATE_IRQCHIP:
  1928. r = -ENOMEM;
  1929. kvm->arch.vpic = kvm_create_pic(kvm);
  1930. if (kvm->arch.vpic) {
  1931. r = kvm_ioapic_init(kvm);
  1932. if (r) {
  1933. kfree(kvm->arch.vpic);
  1934. kvm->arch.vpic = NULL;
  1935. goto out;
  1936. }
  1937. } else
  1938. goto out;
  1939. r = kvm_setup_default_irq_routing(kvm);
  1940. if (r) {
  1941. kfree(kvm->arch.vpic);
  1942. kfree(kvm->arch.vioapic);
  1943. goto out;
  1944. }
  1945. break;
  1946. case KVM_CREATE_PIT:
  1947. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  1948. goto create_pit;
  1949. case KVM_CREATE_PIT2:
  1950. r = -EFAULT;
  1951. if (copy_from_user(&u.pit_config, argp,
  1952. sizeof(struct kvm_pit_config)))
  1953. goto out;
  1954. create_pit:
  1955. down_write(&kvm->slots_lock);
  1956. r = -EEXIST;
  1957. if (kvm->arch.vpit)
  1958. goto create_pit_unlock;
  1959. r = -ENOMEM;
  1960. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  1961. if (kvm->arch.vpit)
  1962. r = 0;
  1963. create_pit_unlock:
  1964. up_write(&kvm->slots_lock);
  1965. break;
  1966. case KVM_IRQ_LINE_STATUS:
  1967. case KVM_IRQ_LINE: {
  1968. struct kvm_irq_level irq_event;
  1969. r = -EFAULT;
  1970. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1971. goto out;
  1972. if (irqchip_in_kernel(kvm)) {
  1973. __s32 status;
  1974. mutex_lock(&kvm->irq_lock);
  1975. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1976. irq_event.irq, irq_event.level);
  1977. mutex_unlock(&kvm->irq_lock);
  1978. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1979. irq_event.status = status;
  1980. if (copy_to_user(argp, &irq_event,
  1981. sizeof irq_event))
  1982. goto out;
  1983. }
  1984. r = 0;
  1985. }
  1986. break;
  1987. }
  1988. case KVM_GET_IRQCHIP: {
  1989. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1990. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1991. r = -ENOMEM;
  1992. if (!chip)
  1993. goto out;
  1994. r = -EFAULT;
  1995. if (copy_from_user(chip, argp, sizeof *chip))
  1996. goto get_irqchip_out;
  1997. r = -ENXIO;
  1998. if (!irqchip_in_kernel(kvm))
  1999. goto get_irqchip_out;
  2000. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2001. if (r)
  2002. goto get_irqchip_out;
  2003. r = -EFAULT;
  2004. if (copy_to_user(argp, chip, sizeof *chip))
  2005. goto get_irqchip_out;
  2006. r = 0;
  2007. get_irqchip_out:
  2008. kfree(chip);
  2009. if (r)
  2010. goto out;
  2011. break;
  2012. }
  2013. case KVM_SET_IRQCHIP: {
  2014. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2015. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2016. r = -ENOMEM;
  2017. if (!chip)
  2018. goto out;
  2019. r = -EFAULT;
  2020. if (copy_from_user(chip, argp, sizeof *chip))
  2021. goto set_irqchip_out;
  2022. r = -ENXIO;
  2023. if (!irqchip_in_kernel(kvm))
  2024. goto set_irqchip_out;
  2025. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2026. if (r)
  2027. goto set_irqchip_out;
  2028. r = 0;
  2029. set_irqchip_out:
  2030. kfree(chip);
  2031. if (r)
  2032. goto out;
  2033. break;
  2034. }
  2035. case KVM_GET_PIT: {
  2036. r = -EFAULT;
  2037. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2038. goto out;
  2039. r = -ENXIO;
  2040. if (!kvm->arch.vpit)
  2041. goto out;
  2042. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2043. if (r)
  2044. goto out;
  2045. r = -EFAULT;
  2046. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2047. goto out;
  2048. r = 0;
  2049. break;
  2050. }
  2051. case KVM_SET_PIT: {
  2052. r = -EFAULT;
  2053. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2054. goto out;
  2055. r = -ENXIO;
  2056. if (!kvm->arch.vpit)
  2057. goto out;
  2058. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2059. if (r)
  2060. goto out;
  2061. r = 0;
  2062. break;
  2063. }
  2064. case KVM_REINJECT_CONTROL: {
  2065. struct kvm_reinject_control control;
  2066. r = -EFAULT;
  2067. if (copy_from_user(&control, argp, sizeof(control)))
  2068. goto out;
  2069. r = kvm_vm_ioctl_reinject(kvm, &control);
  2070. if (r)
  2071. goto out;
  2072. r = 0;
  2073. break;
  2074. }
  2075. default:
  2076. ;
  2077. }
  2078. out:
  2079. return r;
  2080. }
  2081. static void kvm_init_msr_list(void)
  2082. {
  2083. u32 dummy[2];
  2084. unsigned i, j;
  2085. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2086. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2087. continue;
  2088. if (j < i)
  2089. msrs_to_save[j] = msrs_to_save[i];
  2090. j++;
  2091. }
  2092. num_msrs_to_save = j;
  2093. }
  2094. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2095. const void *v)
  2096. {
  2097. if (vcpu->arch.apic &&
  2098. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2099. return 0;
  2100. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2101. }
  2102. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2103. {
  2104. if (vcpu->arch.apic &&
  2105. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2106. return 0;
  2107. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2108. }
  2109. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2110. struct kvm_vcpu *vcpu)
  2111. {
  2112. void *data = val;
  2113. int r = X86EMUL_CONTINUE;
  2114. while (bytes) {
  2115. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2116. unsigned offset = addr & (PAGE_SIZE-1);
  2117. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2118. int ret;
  2119. if (gpa == UNMAPPED_GVA) {
  2120. r = X86EMUL_PROPAGATE_FAULT;
  2121. goto out;
  2122. }
  2123. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2124. if (ret < 0) {
  2125. r = X86EMUL_UNHANDLEABLE;
  2126. goto out;
  2127. }
  2128. bytes -= toread;
  2129. data += toread;
  2130. addr += toread;
  2131. }
  2132. out:
  2133. return r;
  2134. }
  2135. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2136. struct kvm_vcpu *vcpu)
  2137. {
  2138. void *data = val;
  2139. int r = X86EMUL_CONTINUE;
  2140. while (bytes) {
  2141. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2142. unsigned offset = addr & (PAGE_SIZE-1);
  2143. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2144. int ret;
  2145. if (gpa == UNMAPPED_GVA) {
  2146. r = X86EMUL_PROPAGATE_FAULT;
  2147. goto out;
  2148. }
  2149. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2150. if (ret < 0) {
  2151. r = X86EMUL_UNHANDLEABLE;
  2152. goto out;
  2153. }
  2154. bytes -= towrite;
  2155. data += towrite;
  2156. addr += towrite;
  2157. }
  2158. out:
  2159. return r;
  2160. }
  2161. static int emulator_read_emulated(unsigned long addr,
  2162. void *val,
  2163. unsigned int bytes,
  2164. struct kvm_vcpu *vcpu)
  2165. {
  2166. gpa_t gpa;
  2167. if (vcpu->mmio_read_completed) {
  2168. memcpy(val, vcpu->mmio_data, bytes);
  2169. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2170. vcpu->mmio_phys_addr, *(u64 *)val);
  2171. vcpu->mmio_read_completed = 0;
  2172. return X86EMUL_CONTINUE;
  2173. }
  2174. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2175. /* For APIC access vmexit */
  2176. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2177. goto mmio;
  2178. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2179. == X86EMUL_CONTINUE)
  2180. return X86EMUL_CONTINUE;
  2181. if (gpa == UNMAPPED_GVA)
  2182. return X86EMUL_PROPAGATE_FAULT;
  2183. mmio:
  2184. /*
  2185. * Is this MMIO handled locally?
  2186. */
  2187. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2188. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2189. return X86EMUL_CONTINUE;
  2190. }
  2191. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2192. vcpu->mmio_needed = 1;
  2193. vcpu->mmio_phys_addr = gpa;
  2194. vcpu->mmio_size = bytes;
  2195. vcpu->mmio_is_write = 0;
  2196. return X86EMUL_UNHANDLEABLE;
  2197. }
  2198. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2199. const void *val, int bytes)
  2200. {
  2201. int ret;
  2202. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2203. if (ret < 0)
  2204. return 0;
  2205. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2206. return 1;
  2207. }
  2208. static int emulator_write_emulated_onepage(unsigned long addr,
  2209. const void *val,
  2210. unsigned int bytes,
  2211. struct kvm_vcpu *vcpu)
  2212. {
  2213. gpa_t gpa;
  2214. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2215. if (gpa == UNMAPPED_GVA) {
  2216. kvm_inject_page_fault(vcpu, addr, 2);
  2217. return X86EMUL_PROPAGATE_FAULT;
  2218. }
  2219. /* For APIC access vmexit */
  2220. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2221. goto mmio;
  2222. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2223. return X86EMUL_CONTINUE;
  2224. mmio:
  2225. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2226. /*
  2227. * Is this MMIO handled locally?
