sh_eth.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2012 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/delay.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/mdio-bitbang.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/phy.h>
  34. #include <linux/cache.h>
  35. #include <linux/io.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/slab.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/clk.h>
  41. #include <linux/sh_eth.h>
  42. #include "sh_eth.h"
  43. #define SH_ETH_DEF_MSG_ENABLE \
  44. (NETIF_MSG_LINK | \
  45. NETIF_MSG_TIMER | \
  46. NETIF_MSG_RX_ERR| \
  47. NETIF_MSG_TX_ERR)
  48. /* There is CPU dependent code */
  49. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  50. #define SH_ETH_RESET_DEFAULT 1
  51. static void sh_eth_set_duplex(struct net_device *ndev)
  52. {
  53. struct sh_eth_private *mdp = netdev_priv(ndev);
  54. if (mdp->duplex) /* Full */
  55. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  56. else /* Half */
  57. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  58. }
  59. static void sh_eth_set_rate(struct net_device *ndev)
  60. {
  61. struct sh_eth_private *mdp = netdev_priv(ndev);
  62. switch (mdp->speed) {
  63. case 10: /* 10BASE */
  64. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
  65. break;
  66. case 100:/* 100BASE */
  67. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
  68. break;
  69. default:
  70. break;
  71. }
  72. }
  73. /* SH7724 */
  74. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  75. .set_duplex = sh_eth_set_duplex,
  76. .set_rate = sh_eth_set_rate,
  77. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  78. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  79. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  80. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  81. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  82. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  83. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  84. .apr = 1,
  85. .mpr = 1,
  86. .tpauser = 1,
  87. .hw_swap = 1,
  88. .rpadir = 1,
  89. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  90. };
  91. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  92. #define SH_ETH_HAS_BOTH_MODULES 1
  93. #define SH_ETH_HAS_TSU 1
  94. static void sh_eth_set_duplex(struct net_device *ndev)
  95. {
  96. struct sh_eth_private *mdp = netdev_priv(ndev);
  97. if (mdp->duplex) /* Full */
  98. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  99. else /* Half */
  100. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  101. }
  102. static void sh_eth_set_rate(struct net_device *ndev)
  103. {
  104. struct sh_eth_private *mdp = netdev_priv(ndev);
  105. switch (mdp->speed) {
  106. case 10: /* 10BASE */
  107. sh_eth_write(ndev, 0, RTRATE);
  108. break;
  109. case 100:/* 100BASE */
  110. sh_eth_write(ndev, 1, RTRATE);
  111. break;
  112. default:
  113. break;
  114. }
  115. }
  116. /* SH7757 */
  117. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  118. .set_duplex = sh_eth_set_duplex,
  119. .set_rate = sh_eth_set_rate,
  120. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  121. .rmcr_value = 0x00000001,
  122. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  123. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  124. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  125. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  126. .apr = 1,
  127. .mpr = 1,
  128. .tpauser = 1,
  129. .hw_swap = 1,
  130. .no_ade = 1,
  131. .rpadir = 1,
  132. .rpadir_value = 2 << 16,
  133. };
  134. #define SH_GIGA_ETH_BASE 0xfee00000
  135. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  136. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  137. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  138. {
  139. int i;
  140. unsigned long mahr[2], malr[2];
  141. /* save MAHR and MALR */
  142. for (i = 0; i < 2; i++) {
  143. malr[i] = ioread32((void *)GIGA_MALR(i));
  144. mahr[i] = ioread32((void *)GIGA_MAHR(i));
  145. }
  146. /* reset device */
  147. iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
  148. mdelay(1);
  149. /* restore MAHR and MALR */
  150. for (i = 0; i < 2; i++) {
  151. iowrite32(malr[i], (void *)GIGA_MALR(i));
  152. iowrite32(mahr[i], (void *)GIGA_MAHR(i));
  153. }
  154. }
  155. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  156. static void sh_eth_reset(struct net_device *ndev)
  157. {
  158. struct sh_eth_private *mdp = netdev_priv(ndev);
  159. int cnt = 100;
  160. if (sh_eth_is_gether(mdp)) {
  161. sh_eth_write(ndev, 0x03, EDSR);
  162. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  163. EDMR);
  164. while (cnt > 0) {
  165. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  166. break;
  167. mdelay(1);
  168. cnt--;
  169. }
  170. if (cnt < 0)
  171. printk(KERN_ERR "Device reset fail\n");
  172. /* Table Init */
  173. sh_eth_write(ndev, 0x0, TDLAR);
  174. sh_eth_write(ndev, 0x0, TDFAR);
  175. sh_eth_write(ndev, 0x0, TDFXR);
  176. sh_eth_write(ndev, 0x0, TDFFR);
  177. sh_eth_write(ndev, 0x0, RDLAR);
  178. sh_eth_write(ndev, 0x0, RDFAR);
  179. sh_eth_write(ndev, 0x0, RDFXR);
  180. sh_eth_write(ndev, 0x0, RDFFR);
  181. } else {
  182. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  183. EDMR);
  184. mdelay(3);
  185. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  186. EDMR);
  187. }
  188. }
  189. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  190. {
  191. struct sh_eth_private *mdp = netdev_priv(ndev);
  192. if (mdp->duplex) /* Full */
  193. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  194. else /* Half */
  195. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  196. }
  197. static void sh_eth_set_rate_giga(struct net_device *ndev)
  198. {
  199. struct sh_eth_private *mdp = netdev_priv(ndev);
  200. switch (mdp->speed) {
  201. case 10: /* 10BASE */
  202. sh_eth_write(ndev, 0x00000000, GECMR);
  203. break;
  204. case 100:/* 100BASE */
  205. sh_eth_write(ndev, 0x00000010, GECMR);
  206. break;
  207. case 1000: /* 1000BASE */
  208. sh_eth_write(ndev, 0x00000020, GECMR);
  209. break;
  210. default:
  211. break;
  212. }
  213. }
  214. /* SH7757(GETHERC) */
  215. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  216. .chip_reset = sh_eth_chip_reset_giga,
  217. .set_duplex = sh_eth_set_duplex_giga,
  218. .set_rate = sh_eth_set_rate_giga,
  219. .ecsr_value = ECSR_ICD | ECSR_MPD,
  220. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  221. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  222. .tx_check = EESR_TC1 | EESR_FTC,
  223. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  224. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  225. EESR_ECI,
  226. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  227. EESR_TFE,
  228. .fdr_value = 0x0000072f,
  229. .rmcr_value = 0x00000001,
  230. .apr = 1,
  231. .mpr = 1,
  232. .tpauser = 1,
  233. .bculr = 1,
  234. .hw_swap = 1,
  235. .rpadir = 1,
  236. .rpadir_value = 2 << 16,
  237. .no_trimd = 1,
  238. .no_ade = 1,
  239. .tsu = 1,
  240. };
  241. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  242. {
  243. if (sh_eth_is_gether(mdp))
  244. return &sh_eth_my_cpu_data_giga;
  245. else
  246. return &sh_eth_my_cpu_data;
  247. }
  248. #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
  249. #define SH_ETH_HAS_TSU 1
  250. static void sh_eth_reset_hw_crc(struct net_device *ndev);
  251. static void sh_eth_chip_reset(struct net_device *ndev)
  252. {
  253. struct sh_eth_private *mdp = netdev_priv(ndev);
  254. /* reset device */
  255. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  256. mdelay(1);
  257. }
  258. static void sh_eth_reset(struct net_device *ndev)
  259. {
  260. int cnt = 100;
  261. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  262. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  263. while (cnt > 0) {
  264. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  265. break;
  266. mdelay(1);
  267. cnt--;
  268. }
  269. if (cnt == 0)
  270. printk(KERN_ERR "Device reset fail\n");
  271. /* Table Init */
  272. sh_eth_write(ndev, 0x0, TDLAR);
  273. sh_eth_write(ndev, 0x0, TDFAR);
  274. sh_eth_write(ndev, 0x0, TDFXR);
