af_key.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/config.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/xfrm.h>
  29. #include <net/sock.h>
  30. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  31. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  32. /* List of all pfkey sockets. */
  33. static HLIST_HEAD(pfkey_table);
  34. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  35. static DEFINE_RWLOCK(pfkey_table_lock);
  36. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  37. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  38. struct pfkey_sock {
  39. /* struct sock must be the first member of struct pfkey_sock */
  40. struct sock sk;
  41. int registered;
  42. int promisc;
  43. };
  44. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  45. {
  46. return (struct pfkey_sock *)sk;
  47. }
  48. static void pfkey_sock_destruct(struct sock *sk)
  49. {
  50. skb_queue_purge(&sk->sk_receive_queue);
  51. if (!sock_flag(sk, SOCK_DEAD)) {
  52. printk("Attempt to release alive pfkey socket: %p\n", sk);
  53. return;
  54. }
  55. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  56. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  57. atomic_dec(&pfkey_socks_nr);
  58. }
  59. static void pfkey_table_grab(void)
  60. {
  61. write_lock_bh(&pfkey_table_lock);
  62. if (atomic_read(&pfkey_table_users)) {
  63. DECLARE_WAITQUEUE(wait, current);
  64. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  65. for(;;) {
  66. set_current_state(TASK_UNINTERRUPTIBLE);
  67. if (atomic_read(&pfkey_table_users) == 0)
  68. break;
  69. write_unlock_bh(&pfkey_table_lock);
  70. schedule();
  71. write_lock_bh(&pfkey_table_lock);
  72. }
  73. __set_current_state(TASK_RUNNING);
  74. remove_wait_queue(&pfkey_table_wait, &wait);
  75. }
  76. }
  77. static __inline__ void pfkey_table_ungrab(void)
  78. {
  79. write_unlock_bh(&pfkey_table_lock);
  80. wake_up(&pfkey_table_wait);
  81. }
  82. static __inline__ void pfkey_lock_table(void)
  83. {
  84. /* read_lock() synchronizes us to pfkey_table_grab */
  85. read_lock(&pfkey_table_lock);
  86. atomic_inc(&pfkey_table_users);
  87. read_unlock(&pfkey_table_lock);
  88. }
  89. static __inline__ void pfkey_unlock_table(void)
  90. {
  91. if (atomic_dec_and_test(&pfkey_table_users))
  92. wake_up(&pfkey_table_wait);
  93. }
  94. static struct proto_ops pfkey_ops;
  95. static void pfkey_insert(struct sock *sk)
  96. {
  97. pfkey_table_grab();
  98. sk_add_node(sk, &pfkey_table);
  99. pfkey_table_ungrab();
  100. }
  101. static void pfkey_remove(struct sock *sk)
  102. {
  103. pfkey_table_grab();
  104. sk_del_node_init(sk);
  105. pfkey_table_ungrab();
  106. }
  107. static struct proto key_proto = {
  108. .name = "KEY",
  109. .owner = THIS_MODULE,
  110. .obj_size = sizeof(struct pfkey_sock),
  111. };
  112. static int pfkey_create(struct socket *sock, int protocol)
  113. {
  114. struct sock *sk;
  115. int err;
  116. if (!capable(CAP_NET_ADMIN))
  117. return -EPERM;
  118. if (sock->type != SOCK_RAW)
  119. return -ESOCKTNOSUPPORT;
  120. if (protocol != PF_KEY_V2)
  121. return -EPROTONOSUPPORT;
  122. err = -ENOMEM;
  123. sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1);
  124. if (sk == NULL)
  125. goto out;
  126. sock->ops = &pfkey_ops;
  127. sock_init_data(sock, sk);
  128. sk->sk_family = PF_KEY;
  129. sk->sk_destruct = pfkey_sock_destruct;
  130. atomic_inc(&pfkey_socks_nr);
  131. pfkey_insert(sk);
  132. return 0;
  133. out:
  134. return err;
  135. }
  136. static int pfkey_release(struct socket *sock)
  137. {
  138. struct sock *sk = sock->sk;
  139. if (!sk)
  140. return 0;
  141. pfkey_remove(sk);
  142. sock_orphan(sk);
  143. sock->sk = NULL;
  144. skb_queue_purge(&sk->sk_write_queue);
  145. sock_put(sk);
  146. return 0;
  147. }
  148. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  149. unsigned int __nocast allocation, struct sock *sk)
  150. {
  151. int err = -ENOBUFS;
  152. sock_hold(sk);
  153. if (*skb2 == NULL) {
  154. if (atomic_read(&skb->users) != 1) {
  155. *skb2 = skb_clone(skb, allocation);
  156. } else {
  157. *skb2 = skb;
  158. atomic_inc(&skb->users);
  159. }
  160. }
  161. if (*skb2 != NULL) {
  162. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  163. skb_orphan(*skb2);
  164. skb_set_owner_r(*skb2, sk);
  165. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  166. sk->sk_data_ready(sk, (*skb2)->len);
  167. *skb2 = NULL;
  168. err = 0;
  169. }
  170. }
  171. sock_put(sk);
  172. return err;
  173. }
  174. /* Send SKB to all pfkey sockets matching selected criteria. */
  175. #define BROADCAST_ALL 0
  176. #define BROADCAST_ONE 1
  177. #define BROADCAST_REGISTERED 2
  178. #define BROADCAST_PROMISC_ONLY 4
  179. static int pfkey_broadcast(struct sk_buff *skb, unsigned int __nocast allocation,
  180. int broadcast_flags, struct sock *one_sk)
  181. {
  182. struct sock *sk;
  183. struct hlist_node *node;
  184. struct sk_buff *skb2 = NULL;
  185. int err = -ESRCH;
  186. /* XXX Do we need something like netlink_overrun? I think
  187. * XXX PF_KEY socket apps will not mind current behavior.
  188. */
  189. if (!skb)
  190. return -ENOMEM;
  191. pfkey_lock_table();
  192. sk_for_each(sk, node, &pfkey_table) {
  193. struct pfkey_sock *pfk = pfkey_sk(sk);
  194. int err2;
  195. /* Yes, it means that if you are meant to receive this
  196. * pfkey message you receive it twice as promiscuous
  197. * socket.
  198. */
  199. if (pfk->promisc)
  200. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  201. /* the exact target will be processed later */
  202. if (sk == one_sk)
  203. continue;
  204. if (broadcast_flags != BROADCAST_ALL) {
  205. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  206. continue;
  207. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  208. !pfk->registered)
  209. continue;
  210. if (broadcast_flags & BROADCAST_ONE)
  211. continue;
  212. }
  213. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  214. /* Error is cleare after succecful sending to at least one
  215. * registered KM */
  216. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  217. err = err2;
  218. }
  219. pfkey_unlock_table();
  220. if (one_sk != NULL)
  221. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  222. if (skb2)
  223. kfree_skb(skb2);
  224. kfree_skb(skb);
  225. return err;
  226. }
  227. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  228. {
  229. *new = *orig;
  230. }
  231. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  232. {
  233. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  234. struct sadb_msg *hdr;
  235. if (!skb)
  236. return -ENOBUFS;
  237. /* Woe be to the platform trying to support PFKEY yet
  238. * having normal errnos outside the 1-255 range, inclusive.
  239. */
  240. err = -err;
  241. if (err == ERESTARTSYS ||
  242. err == ERESTARTNOHAND ||
  243. err == ERESTARTNOINTR)
  244. err = EINTR;
  245. if (err >= 512)
  246. err = EINVAL;
  247. if (err <= 0 || err >= 256)
  248. BUG();
  249. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  250. pfkey_hdr_dup(hdr, orig);
  251. hdr->sadb_msg_errno = (uint8_t) err;
  252. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  253. sizeof(uint64_t));
  254. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  255. return 0;
  256. }
  257. static u8 sadb_ext_min_len[] = {
  258. [SADB_EXT_RESERVED] = (u8) 0,
  259. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  260. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  261. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  262. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  263. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  264. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  265. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  266. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  267. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  268. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  269. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  270. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  271. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  272. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  273. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  274. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  275. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  276. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  277. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  278. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  279. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  280. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  281. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  282. };
  283. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  284. static int verify_address_len(void *p)
  285. {
  286. struct sadb_address *sp = p;
  287. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  288. struct sockaddr_in *sin;
  289. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  290. struct sockaddr_in6 *sin6;
  291. #endif
  292. int len;
  293. switch (addr->sa_family) {
  294. case AF_INET:
  295. len = sizeof(*sp) + sizeof(*sin) + (sizeof(uint64_t) - 1);
  296. len /= sizeof(uint64_t);
  297. if (sp->sadb_address_len != len ||
  298. sp->sadb_address_prefixlen > 32)
  299. return -EINVAL;
  300. break;
  301. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  302. case AF_INET6:
  303. len = sizeof(*sp) + sizeof(*sin6) + (sizeof(uint64_t) - 1);
  304. len /= sizeof(uint64_t);
  305. if (sp->sadb_address_len != len ||
  306. sp->sadb_address_prefixlen > 128)
  307. return -EINVAL;
  308. break;
  309. #endif
  310. default:
  311. /* It is user using kernel to keep track of security
  312. * associations for another protocol, such as
  313. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  314. * lengths.
  315. *
  316. * XXX Actually, association/policy database is not yet
  317. * XXX able to cope with arbitrary sockaddr families.