  2228. */
  2229. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2230. return X86EMUL_CONTINUE;
  2231. vcpu->mmio_needed = 1;
  2232. vcpu->mmio_phys_addr = gpa;
  2233. vcpu->mmio_size = bytes;
  2234. vcpu->mmio_is_write = 1;
  2235. memcpy(vcpu->mmio_data, val, bytes);
  2236. return X86EMUL_CONTINUE;
  2237. }
  2238. int emulator_write_emulated(unsigned long addr,
  2239. const void *val,
  2240. unsigned int bytes,
  2241. struct kvm_vcpu *vcpu)
  2242. {
  2243. /* Crossing a page boundary? */
  2244. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2245. int rc, now;
  2246. now = -addr & ~PAGE_MASK;
  2247. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2248. if (rc != X86EMUL_CONTINUE)
  2249. return rc;
  2250. addr += now;
  2251. val += now;
  2252. bytes -= now;
  2253. }
  2254. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2255. }
  2256. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2257. static int emulator_cmpxchg_emulated(unsigned long addr,
  2258. const void *old,
  2259. const void *new,
  2260. unsigned int bytes,
  2261. struct kvm_vcpu *vcpu)
  2262. {
  2263. static int reported;
  2264. if (!reported) {
  2265. reported = 1;
  2266. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  2267. }
  2268. #ifndef CONFIG_X86_64
  2269. /* guests cmpxchg8b have to be emulated atomically */
  2270. if (bytes == 8) {
  2271. gpa_t gpa;
  2272. struct page *page;
  2273. char *kaddr;
  2274. u64 val;
  2275. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2276. if (gpa == UNMAPPED_GVA ||
  2277. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2278. goto emul_write;
  2279. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2280. goto emul_write;
  2281. val = *(u64 *)new;
  2282. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2283. kaddr = kmap_atomic(page, KM_USER0);
  2284. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2285. kunmap_atomic(kaddr, KM_USER0);
  2286. kvm_release_page_dirty(page);
  2287. }
  2288. emul_write:
  2289. #endif
  2290. return emulator_write_emulated(addr, new, bytes, vcpu);
  2291. }
  2292. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2293. {
  2294. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2295. }
  2296. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2297. {
  2298. kvm_mmu_invlpg(vcpu, address);
  2299. return X86EMUL_CONTINUE;
  2300. }
  2301. int emulate_clts(struct kvm_vcpu *vcpu)
  2302. {
  2303. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2304. return X86EMUL_CONTINUE;
  2305. }
  2306. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2307. {
  2308. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2309. switch (dr) {
  2310. case 0 ... 3:
  2311. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2312. return X86EMUL_CONTINUE;
  2313. default:
  2314. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2315. return X86EMUL_UNHANDLEABLE;
  2316. }
  2317. }
  2318. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2319. {
  2320. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2321. int exception;
  2322. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2323. if (exception) {
  2324. /* FIXME: better handling */
  2325. return X86EMUL_UNHANDLEABLE;
  2326. }
  2327. return X86EMUL_CONTINUE;
  2328. }
  2329. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2330. {
  2331. u8 opcodes[4];
  2332. unsigned long rip = kvm_rip_read(vcpu);
  2333. unsigned long rip_linear;
  2334. if (!printk_ratelimit())
  2335. return;
  2336. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2337. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2338. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2339. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2340. }
  2341. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2342. static struct x86_emulate_ops emulate_ops = {
  2343. .read_std = kvm_read_guest_virt,
  2344. .read_emulated = emulator_read_emulated,
  2345. .write_emulated = emulator_write_emulated,
  2346. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2347. };
  2348. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2349. {
  2350. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2351. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2352. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2353. vcpu->arch.regs_dirty = ~0;
  2354. }
  2355. int emulate_instruction(struct kvm_vcpu *vcpu,
  2356. struct kvm_run *run,
  2357. unsigned long cr2,
  2358. u16 error_code,
  2359. int emulation_type)
  2360. {
  2361. int r, shadow_mask;
  2362. struct decode_cache *c;
  2363. kvm_clear_exception_queue(vcpu);
  2364. vcpu->arch.mmio_fault_cr2 = cr2;
  2365. /*
  2366. * TODO: fix x86_emulate.c to use guest_read/write_register
  2367. * instead of direct ->regs accesses, can save hundred cycles
  2368. * on Intel for instructions that don't read/change RSP, for
  2369. * for example.
  2370. */
  2371. cache_all_regs(vcpu);
  2372. vcpu->mmio_is_write = 0;
  2373. vcpu->arch.pio.string = 0;
  2374. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2375. int cs_db, cs_l;
  2376. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2377. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2378. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2379. vcpu->arch.emulate_ctxt.mode =
  2380. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2381. ? X86EMUL_MODE_REAL : cs_l
  2382. ? X86EMUL_MODE_PROT64 : cs_db
  2383. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2384. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2385. /* Only allow emulation of specific instructions on #UD
  2386. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2387. c = &vcpu->arch.emulate_ctxt.decode;
  2388. if (emulation_type & EMULTYPE_TRAP_UD) {
  2389. if (!c->twobyte)
  2390. return EMULATE_FAIL;
  2391. switch (c->b) {
  2392. case 0x01: /* VMMCALL */
  2393. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2394. return EMULATE_FAIL;
  2395. break;
  2396. case 0x34: /* sysenter */
  2397. case 0x35: /* sysexit */
  2398. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2399. return EMULATE_FAIL;
  2400. break;
  2401. case 0x05: /* syscall */
  2402. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2403. return EMULATE_FAIL;
  2404. break;
  2405. default:
  2406. return EMULATE_FAIL;
  2407. }
  2408. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2409. return EMULATE_FAIL;
  2410. }
  2411. ++vcpu->stat.insn_emulation;
  2412. if (r) {
  2413. ++vcpu->stat.insn_emulation_fail;
  2414. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2415. return EMULATE_DONE;
  2416. return EMULATE_FAIL;
  2417. }
  2418. }
  2419. if (emulation_type & EMULTYPE_SKIP) {
  2420. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2421. return EMULATE_DONE;
  2422. }
  2423. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2424. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2425. if (r == 0)
  2426. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2427. if (vcpu->arch.pio.string)
  2428. return EMULATE_DO_MMIO;
  2429. if ((r || vcpu->mmio_is_write) && run) {
  2430. run->exit_reason = KVM_EXIT_MMIO;
  2431. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2432. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2433. run->mmio.len = vcpu->mmio_size;
  2434. run->mmio.is_write = vcpu->mmio_is_write;
  2435. }
  2436. if (r) {
  2437. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2438. return EMULATE_DONE;
  2439. if (!vcpu->mmio_needed) {
  2440. kvm_report_emulation_failure(vcpu, "mmio");
  2441. return EMULATE_FAIL;
  2442. }
  2443. return EMULATE_DO_MMIO;
  2444. }
  2445. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2446. if (vcpu->mmio_is_write) {
  2447. vcpu->mmio_needed = 0;
  2448. return EMULATE_DO_MMIO;
  2449. }
  2450. return EMULATE_DONE;
  2451. }
  2452. EXPORT_SYMBOL_GPL(emulate_instruction);
  2453. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2454. {
  2455. void *p = vcpu->arch.pio_data;
  2456. gva_t q = vcpu->arch.pio.guest_gva;
  2457. unsigned bytes;
  2458. int ret;
  2459. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2460. if (vcpu->arch.pio.in)
  2461. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2462. else
  2463. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2464. return ret;
  2465. }
  2466. int complete_pio(struct kvm_vcpu *vcpu)
  2467. {
  2468. struct kvm_pio_request *io = &vcpu->arch.pio;
  2469. long delta;
  2470. int r;
  2471. unsigned long val;
  2472. if (!io->string) {
  2473. if (io->in) {
  2474. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2475. memcpy(&val, vcpu->arch.pio_data, io->size);
  2476. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2477. }
  2478. } else {
  2479. if (io->in) {
  2480. r = pio_copy_data(vcpu);
  2481. if (r)
  2482. return r;
  2483. }
  2484. delta = 1;
  2485. if (io->rep) {
  2486. delta *= io->cur_count;
  2487. /*
  2488. * The size of the register should really depend on
  2489. * current address size.