  275. sh_eth_write(ndev, 0x0, TDFFR);
  276. sh_eth_write(ndev, 0x0, RDLAR);
  277. sh_eth_write(ndev, 0x0, RDFAR);
  278. sh_eth_write(ndev, 0x0, RDFXR);
  279. sh_eth_write(ndev, 0x0, RDFFR);
  280. /* Reset HW CRC register */
  281. sh_eth_reset_hw_crc(ndev);
  282. }
  283. static void sh_eth_set_duplex(struct net_device *ndev)
  284. {
  285. struct sh_eth_private *mdp = netdev_priv(ndev);
  286. if (mdp->duplex) /* Full */
  287. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  288. else /* Half */
  289. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  290. }
  291. static void sh_eth_set_rate(struct net_device *ndev)
  292. {
  293. struct sh_eth_private *mdp = netdev_priv(ndev);
  294. switch (mdp->speed) {
  295. case 10: /* 10BASE */
  296. sh_eth_write(ndev, GECMR_10, GECMR);
  297. break;
  298. case 100:/* 100BASE */
  299. sh_eth_write(ndev, GECMR_100, GECMR);
  300. break;
  301. case 1000: /* 1000BASE */
  302. sh_eth_write(ndev, GECMR_1000, GECMR);
  303. break;
  304. default:
  305. break;
  306. }
  307. }
  308. /* sh7763 */
  309. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  310. .chip_reset = sh_eth_chip_reset,
  311. .set_duplex = sh_eth_set_duplex,
  312. .set_rate = sh_eth_set_rate,
  313. .ecsr_value = ECSR_ICD | ECSR_MPD,
  314. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  315. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  316. .tx_check = EESR_TC1 | EESR_FTC,
  317. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  318. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  319. EESR_ECI,
  320. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  321. EESR_TFE,
  322. .apr = 1,
  323. .mpr = 1,
  324. .tpauser = 1,
  325. .bculr = 1,
  326. .hw_swap = 1,
  327. .no_trimd = 1,
  328. .no_ade = 1,
  329. .tsu = 1,
  330. #if defined(CONFIG_CPU_SUBTYPE_SH7734)
  331. .hw_crc = 1,
  332. #endif
  333. };
  334. static void sh_eth_reset_hw_crc(struct net_device *ndev)
  335. {
  336. if (sh_eth_my_cpu_data.hw_crc)
  337. sh_eth_write(ndev, 0x0, CSMR);
  338. }
  339. #elif defined(CONFIG_ARCH_R8A7740)
  340. #define SH_ETH_HAS_TSU 1
  341. static void sh_eth_chip_reset(struct net_device *ndev)
  342. {
  343. struct sh_eth_private *mdp = netdev_priv(ndev);
  344. unsigned long mii;
  345. /* reset device */
  346. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  347. mdelay(1);
  348. switch (mdp->phy_interface) {
  349. case PHY_INTERFACE_MODE_GMII:
  350. mii = 2;
  351. break;
  352. case PHY_INTERFACE_MODE_MII:
  353. mii = 1;
  354. break;
  355. case PHY_INTERFACE_MODE_RMII:
  356. default:
  357. mii = 0;
  358. break;
  359. }
  360. sh_eth_write(ndev, mii, RMII_MII);
  361. }
  362. static void sh_eth_reset(struct net_device *ndev)
  363. {
  364. int cnt = 100;
  365. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  366. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  367. while (cnt > 0) {
  368. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  369. break;
  370. mdelay(1);
  371. cnt--;
  372. }
  373. if (cnt == 0)
  374. printk(KERN_ERR "Device reset fail\n");
  375. /* Table Init */
  376. sh_eth_write(ndev, 0x0, TDLAR);
  377. sh_eth_write(ndev, 0x0, TDFAR);
  378. sh_eth_write(ndev, 0x0, TDFXR);
  379. sh_eth_write(ndev, 0x0, TDFFR);
  380. sh_eth_write(ndev, 0x0, RDLAR);
  381. sh_eth_write(ndev, 0x0, RDFAR);
  382. sh_eth_write(ndev, 0x0, RDFXR);
  383. sh_eth_write(ndev, 0x0, RDFFR);
  384. }
  385. static void sh_eth_set_duplex(struct net_device *ndev)
  386. {
  387. struct sh_eth_private *mdp = netdev_priv(ndev);
  388. if (mdp->duplex) /* Full */
  389. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  390. else /* Half */
  391. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  392. }
  393. static void sh_eth_set_rate(struct net_device *ndev)
  394. {
  395. struct sh_eth_private *mdp = netdev_priv(ndev);
  396. switch (mdp->speed) {
  397. case 10: /* 10BASE */
  398. sh_eth_write(ndev, GECMR_10, GECMR);
  399. break;
  400. case 100:/* 100BASE */
  401. sh_eth_write(ndev, GECMR_100, GECMR);
  402. break;
  403. case 1000: /* 1000BASE */
  404. sh_eth_write(ndev, GECMR_1000, GECMR);
  405. break;
  406. default:
  407. break;
  408. }
  409. }
  410. /* R8A7740 */
  411. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  412. .chip_reset = sh_eth_chip_reset,
  413. .set_duplex = sh_eth_set_duplex,
  414. .set_rate = sh_eth_set_rate,
  415. .ecsr_value = ECSR_ICD | ECSR_MPD,
  416. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  417. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  418. .tx_check = EESR_TC1 | EESR_FTC,
  419. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  420. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  421. EESR_ECI,
  422. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  423. EESR_TFE,
  424. .apr = 1,
  425. .mpr = 1,
  426. .tpauser = 1,
  427. .bculr = 1,
  428. .hw_swap = 1,
  429. .no_trimd = 1,
  430. .no_ade = 1,
  431. .tsu = 1,
  432. };
  433. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  434. #define SH_ETH_RESET_DEFAULT 1
  435. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  436. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  437. .apr = 1,
  438. .mpr = 1,
  439. .tpauser = 1,
  440. .hw_swap = 1,
  441. };
  442. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  443. #define SH_ETH_RESET_DEFAULT 1
  444. #define SH_ETH_HAS_TSU 1
  445. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  446. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  447. .tsu = 1,
  448. };
  449. #endif
  450. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  451. {
  452. if (!cd->ecsr_value)
  453. cd->ecsr_value = DEFAULT_ECSR_INIT;
  454. if (!cd->ecsipr_value)
  455. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  456. if (!cd->fcftr_value)
  457. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  458. DEFAULT_FIFO_F_D_RFD;
  459. if (!cd->fdr_value)
  460. cd->fdr_value = DEFAULT_FDR_INIT;
  461. if (!cd->rmcr_value)
  462. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  463. if (!cd->tx_check)
  464. cd->tx_check = DEFAULT_TX_CHECK;
  465. if (!cd->eesr_err_check)
  466. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  467. if (!cd->tx_error_check)
  468. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  469. }
  470. #if defined(SH_ETH_RESET_DEFAULT)
  471. /* Chip Reset */
  472. static void sh_eth_reset(struct net_device *ndev)
  473. {
  474. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  475. mdelay(3);
  476. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  477. }
  478. #endif
  479. #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
  480. static void sh_eth_set_receive_align(struct sk_buff *skb)
  481. {
  482. int reserve;
  483. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  484. if (reserve)
  485. skb_reserve(skb, reserve);
  486. }
  487. #else
  488. static void sh_eth_set_receive_align(struct sk_buff *skb)
  489. {
  490. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  491. }
  492. #endif
  493. /* CPU <-> EDMAC endian convert */
  494. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  495. {
  496. switch (mdp->edmac_endian) {
  497. case EDMAC_LITTLE_ENDIAN:
  498. return cpu_to_le32(x);
  499. case EDMAC_BIG_ENDIAN:
  500. return cpu_to_be32(x);
  501. }
  502. return x;
  503. }
  504. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  505. {
  506. switch (mdp->edmac_endian) {
  507. case EDMAC_LITTLE_ENDIAN:
  508. return le32_to_cpu(x);
  509. case EDMAC_BIG_ENDIAN:
  510. return be32_to_cpu(x);
  511. }
  512. return x;
  513. }
  514. /*
  515. * Program the hardware MAC address from dev->dev_addr.
  516. */
  517. static void update_mac_address(struct net_device *ndev)
  518. {
  519. sh_eth_write(ndev,
  520. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  521. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  522. sh_eth_write(ndev,
  523. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  524. }
  525. /*
  526. * Get MAC address from SuperH MAC address register
  527. *
  528. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  529. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  530. * When you want use this device, you must set MAC address in bootloader.