  318. * XXX When it can, remove this -EINVAL. -DaveM
  319. */
  320. return -EINVAL;
  321. break;
  322. };
  323. return 0;
  324. }
  325. static int present_and_same_family(struct sadb_address *src,
  326. struct sadb_address *dst)
  327. {
  328. struct sockaddr *s_addr, *d_addr;
  329. if (!src || !dst)
  330. return 0;
  331. s_addr = (struct sockaddr *)(src + 1);
  332. d_addr = (struct sockaddr *)(dst + 1);
  333. if (s_addr->sa_family != d_addr->sa_family)
  334. return 0;
  335. if (s_addr->sa_family != AF_INET
  336. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  337. && s_addr->sa_family != AF_INET6
  338. #endif
  339. )
  340. return 0;
  341. return 1;
  342. }
  343. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  344. {
  345. char *p = (char *) hdr;
  346. int len = skb->len;
  347. len -= sizeof(*hdr);
  348. p += sizeof(*hdr);
  349. while (len > 0) {
  350. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  351. uint16_t ext_type;
  352. int ext_len;
  353. ext_len = ehdr->sadb_ext_len;
  354. ext_len *= sizeof(uint64_t);
  355. ext_type = ehdr->sadb_ext_type;
  356. if (ext_len < sizeof(uint64_t) ||
  357. ext_len > len ||
  358. ext_type == SADB_EXT_RESERVED)
  359. return -EINVAL;
  360. if (ext_type <= SADB_EXT_MAX) {
  361. int min = (int) sadb_ext_min_len[ext_type];
  362. if (ext_len < min)
  363. return -EINVAL;
  364. if (ext_hdrs[ext_type-1] != NULL)
  365. return -EINVAL;
  366. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  367. ext_type == SADB_EXT_ADDRESS_DST ||
  368. ext_type == SADB_EXT_ADDRESS_PROXY ||
  369. ext_type == SADB_X_EXT_NAT_T_OA) {
  370. if (verify_address_len(p))
  371. return -EINVAL;
  372. }
  373. ext_hdrs[ext_type-1] = p;
  374. }
  375. p += ext_len;
  376. len -= ext_len;
  377. }
  378. return 0;
  379. }
  380. static uint16_t
  381. pfkey_satype2proto(uint8_t satype)
  382. {
  383. switch (satype) {
  384. case SADB_SATYPE_UNSPEC:
  385. return IPSEC_PROTO_ANY;
  386. case SADB_SATYPE_AH:
  387. return IPPROTO_AH;
  388. case SADB_SATYPE_ESP:
  389. return IPPROTO_ESP;
  390. case SADB_X_SATYPE_IPCOMP:
  391. return IPPROTO_COMP;
  392. break;
  393. default:
  394. return 0;
  395. }
  396. /* NOTREACHED */
  397. }
  398. static uint8_t
  399. pfkey_proto2satype(uint16_t proto)
  400. {
  401. switch (proto) {
  402. case IPPROTO_AH:
  403. return SADB_SATYPE_AH;
  404. case IPPROTO_ESP:
  405. return SADB_SATYPE_ESP;
  406. case IPPROTO_COMP:
  407. return SADB_X_SATYPE_IPCOMP;
  408. break;
  409. default:
  410. return 0;
  411. }
  412. /* NOTREACHED */
  413. }
  414. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  415. * say specifically 'just raw sockets' as we encode them as 255.
  416. */
  417. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  418. {
  419. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  420. }
  421. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  422. {
  423. return (proto ? proto : IPSEC_PROTO_ANY);
  424. }
  425. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  426. xfrm_address_t *xaddr)
  427. {
  428. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  429. case AF_INET:
  430. xaddr->a4 =
  431. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  432. return AF_INET;
  433. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  434. case AF_INET6:
  435. memcpy(xaddr->a6,
  436. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  437. sizeof(struct in6_addr));
  438. return AF_INET6;
  439. #endif
  440. default:
  441. return 0;
  442. }
  443. /* NOTREACHED */
  444. }
  445. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  446. {
  447. struct sadb_sa *sa;
  448. struct sadb_address *addr;
  449. uint16_t proto;
  450. unsigned short family;
  451. xfrm_address_t *xaddr;
  452. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  453. if (sa == NULL)
  454. return NULL;
  455. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  456. if (proto == 0)
  457. return NULL;
  458. /* sadb_address_len should be checked by caller */
  459. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  460. if (addr == NULL)
  461. return NULL;
  462. family = ((struct sockaddr *)(addr + 1))->sa_family;
  463. switch (family) {
  464. case AF_INET:
  465. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  466. break;
  467. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  468. case AF_INET6:
  469. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  470. break;
  471. #endif
  472. default:
  473. xaddr = NULL;
  474. }
  475. if (!xaddr)
  476. return NULL;
  477. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  478. }
  479. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  480. static int
  481. pfkey_sockaddr_size(sa_family_t family)
  482. {
  483. switch (family) {
  484. case AF_INET:
  485. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  486. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  487. case AF_INET6:
  488. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  489. #endif
  490. default:
  491. return 0;
  492. }
  493. /* NOTREACHED */
  494. }
  495. static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc)
  496. {
  497. struct sk_buff *skb;
  498. struct sadb_msg *hdr;
  499. struct sadb_sa *sa;
  500. struct sadb_lifetime *lifetime;
  501. struct sadb_address *addr;
  502. struct sadb_key *key;
  503. struct sadb_x_sa2 *sa2;
  504. struct sockaddr_in *sin;
  505. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  506. struct sockaddr_in6 *sin6;
  507. #endif
  508. int size;
  509. int auth_key_size = 0;
  510. int encrypt_key_size = 0;
  511. int sockaddr_size;
  512. struct xfrm_encap_tmpl *natt = NULL;
  513. /* address family check */
  514. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  515. if (!sockaddr_size)
  516. return ERR_PTR(-EINVAL);
  517. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  518. key(AE), (identity(SD),) (sensitivity)> */
  519. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  520. sizeof(struct sadb_lifetime) +
  521. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  522. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  523. sizeof(struct sadb_address)*2 +
  524. sockaddr_size*2 +
  525. sizeof(struct sadb_x_sa2);
  526. /* identity & sensitivity */
  527. if ((x->props.family == AF_INET &&
  528. x->sel.saddr.a4 != x->props.saddr.a4)
  529. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  530. || (x->props.family == AF_INET6 &&
  531. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  532. #endif
  533. )
  534. size += sizeof(struct sadb_address) + sockaddr_size;
  535. if (add_keys) {
  536. if (x->aalg && x->aalg->alg_key_len) {
  537. auth_key_size =
  538. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  539. size += sizeof(struct sadb_key) + auth_key_size;
  540. }
  541. if (x->ealg && x->ealg->alg_key_len) {
  542. encrypt_key_size =
  543. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  544. size += sizeof(struct sadb_key) + encrypt_key_size;
  545. }
  546. }
  547. if (x->encap)
  548. natt = x->encap;
  549. if (natt && natt->encap_type) {
  550. size += sizeof(struct sadb_x_nat_t_type);
  551. size += sizeof(struct sadb_x_nat_t_port);
  552. size += sizeof(struct sadb_x_nat_t_port);
  553. }
  554. skb = alloc_skb(size + 16, GFP_ATOMIC);
  555. if (skb == NULL)
  556. return ERR_PTR(-ENOBUFS);
  557. /* call should fill header later */
  558. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  559. memset(hdr, 0, size); /* XXX do we need this ? */
  560. hdr->sadb_msg_len = size / sizeof(uint64_t);
  561. /* sa */
  562. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  563. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  564. sa->sadb_sa_exttype = SADB_EXT_SA;
  565. sa->sadb_sa_spi = x->id.spi;
  566. sa->sadb_sa_replay = x->props.replay_window;
  567. switch (x->km.state) {
  568. case XFRM_STATE_VALID:
  569. sa->sadb_sa_state = x->km.dying ?
  570. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  571. break;
  572. case XFRM_STATE_ACQ:
  573. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  574. break;
  575. default:
  576. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  577. break;
  578. }
  579. sa->sadb_sa_auth = 0;
  580. if (x->aalg) {
  581. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  582. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  583. }
  584. sa->sadb_sa_encrypt = 0;
  585. BUG_ON(x->ealg && x->calg);
  586. if (x->ealg) {
  587. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  588. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  589. }
  590. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  591. if (x->calg) {
  592. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  593. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  594. }
  595. sa->sadb_sa_flags = 0;
  596. if (x->props.flags & XFRM_STATE_NOECN)
  597. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  598. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  599. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  600. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  601. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  602. /* hard time */
  603. if (hsc & 2) {
  604. lifetime = (struct sadb_lifetime *) skb_put(skb,
  605. sizeof(struct sadb_lifetime));
  606. lifetime->sadb_lifetime_len =
  607. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  608. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  609. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  610. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  611. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  612. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  613. }
  614. /* soft time */
  615. if (hsc & 1) {
  616. lifetime = (struct sadb_lifetime *) skb_put(skb,
  617. sizeof(struct sadb_lifetime));
  618. lifetime->sadb_lifetime_len =
  619. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  620. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  621. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  622. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  623. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  624. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  625. }
  626. /* current time */
  627. lifetime = (struct sadb_lifetime *) skb_put(skb,
  628. sizeof(struct sadb_lifetime));
  629. lifetime->sadb_lifetime_len =
  630. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  631. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  632. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  633. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  634. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  635. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  636. /* src address */
  637. addr = (struct sadb_address*) skb_put(skb,
  638. sizeof(struct sadb_address)+sockaddr_size);
  639. addr->sadb_address_len =
  640. (sizeof(struct sadb_address)+sockaddr_size)/
  641. sizeof(uint64_t);
  642. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  643. /* "if the ports are non-zero, then the sadb_address_proto field,
  644. normally zero, MUST be filled in with the transport
  645. protocol's number." - RFC2367 */
  646. addr->sadb_address_proto = 0;
  647. addr->sadb_address_reserved = 0;
  648. if (x->props.family == AF_INET) {
  649. addr->sadb_address_prefixlen = 32;
  650. sin = (struct sockaddr_in *) (addr + 1);
  651. sin->sin_family = AF_INET;
  652. sin->sin_addr.s_addr = x->props.saddr.a4;
  653. sin->sin_port = 0;
  654. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  655. }
  656. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  657. else if (x->props.family == AF_INET6) {
  658. addr->sadb_address_prefixlen = 128;
  659. sin6 = (struct sockaddr_in6 *) (addr + 1);
  660. sin6->sin6_family = AF_INET6;
  661. sin6->sin6_port = 0;
  662. sin6->sin6_flowinfo = 0;
  663. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  664. sizeof(struct in6_addr));
  665. sin6->sin6_scope_id = 0;
  666. }
  667. #endif
  668. else
  669. BUG();
  670. /* dst address */
  671. addr = (struct sadb_address*) skb_put(skb,
  672. sizeof(struct sadb_address)+sockaddr_size);
  673. addr->sadb_address_len =
  674. (sizeof(struct sadb_address)+sockaddr_size)/
  675. sizeof(uint64_t);
  676. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  677. addr->sadb_address_proto = 0;
  678. addr->sadb_address_prefixlen = 32; /* XXX */
  679. addr->sadb_address_reserved = 0;
  680. if (x->props.family == AF_INET) {
  681. sin = (struct sockaddr_in *) (addr + 1);
  682. sin->sin_family = AF_INET;
  683. sin->sin_addr.s_addr = x->id.daddr.a4;
  684. sin->sin_port = 0;
  685. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  686. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  687. addr = (struct sadb_address*) skb_put(skb,
  688. sizeof(struct sadb_address)+sockaddr_size);
  689. addr->sadb_address_len =
  690. (sizeof(struct sadb_address)+sockaddr_size)/
  691. sizeof(uint64_t);
  692. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  693. addr->sadb_address_proto =
  694. pfkey_proto_from_xfrm(x->sel.proto);
  695. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  696. addr->sadb_address_reserved = 0;
  697. sin = (struct sockaddr_in *) (addr + 1);
  698. sin->sin_family = AF_INET;
  699. sin->sin_addr.s_addr = x->sel.saddr.a4;
  700. sin->sin_port = x->sel.sport;
  701. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  702. }
  703. }
  704. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  705. else if (x->props.family == AF_INET6) {
  706. addr->sadb_address_prefixlen = 128;
  707. sin6 = (struct sockaddr_in6 *) (addr + 1);
  708. sin6->sin6_family = AF_INET6;
  709. sin6->sin6_port = 0;
  710. sin6->sin6_flowinfo = 0;