  2490. */
  2491. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2492. val -= delta;
  2493. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2494. }
  2495. if (io->down)
  2496. delta = -delta;
  2497. delta *= io->size;
  2498. if (io->in) {
  2499. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2500. val += delta;
  2501. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2502. } else {
  2503. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2504. val += delta;
  2505. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2506. }
  2507. }
  2508. io->count -= io->cur_count;
  2509. io->cur_count = 0;
  2510. return 0;
  2511. }
  2512. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2513. {
  2514. /* TODO: String I/O for in kernel device */
  2515. int r;
  2516. if (vcpu->arch.pio.in)
  2517. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2518. vcpu->arch.pio.size, pd);
  2519. else
  2520. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2521. vcpu->arch.pio.size, pd);
  2522. return r;
  2523. }
  2524. static int pio_string_write(struct kvm_vcpu *vcpu)
  2525. {
  2526. struct kvm_pio_request *io = &vcpu->arch.pio;
  2527. void *pd = vcpu->arch.pio_data;
  2528. int i, r = 0;
  2529. for (i = 0; i < io->cur_count; i++) {
  2530. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2531. io->port, io->size, pd)) {
  2532. r = -EOPNOTSUPP;
  2533. break;
  2534. }
  2535. pd += io->size;
  2536. }
  2537. return r;
  2538. }
  2539. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2540. int size, unsigned port)
  2541. {
  2542. unsigned long val;
  2543. vcpu->run->exit_reason = KVM_EXIT_IO;
  2544. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2545. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2546. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2547. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2548. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2549. vcpu->arch.pio.in = in;
  2550. vcpu->arch.pio.string = 0;
  2551. vcpu->arch.pio.down = 0;
  2552. vcpu->arch.pio.rep = 0;
  2553. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2554. size, 1);
  2555. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2556. memcpy(vcpu->arch.pio_data, &val, 4);
  2557. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2558. complete_pio(vcpu);
  2559. return 1;
  2560. }
  2561. return 0;
  2562. }
  2563. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2564. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2565. int size, unsigned long count, int down,
  2566. gva_t address, int rep, unsigned port)
  2567. {
  2568. unsigned now, in_page;
  2569. int ret = 0;
  2570. vcpu->run->exit_reason = KVM_EXIT_IO;
  2571. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2572. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2573. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2574. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2575. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2576. vcpu->arch.pio.in = in;
  2577. vcpu->arch.pio.string = 1;
  2578. vcpu->arch.pio.down = down;
  2579. vcpu->arch.pio.rep = rep;
  2580. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2581. size, count);
  2582. if (!count) {
  2583. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2584. return 1;
  2585. }
  2586. if (!down)
  2587. in_page = PAGE_SIZE - offset_in_page(address);
  2588. else
  2589. in_page = offset_in_page(address) + size;
  2590. now = min(count, (unsigned long)in_page / size);
  2591. if (!now)
  2592. now = 1;
  2593. if (down) {
  2594. /*
  2595. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2596. */
  2597. pr_unimpl(vcpu, "guest string pio down\n");
  2598. kvm_inject_gp(vcpu, 0);
  2599. return 1;
  2600. }
  2601. vcpu->run->io.count = now;
  2602. vcpu->arch.pio.cur_count = now;
  2603. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2604. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2605. vcpu->arch.pio.guest_gva = address;
  2606. if (!vcpu->arch.pio.in) {
  2607. /* string PIO write */
  2608. ret = pio_copy_data(vcpu);
  2609. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2610. kvm_inject_gp(vcpu, 0);
  2611. return 1;
  2612. }
  2613. if (ret == 0 && !pio_string_write(vcpu)) {
  2614. complete_pio(vcpu);
  2615. if (vcpu->arch.pio.count == 0)
  2616. ret = 1;
  2617. }
  2618. }
  2619. /* no string PIO read support yet */
  2620. return ret;
  2621. }
  2622. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2623. static void bounce_off(void *info)
  2624. {
  2625. /* nothing */
  2626. }
  2627. static unsigned int ref_freq;
  2628. static unsigned long tsc_khz_ref;
  2629. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2630. void *data)
  2631. {
  2632. struct cpufreq_freqs *freq = data;
  2633. struct kvm *kvm;
  2634. struct kvm_vcpu *vcpu;
  2635. int i, send_ipi = 0;
  2636. if (!ref_freq)
  2637. ref_freq = freq->old;
  2638. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2639. return 0;
  2640. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2641. return 0;
  2642. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2643. spin_lock(&kvm_lock);
  2644. list_for_each_entry(kvm, &vm_list, vm_list) {
  2645. kvm_for_each_vcpu(i, vcpu, kvm) {
  2646. if (vcpu->cpu != freq->cpu)
  2647. continue;
  2648. if (!kvm_request_guest_time_update(vcpu))
  2649. continue;
  2650. if (vcpu->cpu != smp_processor_id())
  2651. send_ipi++;
  2652. }
  2653. }
  2654. spin_unlock(&kvm_lock);
  2655. if (freq->old < freq->new && send_ipi) {
  2656. /*
  2657. * We upscale the frequency. Must make the guest
  2658. * doesn't see old kvmclock values while running with
  2659. * the new frequency, otherwise we risk the guest sees
  2660. * time go backwards.
  2661. *
  2662. * In case we update the frequency for another cpu
  2663. * (which might be in guest context) send an interrupt
  2664. * to kick the cpu out of guest context. Next time
  2665. * guest context is entered kvmclock will be updated,
  2666. * so the guest will not see stale values.
  2667. */
  2668. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2669. }
  2670. return 0;
  2671. }
  2672. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2673. .notifier_call = kvmclock_cpufreq_notifier
  2674. };
  2675. int kvm_arch_init(void *opaque)
  2676. {
  2677. int r, cpu;
  2678. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2679. if (kvm_x86_ops) {
  2680. printk(KERN_ERR "kvm: already loaded the other module\n");
  2681. r = -EEXIST;
  2682. goto out;
  2683. }
  2684. if (!ops->cpu_has_kvm_support()) {
  2685. printk(KERN_ERR "kvm: no hardware support\n");
  2686. r = -EOPNOTSUPP;
  2687. goto out;
  2688. }
  2689. if (ops->disabled_by_bios()) {
  2690. printk(KERN_ERR "kvm: disabled by bios\n");
  2691. r = -EOPNOTSUPP;
  2692. goto out;
  2693. }
  2694. r = kvm_mmu_module_init();
  2695. if (r)
  2696. goto out;
  2697. kvm_init_msr_list();
  2698. kvm_x86_ops = ops;
  2699. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2700. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2701. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2702. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2703. for_each_possible_cpu(cpu)
  2704. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2705. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2706. tsc_khz_ref = tsc_khz;
  2707. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2708. CPUFREQ_TRANSITION_NOTIFIER);
  2709. }
  2710. return 0;
  2711. out:
  2712. return r;
  2713. }
  2714. void kvm_arch_exit(void)
  2715. {
  2716. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2717. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2718. CPUFREQ_TRANSITION_NOTIFIER);
  2719. kvm_x86_ops = NULL;
  2720. kvm_mmu_module_exit();
  2721. }
  2722. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2723. {
  2724. ++vcpu->stat.halt_exits;
  2725. if (irqchip_in_kernel(vcpu->kvm)) {
  2726. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2727. return 1;
  2728. } else {
  2729. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2730. return 0;
  2731. }
  2732. }
  2733. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2734. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2735. unsigned long a1)
  2736. {
  2737. if (is_long_mode(vcpu))
  2738. return a0;
  2739. else
  2740. return a0 | ((gpa_t)a1 << 32);
  2741. }
  2742. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2743. {
  2744. unsigned long nr, a0, a1, a2, a3, ret;
  2745. int r = 1;
  2746. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2747. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2748. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2749. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2750. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2751. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  2752. if (!is_long_mode(vcpu)) {
  2753. nr &= 0xFFFFFFFF;
  2754. a0 &= 0xFFFFFFFF;
  2755. a1 &= 0xFFFFFFFF;
  2756. a2 &= 0xFFFFFFFF;
  2757. a3 &= 0xFFFFFFFF;
  2758. }
  2759. switch (nr) {
  2760. case KVM_HC_VAPIC_POLL_IRQ:
  2761. ret = 0;
  2762. break;
  2763. case KVM_HC_MMU_OP:
  2764. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2765. break;
  2766. default:
  2767. ret = -KVM_ENOSYS;
  2768. break;
  2769. }
  2770. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2771. ++vcpu->stat.hypercalls;
  2772. return r;
  2773. }
  2774. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2775. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2776. {
  2777. char instruction[3];
  2778. int ret = 0;
  2779. unsigned long rip = kvm_rip_read(vcpu);
  2780. /*
  2781. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2782. * to ensure that the updated hypercall appears atomically across all
  2783. * VCPUs.