  531. *
  532. */
  533. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  534. {
  535. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  536. memcpy(ndev->dev_addr, mac, 6);
  537. } else {
  538. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  539. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  540. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  541. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  542. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  543. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  544. }
  545. }
  546. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  547. {
  548. if (mdp->reg_offset == sh_eth_offset_gigabit)
  549. return 1;
  550. else
  551. return 0;
  552. }
  553. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  554. {
  555. if (sh_eth_is_gether(mdp))
  556. return EDTRR_TRNS_GETHER;
  557. else
  558. return EDTRR_TRNS_ETHER;
  559. }
  560. struct bb_info {
  561. void (*set_gate)(void *addr);
  562. struct mdiobb_ctrl ctrl;
  563. void *addr;
  564. u32 mmd_msk;/* MMD */
  565. u32 mdo_msk;
  566. u32 mdi_msk;
  567. u32 mdc_msk;
  568. };
  569. /* PHY bit set */
  570. static void bb_set(void *addr, u32 msk)
  571. {
  572. iowrite32(ioread32(addr) | msk, addr);
  573. }
  574. /* PHY bit clear */
  575. static void bb_clr(void *addr, u32 msk)
  576. {
  577. iowrite32((ioread32(addr) & ~msk), addr);
  578. }
  579. /* PHY bit read */
  580. static int bb_read(void *addr, u32 msk)
  581. {
  582. return (ioread32(addr) & msk) != 0;
  583. }
  584. /* Data I/O pin control */
  585. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  586. {
  587. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  588. if (bitbang->set_gate)
  589. bitbang->set_gate(bitbang->addr);
  590. if (bit)
  591. bb_set(bitbang->addr, bitbang->mmd_msk);
  592. else
  593. bb_clr(bitbang->addr, bitbang->mmd_msk);
  594. }
  595. /* Set bit data*/
  596. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  597. {
  598. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  599. if (bitbang->set_gate)
  600. bitbang->set_gate(bitbang->addr);
  601. if (bit)
  602. bb_set(bitbang->addr, bitbang->mdo_msk);
  603. else
  604. bb_clr(bitbang->addr, bitbang->mdo_msk);
  605. }
  606. /* Get bit data*/
  607. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  608. {
  609. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  610. if (bitbang->set_gate)
  611. bitbang->set_gate(bitbang->addr);
  612. return bb_read(bitbang->addr, bitbang->mdi_msk);
  613. }
  614. /* MDC pin control */
  615. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  616. {
  617. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  618. if (bitbang->set_gate)
  619. bitbang->set_gate(bitbang->addr);
  620. if (bit)
  621. bb_set(bitbang->addr, bitbang->mdc_msk);
  622. else
  623. bb_clr(bitbang->addr, bitbang->mdc_msk);
  624. }
  625. /* mdio bus control struct */
  626. static struct mdiobb_ops bb_ops = {
  627. .owner = THIS_MODULE,
  628. .set_mdc = sh_mdc_ctrl,
  629. .set_mdio_dir = sh_mmd_ctrl,
  630. .set_mdio_data = sh_set_mdio,
  631. .get_mdio_data = sh_get_mdio,
  632. };
  633. /* free skb and descriptor buffer */
  634. static void sh_eth_ring_free(struct net_device *ndev)
  635. {
  636. struct sh_eth_private *mdp = netdev_priv(ndev);
  637. int i;
  638. /* Free Rx skb ringbuffer */
  639. if (mdp->rx_skbuff) {
  640. for (i = 0; i < RX_RING_SIZE; i++) {
  641. if (mdp->rx_skbuff[i])
  642. dev_kfree_skb(mdp->rx_skbuff[i]);
  643. }
  644. }
  645. kfree(mdp->rx_skbuff);
  646. /* Free Tx skb ringbuffer */
  647. if (mdp->tx_skbuff) {
  648. for (i = 0; i < TX_RING_SIZE; i++) {
  649. if (mdp->tx_skbuff[i])
  650. dev_kfree_skb(mdp->tx_skbuff[i]);
  651. }
  652. }
  653. kfree(mdp->tx_skbuff);
  654. }
  655. /* format skb and descriptor buffer */
  656. static void sh_eth_ring_format(struct net_device *ndev)
  657. {
  658. struct sh_eth_private *mdp = netdev_priv(ndev);
  659. int i;
  660. struct sk_buff *skb;
  661. struct sh_eth_rxdesc *rxdesc = NULL;
  662. struct sh_eth_txdesc *txdesc = NULL;
  663. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  664. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  665. mdp->cur_rx = mdp->cur_tx = 0;
  666. mdp->dirty_rx = mdp->dirty_tx = 0;
  667. memset(mdp->rx_ring, 0, rx_ringsize);
  668. /* build Rx ring buffer */
  669. for (i = 0; i < RX_RING_SIZE; i++) {
  670. /* skb */
  671. mdp->rx_skbuff[i] = NULL;
  672. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  673. mdp->rx_skbuff[i] = skb;
  674. if (skb == NULL)
  675. break;
  676. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  677. DMA_FROM_DEVICE);
  678. sh_eth_set_receive_align(skb);
  679. /* RX descriptor */
  680. rxdesc = &mdp->rx_ring[i];
  681. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  682. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  683. /* The size of the buffer is 16 byte boundary. */
  684. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  685. /* Rx descriptor address set */
  686. if (i == 0) {
  687. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  688. if (sh_eth_is_gether(mdp))
  689. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  690. }
  691. }
  692. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  693. /* Mark the last entry as wrapping the ring. */
  694. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  695. memset(mdp->tx_ring, 0, tx_ringsize);
  696. /* build Tx ring buffer */
  697. for (i = 0; i < TX_RING_SIZE; i++) {
  698. mdp->tx_skbuff[i] = NULL;
  699. txdesc = &mdp->tx_ring[i];
  700. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  701. txdesc->buffer_length = 0;
  702. if (i == 0) {
  703. /* Tx descriptor address set */
  704. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  705. if (sh_eth_is_gether(mdp))
  706. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  707. }
  708. }
  709. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  710. }
  711. /* Get skb and descriptor buffer */
  712. static int sh_eth_ring_init(struct net_device *ndev)
  713. {
  714. struct sh_eth_private *mdp = netdev_priv(ndev);
  715. int rx_ringsize, tx_ringsize, ret = 0;
  716. /*
  717. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  718. * card needs room to do 8 byte alignment, +2 so we can reserve
  719. * the first 2 bytes, and +16 gets room for the status word from the
  720. * card.
  721. */
  722. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  723. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  724. if (mdp->cd->rpadir)
  725. mdp->rx_buf_sz += NET_IP_ALIGN;
  726. /* Allocate RX and TX skb rings */
  727. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  728. GFP_KERNEL);
  729. if (!mdp->rx_skbuff) {
  730. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  731. ret = -ENOMEM;
  732. return ret;
  733. }
  734. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  735. GFP_KERNEL);
  736. if (!mdp->tx_skbuff) {
  737. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  738. ret = -ENOMEM;
  739. goto skb_ring_free;
  740. }
  741. /* Allocate all Rx descriptors. */
  742. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  743. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  744. GFP_KERNEL);
  745. if (!mdp->rx_ring) {
  746. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  747. rx_ringsize);
  748. ret = -ENOMEM;
  749. goto desc_ring_free;
  750. }
  751. mdp->dirty_rx = 0;
  752. /* Allocate all Tx descriptors. */
  753. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  754. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  755. GFP_KERNEL);
  756. if (!mdp->tx_ring) {
  757. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  758. tx_ringsize);
  759. ret = -ENOMEM;
  760. goto desc_ring_free;
  761. }
  762. return ret;
  763. desc_ring_free:
  764. /* free DMA buffer */
  765. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  766. skb_ring_free:
  767. /* Free Rx and Tx skb ring buffer */
  768. sh_eth_ring_free(ndev);
  769. return ret;
  770. }
  771. static int sh_eth_dev_init(struct net_device *ndev)
  772. {
  773. int ret = 0;
  774. struct sh_eth_private *mdp = netdev_priv(ndev);
  775. u_int32_t rx_int_var, tx_int_var;
  776. u32 val;
  777. /* Soft Reset */
  778. sh_eth_reset(ndev);
  779. /* Descriptor format */
  780. sh_eth_ring_format(ndev);
  781. if (mdp->cd->rpadir)
  782. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  783. /* all sh_eth int mask */
  784. sh_eth_write(ndev, 0, EESIPR);
  785. #if defined(__LITTLE_ENDIAN)
  786. if (mdp->cd->hw_swap)
  787. sh_eth_write(ndev, EDMR_EL, EDMR);
  788. else
  789. #endif
  790. sh_eth_write(ndev, 0, EDMR);
  791. /* FIFO size set */
