kvm_main.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  47. #include "coalesced_mmio.h"
  48. #endif
  49. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  50. #include <linux/pci.h>
  51. #include <linux/interrupt.h>
  52. #include "irq.h"
  53. #endif
  54. MODULE_AUTHOR("Qumranet");
  55. MODULE_LICENSE("GPL");
  56. DEFINE_SPINLOCK(kvm_lock);
  57. LIST_HEAD(vm_list);
  58. static cpumask_t cpus_hardware_enabled;
  59. struct kmem_cache *kvm_vcpu_cache;
  60. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  61. static __read_mostly struct preempt_ops kvm_preempt_ops;
  62. struct dentry *kvm_debugfs_dir;
  63. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  64. unsigned long arg);
  65. bool kvm_rebooting;
  66. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  67. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  68. int assigned_dev_id)
  69. {
  70. struct list_head *ptr;
  71. struct kvm_assigned_dev_kernel *match;
  72. list_for_each(ptr, head) {
  73. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  74. if (match->assigned_dev_id == assigned_dev_id)
  75. return match;
  76. }
  77. return NULL;
  78. }
  79. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  80. {
  81. struct kvm_assigned_dev_kernel *assigned_dev;
  82. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  83. interrupt_work);
  84. /* This is taken to safely inject irq inside the guest. When
  85. * the interrupt injection (or the ioapic code) uses a
  86. * finer-grained lock, update this
  87. */
  88. mutex_lock(&assigned_dev->kvm->lock);
  89. kvm_set_irq(assigned_dev->kvm,
  90. assigned_dev->irq_source_id,
  91. assigned_dev->guest_irq, 1);
  92. mutex_unlock(&assigned_dev->kvm->lock);
  93. kvm_put_kvm(assigned_dev->kvm);
  94. }
  95. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  96. {
  97. struct kvm_assigned_dev_kernel *assigned_dev =
  98. (struct kvm_assigned_dev_kernel *) dev_id;
  99. kvm_get_kvm(assigned_dev->kvm);
  100. schedule_work(&assigned_dev->interrupt_work);
  101. disable_irq_nosync(irq);
  102. return IRQ_HANDLED;
  103. }
  104. /* Ack the irq line for an assigned device */
  105. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  106. {
  107. struct kvm_assigned_dev_kernel *dev;
  108. if (kian->gsi == -1)
  109. return;
  110. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  111. ack_notifier);
  112. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  113. enable_irq(dev->host_irq);
  114. }
  115. static void kvm_free_assigned_device(struct kvm *kvm,
  116. struct kvm_assigned_dev_kernel
  117. *assigned_dev)
  118. {
  119. if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested)
  120. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  121. kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
  122. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  123. if (cancel_work_sync(&assigned_dev->interrupt_work))
  124. /* We had pending work. That means we will have to take
  125. * care of kvm_put_kvm.
  126. */
  127. kvm_put_kvm(kvm);
  128. pci_reset_function(assigned_dev->dev);
  129. pci_release_regions(assigned_dev->dev);
  130. pci_disable_device(assigned_dev->dev);
  131. pci_dev_put(assigned_dev->dev);
  132. list_del(&assigned_dev->list);
  133. kfree(assigned_dev);
  134. }
  135. void kvm_free_all_assigned_devices(struct kvm *kvm)
  136. {
  137. struct list_head *ptr, *ptr2;
  138. struct kvm_assigned_dev_kernel *assigned_dev;
  139. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  140. assigned_dev = list_entry(ptr,
  141. struct kvm_assigned_dev_kernel,
  142. list);
  143. kvm_free_assigned_device(kvm, assigned_dev);
  144. }
  145. }
  146. static int assigned_device_update_intx(struct kvm *kvm,
  147. struct kvm_assigned_dev_kernel *adev,
  148. struct kvm_assigned_irq *airq)
  149. {
  150. if (adev->irq_requested) {
  151. adev->guest_irq = airq->guest_irq;
  152. adev->ack_notifier.gsi = airq->guest_irq;
  153. return 0;
  154. }
  155. if (irqchip_in_kernel(kvm)) {
  156. if (!capable(CAP_SYS_RAWIO))
  157. return -EPERM;
  158. if (airq->host_irq)
  159. adev->host_irq = airq->host_irq;
  160. else
  161. adev->host_irq = adev->dev->irq;
  162. adev->guest_irq = airq->guest_irq;
  163. adev->ack_notifier.gsi = airq->guest_irq;
  164. /* Even though this is PCI, we don't want to use shared
  165. * interrupts. Sharing host devices with guest-assigned devices
  166. * on the same interrupt line is not a happy situation: there
  167. * are going to be long delays in accepting, acking, etc.