  2784. */
  2785. kvm_mmu_zap_all(vcpu->kvm);
  2786. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2787. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2788. != X86EMUL_CONTINUE)
  2789. ret = -EFAULT;
  2790. return ret;
  2791. }
  2792. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2793. {
  2794. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2795. }
  2796. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2797. {
  2798. struct descriptor_table dt = { limit, base };
  2799. kvm_x86_ops->set_gdt(vcpu, &dt);
  2800. }
  2801. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2802. {
  2803. struct descriptor_table dt = { limit, base };
  2804. kvm_x86_ops->set_idt(vcpu, &dt);
  2805. }
  2806. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2807. unsigned long *rflags)
  2808. {
  2809. kvm_lmsw(vcpu, msw);
  2810. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2811. }
  2812. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2813. {
  2814. unsigned long value;
  2815. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2816. switch (cr) {
  2817. case 0:
  2818. value = vcpu->arch.cr0;
  2819. break;
  2820. case 2:
  2821. value = vcpu->arch.cr2;
  2822. break;
  2823. case 3:
  2824. value = vcpu->arch.cr3;
  2825. break;
  2826. case 4:
  2827. value = vcpu->arch.cr4;
  2828. break;
  2829. case 8:
  2830. value = kvm_get_cr8(vcpu);
  2831. break;
  2832. default:
  2833. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2834. return 0;
  2835. }
  2836. return value;
  2837. }
  2838. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2839. unsigned long *rflags)
  2840. {
  2841. switch (cr) {
  2842. case 0:
  2843. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2844. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2845. break;
  2846. case 2:
  2847. vcpu->arch.cr2 = val;
  2848. break;
  2849. case 3:
  2850. kvm_set_cr3(vcpu, val);
  2851. break;
  2852. case 4:
  2853. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2854. break;
  2855. case 8:
  2856. kvm_set_cr8(vcpu, val & 0xfUL);
  2857. break;
  2858. default:
  2859. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2860. }
  2861. }
  2862. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2863. {
  2864. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2865. int j, nent = vcpu->arch.cpuid_nent;
  2866. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2867. /* when no next entry is found, the current entry[i] is reselected */
  2868. for (j = i + 1; ; j = (j + 1) % nent) {
  2869. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2870. if (ej->function == e->function) {
  2871. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2872. return j;
  2873. }
  2874. }
  2875. return 0; /* silence gcc, even though control never reaches here */
  2876. }
  2877. /* find an entry with matching function, matching index (if needed), and that
  2878. * should be read next (if it's stateful) */
  2879. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2880. u32 function, u32 index)
  2881. {
  2882. if (e->function != function)
  2883. return 0;
  2884. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2885. return 0;
  2886. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2887. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2888. return 0;
  2889. return 1;
  2890. }
  2891. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2892. u32 function, u32 index)
  2893. {
  2894. int i;
  2895. struct kvm_cpuid_entry2 *best = NULL;
  2896. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2897. struct kvm_cpuid_entry2 *e;
  2898. e = &vcpu->arch.cpuid_entries[i];
  2899. if (is_matching_cpuid_entry(e, function, index)) {
  2900. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2901. move_to_next_stateful_cpuid_entry(vcpu, i);
  2902. best = e;
  2903. break;
  2904. }
  2905. /*
  2906. * Both basic or both extended?
  2907. */
  2908. if (((e->function ^ function) & 0x80000000) == 0)
  2909. if (!best || e->function > best->function)
  2910. best = e;
  2911. }
  2912. return best;
  2913. }
  2914. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  2915. {
  2916. struct kvm_cpuid_entry2 *best;
  2917. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  2918. if (best)
  2919. return best->eax & 0xff;
  2920. return 36;
  2921. }
  2922. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2923. {
  2924. u32 function, index;
  2925. struct kvm_cpuid_entry2 *best;
  2926. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2927. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2928. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2929. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2930. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2931. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2932. best = kvm_find_cpuid_entry(vcpu, function, index);
  2933. if (best) {
  2934. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2935. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2936. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2937. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2938. }
  2939. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2940. trace_kvm_cpuid(function,
  2941. kvm_register_read(vcpu, VCPU_REGS_RAX),
  2942. kvm_register_read(vcpu, VCPU_REGS_RBX),
  2943. kvm_register_read(vcpu, VCPU_REGS_RCX),
  2944. kvm_register_read(vcpu, VCPU_REGS_RDX));
  2945. }
  2946. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2947. /*
  2948. * Check if userspace requested an interrupt window, and that the
  2949. * interrupt window is open.
  2950. *
  2951. * No need to exit to userspace if we already have an interrupt queued.
  2952. */
  2953. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2954. struct kvm_run *kvm_run)
  2955. {
  2956. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  2957. kvm_run->request_interrupt_window &&
  2958. kvm_arch_interrupt_allowed(vcpu));
  2959. }
  2960. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2961. struct kvm_run *kvm_run)
  2962. {
  2963. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2964. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2965. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2966. if (irqchip_in_kernel(vcpu->kvm))
  2967. kvm_run->ready_for_interrupt_injection = 1;
  2968. else
  2969. kvm_run->ready_for_interrupt_injection =
  2970. kvm_arch_interrupt_allowed(vcpu) &&
  2971. !kvm_cpu_has_interrupt(vcpu) &&
  2972. !kvm_event_needs_reinjection(vcpu);
  2973. }
  2974. static void vapic_enter(struct kvm_vcpu *vcpu)
  2975. {
  2976. struct kvm_lapic *apic = vcpu->arch.apic;
  2977. struct page *page;
  2978. if (!apic || !apic->vapic_addr)
  2979. return;
  2980. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2981. vcpu->arch.apic->vapic_page = page;
  2982. }
  2983. static void vapic_exit(struct kvm_vcpu *vcpu)
  2984. {
  2985. struct kvm_lapic *apic = vcpu->arch.apic;
  2986. if (!apic || !apic->vapic_addr)
  2987. return;
  2988. down_read(&vcpu->kvm->slots_lock);
  2989. kvm_release_page_dirty(apic->vapic_page);
  2990. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2991. up_read(&vcpu->kvm->slots_lock);
  2992. }
  2993. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  2994. {
  2995. int max_irr, tpr;
  2996. if (!kvm_x86_ops->update_cr8_intercept)
  2997. return;
  2998. if (!vcpu->arch.apic->vapic_addr)
  2999. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3000. else
  3001. max_irr = -1;
  3002. if (max_irr != -1)
  3003. max_irr >>= 4;
  3004. tpr = kvm_lapic_get_cr8(vcpu);
  3005. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3006. }
  3007. static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3008. {
  3009. /* try to reinject previous events if any */
  3010. if (vcpu->arch.nmi_injected) {
  3011. kvm_x86_ops->set_nmi(vcpu);
  3012. return;
  3013. }
  3014. if (vcpu->arch.interrupt.pending) {
  3015. kvm_x86_ops->set_irq(vcpu);
  3016. return;
  3017. }
  3018. /* try to inject new event if pending */
  3019. if (vcpu->arch.nmi_pending) {
  3020. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3021. vcpu->arch.nmi_pending = false;
  3022. vcpu->arch.nmi_injected = true;
  3023. kvm_x86_ops->set_nmi(vcpu);
  3024. }
  3025. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3026. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3027. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3028. false);
  3029. kvm_x86_ops->set_irq(vcpu);
  3030. }
  3031. }
  3032. }
  3033. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3034. {
  3035. int r;
  3036. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3037. kvm_run->request_interrupt_window;
  3038. if (vcpu->requests)
  3039. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3040. kvm_mmu_unload(vcpu);
  3041. r = kvm_mmu_reload(vcpu);
  3042. if (unlikely(r))
  3043. goto out;
  3044. if (vcpu->requests) {
  3045. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3046. __kvm_migrate_timers(vcpu);
  3047. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3048. kvm_write_guest_time(vcpu);
  3049. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3050. kvm_mmu_sync_roots(vcpu);
  3051. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3052. kvm_x86_ops->tlb_flush(vcpu);
  3053. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3054. &vcpu->requests)) {
  3055. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3056. r = 0;
  3057. goto out;
  3058. }
  3059. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3060. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  3061. r = 0;
  3062. goto out;
  3063. }
  3064. }
  3065. preempt_disable();
  3066. kvm_x86_ops->prepare_guest_switch(vcpu);
  3067. kvm_load_guest_fpu(vcpu);
  3068. local_irq_disable();
  3069. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3070. smp_mb__after_clear_bit();
  3071. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3072. local_irq_enable();
  3073. preempt_enable();
  3074. r = 1;
  3075. goto out;
  3076. }
  3077. if (vcpu->arch.exception.pending)
  3078. __queue_exception(vcpu);
  3079. else
  3080. inject_pending_irq(vcpu, kvm_run);
  3081. /* enable NMI/IRQ window open exits if needed */
  3082. if (vcpu->arch.nmi_pending)
  3083. kvm_x86_ops->enable_nmi_window(vcpu);
  3084. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3085. kvm_x86_ops->enable_irq_window(vcpu);
  3086. if (kvm_lapic_enabled(vcpu)) {
  3087. update_cr8_intercept(vcpu);
  3088. kvm_lapic_sync_to_vapic(vcpu);
  3089. }
  3090. up_read(&vcpu->kvm->slots_lock);
  3091. kvm_guest_enter();
  3092. get_debugreg(vcpu->arch.host_dr6, 6);
  3093. get_debugreg(vcpu->arch.host_dr7, 7);
  3094. if (unlikely(vcpu->arch.switch_db_regs)) {
  3095. get_debugreg(vcpu->arch.host_db[0], 0);
  3096. get_debugreg(vcpu->arch.host_db[1], 1);
  3097. get_debugreg(vcpu->arch.host_db[2], 2);
  3098. get_debugreg(vcpu->arch.host_db[3], 3);
  3099. set_debugreg(0, 7);
  3100. set_debugreg(vcpu->arch.eff_db[0], 0);
  3101. set_debugreg(vcpu->arch.eff_db[1], 1);
  3102. set_debugreg(vcpu->arch.eff_db[2], 2);
  3103. set_debugreg(vcpu->arch.eff_db[3], 3);
  3104. }
  3105. trace_kvm_entry(vcpu->vcpu_id);
  3106. kvm_x86_ops->run(vcpu, kvm_run);
  3107. if (unlikely(vcpu->arch.switch_db_regs)) {
  3108. set_debugreg(0, 7);
  3109. set_debugreg(vcpu->arch.host_db[0], 0);
  3110. set_debugreg(vcpu->arch.host_db[1], 1);
  3111. set_debugreg(vcpu->arch.host_db[2], 2);
  3112. set_debugreg(vcpu->arch.host_db[3], 3);
  3113. }
  3114. set_debugreg(vcpu->arch.host_dr6, 6);
  3115. set_debugreg(vcpu->arch.host_dr7, 7);
  3116. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3117. local_irq_enable();
  3118. ++vcpu->stat.exits;
  3119. /*
  3120. * We must have an instruction between local_irq_enable() and
  3121. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3122. * the interrupt shadow. The stat.exits increment will do nicely.