  792. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  793. sh_eth_write(ndev, 0, TFTR);
  794. /* Frame recv control */
  795. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  796. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  797. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  798. sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
  799. if (mdp->cd->bculr)
  800. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  801. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  802. if (!mdp->cd->no_trimd)
  803. sh_eth_write(ndev, 0, TRIMD);
  804. /* Recv frame limit set register */
  805. sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
  806. RFLR);
  807. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  808. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  809. /* PAUSE Prohibition */
  810. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  811. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  812. sh_eth_write(ndev, val, ECMR);
  813. if (mdp->cd->set_rate)
  814. mdp->cd->set_rate(ndev);
  815. /* E-MAC Status Register clear */
  816. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  817. /* E-MAC Interrupt Enable register */
  818. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  819. /* Set MAC address */
  820. update_mac_address(ndev);
  821. /* mask reset */
  822. if (mdp->cd->apr)
  823. sh_eth_write(ndev, APR_AP, APR);
  824. if (mdp->cd->mpr)
  825. sh_eth_write(ndev, MPR_MP, MPR);
  826. if (mdp->cd->tpauser)
  827. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  828. /* Setting the Rx mode will start the Rx process. */
  829. sh_eth_write(ndev, EDRRR_R, EDRRR);
  830. netif_start_queue(ndev);
  831. return ret;
  832. }
  833. /* free Tx skb function */
  834. static int sh_eth_txfree(struct net_device *ndev)
  835. {
  836. struct sh_eth_private *mdp = netdev_priv(ndev);
  837. struct sh_eth_txdesc *txdesc;
  838. int freeNum = 0;
  839. int entry = 0;
  840. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  841. entry = mdp->dirty_tx % TX_RING_SIZE;
  842. txdesc = &mdp->tx_ring[entry];
  843. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  844. break;
  845. /* Free the original skb. */
  846. if (mdp->tx_skbuff[entry]) {
  847. dma_unmap_single(&ndev->dev, txdesc->addr,
  848. txdesc->buffer_length, DMA_TO_DEVICE);
  849. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  850. mdp->tx_skbuff[entry] = NULL;
  851. freeNum++;
  852. }
  853. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  854. if (entry >= TX_RING_SIZE - 1)
  855. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  856. ndev->stats.tx_packets++;
  857. ndev->stats.tx_bytes += txdesc->buffer_length;
  858. }
  859. return freeNum;
  860. }
  861. /* Packet receive function */
  862. static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
  863. {
  864. struct sh_eth_private *mdp = netdev_priv(ndev);
  865. struct sh_eth_rxdesc *rxdesc;
  866. int entry = mdp->cur_rx % RX_RING_SIZE;
  867. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  868. struct sk_buff *skb;
  869. u16 pkt_len = 0;
  870. u32 desc_status;
  871. rxdesc = &mdp->rx_ring[entry];
  872. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  873. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  874. pkt_len = rxdesc->frame_length;
  875. #if defined(CONFIG_ARCH_R8A7740)
  876. desc_status >>= 16;
  877. #endif
  878. if (--boguscnt < 0)
  879. break;
  880. if (!(desc_status & RDFEND))
  881. ndev->stats.rx_length_errors++;
  882. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  883. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  884. ndev->stats.rx_errors++;
  885. if (desc_status & RD_RFS1)
  886. ndev->stats.rx_crc_errors++;
  887. if (desc_status & RD_RFS2)
  888. ndev->stats.rx_frame_errors++;
  889. if (desc_status & RD_RFS3)
  890. ndev->stats.rx_length_errors++;
  891. if (desc_status & RD_RFS4)
  892. ndev->stats.rx_length_errors++;
  893. if (desc_status & RD_RFS6)
  894. ndev->stats.rx_missed_errors++;
  895. if (desc_status & RD_RFS10)
  896. ndev->stats.rx_over_errors++;
  897. } else {
  898. if (!mdp->cd->hw_swap)
  899. sh_eth_soft_swap(
  900. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  901. pkt_len + 2);
  902. skb = mdp->rx_skbuff[entry];
  903. mdp->rx_skbuff[entry] = NULL;
  904. if (mdp->cd->rpadir)
  905. skb_reserve(skb, NET_IP_ALIGN);
  906. skb_put(skb, pkt_len);
  907. skb->protocol = eth_type_trans(skb, ndev);
  908. netif_rx(skb);
  909. ndev->stats.rx_packets++;
  910. ndev->stats.rx_bytes += pkt_len;
  911. }
  912. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  913. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  914. rxdesc = &mdp->rx_ring[entry];
  915. }
  916. /* Refill the Rx ring buffers. */
  917. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  918. entry = mdp->dirty_rx % RX_RING_SIZE;
  919. rxdesc = &mdp->rx_ring[entry];
  920. /* The size of the buffer is 16 byte boundary. */
  921. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  922. if (mdp->rx_skbuff[entry] == NULL) {
  923. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  924. mdp->rx_skbuff[entry] = skb;
  925. if (skb == NULL)
  926. break; /* Better luck next round. */
  927. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  928. DMA_FROM_DEVICE);
  929. sh_eth_set_receive_align(skb);
  930. skb_checksum_none_assert(skb);
  931. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  932. }
  933. if (entry >= RX_RING_SIZE - 1)
  934. rxdesc->status |=
  935. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  936. else
  937. rxdesc->status |=
  938. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  939. }
  940. /* Restart Rx engine if stopped. */
  941. /* If we don't need to check status, don't. -KDU */
  942. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
  943. /* fix the values for the next receiving if RDE is set */
  944. if (intr_status & EESR_RDE)
  945. mdp->cur_rx = mdp->dirty_rx =
  946. (sh_eth_read(ndev, RDFAR) -
  947. sh_eth_read(ndev, RDLAR)) >> 4;
  948. sh_eth_write(ndev, EDRRR_R, EDRRR);
  949. }
  950. return 0;
  951. }
  952. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  953. {
  954. /* disable tx and rx */
  955. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  956. ~(ECMR_RE | ECMR_TE), ECMR);
  957. }
  958. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  959. {
  960. /* enable tx and rx */
  961. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  962. (ECMR_RE | ECMR_TE), ECMR);
  963. }
  964. /* error control function */
  965. static void sh_eth_error(struct net_device *ndev, int intr_status)
  966. {
  967. struct sh_eth_private *mdp = netdev_priv(ndev);
  968. u32 felic_stat;
  969. u32 link_stat;
  970. u32 mask;
  971. if (intr_status & EESR_ECI) {
  972. felic_stat = sh_eth_read(ndev, ECSR);
  973. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  974. if (felic_stat & ECSR_ICD)
  975. ndev->stats.tx_carrier_errors++;
  976. if (felic_stat & ECSR_LCHNG) {
  977. /* Link Changed */
  978. if (mdp->cd->no_psr || mdp->no_ether_link) {
  979. if (mdp->link == PHY_DOWN)
  980. link_stat = 0;
  981. else
  982. link_stat = PHY_ST_LINK;
  983. } else {
  984. link_stat = (sh_eth_read(ndev, PSR));
  985. if (mdp->ether_link_active_low)
  986. link_stat = ~link_stat;
  987. }
  988. if (!(link_stat & PHY_ST_LINK))
  989. sh_eth_rcv_snd_disable(ndev);
  990. else {
  991. /* Link Up */
  992. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  993. ~DMAC_M_ECI, EESIPR);
  994. /*clear int */
  995. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  996. ECSR);
  997. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  998. DMAC_M_ECI, EESIPR);
  999. /* enable tx and rx */
  1000. sh_eth_rcv_snd_enable(ndev);
  1001. }
  1002. }
  1003. }
  1004. if (intr_status & EESR_TWB) {
  1005. /* Write buck end. unused write back interrupt */
  1006. if (intr_status & EESR_TABT) /* Transmit Abort int */
  1007. ndev->stats.tx_aborted_errors++;
  1008. if (netif_msg_tx_err(mdp))
  1009. dev_err(&ndev->dev, "Transmit Abort\n");
  1010. }
  1011. if (intr_status & EESR_RABT) {
  1012. /* Receive Abort int */
  1013. if (intr_status & EESR_RFRMER) {
  1014. /* Receive Frame Overflow int */
  1015. ndev->stats.rx_frame_errors++;
  1016. if (netif_msg_rx_err(mdp))
  1017. dev_err(&ndev->dev, "Receive Abort\n");
  1018. }
  1019. }
  1020. if (intr_status & EESR_TDE) {
  1021. /* Transmit Descriptor Empty int */
  1022. ndev->stats.tx_fifo_errors++;
  1023. if (netif_msg_tx_err(mdp))
  1024. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  1025. }
  1026. if (intr_status & EESR_TFE) {
  1027. /* FIFO under flow */
  1028. ndev->stats.tx_fifo_errors++;
  1029. if (netif_msg_tx_err(mdp))