  711. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  712. sin6->sin6_scope_id = 0;
  713. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  714. sizeof(struct in6_addr))) {
  715. addr = (struct sadb_address *) skb_put(skb,
  716. sizeof(struct sadb_address)+sockaddr_size);
  717. addr->sadb_address_len =
  718. (sizeof(struct sadb_address)+sockaddr_size)/
  719. sizeof(uint64_t);
  720. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  721. addr->sadb_address_proto =
  722. pfkey_proto_from_xfrm(x->sel.proto);
  723. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  724. addr->sadb_address_reserved = 0;
  725. sin6 = (struct sockaddr_in6 *) (addr + 1);
  726. sin6->sin6_family = AF_INET6;
  727. sin6->sin6_port = x->sel.sport;
  728. sin6->sin6_flowinfo = 0;
  729. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  730. sizeof(struct in6_addr));
  731. sin6->sin6_scope_id = 0;
  732. }
  733. }
  734. #endif
  735. else
  736. BUG();
  737. /* auth key */
  738. if (add_keys && auth_key_size) {
  739. key = (struct sadb_key *) skb_put(skb,
  740. sizeof(struct sadb_key)+auth_key_size);
  741. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  742. sizeof(uint64_t);
  743. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  744. key->sadb_key_bits = x->aalg->alg_key_len;
  745. key->sadb_key_reserved = 0;
  746. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  747. }
  748. /* encrypt key */
  749. if (add_keys && encrypt_key_size) {
  750. key = (struct sadb_key *) skb_put(skb,
  751. sizeof(struct sadb_key)+encrypt_key_size);
  752. key->sadb_key_len = (sizeof(struct sadb_key) +
  753. encrypt_key_size) / sizeof(uint64_t);
  754. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  755. key->sadb_key_bits = x->ealg->alg_key_len;
  756. key->sadb_key_reserved = 0;
  757. memcpy(key + 1, x->ealg->alg_key,
  758. (x->ealg->alg_key_len+7)/8);
  759. }
  760. /* sa */
  761. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  762. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  763. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  764. sa2->sadb_x_sa2_mode = x->props.mode + 1;
  765. sa2->sadb_x_sa2_reserved1 = 0;
  766. sa2->sadb_x_sa2_reserved2 = 0;
  767. sa2->sadb_x_sa2_sequence = 0;
  768. sa2->sadb_x_sa2_reqid = x->props.reqid;
  769. if (natt && natt->encap_type) {
  770. struct sadb_x_nat_t_type *n_type;
  771. struct sadb_x_nat_t_port *n_port;
  772. /* type */
  773. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  774. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  775. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  776. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  777. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  778. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  779. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  780. /* source port */
  781. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  782. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  783. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  784. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  785. n_port->sadb_x_nat_t_port_reserved = 0;
  786. /* dest port */
  787. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  788. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  789. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  790. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  791. n_port->sadb_x_nat_t_port_reserved = 0;
  792. }
  793. return skb;
  794. }
  795. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  796. void **ext_hdrs)
  797. {
  798. struct xfrm_state *x;
  799. struct sadb_lifetime *lifetime;
  800. struct sadb_sa *sa;
  801. struct sadb_key *key;
  802. uint16_t proto;
  803. int err;
  804. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  805. if (!sa ||
  806. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  807. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  808. return ERR_PTR(-EINVAL);
  809. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  810. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  811. return ERR_PTR(-EINVAL);
  812. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  813. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  814. return ERR_PTR(-EINVAL);
  815. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  816. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  817. return ERR_PTR(-EINVAL);
  818. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  819. if (proto == 0)
  820. return ERR_PTR(-EINVAL);
  821. /* default error is no buffer space */
  822. err = -ENOBUFS;
  823. /* RFC2367:
  824. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  825. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  826. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  827. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  828. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  829. not true.
  830. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  831. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  832. */
  833. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  834. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  835. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  836. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  837. return ERR_PTR(-EINVAL);
  838. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  839. if (key != NULL &&
  840. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  841. ((key->sadb_key_bits+7) / 8 == 0 ||
  842. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  843. return ERR_PTR(-EINVAL);
  844. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  845. if (key != NULL &&
  846. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  847. ((key->sadb_key_bits+7) / 8 == 0 ||
  848. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  849. return ERR_PTR(-EINVAL);
  850. x = xfrm_state_alloc();
  851. if (x == NULL)
  852. return ERR_PTR(-ENOBUFS);
  853. x->id.proto = proto;
  854. x->id.spi = sa->sadb_sa_spi;
  855. x->props.replay_window = sa->sadb_sa_replay;
  856. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  857. x->props.flags |= XFRM_STATE_NOECN;
  858. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  859. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  860. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  861. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  862. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  863. if (lifetime != NULL) {
  864. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  865. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  866. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  867. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  868. }
  869. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  870. if (lifetime != NULL) {
  871. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  872. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  873. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  874. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  875. }
  876. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  877. if (sa->sadb_sa_auth) {
  878. int keysize = 0;
  879. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  880. if (!a) {
  881. err = -ENOSYS;
  882. goto out;
  883. }
  884. if (key)
  885. keysize = (key->sadb_key_bits + 7) / 8;
  886. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  887. if (!x->aalg)
  888. goto out;
  889. strcpy(x->aalg->alg_name, a->name);
  890. x->aalg->alg_key_len = 0;
  891. if (key) {
  892. x->aalg->alg_key_len = key->sadb_key_bits;
  893. memcpy(x->aalg->alg_key, key+1, keysize);
  894. }
  895. x->props.aalgo = sa->sadb_sa_auth;
  896. /* x->algo.flags = sa->sadb_sa_flags; */
  897. }
  898. if (sa->sadb_sa_encrypt) {
  899. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  900. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  901. if (!a) {
  902. err = -ENOSYS;
  903. goto out;
  904. }
  905. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  906. if (!x->calg)
  907. goto out;
  908. strcpy(x->calg->alg_name, a->name);
  909. x->props.calgo = sa->sadb_sa_encrypt;
  910. } else {
  911. int keysize = 0;
  912. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  913. if (!a) {
  914. err = -ENOSYS;
  915. goto out;
  916. }
  917. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  918. if (key)
  919. keysize = (key->sadb_key_bits + 7) / 8;
  920. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  921. if (!x->ealg)
  922. goto out;
  923. strcpy(x->ealg->alg_name, a->name);
  924. x->ealg->alg_key_len = 0;
  925. if (key) {
  926. x->ealg->alg_key_len = key->sadb_key_bits;
  927. memcpy(x->ealg->alg_key, key+1, keysize);
  928. }
  929. x->props.ealgo = sa->sadb_sa_encrypt;
  930. }
  931. }
  932. /* x->algo.flags = sa->sadb_sa_flags; */
  933. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  934. &x->props.saddr);
  935. if (!x->props.family) {
  936. err = -EAFNOSUPPORT;
  937. goto out;
  938. }
  939. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  940. &x->id.daddr);
  941. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  942. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  943. x->props.mode = sa2->sadb_x_sa2_mode;
  944. if (x->props.mode)
  945. x->props.mode--;
  946. x->props.reqid = sa2->sadb_x_sa2_reqid;
  947. }
  948. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  949. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  950. /* Nobody uses this, but we try. */
  951. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  952. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  953. }
  954. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  955. struct sadb_x_nat_t_type* n_type;
  956. struct xfrm_encap_tmpl *natt;
  957. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  958. if (!x->encap)
  959. goto out;
  960. natt = x->encap;
  961. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  962. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  963. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  964. struct sadb_x_nat_t_port* n_port =
  965. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  966. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  967. }
  968. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  969. struct sadb_x_nat_t_port* n_port =
  970. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  971. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  972. }
  973. }
  974. err = xfrm_init_state(x);
  975. if (err)
  976. goto out;
  977. x->km.seq = hdr->sadb_msg_seq;
  978. return x;
  979. out:
  980. x->km.state = XFRM_STATE_DEAD;
  981. xfrm_state_put(x);
  982. return ERR_PTR(err);
  983. }
  984. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  985. {
  986. return -EOPNOTSUPP;
  987. }
  988. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  989. {
  990. struct sk_buff *resp_skb;
  991. struct sadb_x_sa2 *sa2;
  992. struct sadb_address *saddr, *daddr;
  993. struct sadb_msg *out_hdr;
  994. struct xfrm_state *x = NULL;
  995. u8 mode;
  996. u32 reqid;
  997. u8 proto;
  998. unsigned short family;
  999. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1000. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1001. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1002. return -EINVAL;
  1003. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1004. if (proto == 0)
  1005. return -EINVAL;
  1006. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1007. mode = sa2->sadb_x_sa2_mode - 1;
  1008. reqid = sa2->sadb_x_sa2_reqid;
  1009. } else {
  1010. mode = 0;
  1011. reqid = 0;
  1012. }
  1013. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1014. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1015. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1016. switch (family) {
  1017. case AF_INET:
  1018. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1019. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1020. break;
  1021. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1022. case AF_INET6:
  1023. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1024. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1025. break;
  1026. #endif
  1027. }
  1028. if (hdr->sadb_msg_seq) {
  1029. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1030. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1031. xfrm_state_put(x);
  1032. x = NULL;
  1033. }
  1034. }
  1035. if (!x)
  1036. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1037. if (x == NULL)
  1038. return -ENOENT;
  1039. resp_skb = ERR_PTR(-ENOENT);
  1040. spin_lock_bh(&x->lock);
  1041. if (x->km.state != XFRM_STATE_DEAD) {
  1042. struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1043. u32 min_spi, max_spi;
  1044. if (range != NULL) {
  1045. min_spi = range->sadb_spirange_min;
  1046. max_spi = range->sadb_spirange_max;
  1047. } else {
  1048. min_spi = 0x100;
  1049. max_spi = 0x0fffffff;
  1050. }
  1051. xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi));
  1052. if (x->id.spi)
  1053. resp_skb = pfkey_xfrm_state2msg(x, 0, 3);
  1054. }
  1055. spin_unlock_bh(&x->lock);
  1056. if (IS_ERR(resp_skb)) {
  1057. xfrm_state_put(x);
  1058. return PTR_ERR(resp_skb);
  1059. }
  1060. out_hdr = (struct sadb_msg *) resp_skb->data;
  1061. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1062. out_hdr->sadb_msg_type = SADB_GETSPI;
  1063. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1064. out_hdr->sadb_msg_errno = 0;
  1065. out_hdr->sadb_msg_reserved = 0;
  1066. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1067. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1068. xfrm_state_put(x);
  1069. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1070. return 0;
  1071. }
  1072. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1073. {