  168. */
  169. if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
  170. 0, "kvm_assigned_intx_device", (void *)adev))
  171. return -EIO;
  172. }
  173. adev->irq_requested = true;
  174. return 0;
  175. }
  176. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  177. struct kvm_assigned_irq
  178. *assigned_irq)
  179. {
  180. int r = 0;
  181. struct kvm_assigned_dev_kernel *match;
  182. mutex_lock(&kvm->lock);
  183. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  184. assigned_irq->assigned_dev_id);
  185. if (!match) {
  186. mutex_unlock(&kvm->lock);
  187. return -EINVAL;
  188. }
  189. if (!match->irq_requested) {
  190. INIT_WORK(&match->interrupt_work,
  191. kvm_assigned_dev_interrupt_work_handler);
  192. if (irqchip_in_kernel(kvm)) {
  193. /* Register ack nofitier */
  194. match->ack_notifier.gsi = -1;
  195. match->ack_notifier.irq_acked =
  196. kvm_assigned_dev_ack_irq;
  197. kvm_register_irq_ack_notifier(kvm,
  198. &match->ack_notifier);
  199. /* Request IRQ source ID */
  200. r = kvm_request_irq_source_id(kvm);
  201. if (r < 0)
  202. goto out_release;
  203. else
  204. match->irq_source_id = r;
  205. }
  206. }
  207. r = assigned_device_update_intx(kvm, match, assigned_irq);
  208. if (r)
  209. goto out_release;
  210. mutex_unlock(&kvm->lock);
  211. return r;
  212. out_release:
  213. mutex_unlock(&kvm->lock);
  214. kvm_free_assigned_device(kvm, match);
  215. return r;
  216. }
  217. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  218. struct kvm_assigned_pci_dev *assigned_dev)
  219. {
  220. int r = 0;
  221. struct kvm_assigned_dev_kernel *match;
  222. struct pci_dev *dev;
  223. mutex_lock(&kvm->lock);
  224. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  225. assigned_dev->assigned_dev_id);
  226. if (match) {
  227. /* device already assigned */
  228. r = -EINVAL;
  229. goto out;
  230. }
  231. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  232. if (match == NULL) {
  233. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  234. __func__);
  235. r = -ENOMEM;
  236. goto out;
  237. }
  238. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  239. assigned_dev->devfn);
  240. if (!dev) {
  241. printk(KERN_INFO "%s: host device not found\n", __func__);
  242. r = -EINVAL;
  243. goto out_free;
  244. }
  245. if (pci_enable_device(dev)) {
  246. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  247. r = -EBUSY;
  248. goto out_put;
  249. }
  250. r = pci_request_regions(dev, "kvm_assigned_device");
  251. if (r) {
  252. printk(KERN_INFO "%s: Could not get access to device regions\n",
  253. __func__);
  254. goto out_disable;
  255. }
  256. pci_reset_function(dev);
  257. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  258. match->host_busnr = assigned_dev->busnr;
  259. match->host_devfn = assigned_dev->devfn;
  260. match->dev = dev;
  261. match->kvm = kvm;
  262. list_add(&match->list, &kvm->arch.assigned_dev_head);
  263. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  264. r = kvm_iommu_map_guest(kvm, match);
  265. if (r)
  266. goto out_list_del;
  267. }
  268. out:
  269. mutex_unlock(&kvm->lock);
  270. return r;
  271. out_list_del:
  272. list_del(&match->list);
  273. pci_release_regions(dev);
  274. out_disable:
  275. pci_disable_device(dev);
  276. out_put:
  277. pci_dev_put(dev);
  278. out_free:
  279. kfree(match);
  280. mutex_unlock(&kvm->lock);
  281. return r;
  282. }
  283. #endif
  284. static inline int valid_vcpu(int n)
  285. {
  286. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  287. }
  288. inline int kvm_is_mmio_pfn(pfn_t pfn)
  289. {
  290. if (pfn_valid(pfn))
  291. return PageReserved(pfn_to_page(pfn));