  1030. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  1031. }
  1032. if (intr_status & EESR_RDE) {
  1033. /* Receive Descriptor Empty int */
  1034. ndev->stats.rx_over_errors++;
  1035. if (netif_msg_rx_err(mdp))
  1036. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  1037. }
  1038. if (intr_status & EESR_RFE) {
  1039. /* Receive FIFO Overflow int */
  1040. ndev->stats.rx_fifo_errors++;
  1041. if (netif_msg_rx_err(mdp))
  1042. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  1043. }
  1044. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  1045. /* Address Error */
  1046. ndev->stats.tx_fifo_errors++;
  1047. if (netif_msg_tx_err(mdp))
  1048. dev_err(&ndev->dev, "Address Error\n");
  1049. }
  1050. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  1051. if (mdp->cd->no_ade)
  1052. mask &= ~EESR_ADE;
  1053. if (intr_status & mask) {
  1054. /* Tx error */
  1055. u32 edtrr = sh_eth_read(ndev, EDTRR);
  1056. /* dmesg */
  1057. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  1058. intr_status, mdp->cur_tx);
  1059. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  1060. mdp->dirty_tx, (u32) ndev->state, edtrr);
  1061. /* dirty buffer free */
  1062. sh_eth_txfree(ndev);
  1063. /* SH7712 BUG */
  1064. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  1065. /* tx dma start */
  1066. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1067. }
  1068. /* wakeup */
  1069. netif_wake_queue(ndev);
  1070. }
  1071. }
  1072. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  1073. {
  1074. struct net_device *ndev = netdev;
  1075. struct sh_eth_private *mdp = netdev_priv(ndev);
  1076. struct sh_eth_cpu_data *cd = mdp->cd;
  1077. irqreturn_t ret = IRQ_NONE;
  1078. u32 intr_status = 0;
  1079. spin_lock(&mdp->lock);
  1080. /* Get interrpt stat */
  1081. intr_status = sh_eth_read(ndev, EESR);
  1082. /* Clear interrupt */
  1083. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  1084. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  1085. cd->tx_check | cd->eesr_err_check)) {
  1086. sh_eth_write(ndev, intr_status, EESR);
  1087. ret = IRQ_HANDLED;
  1088. } else
  1089. goto other_irq;
  1090. if (intr_status & (EESR_FRC | /* Frame recv*/
  1091. EESR_RMAF | /* Multi cast address recv*/
  1092. EESR_RRF | /* Bit frame recv */
  1093. EESR_RTLF | /* Long frame recv*/
  1094. EESR_RTSF | /* short frame recv */
  1095. EESR_PRE | /* PHY-LSI recv error */
  1096. EESR_CERF)){ /* recv frame CRC error */
  1097. sh_eth_rx(ndev, intr_status);
  1098. }
  1099. /* Tx Check */
  1100. if (intr_status & cd->tx_check) {
  1101. sh_eth_txfree(ndev);
  1102. netif_wake_queue(ndev);
  1103. }
  1104. if (intr_status & cd->eesr_err_check)
  1105. sh_eth_error(ndev, intr_status);
  1106. other_irq:
  1107. spin_unlock(&mdp->lock);
  1108. return ret;
  1109. }
  1110. static void sh_eth_timer(unsigned long data)
  1111. {
  1112. struct net_device *ndev = (struct net_device *)data;
  1113. struct sh_eth_private *mdp = netdev_priv(ndev);
  1114. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  1115. }
  1116. /* PHY state control function */
  1117. static void sh_eth_adjust_link(struct net_device *ndev)
  1118. {
  1119. struct sh_eth_private *mdp = netdev_priv(ndev);
  1120. struct phy_device *phydev = mdp->phydev;
  1121. int new_state = 0;
  1122. if (phydev->link != PHY_DOWN) {
  1123. if (phydev->duplex != mdp->duplex) {
  1124. new_state = 1;
  1125. mdp->duplex = phydev->duplex;
  1126. if (mdp->cd->set_duplex)
  1127. mdp->cd->set_duplex(ndev);
  1128. }
  1129. if (phydev->speed != mdp->speed) {
  1130. new_state = 1;
  1131. mdp->speed = phydev->speed;
  1132. if (mdp->cd->set_rate)
  1133. mdp->cd->set_rate(ndev);
  1134. }
  1135. if (mdp->link == PHY_DOWN) {
  1136. sh_eth_write(ndev,
  1137. (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
  1138. new_state = 1;
  1139. mdp->link = phydev->link;
  1140. }
  1141. } else if (mdp->link) {
  1142. new_state = 1;
  1143. mdp->link = PHY_DOWN;
  1144. mdp->speed = 0;
  1145. mdp->duplex = -1;
  1146. }
  1147. if (new_state && netif_msg_link(mdp))
  1148. phy_print_status(phydev);
  1149. }
  1150. /* PHY init function */
  1151. static int sh_eth_phy_init(struct net_device *ndev)
  1152. {
  1153. struct sh_eth_private *mdp = netdev_priv(ndev);
  1154. char phy_id[MII_BUS_ID_SIZE + 3];
  1155. struct phy_device *phydev = NULL;
  1156. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1157. mdp->mii_bus->id , mdp->phy_id);
  1158. mdp->link = PHY_DOWN;
  1159. mdp->speed = 0;
  1160. mdp->duplex = -1;
  1161. /* Try connect to PHY */
  1162. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1163. 0, mdp->phy_interface);
  1164. if (IS_ERR(phydev)) {
  1165. dev_err(&ndev->dev, "phy_connect failed\n");
  1166. return PTR_ERR(phydev);
  1167. }
  1168. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1169. phydev->addr, phydev->drv->name);
  1170. mdp->phydev = phydev;
  1171. return 0;
  1172. }
  1173. /* PHY control start function */
  1174. static int sh_eth_phy_start(struct net_device *ndev)
  1175. {
  1176. struct sh_eth_private *mdp = netdev_priv(ndev);
  1177. int ret;
  1178. ret = sh_eth_phy_init(ndev);
  1179. if (ret)
  1180. return ret;
  1181. /* reset phy - this also wakes it from PDOWN */
  1182. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1183. phy_start(mdp->phydev);
  1184. return 0;
  1185. }
  1186. static int sh_eth_get_settings(struct net_device *ndev,
  1187. struct ethtool_cmd *ecmd)
  1188. {
  1189. struct sh_eth_private *mdp = netdev_priv(ndev);
  1190. unsigned long flags;
  1191. int ret;
  1192. spin_lock_irqsave(&mdp->lock, flags);
  1193. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1194. spin_unlock_irqrestore(&mdp->lock, flags);
  1195. return ret;
  1196. }
  1197. static int sh_eth_set_settings(struct net_device *ndev,
  1198. struct ethtool_cmd *ecmd)
  1199. {
  1200. struct sh_eth_private *mdp = netdev_priv(ndev);
  1201. unsigned long flags;
  1202. int ret;
  1203. spin_lock_irqsave(&mdp->lock, flags);
  1204. /* disable tx and rx */
  1205. sh_eth_rcv_snd_disable(ndev);
  1206. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1207. if (ret)
  1208. goto error_exit;
  1209. if (ecmd->duplex == DUPLEX_FULL)
  1210. mdp->duplex = 1;
  1211. else
  1212. mdp->duplex = 0;
  1213. if (mdp->cd->set_duplex)
  1214. mdp->cd->set_duplex(ndev);
  1215. error_exit:
  1216. mdelay(1);
  1217. /* enable tx and rx */
  1218. sh_eth_rcv_snd_enable(ndev);
  1219. spin_unlock_irqrestore(&mdp->lock, flags);
  1220. return ret;
  1221. }
  1222. static int sh_eth_nway_reset(struct net_device *ndev)
  1223. {
  1224. struct sh_eth_private *mdp = netdev_priv(ndev);
  1225. unsigned long flags;
  1226. int ret;
  1227. spin_lock_irqsave(&mdp->lock, flags);
  1228. ret = phy_start_aneg(mdp->phydev);
  1229. spin_unlock_irqrestore(&mdp->lock, flags);
  1230. return ret;
  1231. }
  1232. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1233. {
  1234. struct sh_eth_private *mdp = netdev_priv(ndev);
  1235. return mdp->msg_enable;
  1236. }
  1237. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1238. {
  1239. struct sh_eth_private *mdp = netdev_priv(ndev);
  1240. mdp->msg_enable = value;
  1241. }
  1242. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1243. "rx_current", "tx_current",
  1244. "rx_dirty", "tx_dirty",
  1245. };
  1246. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1247. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1248. {
  1249. switch (sset) {
  1250. case ETH_SS_STATS:
  1251. return SH_ETH_STATS_LEN;
  1252. default:
  1253. return -EOPNOTSUPP;
  1254. }
  1255. }
  1256. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1257. struct ethtool_stats *stats, u64 *data)
  1258. {
  1259. struct sh_eth_private *mdp = netdev_priv(ndev);
  1260. int i = 0;
  1261. /* device-specific stats */
  1262. data[i++] = mdp->cur_rx;
  1263. data[i++] = mdp->cur_tx;
  1264. data[i++] = mdp->dirty_rx;
  1265. data[i++] = mdp->dirty_tx;
  1266. }
  1267. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1268. {
  1269. switch (stringset) {
  1270. case ETH_SS_STATS:
  1271. memcpy(data, *sh_eth_gstrings_stats,
  1272. sizeof(sh_eth_gstrings_stats));
  1273. break;
  1274. }
  1275. }
  1276. static const struct ethtool_ops sh_eth_ethtool_ops = {
  1277. .get_settings = sh_eth_get_settings,
  1278. .set_settings = sh_eth_set_settings,
  1279. .nway_reset = sh_eth_nway_reset,
  1280. .get_msglevel = sh_eth_get_msglevel,
  1281. .set_msglevel = sh_eth_set_msglevel,
  1282. .get_link = ethtool_op_get_link,
  1283. .get_strings = sh_eth_get_strings,
  1284. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1285. .get_sset_count = sh_eth_get_sset_count,
  1286. };
  1287. /* network device open function */