  1074. struct xfrm_state *x;
  1075. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1076. return -EOPNOTSUPP;
  1077. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1078. return 0;
  1079. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1080. if (x == NULL)
  1081. return 0;
  1082. spin_lock_bh(&x->lock);
  1083. if (x->km.state == XFRM_STATE_ACQ) {
  1084. x->km.state = XFRM_STATE_ERROR;
  1085. wake_up(&km_waitq);
  1086. }
  1087. spin_unlock_bh(&x->lock);
  1088. xfrm_state_put(x);
  1089. return 0;
  1090. }
  1091. static inline int event2poltype(int event)
  1092. {
  1093. switch (event) {
  1094. case XFRM_MSG_DELPOLICY:
  1095. return SADB_X_SPDDELETE;
  1096. case XFRM_MSG_NEWPOLICY:
  1097. return SADB_X_SPDADD;
  1098. case XFRM_MSG_UPDPOLICY:
  1099. return SADB_X_SPDUPDATE;
  1100. case XFRM_MSG_POLEXPIRE:
  1101. // return SADB_X_SPDEXPIRE;
  1102. default:
  1103. printk("pfkey: Unknown policy event %d\n", event);
  1104. break;
  1105. }
  1106. return 0;
  1107. }
  1108. static inline int event2keytype(int event)
  1109. {
  1110. switch (event) {
  1111. case XFRM_MSG_DELSA:
  1112. return SADB_DELETE;
  1113. case XFRM_MSG_NEWSA:
  1114. return SADB_ADD;
  1115. case XFRM_MSG_UPDSA:
  1116. return SADB_UPDATE;
  1117. case XFRM_MSG_EXPIRE:
  1118. return SADB_EXPIRE;
  1119. default:
  1120. printk("pfkey: Unknown SA event %d\n", event);
  1121. break;
  1122. }
  1123. return 0;
  1124. }
  1125. /* ADD/UPD/DEL */
  1126. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1127. {
  1128. struct sk_buff *skb;
  1129. struct sadb_msg *hdr;
  1130. int hsc = 3;
  1131. if (c->event == XFRM_MSG_DELSA)
  1132. hsc = 0;
  1133. skb = pfkey_xfrm_state2msg(x, 0, hsc);
  1134. if (IS_ERR(skb))
  1135. return PTR_ERR(skb);
  1136. hdr = (struct sadb_msg *) skb->data;
  1137. hdr->sadb_msg_version = PF_KEY_V2;
  1138. hdr->sadb_msg_type = event2keytype(c->event);
  1139. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1140. hdr->sadb_msg_errno = 0;
  1141. hdr->sadb_msg_reserved = 0;
  1142. hdr->sadb_msg_seq = c->seq;
  1143. hdr->sadb_msg_pid = c->pid;
  1144. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1145. return 0;
  1146. }
  1147. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1148. {
  1149. struct xfrm_state *x;
  1150. int err;
  1151. struct km_event c;
  1152. xfrm_probe_algs();
  1153. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1154. if (IS_ERR(x))
  1155. return PTR_ERR(x);
  1156. xfrm_state_hold(x);
  1157. if (hdr->sadb_msg_type == SADB_ADD)
  1158. err = xfrm_state_add(x);
  1159. else
  1160. err = xfrm_state_update(x);
  1161. if (err < 0) {
  1162. x->km.state = XFRM_STATE_DEAD;
  1163. xfrm_state_put(x);
  1164. goto out;
  1165. }
  1166. if (hdr->sadb_msg_type == SADB_ADD)
  1167. c.event = XFRM_MSG_NEWSA;
  1168. else
  1169. c.event = XFRM_MSG_UPDSA;
  1170. c.seq = hdr->sadb_msg_seq;
  1171. c.pid = hdr->sadb_msg_pid;
  1172. km_state_notify(x, &c);
  1173. out:
  1174. xfrm_state_put(x);
  1175. return err;
  1176. }
  1177. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1178. {
  1179. struct xfrm_state *x;
  1180. struct km_event c;
  1181. int err;
  1182. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1183. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1184. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1185. return -EINVAL;
  1186. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1187. if (x == NULL)
  1188. return -ESRCH;
  1189. if (xfrm_state_kern(x)) {
  1190. xfrm_state_put(x);
  1191. return -EPERM;
  1192. }
  1193. err = xfrm_state_delete(x);
  1194. if (err < 0) {
  1195. xfrm_state_put(x);
  1196. return err;
  1197. }
  1198. c.seq = hdr->sadb_msg_seq;
  1199. c.pid = hdr->sadb_msg_pid;
  1200. c.event = XFRM_MSG_DELSA;
  1201. km_state_notify(x, &c);
  1202. xfrm_state_put(x);
  1203. return err;
  1204. }
  1205. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1206. {
  1207. __u8 proto;
  1208. struct sk_buff *out_skb;
  1209. struct sadb_msg *out_hdr;
  1210. struct xfrm_state *x;
  1211. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1212. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1213. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1214. return -EINVAL;
  1215. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1216. if (x == NULL)
  1217. return -ESRCH;
  1218. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1219. proto = x->id.proto;
  1220. xfrm_state_put(x);
  1221. if (IS_ERR(out_skb))
  1222. return PTR_ERR(out_skb);
  1223. out_hdr = (struct sadb_msg *) out_skb->data;
  1224. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1225. out_hdr->sadb_msg_type = SADB_DUMP;
  1226. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1227. out_hdr->sadb_msg_errno = 0;
  1228. out_hdr->sadb_msg_reserved = 0;
  1229. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1230. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1231. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1232. return 0;
  1233. }
  1234. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1235. unsigned int __nocast allocation)
  1236. {
  1237. struct sk_buff *skb;
  1238. struct sadb_msg *hdr;
  1239. int len, auth_len, enc_len, i;
  1240. auth_len = xfrm_count_auth_supported();
  1241. if (auth_len) {
  1242. auth_len *= sizeof(struct sadb_alg);
  1243. auth_len += sizeof(struct sadb_supported);
  1244. }
  1245. enc_len = xfrm_count_enc_supported();
  1246. if (enc_len) {
  1247. enc_len *= sizeof(struct sadb_alg);
  1248. enc_len += sizeof(struct sadb_supported);
  1249. }
  1250. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1251. skb = alloc_skb(len + 16, allocation);
  1252. if (!skb)
  1253. goto out_put_algs;
  1254. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1255. pfkey_hdr_dup(hdr, orig);
  1256. hdr->sadb_msg_errno = 0;
  1257. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1258. if (auth_len) {
  1259. struct sadb_supported *sp;
  1260. struct sadb_alg *ap;
  1261. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1262. ap = (struct sadb_alg *) (sp + 1);
  1263. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1264. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1265. for (i = 0; ; i++) {
  1266. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1267. if (!aalg)
  1268. break;
  1269. if (aalg->available)
  1270. *ap++ = aalg->desc;
  1271. }
  1272. }
  1273. if (enc_len) {
  1274. struct sadb_supported *sp;
  1275. struct sadb_alg *ap;
  1276. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1277. ap = (struct sadb_alg *) (sp + 1);
  1278. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1279. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1280. for (i = 0; ; i++) {
  1281. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1282. if (!ealg)
  1283. break;
  1284. if (ealg->available)
  1285. *ap++ = ealg->desc;
  1286. }
  1287. }
  1288. out_put_algs:
  1289. return skb;
  1290. }
  1291. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1292. {
  1293. struct pfkey_sock *pfk = pfkey_sk(sk);
  1294. struct sk_buff *supp_skb;
  1295. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1296. return -EINVAL;
  1297. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1298. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1299. return -EEXIST;
  1300. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1301. }
  1302. xfrm_probe_algs();
  1303. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1304. if (!supp_skb) {
  1305. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1306. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1307. return -ENOBUFS;
  1308. }
  1309. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1310. return 0;
  1311. }
  1312. static int key_notify_sa_flush(struct km_event *c)
  1313. {
  1314. struct sk_buff *skb;
  1315. struct sadb_msg *hdr;
  1316. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1317. if (!skb)
  1318. return -ENOBUFS;
  1319. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1320. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1321. hdr->sadb_msg_seq = c->seq;
  1322. hdr->sadb_msg_pid = c->pid;
  1323. hdr->sadb_msg_version = PF_KEY_V2;
  1324. hdr->sadb_msg_errno = (uint8_t) 0;
  1325. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1326. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1327. return 0;
  1328. }
  1329. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1330. {
  1331. unsigned proto;
  1332. struct km_event c;
  1333. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1334. if (proto == 0)
  1335. return -EINVAL;
  1336. xfrm_state_flush(proto);
  1337. c.data.proto = proto;
  1338. c.seq = hdr->sadb_msg_seq;
  1339. c.pid = hdr->sadb_msg_pid;
  1340. c.event = XFRM_MSG_FLUSHSA;
  1341. km_state_notify(NULL, &c);
  1342. return 0;
  1343. }
  1344. struct pfkey_dump_data
  1345. {
  1346. struct sk_buff *skb;
  1347. struct sadb_msg *hdr;
  1348. struct sock *sk;
  1349. };
  1350. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1351. {
  1352. struct pfkey_dump_data *data = ptr;
  1353. struct sk_buff *out_skb;
  1354. struct sadb_msg *out_hdr;
  1355. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1356. if (IS_ERR(out_skb))
  1357. return PTR_ERR(out_skb);
  1358. out_hdr = (struct sadb_msg *) out_skb->data;
  1359. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1360. out_hdr->sadb_msg_type = SADB_DUMP;
  1361. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1362. out_hdr->sadb_msg_errno = 0;
  1363. out_hdr->sadb_msg_reserved = 0;
  1364. out_hdr->sadb_msg_seq = count;
  1365. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1366. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1367. return 0;
  1368. }
  1369. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1370. {
  1371. u8 proto;
  1372. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1373. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1374. if (proto == 0)
  1375. return -EINVAL;
  1376. return xfrm_state_walk(proto, dump_sa, &data);
  1377. }
  1378. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1379. {
  1380. struct pfkey_sock *pfk = pfkey_sk(sk);
  1381. int satype = hdr->sadb_msg_satype;
  1382. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1383. /* XXX we mangle packet... */
  1384. hdr->sadb_msg_errno = 0;
  1385. if (satype != 0 && satype != 1)
  1386. return -EINVAL;
  1387. pfk->promisc = satype;
  1388. }
  1389. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1390. return 0;
  1391. }
  1392. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1393. {
  1394. int i;
  1395. u32 reqid = *(u32*)ptr;
  1396. for (i=0; i<xp->xfrm_nr; i++) {
  1397. if (xp->xfrm_vec[i].reqid == reqid)
  1398. return -EEXIST;
  1399. }
  1400. return 0;
  1401. }
  1402. static u32 gen_reqid(void)
  1403. {
  1404. u32 start;
  1405. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1406. start = reqid;
  1407. do {
  1408. ++reqid;
  1409. if (reqid == 0)
  1410. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1411. if (xfrm_policy_walk(check_reqid, (void*)&reqid) != -EEXIST)
  1412. return reqid;
  1413. } while (reqid != start);
  1414. return 0;
  1415. }
  1416. static int
  1417. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1418. {
  1419. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1420. struct sockaddr_in *sin;
  1421. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1422. struct sockaddr_in6 *sin6;
  1423. #endif
  1424. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1425. return -ELOOP;
  1426. if (rq->sadb_x_ipsecrequest_mode == 0)
  1427. return -EINVAL;
  1428. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1429. t->mode = rq->sadb_x_ipsecrequest_mode-1;
  1430. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1431. t->optional = 1;
  1432. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1433. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1434. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1435. t->reqid = 0;
  1436. if (!t->reqid && !(t->reqid = gen_reqid()))
  1437. return -ENOBUFS;
  1438. }
  1439. /* addresses present only in tunnel mode */
  1440. if (t->mode) {
  1441. switch (xp->family) {
  1442. case AF_INET:
  1443. sin = (void*)(rq+1);
  1444. if (sin->sin_family != AF_INET)
  1445. return -EINVAL;
  1446. t->saddr.a4 = sin->sin_addr.s_addr;
  1447. sin++;
  1448. if (sin->sin_family != AF_INET)
  1449. return -EINVAL;
  1450. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1451. break;
  1452. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1453. case AF_INET6:
  1454. sin6 = (void *)(rq+1);
  1455. if (sin6->sin6_family != AF_INET6)
  1456. return -EINVAL;
  1457. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1458. sin6++;
  1459. if (sin6->sin6_family != AF_INET6)
  1460. return -EINVAL;
  1461. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1462. break;
  1463. #endif
  1464. default:
  1465. return -EINVAL;
  1466. }
  1467. }
  1468. /* No way to set this via kame pfkey */
  1469. t->aalgos = t->ealgos = t->calgos = ~0;
  1470. xp->xfrm_nr++;
  1471. return 0;
  1472. }
  1473. static int
  1474. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1475. {
  1476. int err;
  1477. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1478. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1479. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1480. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1481. return err;
  1482. len -= rq->sadb_x_ipsecrequest_len;
  1483. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1484. }
  1485. return 0;
  1486. }
  1487. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1488. {
  1489. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1490. int socklen = (xp->family == AF_INET ?