  292. return true;
  293. }
  294. /*
  295. * Switches to specified vcpu, until a matching vcpu_put()
  296. */
  297. void vcpu_load(struct kvm_vcpu *vcpu)
  298. {
  299. int cpu;
  300. mutex_lock(&vcpu->mutex);
  301. cpu = get_cpu();
  302. preempt_notifier_register(&vcpu->preempt_notifier);
  303. kvm_arch_vcpu_load(vcpu, cpu);
  304. put_cpu();
  305. }
  306. void vcpu_put(struct kvm_vcpu *vcpu)
  307. {
  308. preempt_disable();
  309. kvm_arch_vcpu_put(vcpu);
  310. preempt_notifier_unregister(&vcpu->preempt_notifier);
  311. preempt_enable();
  312. mutex_unlock(&vcpu->mutex);
  313. }
  314. static void ack_flush(void *_completed)
  315. {
  316. }
  317. void kvm_flush_remote_tlbs(struct kvm *kvm)
  318. {
  319. int i, cpu, me;
  320. cpumask_t cpus;
  321. struct kvm_vcpu *vcpu;
  322. me = get_cpu();
  323. cpus_clear(cpus);
  324. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  325. vcpu = kvm->vcpus[i];
  326. if (!vcpu)
  327. continue;
  328. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  329. continue;
  330. cpu = vcpu->cpu;
  331. if (cpu != -1 && cpu != me)
  332. cpu_set(cpu, cpus);
  333. }
  334. if (cpus_empty(cpus))
  335. goto out;
  336. ++kvm->stat.remote_tlb_flush;
  337. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  338. out:
  339. put_cpu();
  340. }
  341. void kvm_reload_remote_mmus(struct kvm *kvm)
  342. {
  343. int i, cpu, me;
  344. cpumask_t cpus;
  345. struct kvm_vcpu *vcpu;
  346. me = get_cpu();
  347. cpus_clear(cpus);
  348. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  349. vcpu = kvm->vcpus[i];
  350. if (!vcpu)
  351. continue;
  352. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  353. continue;
  354. cpu = vcpu->cpu;
  355. if (cpu != -1 && cpu != me)
  356. cpu_set(cpu, cpus);
  357. }
  358. if (cpus_empty(cpus))
  359. goto out;
  360. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  361. out:
  362. put_cpu();
  363. }
  364. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  365. {
  366. struct page *page;
  367. int r;
  368. mutex_init(&vcpu->mutex);
  369. vcpu->cpu = -1;
  370. vcpu->kvm = kvm;
  371. vcpu->vcpu_id = id;
  372. init_waitqueue_head(&vcpu->wq);
  373. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  374. if (!page) {
  375. r = -ENOMEM;
  376. goto fail;
  377. }
  378. vcpu->run = page_address(page);
  379. r = kvm_arch_vcpu_init(vcpu);
  380. if (r < 0)
  381. goto fail_free_run;
  382. return 0;
  383. fail_free_run:
  384. free_page((unsigned long)vcpu->run);
  385. fail:
  386. return r;
  387. }
  388. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  389. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  390. {
  391. kvm_arch_vcpu_uninit(vcpu);
  392. free_page((unsigned long)vcpu->run);
  393. }
  394. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  395. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  396. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  397. {
  398. return container_of(mn, struct kvm, mmu_notifier);
  399. }
  400. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  401. struct mm_struct *mm,
  402. unsigned long address)
  403. {
  404. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  405. int need_tlb_flush;
  406. /*
  407. * When ->invalidate_page runs, the linux pte has been zapped
  408. * already but the page is still allocated until
  409. * ->invalidate_page returns. So if we increase the sequence
  410. * here the kvm page fault will notice if the spte can't be
  411. * established because the page is going to be freed. If
  412. * instead the kvm page fault establishes the spte before
  413. * ->invalidate_page runs, kvm_unmap_hva will release it
  414. * before returning.