  1288. static int sh_eth_open(struct net_device *ndev)
  1289. {
  1290. int ret = 0;
  1291. struct sh_eth_private *mdp = netdev_priv(ndev);
  1292. pm_runtime_get_sync(&mdp->pdev->dev);
  1293. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1294. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1295. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1296. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1297. IRQF_SHARED,
  1298. #else
  1299. 0,
  1300. #endif
  1301. ndev->name, ndev);
  1302. if (ret) {
  1303. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1304. return ret;
  1305. }
  1306. /* Descriptor set */
  1307. ret = sh_eth_ring_init(ndev);
  1308. if (ret)
  1309. goto out_free_irq;
  1310. /* device init */
  1311. ret = sh_eth_dev_init(ndev);
  1312. if (ret)
  1313. goto out_free_irq;
  1314. /* PHY control start*/
  1315. ret = sh_eth_phy_start(ndev);
  1316. if (ret)
  1317. goto out_free_irq;
  1318. /* Set the timer to check for link beat. */
  1319. init_timer(&mdp->timer);
  1320. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1321. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  1322. return ret;
  1323. out_free_irq:
  1324. free_irq(ndev->irq, ndev);
  1325. pm_runtime_put_sync(&mdp->pdev->dev);
  1326. return ret;
  1327. }
  1328. /* Timeout function */
  1329. static void sh_eth_tx_timeout(struct net_device *ndev)
  1330. {
  1331. struct sh_eth_private *mdp = netdev_priv(ndev);
  1332. struct sh_eth_rxdesc *rxdesc;
  1333. int i;
  1334. netif_stop_queue(ndev);
  1335. if (netif_msg_timer(mdp))
  1336. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1337. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1338. /* tx_errors count up */
  1339. ndev->stats.tx_errors++;
  1340. /* timer off */
  1341. del_timer_sync(&mdp->timer);
  1342. /* Free all the skbuffs in the Rx queue. */
  1343. for (i = 0; i < RX_RING_SIZE; i++) {
  1344. rxdesc = &mdp->rx_ring[i];
  1345. rxdesc->status = 0;
  1346. rxdesc->addr = 0xBADF00D0;
  1347. if (mdp->rx_skbuff[i])
  1348. dev_kfree_skb(mdp->rx_skbuff[i]);
  1349. mdp->rx_skbuff[i] = NULL;
  1350. }
  1351. for (i = 0; i < TX_RING_SIZE; i++) {
  1352. if (mdp->tx_skbuff[i])
  1353. dev_kfree_skb(mdp->tx_skbuff[i]);
  1354. mdp->tx_skbuff[i] = NULL;
  1355. }
  1356. /* device init */
  1357. sh_eth_dev_init(ndev);
  1358. /* timer on */
  1359. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1360. add_timer(&mdp->timer);
  1361. }
  1362. /* Packet transmit function */
  1363. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1364. {
  1365. struct sh_eth_private *mdp = netdev_priv(ndev);
  1366. struct sh_eth_txdesc *txdesc;
  1367. u32 entry;
  1368. unsigned long flags;
  1369. spin_lock_irqsave(&mdp->lock, flags);
  1370. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  1371. if (!sh_eth_txfree(ndev)) {
  1372. if (netif_msg_tx_queued(mdp))
  1373. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1374. netif_stop_queue(ndev);
  1375. spin_unlock_irqrestore(&mdp->lock, flags);
  1376. return NETDEV_TX_BUSY;
  1377. }
  1378. }
  1379. spin_unlock_irqrestore(&mdp->lock, flags);
  1380. entry = mdp->cur_tx % TX_RING_SIZE;
  1381. mdp->tx_skbuff[entry] = skb;
  1382. txdesc = &mdp->tx_ring[entry];
  1383. /* soft swap. */
  1384. if (!mdp->cd->hw_swap)
  1385. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1386. skb->len + 2);
  1387. txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
  1388. DMA_TO_DEVICE);
  1389. if (skb->len < ETHERSMALL)
  1390. txdesc->buffer_length = ETHERSMALL;
  1391. else
  1392. txdesc->buffer_length = skb->len;
  1393. if (entry >= TX_RING_SIZE - 1)
  1394. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1395. else
  1396. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1397. mdp->cur_tx++;
  1398. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1399. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1400. return NETDEV_TX_OK;
  1401. }
  1402. /* device close function */
  1403. static int sh_eth_close(struct net_device *ndev)
  1404. {
  1405. struct sh_eth_private *mdp = netdev_priv(ndev);
  1406. int ringsize;
  1407. netif_stop_queue(ndev);
  1408. /* Disable interrupts by clearing the interrupt mask. */
  1409. sh_eth_write(ndev, 0x0000, EESIPR);
  1410. /* Stop the chip's Tx and Rx processes. */
  1411. sh_eth_write(ndev, 0, EDTRR);
  1412. sh_eth_write(ndev, 0, EDRRR);
  1413. /* PHY Disconnect */
  1414. if (mdp->phydev) {
  1415. phy_stop(mdp->phydev);
  1416. phy_disconnect(mdp->phydev);
  1417. }
  1418. free_irq(ndev->irq, ndev);
  1419. del_timer_sync(&mdp->timer);
  1420. /* Free all the skbuffs in the Rx queue. */
  1421. sh_eth_ring_free(ndev);
  1422. /* free DMA buffer */
  1423. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  1424. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  1425. /* free DMA buffer */
  1426. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  1427. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  1428. pm_runtime_put_sync(&mdp->pdev->dev);
  1429. return 0;
  1430. }
  1431. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1432. {
  1433. struct sh_eth_private *mdp = netdev_priv(ndev);
  1434. pm_runtime_get_sync(&mdp->pdev->dev);
  1435. ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1436. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1437. ndev->stats.collisions += sh_eth_read(ndev, CDCR);
  1438. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1439. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1440. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1441. if (sh_eth_is_gether(mdp)) {
  1442. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1443. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1444. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1445. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1446. } else {
  1447. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1448. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1449. }
  1450. pm_runtime_put_sync(&mdp->pdev->dev);
  1451. return &ndev->stats;
  1452. }
  1453. /* ioctl to device function */
  1454. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1455. int cmd)
  1456. {
  1457. struct sh_eth_private *mdp = netdev_priv(ndev);
  1458. struct phy_device *phydev = mdp->phydev;
  1459. if (!netif_running(ndev))
  1460. return -EINVAL;
  1461. if (!phydev)
  1462. return -ENODEV;
  1463. return phy_mii_ioctl(phydev, rq, cmd);
  1464. }
  1465. #if defined(SH_ETH_HAS_TSU)
  1466. /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
  1467. static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
  1468. int entry)
  1469. {
  1470. return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
  1471. }
  1472. static u32 sh_eth_tsu_get_post_mask(int entry)
  1473. {
  1474. return 0x0f << (28 - ((entry % 8) * 4));
  1475. }
  1476. static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
  1477. {
  1478. return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
  1479. }
  1480. static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
  1481. int entry)
  1482. {
  1483. struct sh_eth_private *mdp = netdev_priv(ndev);
  1484. u32 tmp;
  1485. void *reg_offset;
  1486. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1487. tmp = ioread32(reg_offset);
  1488. iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
  1489. }
  1490. static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
  1491. int entry)
  1492. {
  1493. struct sh_eth_private *mdp = netdev_priv(ndev);
  1494. u32 post_mask, ref_mask, tmp;
  1495. void *reg_offset;
  1496. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1497. post_mask = sh_eth_tsu_get_post_mask(entry);
  1498. ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
  1499. tmp = ioread32(reg_offset);
  1500. iowrite32(tmp & ~post_mask, reg_offset);
  1501. /* If other port enables, the function returns "true" */
  1502. return tmp & ref_mask;
  1503. }
  1504. static int sh_eth_tsu_busy(struct net_device *ndev)
  1505. {
  1506. int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
  1507. struct sh_eth_private *mdp = netdev_priv(ndev);
  1508. while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
  1509. udelay(10);
  1510. timeout--;
  1511. if (timeout <= 0) {
  1512. dev_err(&ndev->dev, "%s: timeout\n", __func__);
  1513. return -ETIMEDOUT;
  1514. }
  1515. }
  1516. return 0;
  1517. }
  1518. static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
  1519. const u8 *addr)
  1520. {
  1521. u32 val;
  1522. val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
  1523. iowrite32(val, reg);
  1524. if (sh_eth_tsu_busy(ndev) < 0)
  1525. return -EBUSY;
  1526. val = addr[4] << 8 | addr[5];
  1527. iowrite32(val, reg + 4);
  1528. if (sh_eth_tsu_busy(ndev) < 0)