  1491. sizeof(struct sockaddr_in) :
  1492. sizeof(struct sockaddr_in6));
  1493. return sizeof(struct sadb_msg) +
  1494. (sizeof(struct sadb_lifetime) * 3) +
  1495. (sizeof(struct sadb_address) * 2) +
  1496. (sockaddr_size * 2) +
  1497. sizeof(struct sadb_x_policy) +
  1498. (xp->xfrm_nr * (sizeof(struct sadb_x_ipsecrequest) +
  1499. (socklen * 2)));
  1500. }
  1501. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1502. {
  1503. struct sk_buff *skb;
  1504. int size;
  1505. size = pfkey_xfrm_policy2msg_size(xp);
  1506. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1507. if (skb == NULL)
  1508. return ERR_PTR(-ENOBUFS);
  1509. return skb;
  1510. }
  1511. static void pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1512. {
  1513. struct sadb_msg *hdr;
  1514. struct sadb_address *addr;
  1515. struct sadb_lifetime *lifetime;
  1516. struct sadb_x_policy *pol;
  1517. struct sockaddr_in *sin;
  1518. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1519. struct sockaddr_in6 *sin6;
  1520. #endif
  1521. int i;
  1522. int size;
  1523. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1524. int socklen = (xp->family == AF_INET ?
  1525. sizeof(struct sockaddr_in) :
  1526. sizeof(struct sockaddr_in6));
  1527. size = pfkey_xfrm_policy2msg_size(xp);
  1528. /* call should fill header later */
  1529. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1530. memset(hdr, 0, size); /* XXX do we need this ? */
  1531. /* src address */
  1532. addr = (struct sadb_address*) skb_put(skb,
  1533. sizeof(struct sadb_address)+sockaddr_size);
  1534. addr->sadb_address_len =
  1535. (sizeof(struct sadb_address)+sockaddr_size)/
  1536. sizeof(uint64_t);
  1537. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1538. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1539. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1540. addr->sadb_address_reserved = 0;
  1541. /* src address */
  1542. if (xp->family == AF_INET) {
  1543. sin = (struct sockaddr_in *) (addr + 1);
  1544. sin->sin_family = AF_INET;
  1545. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1546. sin->sin_port = xp->selector.sport;
  1547. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1548. }
  1549. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1550. else if (xp->family == AF_INET6) {
  1551. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1552. sin6->sin6_family = AF_INET6;
  1553. sin6->sin6_port = xp->selector.sport;
  1554. sin6->sin6_flowinfo = 0;
  1555. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1556. sizeof(struct in6_addr));
  1557. sin6->sin6_scope_id = 0;
  1558. }
  1559. #endif
  1560. else
  1561. BUG();
  1562. /* dst address */
  1563. addr = (struct sadb_address*) skb_put(skb,
  1564. sizeof(struct sadb_address)+sockaddr_size);
  1565. addr->sadb_address_len =
  1566. (sizeof(struct sadb_address)+sockaddr_size)/
  1567. sizeof(uint64_t);
  1568. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1569. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1570. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1571. addr->sadb_address_reserved = 0;
  1572. if (xp->family == AF_INET) {
  1573. sin = (struct sockaddr_in *) (addr + 1);
  1574. sin->sin_family = AF_INET;
  1575. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1576. sin->sin_port = xp->selector.dport;
  1577. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1578. }
  1579. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1580. else if (xp->family == AF_INET6) {
  1581. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1582. sin6->sin6_family = AF_INET6;
  1583. sin6->sin6_port = xp->selector.dport;
  1584. sin6->sin6_flowinfo = 0;
  1585. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1586. sizeof(struct in6_addr));
  1587. sin6->sin6_scope_id = 0;
  1588. }
  1589. #endif
  1590. else
  1591. BUG();
  1592. /* hard time */
  1593. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1594. sizeof(struct sadb_lifetime));
  1595. lifetime->sadb_lifetime_len =
  1596. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1597. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1598. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1599. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1600. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1601. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1602. /* soft time */
  1603. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1604. sizeof(struct sadb_lifetime));
  1605. lifetime->sadb_lifetime_len =
  1606. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1607. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1608. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1609. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1610. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1611. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1612. /* current time */
  1613. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1614. sizeof(struct sadb_lifetime));
  1615. lifetime->sadb_lifetime_len =
  1616. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1617. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1618. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1619. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1620. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1621. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1622. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1623. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1624. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1625. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1626. if (xp->action == XFRM_POLICY_ALLOW) {
  1627. if (xp->xfrm_nr)
  1628. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1629. else
  1630. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1631. }
  1632. pol->sadb_x_policy_dir = dir+1;
  1633. pol->sadb_x_policy_id = xp->index;
  1634. pol->sadb_x_policy_priority = xp->priority;
  1635. for (i=0; i<xp->xfrm_nr; i++) {
  1636. struct sadb_x_ipsecrequest *rq;
  1637. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1638. int req_size;
  1639. req_size = sizeof(struct sadb_x_ipsecrequest);
  1640. if (t->mode)
  1641. req_size += 2*socklen;
  1642. else
  1643. size -= 2*socklen;
  1644. rq = (void*)skb_put(skb, req_size);
  1645. pol->sadb_x_policy_len += req_size/8;
  1646. memset(rq, 0, sizeof(*rq));
  1647. rq->sadb_x_ipsecrequest_len = req_size;
  1648. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1649. rq->sadb_x_ipsecrequest_mode = t->mode+1;
  1650. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1651. if (t->reqid)
  1652. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1653. if (t->optional)
  1654. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1655. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1656. if (t->mode) {
  1657. switch (xp->family) {
  1658. case AF_INET:
  1659. sin = (void*)(rq+1);
  1660. sin->sin_family = AF_INET;
  1661. sin->sin_addr.s_addr = t->saddr.a4;
  1662. sin->sin_port = 0;
  1663. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1664. sin++;
  1665. sin->sin_family = AF_INET;
  1666. sin->sin_addr.s_addr = t->id.daddr.a4;
  1667. sin->sin_port = 0;
  1668. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1669. break;
  1670. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1671. case AF_INET6:
  1672. sin6 = (void*)(rq+1);
  1673. sin6->sin6_family = AF_INET6;
  1674. sin6->sin6_port = 0;
  1675. sin6->sin6_flowinfo = 0;
  1676. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1677. sizeof(struct in6_addr));
  1678. sin6->sin6_scope_id = 0;
  1679. sin6++;
  1680. sin6->sin6_family = AF_INET6;
  1681. sin6->sin6_port = 0;
  1682. sin6->sin6_flowinfo = 0;
  1683. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1684. sizeof(struct in6_addr));
  1685. sin6->sin6_scope_id = 0;
  1686. break;
  1687. #endif
  1688. default:
  1689. break;
  1690. }
  1691. }
  1692. }
  1693. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1694. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1695. }
  1696. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1697. {
  1698. struct sk_buff *out_skb;
  1699. struct sadb_msg *out_hdr;
  1700. int err;
  1701. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1702. if (IS_ERR(out_skb)) {
  1703. err = PTR_ERR(out_skb);
  1704. goto out;
  1705. }
  1706. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1707. out_hdr = (struct sadb_msg *) out_skb->data;
  1708. out_hdr->sadb_msg_version = PF_KEY_V2;
  1709. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1710. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1711. else
  1712. out_hdr->sadb_msg_type = event2poltype(c->event);
  1713. out_hdr->sadb_msg_errno = 0;
  1714. out_hdr->sadb_msg_seq = c->seq;
  1715. out_hdr->sadb_msg_pid = c->pid;
  1716. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1717. out:
  1718. return 0;
  1719. }
  1720. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1721. {
  1722. int err;
  1723. struct sadb_lifetime *lifetime;
  1724. struct sadb_address *sa;
  1725. struct sadb_x_policy *pol;
  1726. struct xfrm_policy *xp;
  1727. struct km_event c;
  1728. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1729. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1730. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1731. return -EINVAL;
  1732. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1733. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1734. return -EINVAL;
  1735. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1736. return -EINVAL;
  1737. xp = xfrm_policy_alloc(GFP_KERNEL);
  1738. if (xp == NULL)
  1739. return -ENOBUFS;
  1740. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1741. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1742. xp->priority = pol->sadb_x_policy_priority;
  1743. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1744. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1745. if (!xp->family) {
  1746. err = -EINVAL;
  1747. goto out;
  1748. }
  1749. xp->selector.family = xp->family;
  1750. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1751. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1752. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1753. if (xp->selector.sport)
  1754. xp->selector.sport_mask = ~0;
  1755. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1756. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1757. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1758. /* Amusing, we set this twice. KAME apps appear to set same value
  1759. * in both addresses.