  415. *
  416. * The sequence increase only need to be seen at spin_unlock
  417. * time, and not at spin_lock time.
  418. *
  419. * Increasing the sequence after the spin_unlock would be
  420. * unsafe because the kvm page fault could then establish the
  421. * pte after kvm_unmap_hva returned, without noticing the page
  422. * is going to be freed.
  423. */
  424. spin_lock(&kvm->mmu_lock);
  425. kvm->mmu_notifier_seq++;
  426. need_tlb_flush = kvm_unmap_hva(kvm, address);
  427. spin_unlock(&kvm->mmu_lock);
  428. /* we've to flush the tlb before the pages can be freed */
  429. if (need_tlb_flush)
  430. kvm_flush_remote_tlbs(kvm);
  431. }
  432. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  433. struct mm_struct *mm,
  434. unsigned long start,
  435. unsigned long end)
  436. {
  437. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  438. int need_tlb_flush = 0;
  439. spin_lock(&kvm->mmu_lock);
  440. /*
  441. * The count increase must become visible at unlock time as no
  442. * spte can be established without taking the mmu_lock and
  443. * count is also read inside the mmu_lock critical section.
  444. */
  445. kvm->mmu_notifier_count++;
  446. for (; start < end; start += PAGE_SIZE)
  447. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  448. spin_unlock(&kvm->mmu_lock);
  449. /* we've to flush the tlb before the pages can be freed */
  450. if (need_tlb_flush)
  451. kvm_flush_remote_tlbs(kvm);
  452. }
  453. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  454. struct mm_struct *mm,
  455. unsigned long start,
  456. unsigned long end)
  457. {
  458. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  459. spin_lock(&kvm->mmu_lock);
  460. /*
  461. * This sequence increase will notify the kvm page fault that
  462. * the page that is going to be mapped in the spte could have
  463. * been freed.
  464. */
  465. kvm->mmu_notifier_seq++;
  466. /*
  467. * The above sequence increase must be visible before the
  468. * below count decrease but both values are read by the kvm
  469. * page fault under mmu_lock spinlock so we don't need to add
  470. * a smb_wmb() here in between the two.
  471. */
  472. kvm->mmu_notifier_count--;
  473. spin_unlock(&kvm->mmu_lock);
  474. BUG_ON(kvm->mmu_notifier_count < 0);
  475. }
  476. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  477. struct mm_struct *mm,
  478. unsigned long address)
  479. {
  480. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  481. int young;
  482. spin_lock(&kvm->mmu_lock);
  483. young = kvm_age_hva(kvm, address);
  484. spin_unlock(&kvm->mmu_lock);
  485. if (young)
  486. kvm_flush_remote_tlbs(kvm);
  487. return young;
  488. }
  489. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  490. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  491. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  492. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  493. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  494. };
  495. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  496. static struct kvm *kvm_create_vm(void)
  497. {
  498. struct kvm *kvm = kvm_arch_create_vm();
  499. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  500. struct page *page;
  501. #endif
  502. if (IS_ERR(kvm))
  503. goto out;
  504. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  505. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  506. if (!page) {
  507. kfree(kvm);
  508. return ERR_PTR(-ENOMEM);
  509. }
  510. kvm->coalesced_mmio_ring =
  511. (struct kvm_coalesced_mmio_ring *)page_address(page);
  512. #endif
  513. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  514. {
  515. int err;
  516. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  517. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  518. if (err) {
  519. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  520. put_page(page);
  521. #endif
  522. kfree(kvm);
  523. return ERR_PTR(err);
  524. }
  525. }
  526. #endif
  527. kvm->mm = current->mm;
  528. atomic_inc(&kvm->mm->mm_count);
  529. spin_lock_init(&kvm->mmu_lock);
  530. kvm_io_bus_init(&kvm->pio_bus);
  531. mutex_init(&kvm->lock);
  532. kvm_io_bus_init(&kvm->mmio_bus);
  533. init_rwsem(&kvm->slots_lock);
  534. atomic_set(&kvm->users_count, 1);
  535. spin_lock(&kvm_lock);
  536. list_add(&kvm->vm_list, &vm_list);
  537. spin_unlock(&kvm_lock);
  538. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  539. kvm_coalesced_mmio_init(kvm);
  540. #endif
  541. out:
  542. return kvm;
  543. }
  544. /*
  545. * Free any memory in @free but not in @dont.