  1529. return -EBUSY;
  1530. return 0;
  1531. }
  1532. static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
  1533. {
  1534. u32 val;
  1535. val = ioread32(reg);
  1536. addr[0] = (val >> 24) & 0xff;
  1537. addr[1] = (val >> 16) & 0xff;
  1538. addr[2] = (val >> 8) & 0xff;
  1539. addr[3] = val & 0xff;
  1540. val = ioread32(reg + 4);
  1541. addr[4] = (val >> 8) & 0xff;
  1542. addr[5] = val & 0xff;
  1543. }
  1544. static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
  1545. {
  1546. struct sh_eth_private *mdp = netdev_priv(ndev);
  1547. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1548. int i;
  1549. u8 c_addr[ETH_ALEN];
  1550. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1551. sh_eth_tsu_read_entry(reg_offset, c_addr);
  1552. if (memcmp(addr, c_addr, ETH_ALEN) == 0)
  1553. return i;
  1554. }
  1555. return -ENOENT;
  1556. }
  1557. static int sh_eth_tsu_find_empty(struct net_device *ndev)
  1558. {
  1559. u8 blank[ETH_ALEN];
  1560. int entry;
  1561. memset(blank, 0, sizeof(blank));
  1562. entry = sh_eth_tsu_find_entry(ndev, blank);
  1563. return (entry < 0) ? -ENOMEM : entry;
  1564. }
  1565. static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
  1566. int entry)
  1567. {
  1568. struct sh_eth_private *mdp = netdev_priv(ndev);
  1569. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1570. int ret;
  1571. u8 blank[ETH_ALEN];
  1572. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
  1573. ~(1 << (31 - entry)), TSU_TEN);
  1574. memset(blank, 0, sizeof(blank));
  1575. ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
  1576. if (ret < 0)
  1577. return ret;
  1578. return 0;
  1579. }
  1580. static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
  1581. {
  1582. struct sh_eth_private *mdp = netdev_priv(ndev);
  1583. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1584. int i, ret;
  1585. if (!mdp->cd->tsu)
  1586. return 0;
  1587. i = sh_eth_tsu_find_entry(ndev, addr);
  1588. if (i < 0) {
  1589. /* No entry found, create one */
  1590. i = sh_eth_tsu_find_empty(ndev);
  1591. if (i < 0)
  1592. return -ENOMEM;
  1593. ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
  1594. if (ret < 0)
  1595. return ret;
  1596. /* Enable the entry */
  1597. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
  1598. (1 << (31 - i)), TSU_TEN);
  1599. }
  1600. /* Entry found or created, enable POST */
  1601. sh_eth_tsu_enable_cam_entry_post(ndev, i);
  1602. return 0;
  1603. }
  1604. static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
  1605. {
  1606. struct sh_eth_private *mdp = netdev_priv(ndev);
  1607. int i, ret;
  1608. if (!mdp->cd->tsu)
  1609. return 0;
  1610. i = sh_eth_tsu_find_entry(ndev, addr);
  1611. if (i) {
  1612. /* Entry found */
  1613. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1614. goto done;
  1615. /* Disable the entry if both ports was disabled */
  1616. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1617. if (ret < 0)
  1618. return ret;
  1619. }
  1620. done:
  1621. return 0;
  1622. }
  1623. static int sh_eth_tsu_purge_all(struct net_device *ndev)
  1624. {
  1625. struct sh_eth_private *mdp = netdev_priv(ndev);
  1626. int i, ret;
  1627. if (unlikely(!mdp->cd->tsu))
  1628. return 0;
  1629. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
  1630. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1631. continue;
  1632. /* Disable the entry if both ports was disabled */
  1633. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1634. if (ret < 0)
  1635. return ret;
  1636. }
  1637. return 0;
  1638. }
  1639. static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
  1640. {
  1641. struct sh_eth_private *mdp = netdev_priv(ndev);
  1642. u8 addr[ETH_ALEN];
  1643. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1644. int i;
  1645. if (unlikely(!mdp->cd->tsu))
  1646. return;
  1647. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1648. sh_eth_tsu_read_entry(reg_offset, addr);
  1649. if (is_multicast_ether_addr(addr))
  1650. sh_eth_tsu_del_entry(ndev, addr);
  1651. }
  1652. }
  1653. /* Multicast reception directions set */
  1654. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1655. {
  1656. struct sh_eth_private *mdp = netdev_priv(ndev);
  1657. u32 ecmr_bits;
  1658. int mcast_all = 0;
  1659. unsigned long flags;
  1660. spin_lock_irqsave(&mdp->lock, flags);
  1661. /*
  1662. * Initial condition is MCT = 1, PRM = 0.
  1663. * Depending on ndev->flags, set PRM or clear MCT
  1664. */
  1665. ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
  1666. if (!(ndev->flags & IFF_MULTICAST)) {
  1667. sh_eth_tsu_purge_mcast(ndev);
  1668. mcast_all = 1;
  1669. }
  1670. if (ndev->flags & IFF_ALLMULTI) {
  1671. sh_eth_tsu_purge_mcast(ndev);
  1672. ecmr_bits &= ~ECMR_MCT;
  1673. mcast_all = 1;
  1674. }
  1675. if (ndev->flags & IFF_PROMISC) {
  1676. sh_eth_tsu_purge_all(ndev);
  1677. ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
  1678. } else if (mdp->cd->tsu) {
  1679. struct netdev_hw_addr *ha;
  1680. netdev_for_each_mc_addr(ha, ndev) {
  1681. if (mcast_all && is_multicast_ether_addr(ha->addr))
  1682. continue;
  1683. if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
  1684. if (!mcast_all) {
  1685. sh_eth_tsu_purge_mcast(ndev);
  1686. ecmr_bits &= ~ECMR_MCT;
  1687. mcast_all = 1;
  1688. }
  1689. }
  1690. }
  1691. } else {
  1692. /* Normal, unicast/broadcast-only mode. */
  1693. ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
  1694. }
  1695. /* update the ethernet mode */
  1696. sh_eth_write(ndev, ecmr_bits, ECMR);
  1697. spin_unlock_irqrestore(&mdp->lock, flags);
  1698. }
  1699. static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
  1700. {
  1701. if (!mdp->port)
  1702. return TSU_VTAG0;
  1703. else
  1704. return TSU_VTAG1;
  1705. }
  1706. static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1707. {
  1708. struct sh_eth_private *mdp = netdev_priv(ndev);
  1709. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1710. if (unlikely(!mdp->cd->tsu))
  1711. return -EPERM;
  1712. /* No filtering if vid = 0 */
  1713. if (!vid)
  1714. return 0;
  1715. mdp->vlan_num_ids++;
  1716. /*
  1717. * The controller has one VLAN tag HW filter. So, if the filter is
  1718. * already enabled, the driver disables it and the filte
  1719. */
  1720. if (mdp->vlan_num_ids > 1) {
  1721. /* disable VLAN filter */
  1722. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1723. return 0;
  1724. }
  1725. sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
  1726. vtag_reg_index);
  1727. return 0;
  1728. }
  1729. static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1730. {
  1731. struct sh_eth_private *mdp = netdev_priv(ndev);
  1732. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1733. if (unlikely(!mdp->cd->tsu))
  1734. return -EPERM;
  1735. /* No filtering if vid = 0 */
  1736. if (!vid)
  1737. return 0;
  1738. mdp->vlan_num_ids--;
  1739. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1740. return 0;
  1741. }
  1742. #endif /* SH_ETH_HAS_TSU */
  1743. /* SuperH's TSU register init function */
  1744. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1745. {
  1746. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1747. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1748. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1749. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1750. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1751. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1752. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1753. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1754. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1755. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1756. if (sh_eth_is_gether(mdp)) {
  1757. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1758. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1759. } else {
  1760. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1761. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1762. }
  1763. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1764. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1765. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1766. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1767. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1768. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1769. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1770. }
  1771. /* MDIO bus release function */
  1772. static int sh_mdio_release(struct net_device *ndev)
  1773. {
  1774. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1775. /* unregister mdio bus */
  1776. mdiobus_unregister(bus);
  1777. /* remove mdio bus info from net_device */