  1760. */
  1761. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1762. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1763. if (xp->selector.dport)
  1764. xp->selector.dport_mask = ~0;
  1765. xp->lft.soft_byte_limit = XFRM_INF;
  1766. xp->lft.hard_byte_limit = XFRM_INF;
  1767. xp->lft.soft_packet_limit = XFRM_INF;
  1768. xp->lft.hard_packet_limit = XFRM_INF;
  1769. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1770. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1771. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1772. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1773. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1774. }
  1775. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1776. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1777. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1778. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1779. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1780. }
  1781. xp->xfrm_nr = 0;
  1782. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1783. (err = parse_ipsecrequests(xp, pol)) < 0)
  1784. goto out;
  1785. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1786. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1787. if (err) {
  1788. kfree(xp);
  1789. return err;
  1790. }
  1791. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1792. c.event = XFRM_MSG_UPDPOLICY;
  1793. else
  1794. c.event = XFRM_MSG_NEWPOLICY;
  1795. c.seq = hdr->sadb_msg_seq;
  1796. c.pid = hdr->sadb_msg_pid;
  1797. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1798. xfrm_pol_put(xp);
  1799. return 0;
  1800. out:
  1801. kfree(xp);
  1802. return err;
  1803. }
  1804. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1805. {
  1806. int err;
  1807. struct sadb_address *sa;
  1808. struct sadb_x_policy *pol;
  1809. struct xfrm_policy *xp;
  1810. struct xfrm_selector sel;
  1811. struct km_event c;
  1812. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1813. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1814. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1815. return -EINVAL;
  1816. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1817. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1818. return -EINVAL;
  1819. memset(&sel, 0, sizeof(sel));
  1820. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1821. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1822. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1823. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1824. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1825. if (sel.sport)
  1826. sel.sport_mask = ~0;
  1827. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1828. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1829. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1830. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1831. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1832. if (sel.dport)
  1833. sel.dport_mask = ~0;
  1834. xp = xfrm_policy_bysel(pol->sadb_x_policy_dir-1, &sel, 1);
  1835. if (xp == NULL)
  1836. return -ENOENT;
  1837. err = 0;
  1838. c.seq = hdr->sadb_msg_seq;
  1839. c.pid = hdr->sadb_msg_pid;
  1840. c.event = XFRM_MSG_DELPOLICY;
  1841. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1842. xfrm_pol_put(xp);
  1843. return err;
  1844. }
  1845. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  1846. {
  1847. int err;
  1848. struct sk_buff *out_skb;
  1849. struct sadb_msg *out_hdr;
  1850. err = 0;
  1851. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1852. if (IS_ERR(out_skb)) {
  1853. err = PTR_ERR(out_skb);
  1854. goto out;
  1855. }
  1856. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1857. out_hdr = (struct sadb_msg *) out_skb->data;
  1858. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1859. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  1860. out_hdr->sadb_msg_satype = 0;
  1861. out_hdr->sadb_msg_errno = 0;
  1862. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1863. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1864. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1865. err = 0;
  1866. out:
  1867. return err;
  1868. }
  1869. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1870. {
  1871. int err;
  1872. struct sadb_x_policy *pol;
  1873. struct xfrm_policy *xp;
  1874. struct km_event c;
  1875. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  1876. return -EINVAL;
  1877. xp = xfrm_policy_byid(0, pol->sadb_x_policy_id,
  1878. hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  1879. if (xp == NULL)
  1880. return -ENOENT;
  1881. err = 0;
  1882. c.seq = hdr->sadb_msg_seq;
  1883. c.pid = hdr->sadb_msg_pid;
  1884. if (hdr->sadb_msg_type == SADB_X_SPDDELETE2) {
  1885. c.data.byid = 1;
  1886. c.event = XFRM_MSG_DELPOLICY;
  1887. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1888. } else {
  1889. err = key_pol_get_resp(sk, xp, hdr, pol->sadb_x_policy_dir-1);
  1890. }
  1891. xfrm_pol_put(xp);
  1892. return err;
  1893. }
  1894. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1895. {
  1896. struct pfkey_dump_data *data = ptr;
  1897. struct sk_buff *out_skb;
  1898. struct sadb_msg *out_hdr;
  1899. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1900. if (IS_ERR(out_skb))
  1901. return PTR_ERR(out_skb);
  1902. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1903. out_hdr = (struct sadb_msg *) out_skb->data;
  1904. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1905. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  1906. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  1907. out_hdr->sadb_msg_errno = 0;
  1908. out_hdr->sadb_msg_seq = count;
  1909. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1910. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1911. return 0;
  1912. }
  1913. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1914. {
  1915. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1916. return xfrm_policy_walk(dump_sp, &data);
  1917. }
  1918. static int key_notify_policy_flush(struct km_event *c)
  1919. {
  1920. struct sk_buff *skb_out;
  1921. struct sadb_msg *hdr;
  1922. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1923. if (!skb_out)
  1924. return -ENOBUFS;
  1925. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  1926. hdr->sadb_msg_seq = c->seq;
  1927. hdr->sadb_msg_pid = c->pid;
  1928. hdr->sadb_msg_version = PF_KEY_V2;
  1929. hdr->sadb_msg_errno = (uint8_t) 0;
  1930. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1931. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1932. return 0;
  1933. }
  1934. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1935. {
  1936. struct km_event c;
  1937. xfrm_policy_flush();
  1938. c.event = XFRM_MSG_FLUSHPOLICY;
  1939. c.pid = hdr->sadb_msg_pid;
  1940. c.seq = hdr->sadb_msg_seq;
  1941. km_policy_notify(NULL, 0, &c);
  1942. return 0;
  1943. }
  1944. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  1945. struct sadb_msg *hdr, void **ext_hdrs);
  1946. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  1947. [SADB_RESERVED] = pfkey_reserved,
  1948. [SADB_GETSPI] = pfkey_getspi,
  1949. [SADB_UPDATE] = pfkey_add,
  1950. [SADB_ADD] = pfkey_add,
  1951. [SADB_DELETE] = pfkey_delete,
  1952. [SADB_GET] = pfkey_get,
  1953. [SADB_ACQUIRE] = pfkey_acquire,
  1954. [SADB_REGISTER] = pfkey_register,
  1955. [SADB_EXPIRE] = NULL,
  1956. [SADB_FLUSH] = pfkey_flush,
  1957. [SADB_DUMP] = pfkey_dump,
  1958. [SADB_X_PROMISC] = pfkey_promisc,
  1959. [SADB_X_PCHANGE] = NULL,
  1960. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  1961. [SADB_X_SPDADD] = pfkey_spdadd,
  1962. [SADB_X_SPDDELETE] = pfkey_spddelete,
  1963. [SADB_X_SPDGET] = pfkey_spdget,
  1964. [SADB_X_SPDACQUIRE] = NULL,
  1965. [SADB_X_SPDDUMP] = pfkey_spddump,
  1966. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  1967. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  1968. [SADB_X_SPDDELETE2] = pfkey_spdget,
  1969. };
  1970. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  1971. {
  1972. void *ext_hdrs[SADB_EXT_MAX];
  1973. int err;
  1974. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  1975. BROADCAST_PROMISC_ONLY, NULL);
  1976. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  1977. err = parse_exthdrs(skb, hdr, ext_hdrs);
  1978. if (!err) {
  1979. err = -EOPNOTSUPP;
  1980. if (pfkey_funcs[hdr->sadb_msg_type])
  1981. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  1982. }
  1983. return err;
  1984. }
  1985. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  1986. {
  1987. struct sadb_msg *hdr = NULL;
  1988. if (skb->len < sizeof(*hdr)) {
  1989. *errp = -EMSGSIZE;
  1990. } else {
  1991. hdr = (struct sadb_msg *) skb->data;
  1992. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  1993. hdr->sadb_msg_reserved != 0 ||
  1994. (hdr->sadb_msg_type <= SADB_RESERVED ||
  1995. hdr->sadb_msg_type > SADB_MAX)) {
  1996. hdr = NULL;
  1997. *errp = -EINVAL;
  1998. } else if (hdr->sadb_msg_len != (skb->len /
  1999. sizeof(uint64_t)) ||
  2000. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2001. sizeof(uint64_t))) {
  2002. hdr = NULL;
  2003. *errp = -EMSGSIZE;
  2004. } else {
  2005. *errp = 0;
  2006. }
  2007. }
  2008. return hdr;
  2009. }
  2010. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2011. {
  2012. return t->aalgos & (1 << d->desc.sadb_alg_id);
  2013. }
  2014. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2015. {
  2016. return t->ealgos & (1 << d->desc.sadb_alg_id);
  2017. }
  2018. static int count_ah_combs(struct xfrm_tmpl *t)
  2019. {
  2020. int i, sz = 0;
  2021. for (i = 0; ; i++) {
  2022. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2023. if (!aalg)
  2024. break;
  2025. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2026. sz += sizeof(struct sadb_comb);
  2027. }
  2028. return sz + sizeof(struct sadb_prop);
  2029. }
  2030. static int count_esp_combs(struct xfrm_tmpl *t)
  2031. {
  2032. int i, k, sz = 0;
  2033. for (i = 0; ; i++) {
  2034. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2035. if (!ealg)
  2036. break;
  2037. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2038. continue;
  2039. for (k = 1; ; k++) {
  2040. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2041. if (!aalg)
  2042. break;
  2043. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2044. sz += sizeof(struct sadb_comb);
  2045. }
  2046. }
  2047. return sz + sizeof(struct sadb_prop);
  2048. }
  2049. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2050. {
  2051. struct sadb_prop *p;