  546. */
  547. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  548. struct kvm_memory_slot *dont)
  549. {
  550. if (!dont || free->rmap != dont->rmap)
  551. vfree(free->rmap);
  552. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  553. vfree(free->dirty_bitmap);
  554. if (!dont || free->lpage_info != dont->lpage_info)
  555. vfree(free->lpage_info);
  556. free->npages = 0;
  557. free->dirty_bitmap = NULL;
  558. free->rmap = NULL;
  559. free->lpage_info = NULL;
  560. }
  561. void kvm_free_physmem(struct kvm *kvm)
  562. {
  563. int i;
  564. for (i = 0; i < kvm->nmemslots; ++i)
  565. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  566. }
  567. static void kvm_destroy_vm(struct kvm *kvm)
  568. {
  569. struct mm_struct *mm = kvm->mm;
  570. spin_lock(&kvm_lock);
  571. list_del(&kvm->vm_list);
  572. spin_unlock(&kvm_lock);
  573. kvm_io_bus_destroy(&kvm->pio_bus);
  574. kvm_io_bus_destroy(&kvm->mmio_bus);
  575. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  576. if (kvm->coalesced_mmio_ring != NULL)
  577. free_page((unsigned long)kvm->coalesced_mmio_ring);
  578. #endif
  579. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  580. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  581. #endif
  582. kvm_arch_destroy_vm(kvm);
  583. mmdrop(mm);
  584. }
  585. void kvm_get_kvm(struct kvm *kvm)
  586. {
  587. atomic_inc(&kvm->users_count);
  588. }
  589. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  590. void kvm_put_kvm(struct kvm *kvm)
  591. {
  592. if (atomic_dec_and_test(&kvm->users_count))
  593. kvm_destroy_vm(kvm);
  594. }
  595. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  596. static int kvm_vm_release(struct inode *inode, struct file *filp)
  597. {
  598. struct kvm *kvm = filp->private_data;
  599. kvm_put_kvm(kvm);
  600. return 0;
  601. }
  602. /*
  603. * Allocate some memory and give it an address in the guest physical address
  604. * space.
  605. *
  606. * Discontiguous memory is allowed, mostly for framebuffers.
  607. *
  608. * Must be called holding mmap_sem for write.