  3123. * But we need to prevent reordering, hence this barrier():
  3124. */
  3125. barrier();
  3126. kvm_guest_exit();
  3127. preempt_enable();
  3128. down_read(&vcpu->kvm->slots_lock);
  3129. /*
  3130. * Profile KVM exit RIPs:
  3131. */
  3132. if (unlikely(prof_on == KVM_PROFILING)) {
  3133. unsigned long rip = kvm_rip_read(vcpu);
  3134. profile_hit(KVM_PROFILING, (void *)rip);
  3135. }
  3136. kvm_lapic_sync_from_vapic(vcpu);
  3137. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  3138. out:
  3139. return r;
  3140. }
  3141. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3142. {
  3143. int r;
  3144. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3145. pr_debug("vcpu %d received sipi with vector # %x\n",
  3146. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3147. kvm_lapic_reset(vcpu);
  3148. r = kvm_arch_vcpu_reset(vcpu);
  3149. if (r)
  3150. return r;
  3151. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3152. }
  3153. down_read(&vcpu->kvm->slots_lock);
  3154. vapic_enter(vcpu);
  3155. r = 1;
  3156. while (r > 0) {
  3157. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3158. r = vcpu_enter_guest(vcpu, kvm_run);
  3159. else {
  3160. up_read(&vcpu->kvm->slots_lock);
  3161. kvm_vcpu_block(vcpu);
  3162. down_read(&vcpu->kvm->slots_lock);
  3163. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3164. {
  3165. switch(vcpu->arch.mp_state) {
  3166. case KVM_MP_STATE_HALTED:
  3167. vcpu->arch.mp_state =
  3168. KVM_MP_STATE_RUNNABLE;
  3169. case KVM_MP_STATE_RUNNABLE:
  3170. break;
  3171. case KVM_MP_STATE_SIPI_RECEIVED:
  3172. default:
  3173. r = -EINTR;
  3174. break;
  3175. }
  3176. }
  3177. }
  3178. if (r <= 0)
  3179. break;
  3180. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3181. if (kvm_cpu_has_pending_timer(vcpu))
  3182. kvm_inject_pending_timer_irqs(vcpu);
  3183. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  3184. r = -EINTR;
  3185. kvm_run->exit_reason = KVM_EXIT_INTR;
  3186. ++vcpu->stat.request_irq_exits;
  3187. }
  3188. if (signal_pending(current)) {
  3189. r = -EINTR;
  3190. kvm_run->exit_reason = KVM_EXIT_INTR;
  3191. ++vcpu->stat.signal_exits;
  3192. }
  3193. if (need_resched()) {
  3194. up_read(&vcpu->kvm->slots_lock);
  3195. kvm_resched(vcpu);
  3196. down_read(&vcpu->kvm->slots_lock);
  3197. }
  3198. }
  3199. up_read(&vcpu->kvm->slots_lock);
  3200. post_kvm_run_save(vcpu, kvm_run);
  3201. vapic_exit(vcpu);
  3202. return r;
  3203. }
  3204. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3205. {
  3206. int r;
  3207. sigset_t sigsaved;
  3208. vcpu_load(vcpu);
  3209. if (vcpu->sigset_active)
  3210. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3211. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3212. kvm_vcpu_block(vcpu);
  3213. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3214. r = -EAGAIN;
  3215. goto out;
  3216. }
  3217. /* re-sync apic's tpr */
  3218. if (!irqchip_in_kernel(vcpu->kvm))
  3219. kvm_set_cr8(vcpu, kvm_run->cr8);
  3220. if (vcpu->arch.pio.cur_count) {
  3221. r = complete_pio(vcpu);
  3222. if (r)
  3223. goto out;
  3224. }
  3225. #if CONFIG_HAS_IOMEM
  3226. if (vcpu->mmio_needed) {
  3227. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3228. vcpu->mmio_read_completed = 1;
  3229. vcpu->mmio_needed = 0;
  3230. down_read(&vcpu->kvm->slots_lock);
  3231. r = emulate_instruction(vcpu, kvm_run,
  3232. vcpu->arch.mmio_fault_cr2, 0,
  3233. EMULTYPE_NO_DECODE);
  3234. up_read(&vcpu->kvm->slots_lock);
  3235. if (r == EMULATE_DO_MMIO) {
  3236. /*
  3237. * Read-modify-write. Back to userspace.
  3238. */
  3239. r = 0;
  3240. goto out;
  3241. }
  3242. }
  3243. #endif
  3244. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3245. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3246. kvm_run->hypercall.ret);
  3247. r = __vcpu_run(vcpu, kvm_run);
  3248. out:
  3249. if (vcpu->sigset_active)
  3250. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3251. vcpu_put(vcpu);
  3252. return r;
  3253. }
  3254. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3255. {
  3256. vcpu_load(vcpu);
  3257. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3258. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3259. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3260. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3261. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3262. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3263. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3264. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3265. #ifdef CONFIG_X86_64
  3266. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3267. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3268. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3269. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3270. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3271. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3272. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3273. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3274. #endif
  3275. regs->rip = kvm_rip_read(vcpu);
  3276. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3277. /*
  3278. * Don't leak debug flags in case they were set for guest debugging
  3279. */
  3280. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3281. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3282. vcpu_put(vcpu);
  3283. return 0;
  3284. }
  3285. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3286. {
  3287. vcpu_load(vcpu);
  3288. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3289. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3290. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3291. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3292. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3293. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3294. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3295. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3296. #ifdef CONFIG_X86_64
  3297. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3298. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3299. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3300. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3301. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3302. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3303. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3304. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3305. #endif
  3306. kvm_rip_write(vcpu, regs->rip);
  3307. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3308. vcpu->arch.exception.pending = false;
  3309. vcpu_put(vcpu);
  3310. return 0;
  3311. }
  3312. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3313. struct kvm_segment *var, int seg)
  3314. {
  3315. kvm_x86_ops->get_segment(vcpu, var, seg);
  3316. }
  3317. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3318. {
  3319. struct kvm_segment cs;
  3320. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3321. *db = cs.db;
  3322. *l = cs.l;
  3323. }
  3324. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3325. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3326. struct kvm_sregs *sregs)
  3327. {
  3328. struct descriptor_table dt;
  3329. vcpu_load(vcpu);
  3330. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3331. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3332. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3333. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3334. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3335. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3336. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3337. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3338. kvm_x86_ops->get_idt(vcpu, &dt);
  3339. sregs->idt.limit = dt.limit;
  3340. sregs->idt.base = dt.base;
  3341. kvm_x86_ops->get_gdt(vcpu, &dt);
  3342. sregs->gdt.limit = dt.limit;
  3343. sregs->gdt.base = dt.base;
  3344. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3345. sregs->cr0 = vcpu->arch.cr0;
  3346. sregs->cr2 = vcpu->arch.cr2;
  3347. sregs->cr3 = vcpu->arch.cr3;
  3348. sregs->cr4 = vcpu->arch.cr4;
  3349. sregs->cr8 = kvm_get_cr8(vcpu);
  3350. sregs->efer = vcpu->arch.shadow_efer;
  3351. sregs->apic_base = kvm_get_apic_base(vcpu);
  3352. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3353. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3354. set_bit(vcpu->arch.interrupt.nr,
  3355. (unsigned long *)sregs->interrupt_bitmap);
  3356. vcpu_put(vcpu);
  3357. return 0;
  3358. }
  3359. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3360. struct kvm_mp_state *mp_state)
  3361. {
  3362. vcpu_load(vcpu);
  3363. mp_state->mp_state = vcpu->arch.mp_state;
  3364. vcpu_put(vcpu);
  3365. return 0;
  3366. }
  3367. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3368. struct kvm_mp_state *mp_state)
  3369. {
  3370. vcpu_load(vcpu);
  3371. vcpu->arch.mp_state = mp_state->mp_state;
  3372. vcpu_put(vcpu);
  3373. return 0;
  3374. }
  3375. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3376. struct kvm_segment *var, int seg)
  3377. {
  3378. kvm_x86_ops->set_segment(vcpu, var, seg);
  3379. }
  3380. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3381. struct kvm_segment *kvm_desct)
  3382. {
  3383. kvm_desct->base = seg_desc->base0;
  3384. kvm_desct->base |= seg_desc->base1 << 16;
  3385. kvm_desct->base |= seg_desc->base2 << 24;
  3386. kvm_desct->limit = seg_desc->limit0;
  3387. kvm_desct->limit |= seg_desc->limit << 16;
  3388. if (seg_desc->g) {
  3389. kvm_desct->limit <<= 12;
  3390. kvm_desct->limit |= 0xfff;
  3391. }
  3392. kvm_desct->selector = selector;
  3393. kvm_desct->type = seg_desc->type;
  3394. kvm_desct->present = seg_desc->p;
  3395. kvm_desct->dpl = seg_desc->dpl;
  3396. kvm_desct->db = seg_desc->d;
  3397. kvm_desct->s = seg_desc->s;
  3398. kvm_desct->l = seg_desc->l;
  3399. kvm_desct->g = seg_desc->g;
  3400. kvm_desct->avl = seg_desc->avl;
  3401. if (!selector)
  3402. kvm_desct->unusable = 1;
  3403. else
  3404. kvm_desct->unusable = 0;
  3405. kvm_desct->padding = 0;
  3406. }
  3407. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3408. u16 selector,
  3409. struct descriptor_table *dtable)
  3410. {