  2052. int i;
  2053. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2054. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2055. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2056. p->sadb_prop_replay = 32;
  2057. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2058. for (i = 0; ; i++) {
  2059. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2060. if (!aalg)
  2061. break;
  2062. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2063. struct sadb_comb *c;
  2064. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2065. memset(c, 0, sizeof(*c));
  2066. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2067. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2068. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2069. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2070. c->sadb_comb_hard_addtime = 24*60*60;
  2071. c->sadb_comb_soft_addtime = 20*60*60;
  2072. c->sadb_comb_hard_usetime = 8*60*60;
  2073. c->sadb_comb_soft_usetime = 7*60*60;
  2074. }
  2075. }
  2076. }
  2077. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2078. {
  2079. struct sadb_prop *p;
  2080. int i, k;
  2081. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2082. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2083. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2084. p->sadb_prop_replay = 32;
  2085. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2086. for (i=0; ; i++) {
  2087. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2088. if (!ealg)
  2089. break;
  2090. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2091. continue;
  2092. for (k = 1; ; k++) {
  2093. struct sadb_comb *c;
  2094. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2095. if (!aalg)
  2096. break;
  2097. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2098. continue;
  2099. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2100. memset(c, 0, sizeof(*c));
  2101. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2102. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2103. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2104. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2105. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2106. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2107. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2108. c->sadb_comb_hard_addtime = 24*60*60;
  2109. c->sadb_comb_soft_addtime = 20*60*60;
  2110. c->sadb_comb_hard_usetime = 8*60*60;
  2111. c->sadb_comb_soft_usetime = 7*60*60;
  2112. }
  2113. }
  2114. }
  2115. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2116. {
  2117. return 0;
  2118. }
  2119. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2120. {
  2121. struct sk_buff *out_skb;
  2122. struct sadb_msg *out_hdr;
  2123. int hard;
  2124. int hsc;
  2125. hard = c->data.hard;
  2126. if (hard)
  2127. hsc = 2;
  2128. else
  2129. hsc = 1;
  2130. out_skb = pfkey_xfrm_state2msg(x, 0, hsc);
  2131. if (IS_ERR(out_skb))
  2132. return PTR_ERR(out_skb);
  2133. out_hdr = (struct sadb_msg *) out_skb->data;
  2134. out_hdr->sadb_msg_version = PF_KEY_V2;
  2135. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2136. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2137. out_hdr->sadb_msg_errno = 0;
  2138. out_hdr->sadb_msg_reserved = 0;
  2139. out_hdr->sadb_msg_seq = 0;
  2140. out_hdr->sadb_msg_pid = 0;
  2141. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2142. return 0;
  2143. }
  2144. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2145. {
  2146. switch (c->event) {
  2147. case XFRM_MSG_EXPIRE:
  2148. return key_notify_sa_expire(x, c);
  2149. case XFRM_MSG_DELSA:
  2150. case XFRM_MSG_NEWSA:
  2151. case XFRM_MSG_UPDSA:
  2152. return key_notify_sa(x, c);
  2153. case XFRM_MSG_FLUSHSA:
  2154. return key_notify_sa_flush(c);
  2155. default:
  2156. printk("pfkey: Unknown SA event %d\n", c->event);
  2157. break;
  2158. }
  2159. return 0;
  2160. }
  2161. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2162. {
  2163. switch (c->event) {
  2164. case XFRM_MSG_POLEXPIRE:
  2165. return key_notify_policy_expire(xp, c);
  2166. case XFRM_MSG_DELPOLICY:
  2167. case XFRM_MSG_NEWPOLICY:
  2168. case XFRM_MSG_UPDPOLICY:
  2169. return key_notify_policy(xp, dir, c);
  2170. case XFRM_MSG_FLUSHPOLICY:
  2171. return key_notify_policy_flush(c);
  2172. default:
  2173. printk("pfkey: Unknown policy event %d\n", c->event);
  2174. break;
  2175. }
  2176. return 0;
  2177. }
  2178. static u32 get_acqseq(void)
  2179. {
  2180. u32 res;
  2181. static u32 acqseq;
  2182. static DEFINE_SPINLOCK(acqseq_lock);
  2183. spin_lock_bh(&acqseq_lock);
  2184. res = (++acqseq ? : ++acqseq);
  2185. spin_unlock_bh(&acqseq_lock);
  2186. return res;
  2187. }
  2188. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2189. {
  2190. struct sk_buff *skb;
  2191. struct sadb_msg *hdr;
  2192. struct sadb_address *addr;
  2193. struct sadb_x_policy *pol;
  2194. struct sockaddr_in *sin;
  2195. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2196. struct sockaddr_in6 *sin6;
  2197. #endif
  2198. int sockaddr_size;
  2199. int size;
  2200. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2201. if (!sockaddr_size)
  2202. return -EINVAL;
  2203. size = sizeof(struct sadb_msg) +
  2204. (sizeof(struct sadb_address) * 2) +
  2205. (sockaddr_size * 2) +
  2206. sizeof(struct sadb_x_policy);
  2207. if (x->id.proto == IPPROTO_AH)
  2208. size += count_ah_combs(t);
  2209. else if (x->id.proto == IPPROTO_ESP)
  2210. size += count_esp_combs(t);
  2211. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2212. if (skb == NULL)
  2213. return -ENOMEM;
  2214. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2215. hdr->sadb_msg_version = PF_KEY_V2;
  2216. hdr->sadb_msg_type = SADB_ACQUIRE;
  2217. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2218. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2219. hdr->sadb_msg_errno = 0;
  2220. hdr->sadb_msg_reserved = 0;
  2221. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2222. hdr->sadb_msg_pid = 0;
  2223. /* src address */
  2224. addr = (struct sadb_address*) skb_put(skb,
  2225. sizeof(struct sadb_address)+sockaddr_size);
  2226. addr->sadb_address_len =
  2227. (sizeof(struct sadb_address)+sockaddr_size)/
  2228. sizeof(uint64_t);
  2229. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2230. addr->sadb_address_proto = 0;
  2231. addr->sadb_address_reserved = 0;
  2232. if (x->props.family == AF_INET) {
  2233. addr->sadb_address_prefixlen = 32;
  2234. sin = (struct sockaddr_in *) (addr + 1);
  2235. sin->sin_family = AF_INET;
  2236. sin->sin_addr.s_addr = x->props.saddr.a4;
  2237. sin->sin_port = 0;
  2238. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2239. }
  2240. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2241. else if (x->props.family == AF_INET6) {
  2242. addr->sadb_address_prefixlen = 128;
  2243. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2244. sin6->sin6_family = AF_INET6;
  2245. sin6->sin6_port = 0;
  2246. sin6->sin6_flowinfo = 0;
  2247. memcpy(&sin6->sin6_addr,
  2248. x->props.saddr.a6, sizeof(struct in6_addr));
  2249. sin6->sin6_scope_id = 0;
  2250. }
  2251. #endif
  2252. else
  2253. BUG();
  2254. /* dst address */
  2255. addr = (struct sadb_address*) skb_put(skb,
  2256. sizeof(struct sadb_address)+sockaddr_size);
  2257. addr->sadb_address_len =
  2258. (sizeof(struct sadb_address)+sockaddr_size)/
  2259. sizeof(uint64_t);
  2260. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2261. addr->sadb_address_proto = 0;
  2262. addr->sadb_address_reserved = 0;
  2263. if (x->props.family == AF_INET) {
  2264. addr->sadb_address_prefixlen = 32;
  2265. sin = (struct sockaddr_in *) (addr + 1);
  2266. sin->sin_family = AF_INET;
  2267. sin->sin_addr.s_addr = x->id.daddr.a4;
  2268. sin->sin_port = 0;
  2269. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2270. }
  2271. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2272. else if (x->props.family == AF_INET6) {
  2273. addr->sadb_address_prefixlen = 128;
  2274. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2275. sin6->sin6_family = AF_INET6;
  2276. sin6->sin6_port = 0;
  2277. sin6->sin6_flowinfo = 0;
  2278. memcpy(&sin6->sin6_addr,
  2279. x->id.daddr.a6, sizeof(struct in6_addr));
  2280. sin6->sin6_scope_id = 0;
  2281. }
  2282. #endif
  2283. else
  2284. BUG();
  2285. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2286. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2287. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2288. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2289. pol->sadb_x_policy_dir = dir+1;
  2290. pol->sadb_x_policy_id = xp->index;
  2291. /* Set sadb_comb's. */
  2292. if (x->id.proto == IPPROTO_AH)
  2293. dump_ah_combs(skb, t);
  2294. else if (x->id.proto == IPPROTO_ESP)
  2295. dump_esp_combs(skb, t);
  2296. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2297. }
  2298. static struct xfrm_policy *pfkey_compile_policy(u16 family, int opt,
  2299. u8 *data, int len, int *dir)
  2300. {
  2301. struct xfrm_policy *xp;
  2302. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2303. switch (family) {
  2304. case AF_INET:
  2305. if (opt != IP_IPSEC_POLICY) {
  2306. *dir = -EOPNOTSUPP;
  2307. return NULL;
  2308. }
  2309. break;
  2310. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2311. case AF_INET6:
  2312. if (opt != IPV6_IPSEC_POLICY) {
  2313. *dir = -EOPNOTSUPP;
  2314. return NULL;
  2315. }
  2316. break;
  2317. #endif
  2318. default:
  2319. *dir = -EINVAL;
  2320. return NULL;
  2321. }
  2322. *dir = -EINVAL;
  2323. if (len < sizeof(struct sadb_x_policy) ||
  2324. pol->sadb_x_policy_len*8 > len ||
  2325. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2326. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2327. return NULL;
  2328. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2329. if (xp == NULL) {
  2330. *dir = -ENOBUFS;
  2331. return NULL;
  2332. }
  2333. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2334. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2335. xp->lft.soft_byte_limit = XFRM_INF;
  2336. xp->lft.hard_byte_limit = XFRM_INF;
  2337. xp->lft.soft_packet_limit = XFRM_INF;
  2338. xp->lft.hard_packet_limit = XFRM_INF;
  2339. xp->family = family;
  2340. xp->xfrm_nr = 0;
  2341. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2342. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2343. goto out;
  2344. *dir = pol->sadb_x_policy_dir-1;
  2345. return xp;
  2346. out:
  2347. kfree(xp);
  2348. return NULL;