  609. */
  610. int __kvm_set_memory_region(struct kvm *kvm,
  611. struct kvm_userspace_memory_region *mem,
  612. int user_alloc)
  613. {
  614. int r;
  615. gfn_t base_gfn;
  616. unsigned long npages;
  617. unsigned long i;
  618. struct kvm_memory_slot *memslot;
  619. struct kvm_memory_slot old, new;
  620. r = -EINVAL;
  621. /* General sanity checks */
  622. if (mem->memory_size & (PAGE_SIZE - 1))
  623. goto out;
  624. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  625. goto out;
  626. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  627. goto out;
  628. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  629. goto out;
  630. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  631. goto out;
  632. memslot = &kvm->memslots[mem->slot];
  633. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  634. npages = mem->memory_size >> PAGE_SHIFT;
  635. if (!npages)
  636. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  637. new = old = *memslot;
  638. new.base_gfn = base_gfn;
  639. new.npages = npages;
  640. new.flags = mem->flags;
  641. /* Disallow changing a memory slot's size. */
  642. r = -EINVAL;
  643. if (npages && old.npages && npages != old.npages)
  644. goto out_free;
  645. /* Check for overlaps */
  646. r = -EEXIST;
  647. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  648. struct kvm_memory_slot *s = &kvm->memslots[i];
  649. if (s == memslot)
  650. continue;
  651. if (!((base_gfn + npages <= s->base_gfn) ||
  652. (base_gfn >= s->base_gfn + s->npages)))
  653. goto out_free;
  654. }
  655. /* Free page dirty bitmap if unneeded */
  656. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  657. new.dirty_bitmap = NULL;
  658. r = -ENOMEM;
  659. /* Allocate if a slot is being created */
  660. #ifndef CONFIG_S390
  661. if (npages && !new.rmap) {
  662. new.rmap = vmalloc(npages * sizeof(struct page *));
  663. if (!new.rmap)
  664. goto out_free;
  665. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  666. new.user_alloc = user_alloc;
  667. /*
  668. * hva_to_rmmap() serialzies with the mmu_lock and to be
  669. * safe it has to ignore memslots with !user_alloc &&
  670. * !userspace_addr.
  671. */
  672. if (user_alloc)
  673. new.userspace_addr = mem->userspace_addr;
  674. else
  675. new.userspace_addr = 0;
  676. }
  677. if (npages && !new.lpage_info) {
  678. int largepages = npages / KVM_PAGES_PER_HPAGE;
  679. if (npages % KVM_PAGES_PER_HPAGE)
  680. largepages++;
  681. if (base_gfn % KVM_PAGES_PER_HPAGE)
  682. largepages++;
  683. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  684. if (!new.lpage_info)
  685. goto out_free;
  686. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  687. if (base_gfn % KVM_PAGES_PER_HPAGE)
  688. new.lpage_info[0].write_count = 1;
  689. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  690. new.lpage_info[largepages-1].write_count = 1;
  691. }
  692. /* Allocate page dirty bitmap if needed */
  693. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  694. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  695. new.dirty_bitmap = vmalloc(dirty_bytes);
  696. if (!new.dirty_bitmap)
  697. goto out_free;
  698. memset(new.dirty_bitmap, 0, dirty_bytes);
  699. }
  700. #endif /* not defined CONFIG_S390 */
  701. if (!npages)
  702. kvm_arch_flush_shadow(kvm);
  703. spin_lock(&kvm->mmu_lock);
  704. if (mem->slot >= kvm->nmemslots)
  705. kvm->nmemslots = mem->slot + 1;
  706. *memslot = new;
  707. spin_unlock(&kvm->mmu_lock);
  708. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  709. if (r) {
  710. spin_lock(&kvm->mmu_lock);
  711. *memslot = old;
  712. spin_unlock(&kvm->mmu_lock);
  713. goto out_free;
  714. }
  715. kvm_free_physmem_slot(&old, &new);
  716. #ifdef CONFIG_DMAR
  717. /* map the pages in iommu page table */
  718. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  719. if (r)
  720. goto out;
  721. #endif
  722. return 0;
  723. out_free:
  724. kvm_free_physmem_slot(&new, &old);
  725. out:
  726. return r;
  727. }
  728. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  729. int kvm_set_memory_region(struct kvm *kvm,
  730. struct kvm_userspace_memory_region *mem,
  731. int user_alloc)
  732. {