  3411. if (selector & 1 << 2) {
  3412. struct kvm_segment kvm_seg;
  3413. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3414. if (kvm_seg.unusable)
  3415. dtable->limit = 0;
  3416. else
  3417. dtable->limit = kvm_seg.limit;
  3418. dtable->base = kvm_seg.base;
  3419. }
  3420. else
  3421. kvm_x86_ops->get_gdt(vcpu, dtable);
  3422. }
  3423. /* allowed just for 8 bytes segments */
  3424. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3425. struct desc_struct *seg_desc)
  3426. {
  3427. gpa_t gpa;
  3428. struct descriptor_table dtable;
  3429. u16 index = selector >> 3;
  3430. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3431. if (dtable.limit < index * 8 + 7) {
  3432. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3433. return 1;
  3434. }
  3435. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3436. gpa += index * 8;
  3437. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3438. }
  3439. /* allowed just for 8 bytes segments */
  3440. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3441. struct desc_struct *seg_desc)
  3442. {
  3443. gpa_t gpa;
  3444. struct descriptor_table dtable;
  3445. u16 index = selector >> 3;
  3446. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3447. if (dtable.limit < index * 8 + 7)
  3448. return 1;
  3449. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3450. gpa += index * 8;
  3451. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3452. }
  3453. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3454. struct desc_struct *seg_desc)
  3455. {
  3456. u32 base_addr;
  3457. base_addr = seg_desc->base0;
  3458. base_addr |= (seg_desc->base1 << 16);
  3459. base_addr |= (seg_desc->base2 << 24);
  3460. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3461. }
  3462. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3463. {
  3464. struct kvm_segment kvm_seg;
  3465. kvm_get_segment(vcpu, &kvm_seg, seg);
  3466. return kvm_seg.selector;
  3467. }
  3468. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3469. u16 selector,
  3470. struct kvm_segment *kvm_seg)
  3471. {
  3472. struct desc_struct seg_desc;
  3473. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3474. return 1;
  3475. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3476. return 0;
  3477. }
  3478. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3479. {
  3480. struct kvm_segment segvar = {
  3481. .base = selector << 4,
  3482. .limit = 0xffff,
  3483. .selector = selector,
  3484. .type = 3,
  3485. .present = 1,
  3486. .dpl = 3,
  3487. .db = 0,
  3488. .s = 1,
  3489. .l = 0,
  3490. .g = 0,
  3491. .avl = 0,
  3492. .unusable = 0,
  3493. };
  3494. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3495. return 0;
  3496. }
  3497. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3498. int type_bits, int seg)
  3499. {
  3500. struct kvm_segment kvm_seg;
  3501. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3502. return kvm_load_realmode_segment(vcpu, selector, seg);
  3503. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3504. return 1;
  3505. kvm_seg.type |= type_bits;
  3506. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3507. seg != VCPU_SREG_LDTR)
  3508. if (!kvm_seg.s)
  3509. kvm_seg.unusable = 1;
  3510. kvm_set_segment(vcpu, &kvm_seg, seg);
  3511. return 0;
  3512. }
  3513. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3514. struct tss_segment_32 *tss)
  3515. {
  3516. tss->cr3 = vcpu->arch.cr3;
  3517. tss->eip = kvm_rip_read(vcpu);
  3518. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3519. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3520. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3521. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3522. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3523. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3524. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3525. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3526. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3527. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3528. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3529. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3530. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3531. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3532. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3533. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3534. }
  3535. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3536. struct tss_segment_32 *tss)
  3537. {
  3538. kvm_set_cr3(vcpu, tss->cr3);
  3539. kvm_rip_write(vcpu, tss->eip);
  3540. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3541. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3542. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3543. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3544. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3545. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3546. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3547. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3548. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3549. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3550. return 1;
  3551. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3552. return 1;
  3553. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3554. return 1;
  3555. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3556. return 1;
  3557. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3558. return 1;
  3559. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3560. return 1;
  3561. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3562. return 1;
  3563. return 0;
  3564. }
  3565. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3566. struct tss_segment_16 *tss)
  3567. {
  3568. tss->ip = kvm_rip_read(vcpu);
  3569. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3570. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3571. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3572. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3573. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3574. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3575. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3576. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3577. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3578. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3579. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3580. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3581. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3582. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3583. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3584. }
  3585. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3586. struct tss_segment_16 *tss)
  3587. {
  3588. kvm_rip_write(vcpu, tss->ip);
  3589. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3590. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3591. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3592. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3593. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3594. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3595. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3596. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3597. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3598. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3599. return 1;
  3600. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3601. return 1;
  3602. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3603. return 1;
  3604. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3605. return 1;
  3606. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3607. return 1;
  3608. return 0;
  3609. }
  3610. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3611. u16 old_tss_sel, u32 old_tss_base,
  3612. struct desc_struct *nseg_desc)
  3613. {
  3614. struct tss_segment_16 tss_segment_16;
  3615. int ret = 0;
  3616. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3617. sizeof tss_segment_16))
  3618. goto out;
  3619. save_state_to_tss16(vcpu, &tss_segment_16);
  3620. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3621. sizeof tss_segment_16))
  3622. goto out;
  3623. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3624. &tss_segment_16, sizeof tss_segment_16))
  3625. goto out;
  3626. if (old_tss_sel != 0xffff) {
  3627. tss_segment_16.prev_task_link = old_tss_sel;
  3628. if (kvm_write_guest(vcpu->kvm,
  3629. get_tss_base_addr(vcpu, nseg_desc),
  3630. &tss_segment_16.prev_task_link,
  3631. sizeof tss_segment_16.prev_task_link))
  3632. goto out;
  3633. }
  3634. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3635. goto out;
  3636. ret = 1;
  3637. out:
  3638. return ret;
  3639. }
  3640. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3641. u16 old_tss_sel, u32 old_tss_base,
  3642. struct desc_struct *nseg_desc)
  3643. {
  3644. struct tss_segment_32 tss_segment_32;
  3645. int ret = 0;
  3646. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3647. sizeof tss_segment_32))
  3648. goto out;
  3649. save_state_to_tss32(vcpu, &tss_segment_32);
  3650. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3651. sizeof tss_segment_32))
  3652. goto out;
  3653. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3654. &tss_segment_32, sizeof tss_segment_32))
  3655. goto out;
  3656. if (old_tss_sel != 0xffff) {
  3657. tss_segment_32.prev_task_link = old_tss_sel;
  3658. if (kvm_write_guest(vcpu->kvm,
  3659. get_tss_base_addr(vcpu, nseg_desc),
  3660. &tss_segment_32.prev_task_link,
  3661. sizeof tss_segment_32.prev_task_link))
  3662. goto out;
  3663. }
  3664. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3665. goto out;
  3666. ret = 1;
  3667. out:
  3668. return ret;
  3669. }
  3670. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3671. {
  3672. struct kvm_segment tr_seg;
  3673. struct desc_struct cseg_desc;
  3674. struct desc_struct nseg_desc;
  3675. int ret = 0;
  3676. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3677. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3678. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3679. /* FIXME: Handle errors. Failure to read either TSS or their
  3680. * descriptors should generate a pagefault.