  2349. }
  2350. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, u16 sport)
  2351. {
  2352. struct sk_buff *skb;
  2353. struct sadb_msg *hdr;
  2354. struct sadb_sa *sa;
  2355. struct sadb_address *addr;
  2356. struct sadb_x_nat_t_port *n_port;
  2357. struct sockaddr_in *sin;
  2358. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2359. struct sockaddr_in6 *sin6;
  2360. #endif
  2361. int sockaddr_size;
  2362. int size;
  2363. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2364. struct xfrm_encap_tmpl *natt = NULL;
  2365. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2366. if (!sockaddr_size)
  2367. return -EINVAL;
  2368. if (!satype)
  2369. return -EINVAL;
  2370. if (!x->encap)
  2371. return -EINVAL;
  2372. natt = x->encap;
  2373. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2374. *
  2375. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2376. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2377. */
  2378. size = sizeof(struct sadb_msg) +
  2379. sizeof(struct sadb_sa) +
  2380. (sizeof(struct sadb_address) * 2) +
  2381. (sockaddr_size * 2) +
  2382. (sizeof(struct sadb_x_nat_t_port) * 2);
  2383. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2384. if (skb == NULL)
  2385. return -ENOMEM;
  2386. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2387. hdr->sadb_msg_version = PF_KEY_V2;
  2388. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2389. hdr->sadb_msg_satype = satype;
  2390. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2391. hdr->sadb_msg_errno = 0;
  2392. hdr->sadb_msg_reserved = 0;
  2393. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2394. hdr->sadb_msg_pid = 0;
  2395. /* SA */
  2396. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2397. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2398. sa->sadb_sa_exttype = SADB_EXT_SA;
  2399. sa->sadb_sa_spi = x->id.spi;
  2400. sa->sadb_sa_replay = 0;
  2401. sa->sadb_sa_state = 0;
  2402. sa->sadb_sa_auth = 0;
  2403. sa->sadb_sa_encrypt = 0;
  2404. sa->sadb_sa_flags = 0;
  2405. /* ADDRESS_SRC (old addr) */
  2406. addr = (struct sadb_address*)
  2407. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2408. addr->sadb_address_len =
  2409. (sizeof(struct sadb_address)+sockaddr_size)/
  2410. sizeof(uint64_t);
  2411. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2412. addr->sadb_address_proto = 0;
  2413. addr->sadb_address_reserved = 0;
  2414. if (x->props.family == AF_INET) {
  2415. addr->sadb_address_prefixlen = 32;
  2416. sin = (struct sockaddr_in *) (addr + 1);
  2417. sin->sin_family = AF_INET;
  2418. sin->sin_addr.s_addr = x->props.saddr.a4;
  2419. sin->sin_port = 0;
  2420. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2421. }
  2422. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2423. else if (x->props.family == AF_INET6) {
  2424. addr->sadb_address_prefixlen = 128;
  2425. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2426. sin6->sin6_family = AF_INET6;
  2427. sin6->sin6_port = 0;
  2428. sin6->sin6_flowinfo = 0;
  2429. memcpy(&sin6->sin6_addr,
  2430. x->props.saddr.a6, sizeof(struct in6_addr));
  2431. sin6->sin6_scope_id = 0;
  2432. }
  2433. #endif
  2434. else
  2435. BUG();
  2436. /* NAT_T_SPORT (old port) */
  2437. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2438. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2439. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2440. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2441. n_port->sadb_x_nat_t_port_reserved = 0;
  2442. /* ADDRESS_DST (new addr) */
  2443. addr = (struct sadb_address*)
  2444. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2445. addr->sadb_address_len =
  2446. (sizeof(struct sadb_address)+sockaddr_size)/
  2447. sizeof(uint64_t);
  2448. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2449. addr->sadb_address_proto = 0;
  2450. addr->sadb_address_reserved = 0;
  2451. if (x->props.family == AF_INET) {
  2452. addr->sadb_address_prefixlen = 32;
  2453. sin = (struct sockaddr_in *) (addr + 1);
  2454. sin->sin_family = AF_INET;
  2455. sin->sin_addr.s_addr = ipaddr->a4;
  2456. sin->sin_port = 0;
  2457. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2458. }
  2459. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2460. else if (x->props.family == AF_INET6) {
  2461. addr->sadb_address_prefixlen = 128;
  2462. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2463. sin6->sin6_family = AF_INET6;
  2464. sin6->sin6_port = 0;
  2465. sin6->sin6_flowinfo = 0;
  2466. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2467. sin6->sin6_scope_id = 0;
  2468. }
  2469. #endif
  2470. else
  2471. BUG();
  2472. /* NAT_T_DPORT (new port) */
  2473. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2474. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2475. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2476. n_port->sadb_x_nat_t_port_port = sport;
  2477. n_port->sadb_x_nat_t_port_reserved = 0;
  2478. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2479. }
  2480. static int pfkey_sendmsg(struct kiocb *kiocb,
  2481. struct socket *sock, struct msghdr *msg, size_t len)
  2482. {
  2483. struct sock *sk = sock->sk;
  2484. struct sk_buff *skb = NULL;
  2485. struct sadb_msg *hdr = NULL;
  2486. int err;
  2487. err = -EOPNOTSUPP;
  2488. if (msg->msg_flags & MSG_OOB)
  2489. goto out;
  2490. err = -EMSGSIZE;
  2491. if ((unsigned)len > sk->sk_sndbuf - 32)
  2492. goto out;
  2493. err = -ENOBUFS;
  2494. skb = alloc_skb(len, GFP_KERNEL);
  2495. if (skb == NULL)
  2496. goto out;
  2497. err = -EFAULT;
  2498. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  2499. goto out;
  2500. hdr = pfkey_get_base_msg(skb, &err);
  2501. if (!hdr)
  2502. goto out;
  2503. down(&xfrm_cfg_sem);
  2504. err = pfkey_process(sk, skb, hdr);
  2505. up(&xfrm_cfg_sem);
  2506. out:
  2507. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  2508. err = 0;
  2509. if (skb)
  2510. kfree_skb(skb);
  2511. return err ? : len;
  2512. }
  2513. static int pfkey_recvmsg(struct kiocb *kiocb,
  2514. struct socket *sock, struct msghdr *msg, size_t len,
  2515. int flags)
  2516. {
  2517. struct sock *sk = sock->sk;
  2518. struct sk_buff *skb;
  2519. int copied, err;
  2520. err = -EINVAL;
  2521. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  2522. goto out;
  2523. msg->msg_namelen = 0;
  2524. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  2525. if (skb == NULL)
  2526. goto out;
  2527. copied = skb->len;
  2528. if (copied > len) {
  2529. msg->msg_flags |= MSG_TRUNC;
  2530. copied = len;
  2531. }
  2532. skb->h.raw = skb->data;
  2533. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  2534. if (err)
  2535. goto out_free;
  2536. sock_recv_timestamp(msg, sk, skb);
  2537. err = (flags & MSG_TRUNC) ? skb->len : copied;
  2538. out_free:
  2539. skb_free_datagram(sk, skb);
  2540. out:
  2541. return err;
  2542. }
  2543. static struct proto_ops pfkey_ops = {
  2544. .family = PF_KEY,
  2545. .owner = THIS_MODULE,
  2546. /* Operations that make no sense on pfkey sockets. */
  2547. .bind = sock_no_bind,
  2548. .connect = sock_no_connect,
  2549. .socketpair = sock_no_socketpair,
  2550. .accept = sock_no_accept,
  2551. .getname = sock_no_getname,
  2552. .ioctl = sock_no_ioctl,
  2553. .listen = sock_no_listen,
  2554. .shutdown = sock_no_shutdown,
  2555. .setsockopt = sock_no_setsockopt,
  2556. .getsockopt = sock_no_getsockopt,
  2557. .mmap = sock_no_mmap,
  2558. .sendpage = sock_no_sendpage,
  2559. /* Now the operations that really occur. */
  2560. .release = pfkey_release,
  2561. .poll = datagram_poll,
  2562. .sendmsg = pfkey_sendmsg,
  2563. .recvmsg = pfkey_recvmsg,
  2564. };
  2565. static struct net_proto_family pfkey_family_ops = {
  2566. .family = PF_KEY,
  2567. .create = pfkey_create,
  2568. .owner = THIS_MODULE,
  2569. };
  2570. #ifdef CONFIG_PROC_FS
  2571. static int pfkey_read_proc(char *buffer, char **start, off_t offset,
  2572. int length, int *eof, void *data)
  2573. {
  2574. off_t pos = 0;
  2575. off_t begin = 0;
  2576. int len = 0;
  2577. struct sock *s;
  2578. struct hlist_node *node;
  2579. len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
  2580. read_lock(&pfkey_table_lock);
  2581. sk_for_each(s, node, &pfkey_table) {
  2582. len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
  2583. s,
  2584. atomic_read(&s->sk_refcnt),
  2585. atomic_read(&s->sk_rmem_alloc),
  2586. atomic_read(&s->sk_wmem_alloc),
  2587. sock_i_uid(s),
  2588. sock_i_ino(s)
  2589. );
  2590. buffer[len++] = '\n';
  2591. pos = begin + len;
  2592. if (pos < offset) {
  2593. len = 0;
  2594. begin = pos;
  2595. }
  2596. if(pos > offset + length)
  2597. goto done;
  2598. }
  2599. *eof = 1;
  2600. done:
  2601. read_unlock(&pfkey_table_lock);
  2602. *start = buffer + (offset - begin);
  2603. len -= (offset - begin);
  2604. if (len > length)
  2605. len = length;
  2606. if (len < 0)
  2607. len = 0;
  2608. return len;
  2609. }
  2610. #endif
  2611. static struct xfrm_mgr pfkeyv2_mgr =
  2612. {
  2613. .id = "pfkeyv2",
  2614. .notify = pfkey_send_notify,
  2615. .acquire = pfkey_send_acquire,
  2616. .compile_policy = pfkey_compile_policy,
  2617. .new_mapping = pfkey_send_new_mapping,
  2618. .notify_policy = pfkey_send_policy_notify,
  2619. };
  2620. static void __exit ipsec_pfkey_exit(void)
  2621. {
  2622. xfrm_unregister_km(&pfkeyv2_mgr);
  2623. remove_proc_entry("net/pfkey", NULL);
  2624. sock_unregister(PF_KEY);
  2625. proto_unregister(&key_proto);
  2626. }
  2627. static int __init ipsec_pfkey_init(void)
  2628. {
  2629. int err = proto_register(&key_proto, 0);
  2630. if (err != 0)
  2631. goto out;
  2632. err = sock_register(&pfkey_family_ops);
  2633. if (err != 0)
  2634. goto out_unregister_key_proto;
  2635. #ifdef CONFIG_PROC_FS
  2636. err = -ENOMEM;
  2637. if (create_proc_read_entry("net/pfkey", 0, NULL, pfkey_read_proc, NULL) == NULL)
  2638. goto out_sock_unregister;
  2639. #endif
  2640. err = xfrm_register_km(&pfkeyv2_mgr);
  2641. if (err != 0)
  2642. goto out_remove_proc_entry;
  2643. out:
  2644. return err;
  2645. out_remove_proc_entry:
  2646. #ifdef CONFIG_PROC_FS
  2647. remove_proc_entry("net/pfkey", NULL);
  2648. out_sock_unregister:
  2649. #endif
  2650. sock_unregister(PF_KEY);
  2651. out_unregister_key_proto:
  2652. proto_unregister(&key_proto);
  2653. goto out;
  2654. }
  2655. module_init(ipsec_pfkey_init);
  2656. module_exit(ipsec_pfkey_exit);
  2657. MODULE_LICENSE("GPL");
  2658. MODULE_ALIAS_NETPROTO(PF_KEY);