  1778. dev_set_drvdata(&ndev->dev, NULL);
  1779. /* free interrupts memory */
  1780. kfree(bus->irq);
  1781. /* free bitbang info */
  1782. free_mdio_bitbang(bus);
  1783. return 0;
  1784. }
  1785. /* MDIO bus init function */
  1786. static int sh_mdio_init(struct net_device *ndev, int id,
  1787. struct sh_eth_plat_data *pd)
  1788. {
  1789. int ret, i;
  1790. struct bb_info *bitbang;
  1791. struct sh_eth_private *mdp = netdev_priv(ndev);
  1792. /* create bit control struct for PHY */
  1793. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1794. if (!bitbang) {
  1795. ret = -ENOMEM;
  1796. goto out;
  1797. }
  1798. /* bitbang init */
  1799. bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
  1800. bitbang->set_gate = pd->set_mdio_gate;
  1801. bitbang->mdi_msk = 0x08;
  1802. bitbang->mdo_msk = 0x04;
  1803. bitbang->mmd_msk = 0x02;/* MMD */
  1804. bitbang->mdc_msk = 0x01;
  1805. bitbang->ctrl.ops = &bb_ops;
  1806. /* MII controller setting */
  1807. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1808. if (!mdp->mii_bus) {
  1809. ret = -ENOMEM;
  1810. goto out_free_bitbang;
  1811. }
  1812. /* Hook up MII support for ethtool */
  1813. mdp->mii_bus->name = "sh_mii";
  1814. mdp->mii_bus->parent = &ndev->dev;
  1815. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1816. mdp->pdev->name, id);
  1817. /* PHY IRQ */
  1818. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1819. if (!mdp->mii_bus->irq) {
  1820. ret = -ENOMEM;
  1821. goto out_free_bus;
  1822. }
  1823. for (i = 0; i < PHY_MAX_ADDR; i++)
  1824. mdp->mii_bus->irq[i] = PHY_POLL;
  1825. /* regist mdio bus */
  1826. ret = mdiobus_register(mdp->mii_bus);
  1827. if (ret)
  1828. goto out_free_irq;
  1829. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1830. return 0;
  1831. out_free_irq:
  1832. kfree(mdp->mii_bus->irq);
  1833. out_free_bus:
  1834. free_mdio_bitbang(mdp->mii_bus);
  1835. out_free_bitbang:
  1836. kfree(bitbang);
  1837. out:
  1838. return ret;
  1839. }
  1840. static const u16 *sh_eth_get_register_offset(int register_type)
  1841. {
  1842. const u16 *reg_offset = NULL;
  1843. switch (register_type) {
  1844. case SH_ETH_REG_GIGABIT:
  1845. reg_offset = sh_eth_offset_gigabit;
  1846. break;
  1847. case SH_ETH_REG_FAST_SH4:
  1848. reg_offset = sh_eth_offset_fast_sh4;
  1849. break;
  1850. case SH_ETH_REG_FAST_SH3_SH2:
  1851. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1852. break;
  1853. default:
  1854. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1855. break;
  1856. }
  1857. return reg_offset;
  1858. }
  1859. static const struct net_device_ops sh_eth_netdev_ops = {
  1860. .ndo_open = sh_eth_open,
  1861. .ndo_stop = sh_eth_close,
  1862. .ndo_start_xmit = sh_eth_start_xmit,
  1863. .ndo_get_stats = sh_eth_get_stats,
  1864. #if defined(SH_ETH_HAS_TSU)
  1865. .ndo_set_rx_mode = sh_eth_set_multicast_list,
  1866. .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
  1867. .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
  1868. #endif
  1869. .ndo_tx_timeout = sh_eth_tx_timeout,
  1870. .ndo_do_ioctl = sh_eth_do_ioctl,
  1871. .ndo_validate_addr = eth_validate_addr,
  1872. .ndo_set_mac_address = eth_mac_addr,
  1873. .ndo_change_mtu = eth_change_mtu,
  1874. };
  1875. static int sh_eth_drv_probe(struct platform_device *pdev)
  1876. {
  1877. int ret, devno = 0;
  1878. struct resource *res;
  1879. struct net_device *ndev = NULL;
  1880. struct sh_eth_private *mdp = NULL;
  1881. struct sh_eth_plat_data *pd;
  1882. /* get base addr */
  1883. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1884. if (unlikely(res == NULL)) {
  1885. dev_err(&pdev->dev, "invalid resource\n");
  1886. ret = -EINVAL;
  1887. goto out;
  1888. }
  1889. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1890. if (!ndev) {
  1891. ret = -ENOMEM;
  1892. goto out;
  1893. }
  1894. /* The sh Ether-specific entries in the device structure. */
  1895. ndev->base_addr = res->start;
  1896. devno = pdev->id;
  1897. if (devno < 0)
  1898. devno = 0;
  1899. ndev->dma = -1;
  1900. ret = platform_get_irq(pdev, 0);
  1901. if (ret < 0) {
  1902. ret = -ENODEV;
  1903. goto out_release;
  1904. }
  1905. ndev->irq = ret;
  1906. SET_NETDEV_DEV(ndev, &pdev->dev);
  1907. /* Fill in the fields of the device structure with ethernet values. */
  1908. ether_setup(ndev);
  1909. mdp = netdev_priv(ndev);
  1910. mdp->addr = ioremap(res->start, resource_size(res));
  1911. if (mdp->addr == NULL) {
  1912. ret = -ENOMEM;
  1913. dev_err(&pdev->dev, "ioremap failed.\n");
  1914. goto out_release;
  1915. }
  1916. spin_lock_init(&mdp->lock);
  1917. mdp->pdev = pdev;
  1918. pm_runtime_enable(&pdev->dev);
  1919. pm_runtime_resume(&pdev->dev);
  1920. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1921. /* get PHY ID */
  1922. mdp->phy_id = pd->phy;
  1923. mdp->phy_interface = pd->phy_interface;
  1924. /* EDMAC endian */
  1925. mdp->edmac_endian = pd->edmac_endian;
  1926. mdp->no_ether_link = pd->no_ether_link;
  1927. mdp->ether_link_active_low = pd->ether_link_active_low;
  1928. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  1929. /* set cpu data */
  1930. #if defined(SH_ETH_HAS_BOTH_MODULES)
  1931. mdp->cd = sh_eth_get_cpu_data(mdp);
  1932. #else
  1933. mdp->cd = &sh_eth_my_cpu_data;
  1934. #endif
  1935. sh_eth_set_default_cpu_data(mdp->cd);
  1936. /* set function */
  1937. ndev->netdev_ops = &sh_eth_netdev_ops;
  1938. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  1939. ndev->watchdog_timeo = TX_TIMEOUT;
  1940. /* debug message level */
  1941. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  1942. mdp->post_rx = POST_RX >> (devno << 1);
  1943. mdp->post_fw = POST_FW >> (devno << 1);
  1944. /* read and set MAC address */
  1945. read_mac_address(ndev, pd->mac_addr);
  1946. /* ioremap the TSU registers */
  1947. if (mdp->cd->tsu) {
  1948. struct resource *rtsu;
  1949. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1950. if (!rtsu) {
  1951. dev_err(&pdev->dev, "Not found TSU resource\n");
  1952. goto out_release;
  1953. }
  1954. mdp->tsu_addr = ioremap(rtsu->start,
  1955. resource_size(rtsu));
  1956. mdp->port = devno % 2;
  1957. ndev->features = NETIF_F_HW_VLAN_FILTER;
  1958. }
  1959. /* initialize first or needed device */
  1960. if (!devno || pd->needs_init) {
  1961. if (mdp->cd->chip_reset)
  1962. mdp->cd->chip_reset(ndev);
  1963. if (mdp->cd->tsu) {
  1964. /* TSU init (Init only)*/
  1965. sh_eth_tsu_init(mdp);
  1966. }
  1967. }
  1968. /* network device register */
  1969. ret = register_netdev(ndev);
  1970. if (ret)
  1971. goto out_release;
  1972. /* mdio bus init */
  1973. ret = sh_mdio_init(ndev, pdev->id, pd);
  1974. if (ret)
  1975. goto out_unregister;
  1976. /* print device information */
  1977. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  1978. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1979. platform_set_drvdata(pdev, ndev);
  1980. return ret;
  1981. out_unregister:
  1982. unregister_netdev(ndev);
  1983. out_release:
  1984. /* net_dev free */
  1985. if (mdp && mdp->addr)
  1986. iounmap(mdp->addr);
  1987. if (mdp && mdp->tsu_addr)
  1988. iounmap(mdp->tsu_addr);
  1989. if (ndev)
  1990. free_netdev(ndev);
  1991. out:
  1992. return ret;
  1993. }
  1994. static int sh_eth_drv_remove(struct platform_device *pdev)
  1995. {
  1996. struct net_device *ndev = platform_get_drvdata(pdev);
  1997. struct sh_eth_private *mdp = netdev_priv(ndev);
  1998. if (mdp->cd->tsu)
  1999. iounmap(mdp->tsu_addr);
  2000. sh_mdio_release(ndev);
  2001. unregister_netdev(ndev);
  2002. pm_runtime_disable(&pdev->dev);
  2003. iounmap(mdp->addr);
  2004. free_netdev(ndev);
  2005. platform_set_drvdata(pdev, NULL);
  2006. return 0;
  2007. }
  2008. static int sh_eth_runtime_nop(struct device *dev)
  2009. {
  2010. /*
  2011. * Runtime PM callback shared between ->runtime_suspend()
  2012. * and ->runtime_resume(). Simply returns success.
  2013. *
  2014. * This driver re-initializes all registers after
  2015. * pm_runtime_get_sync() anyway so there is no need
  2016. * to save and restore registers here.
  2017. */
  2018. return 0;
  2019. }
  2020. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  2021. .runtime_suspend = sh_eth_runtime_nop,
  2022. .runtime_resume = sh_eth_runtime_nop,
  2023. };
  2024. static struct platform_driver sh_eth_driver = {
  2025. .probe = sh_eth_drv_probe,
  2026. .remove = sh_eth_drv_remove,
  2027. .driver = {
  2028. .name = CARDNAME,
  2029. .pm = &sh_eth_dev_pm_ops,
  2030. },
  2031. };
  2032. module_platform_driver(sh_eth_driver);
  2033. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  2034. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  2035. MODULE_LICENSE("GPL v2");