  3681. */
  3682. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3683. goto out;
  3684. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3685. goto out;
  3686. if (reason != TASK_SWITCH_IRET) {
  3687. int cpl;
  3688. cpl = kvm_x86_ops->get_cpl(vcpu);
  3689. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3690. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3691. return 1;
  3692. }
  3693. }
  3694. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3695. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3696. return 1;
  3697. }
  3698. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3699. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3700. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3701. }
  3702. if (reason == TASK_SWITCH_IRET) {
  3703. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3704. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3705. }
  3706. /* set back link to prev task only if NT bit is set in eflags
  3707. note that old_tss_sel is not used afetr this point */
  3708. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3709. old_tss_sel = 0xffff;
  3710. /* set back link to prev task only if NT bit is set in eflags
  3711. note that old_tss_sel is not used afetr this point */
  3712. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3713. old_tss_sel = 0xffff;
  3714. if (nseg_desc.type & 8)
  3715. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3716. old_tss_base, &nseg_desc);
  3717. else
  3718. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3719. old_tss_base, &nseg_desc);
  3720. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3721. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3722. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3723. }
  3724. if (reason != TASK_SWITCH_IRET) {
  3725. nseg_desc.type |= (1 << 1);
  3726. save_guest_segment_descriptor(vcpu, tss_selector,
  3727. &nseg_desc);
  3728. }
  3729. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3730. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3731. tr_seg.type = 11;
  3732. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3733. out:
  3734. return ret;
  3735. }
  3736. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3737. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3738. struct kvm_sregs *sregs)
  3739. {
  3740. int mmu_reset_needed = 0;
  3741. int pending_vec, max_bits;
  3742. struct descriptor_table dt;
  3743. vcpu_load(vcpu);
  3744. dt.limit = sregs->idt.limit;
  3745. dt.base = sregs->idt.base;
  3746. kvm_x86_ops->set_idt(vcpu, &dt);
  3747. dt.limit = sregs->gdt.limit;
  3748. dt.base = sregs->gdt.base;
  3749. kvm_x86_ops->set_gdt(vcpu, &dt);
  3750. vcpu->arch.cr2 = sregs->cr2;
  3751. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3752. down_read(&vcpu->kvm->slots_lock);
  3753. if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
  3754. vcpu->arch.cr3 = sregs->cr3;
  3755. else
  3756. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  3757. up_read(&vcpu->kvm->slots_lock);
  3758. kvm_set_cr8(vcpu, sregs->cr8);
  3759. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3760. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3761. kvm_set_apic_base(vcpu, sregs->apic_base);
  3762. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3763. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3764. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3765. vcpu->arch.cr0 = sregs->cr0;
  3766. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3767. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3768. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3769. load_pdptrs(vcpu, vcpu->arch.cr3);
  3770. if (mmu_reset_needed)
  3771. kvm_mmu_reset_context(vcpu);
  3772. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3773. pending_vec = find_first_bit(
  3774. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3775. if (pending_vec < max_bits) {
  3776. kvm_queue_interrupt(vcpu, pending_vec, false);
  3777. pr_debug("Set back pending irq %d\n", pending_vec);
  3778. if (irqchip_in_kernel(vcpu->kvm))
  3779. kvm_pic_clear_isr_ack(vcpu->kvm);
  3780. }
  3781. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3782. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3783. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3784. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3785. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3786. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3787. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3788. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3789. /* Older userspace won't unhalt the vcpu on reset. */
  3790. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  3791. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3792. !(vcpu->arch.cr0 & X86_CR0_PE))
  3793. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3794. vcpu_put(vcpu);
  3795. return 0;
  3796. }
  3797. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3798. struct kvm_guest_debug *dbg)
  3799. {
  3800. int i, r;
  3801. vcpu_load(vcpu);
  3802. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3803. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3804. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3805. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3806. vcpu->arch.switch_db_regs =
  3807. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3808. } else {
  3809. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3810. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3811. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3812. }
  3813. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3814. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3815. kvm_queue_exception(vcpu, DB_VECTOR);
  3816. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3817. kvm_queue_exception(vcpu, BP_VECTOR);
  3818. vcpu_put(vcpu);
  3819. return r;
  3820. }
  3821. /*
  3822. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3823. * we have asm/x86/processor.h
  3824. */
  3825. struct fxsave {
  3826. u16 cwd;
  3827. u16 swd;
  3828. u16 twd;
  3829. u16 fop;
  3830. u64 rip;
  3831. u64 rdp;
  3832. u32 mxcsr;
  3833. u32 mxcsr_mask;
  3834. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3835. #ifdef CONFIG_X86_64
  3836. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3837. #else
  3838. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3839. #endif
  3840. };
  3841. /*
  3842. * Translate a guest virtual address to a guest physical address.
  3843. */
  3844. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3845. struct kvm_translation *tr)
  3846. {
  3847. unsigned long vaddr = tr->linear_address;
  3848. gpa_t gpa;
  3849. vcpu_load(vcpu);
  3850. down_read(&vcpu->kvm->slots_lock);
  3851. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3852. up_read(&vcpu->kvm->slots_lock);
  3853. tr->physical_address = gpa;
  3854. tr->valid = gpa != UNMAPPED_GVA;
  3855. tr->writeable = 1;
  3856. tr->usermode = 0;
  3857. vcpu_put(vcpu);
  3858. return 0;
  3859. }
  3860. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3861. {
  3862. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3863. vcpu_load(vcpu);
  3864. memcpy(fpu->fpr, fxsave->st_space, 128);
  3865. fpu->fcw = fxsave->cwd;
  3866. fpu->fsw = fxsave->swd;
  3867. fpu->ftwx = fxsave->twd;
  3868. fpu->last_opcode = fxsave->fop;
  3869. fpu->last_ip = fxsave->rip;
  3870. fpu->last_dp = fxsave->rdp;
  3871. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3872. vcpu_put(vcpu);
  3873. return 0;
  3874. }
  3875. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3876. {
  3877. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3878. vcpu_load(vcpu);
  3879. memcpy(fxsave->st_space, fpu->fpr, 128);
  3880. fxsave->cwd = fpu->fcw;
  3881. fxsave->swd = fpu->fsw;
  3882. fxsave->twd = fpu->ftwx;
  3883. fxsave->fop = fpu->last_opcode;
  3884. fxsave->rip = fpu->last_ip;
  3885. fxsave->rdp = fpu->last_dp;
  3886. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3887. vcpu_put(vcpu);
  3888. return 0;
  3889. }
  3890. void fx_init(struct kvm_vcpu *vcpu)
  3891. {
  3892. unsigned after_mxcsr_mask;
  3893. /*
  3894. * Touch the fpu the first time in non atomic context as if
  3895. * this is the first fpu instruction the exception handler
  3896. * will fire before the instruction returns and it'll have to
  3897. * allocate ram with GFP_KERNEL.
  3898. */
  3899. if (!used_math())
  3900. kvm_fx_save(&vcpu->arch.host_fx_image);
  3901. /* Initialize guest FPU by resetting ours and saving into guest's */
  3902. preempt_disable();
  3903. kvm_fx_save(&vcpu->arch.host_fx_image);
  3904. kvm_fx_finit();
  3905. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3906. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3907. preempt_enable();
  3908. vcpu->arch.cr0 |= X86_CR0_ET;
  3909. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3910. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3911. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3912. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3913. }
  3914. EXPORT_SYMBOL_GPL(fx_init);
  3915. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3916. {
  3917. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3918. return;
  3919. vcpu->guest_fpu_loaded = 1;
  3920. kvm_fx_save(&vcpu->arch.host_fx_image);
  3921. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3922. }
  3923. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3924. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3925. {
  3926. if (!vcpu->guest_fpu_loaded)
  3927. return;
  3928. vcpu->guest_fpu_loaded = 0;
  3929. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3930. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3931. ++vcpu->stat.fpu_reload;
  3932. }
  3933. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3934. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3935. {
  3936. if (vcpu->arch.time_page) {
  3937. kvm_release_page_dirty(vcpu->arch.time_page);
  3938. vcpu->arch.time_page = NULL;
  3939. }
  3940. kvm_x86_ops->vcpu_free(vcpu);
  3941. }
  3942. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3943. unsigned int id)
  3944. {
  3945. return kvm_x86_ops->vcpu_create(kvm, id);
  3946. }
  3947. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3948. {
  3949. int r;
  3950. /* We do fxsave: this must be aligned. */
  3951. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3952. vcpu->arch.mtrr_state.have_fixed = 1;
  3953. vcpu_load(vcpu);
  3954. r = kvm_arch_vcpu_reset(vcpu);
  3955. if (r == 0)
  3956. r = kvm_mmu_setup(vcpu);
  3957. vcpu_put(vcpu);
  3958. if (r < 0)
  3959. goto free_vcpu;
  3960. return 0;
  3961. free_vcpu:
  3962. kvm_x86_ops->vcpu_free(vcpu);
  3963. return r;
  3964. }
  3965. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3966. {
  3967. vcpu_load(vcpu);
  3968. kvm_mmu_unload(vcpu);
  3969. vcpu_put(vcpu);
  3970. kvm_x86_ops->vcpu_free(vcpu);
  3971. }
  3972. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3973. {
  3974. vcpu->arch.nmi_pending = false;
  3975. vcpu->arch.nmi_injected = false;
  3976. vcpu->arch.switch_db_regs = 0;
  3977. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3978. vcpu->arch.dr6 = DR6_FIXED_1;
  3979. vcpu->arch.dr7 = DR7_FIXED_1;
  3980. return kvm_x86_ops->vcpu_reset(vcpu);
  3981. }
  3982. void kvm_arch_hardware_enable(void *garbage)
  3983. {
  3984. kvm_x86_ops->hardware_enable(garbage);
  3985. }
  3986. void kvm_arch_hardware_disable(void *garbage)
  3987. {
  3988. kvm_x86_ops->hardware_disable(garbage);
  3989. }
  3990. int kvm_arch_hardware_setup(void)
  3991. {
  3992. return kvm_x86_ops->hardware_setup();
  3993. }
  3994. void kvm_arch_hardware_unsetup(void)
  3995. {
  3996. kvm_x86_ops->hardware_unsetup();
  3997. }
  3998. void kvm_arch_check_processor_compat(void *rtn)
  3999. {
  4000. kvm_x86_ops->check_processor_compatibility(rtn);
  4001. }
  4002. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4003. {
  4004. struct page *page;
  4005. struct kvm *kvm;
  4006. int r;
  4007. BUG_ON(vcpu->kvm == NULL);
  4008. kvm = vcpu->kvm;
  4009. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4010. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4011. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4012. else
  4013. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4014. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4015. if (!page) {
  4016. r = -ENOMEM;
  4017. goto fail;
  4018. }
  4019. vcpu->arch.pio_data = page_address(page);
  4020. r = kvm_mmu_create(vcpu);
  4021. if (r < 0)
  4022. goto fail_free_pio_data;
  4023. if (irqchip_in_kernel(kvm)) {
  4024. r = kvm_create_lapic(vcpu);
  4025. if (r < 0)
  4026. goto fail_mmu_destroy;
  4027. }
  4028. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4029. GFP_KERNEL);
  4030. if (!vcpu->arch.mce_banks) {
  4031. r = -ENOMEM;
  4032. goto fail_mmu_destroy;
  4033. }
  4034. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4035. return 0;
  4036. fail_mmu_destroy:
  4037. kvm_mmu_destroy(vcpu);
  4038. fail_free_pio_data:
  4039. free_page((unsigned long)vcpu->arch.pio_data);
  4040. fail:
  4041. return r;
  4042. }
  4043. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4044. {
  4045. kvm_free_lapic(vcpu);
  4046. down_read(&vcpu->kvm->slots_lock);
  4047. kvm_mmu_destroy(vcpu);
  4048. up_read(&vcpu->kvm->slots_lock);
  4049. free_page((unsigned long)vcpu->arch.pio_data);
  4050. }
  4051. struct kvm *kvm_arch_create_vm(void)
  4052. {
  4053. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4054. if (!kvm)
  4055. return ERR_PTR(-ENOMEM);
  4056. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4057. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4058. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4059. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4060. rdtscll(kvm->arch.vm_init_tsc);
  4061. return kvm;
  4062. }
  4063. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4064. {
  4065. vcpu_load(vcpu);
  4066. kvm_mmu_unload(vcpu);
  4067. vcpu_put(vcpu);
  4068. }
  4069. static void kvm_free_vcpus(struct kvm *kvm)
  4070. {
  4071. unsigned int i;
  4072. struct kvm_vcpu *vcpu;
  4073. /*
  4074. * Unpin any mmu pages first.
  4075. */
  4076. kvm_for_each_vcpu(i, vcpu, kvm)
  4077. kvm_unload_vcpu_mmu(vcpu);
  4078. kvm_for_each_vcpu(i, vcpu, kvm)
  4079. kvm_arch_vcpu_free(vcpu);
  4080. mutex_lock(&kvm->lock);
  4081. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4082. kvm->vcpus[i] = NULL;
  4083. atomic_set(&kvm->online_vcpus, 0);
  4084. mutex_unlock(&kvm->lock);
  4085. }
  4086. void kvm_arch_sync_events(struct kvm *kvm)
  4087. {
  4088. kvm_free_all_assigned_devices(kvm);
  4089. }
  4090. void kvm_arch_destroy_vm(struct kvm *kvm)
  4091. {
  4092. kvm_iommu_unmap_guest(kvm);
  4093. kvm_free_pit(kvm);
  4094. kfree(kvm->arch.vpic);
  4095. kfree(kvm->arch.vioapic);
  4096. kvm_free_vcpus(kvm);
  4097. kvm_free_physmem(kvm);
  4098. if (kvm->arch.apic_access_page)
  4099. put_page(kvm->arch.apic_access_page);
  4100. if (kvm->arch.ept_identity_pagetable)
  4101. put_page(kvm->arch.ept_identity_pagetable);
  4102. kfree(kvm);
  4103. }
  4104. int kvm_arch_set_memory_region(struct kvm *kvm,
  4105. struct kvm_userspace_memory_region *mem,
  4106. struct kvm_memory_slot old,
  4107. int user_alloc)
  4108. {
  4109. int npages = mem->memory_size >> PAGE_SHIFT;
  4110. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4111. /*To keep backward compatibility with older userspace,
  4112. *x86 needs to hanlde !user_alloc case.
  4113. */
  4114. if (!user_alloc) {
  4115. if (npages && !old.rmap) {
  4116. unsigned long userspace_addr;
  4117. down_write(&current->mm->mmap_sem);
  4118. userspace_addr = do_mmap(NULL, 0,
  4119. npages * PAGE_SIZE,
  4120. PROT_READ | PROT_WRITE,
  4121. MAP_PRIVATE | MAP_ANONYMOUS,
  4122. 0);
  4123. up_write(&current->mm->mmap_sem);
  4124. if (IS_ERR((void *)userspace_addr))
  4125. return PTR_ERR((void *)userspace_addr);
  4126. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4127. spin_lock(&kvm->mmu_lock);
  4128. memslot->userspace_addr = userspace_addr;
  4129. spin_unlock(&kvm->mmu_lock);
  4130. } else {
  4131. if (!old.user_alloc && old.rmap) {
  4132. int ret;
  4133. down_write(&current->mm->mmap_sem);
  4134. ret = do_munmap(current->mm, old.userspace_addr,
  4135. old.npages * PAGE_SIZE);
  4136. up_write(&current->mm->mmap_sem);
  4137. if (ret < 0)
  4138. printk(KERN_WARNING
  4139. "kvm_vm_ioctl_set_memory_region: "
  4140. "failed to munmap memory\n");
  4141. }
  4142. }
  4143. }
  4144. spin_lock(&kvm->mmu_lock);
  4145. if (!kvm->arch.n_requested_mmu_pages) {
  4146. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4147. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4148. }
  4149. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4150. spin_unlock(&kvm->mmu_lock);
  4151. kvm_flush_remote_tlbs(kvm);
  4152. return 0;
  4153. }
  4154. void kvm_arch_flush_shadow(struct kvm *kvm)
  4155. {
  4156. kvm_mmu_zap_all(kvm);
  4157. kvm_reload_remote_mmus(kvm);
  4158. }
  4159. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4160. {
  4161. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4162. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4163. || vcpu->arch.nmi_pending;
  4164. }
  4165. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4166. {
  4167. int me;
  4168. int cpu = vcpu->cpu;
  4169. if (waitqueue_active(&vcpu->wq)) {
  4170. wake_up_interruptible(&vcpu->wq);
  4171. ++vcpu->stat.halt_wakeup;
  4172. }
  4173. me = get_cpu();
  4174. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4175. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4176. smp_send_reschedule(cpu);
  4177. put_cpu();
  4178. }
  4179. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4180. {
  4181. return kvm_x86_ops->interrupt_allowed(vcpu);
  4182. }
  4183. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4184. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4185. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4186. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4187. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);