  733. int r;
  734. down_write(&kvm->slots_lock);
  735. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  736. up_write(&kvm->slots_lock);
  737. return r;
  738. }
  739. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  740. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  741. struct
  742. kvm_userspace_memory_region *mem,
  743. int user_alloc)
  744. {
  745. if (mem->slot >= KVM_MEMORY_SLOTS)
  746. return -EINVAL;
  747. return kvm_set_memory_region(kvm, mem, user_alloc);
  748. }
  749. int kvm_get_dirty_log(struct kvm *kvm,
  750. struct kvm_dirty_log *log, int *is_dirty)
  751. {
  752. struct kvm_memory_slot *memslot;
  753. int r, i;
  754. int n;
  755. unsigned long any = 0;
  756. r = -EINVAL;
  757. if (log->slot >= KVM_MEMORY_SLOTS)
  758. goto out;
  759. memslot = &kvm->memslots[log->slot];
  760. r = -ENOENT;
  761. if (!memslot->dirty_bitmap)
  762. goto out;
  763. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  764. for (i = 0; !any && i < n/sizeof(long); ++i)
  765. any = memslot->dirty_bitmap[i];
  766. r = -EFAULT;
  767. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  768. goto out;
  769. if (any)
  770. *is_dirty = 1;
  771. r = 0;
  772. out:
  773. return r;
  774. }
  775. int is_error_page(struct page *page)
  776. {
  777. return page == bad_page;
  778. }
  779. EXPORT_SYMBOL_GPL(is_error_page);
  780. int is_error_pfn(pfn_t pfn)
  781. {
  782. return pfn == bad_pfn;
  783. }
  784. EXPORT_SYMBOL_GPL(is_error_pfn);
  785. static inline unsigned long bad_hva(void)
  786. {
  787. return PAGE_OFFSET;
  788. }
  789. int kvm_is_error_hva(unsigned long addr)
  790. {
  791. return addr == bad_hva();
  792. }
  793. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  794. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  795. {
  796. int i;
  797. for (i = 0; i < kvm->nmemslots; ++i) {
  798. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  799. if (gfn >= memslot->base_gfn
  800. && gfn < memslot->base_gfn + memslot->npages)
  801. return memslot;
  802. }
  803. return NULL;
  804. }
  805. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  806. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  807. {
  808. gfn = unalias_gfn(kvm, gfn);
  809. return gfn_to_memslot_unaliased(kvm, gfn);
  810. }
  811. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  812. {
  813. int i;
  814. gfn = unalias_gfn(kvm, gfn);
  815. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  816. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  817. if (gfn >= memslot->base_gfn
  818. && gfn < memslot->base_gfn + memslot->npages)
  819. return 1;
  820. }
  821. return 0;
  822. }
  823. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  824. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  825. {
  826. struct kvm_memory_slot *slot;
  827. gfn = unalias_gfn(kvm, gfn);
  828. slot = gfn_to_memslot_unaliased(kvm, gfn);
  829. if (!slot)
  830. return bad_hva();
  831. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  832. }
  833. EXPORT_SYMBOL_GPL(gfn_to_hva);
  834. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  835. {
  836. struct page *page[1];
  837. unsigned long addr;
  838. int npages;
  839. pfn_t pfn;
  840. might_sleep();
  841. addr = gfn_to_hva(kvm, gfn);
  842. if (kvm_is_error_hva(addr)) {
  843. get_page(bad_page);
  844. return page_to_pfn(bad_page);
  845. }
  846. npages = get_user_pages_fast(addr, 1, 1, page);
  847. if (unlikely(npages != 1)) {
  848. struct vm_area_struct *vma;
  849. down_read(&current->mm->mmap_sem);
  850. vma = find_vma(current->mm, addr);
  851. if (vma == NULL || addr < vma->vm_start ||
  852. !(vma->vm_flags & VM_PFNMAP)) {
  853. up_read(&current->mm->mmap_sem);
  854. get_page(bad_page);
  855. return page_to_pfn(bad_page);
  856. }
  857. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  858. up_read(&current->mm->mmap_sem);
  859. BUG_ON(!kvm_is_mmio_pfn(pfn));
  860. } else
  861. pfn = page_to_pfn(page[0]);
  862. return pfn;
  863. }
  864. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  865. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  866. {
  867. pfn_t pfn;
  868. pfn = gfn_to_pfn(kvm, gfn);
  869. if (!kvm_is_mmio_pfn(pfn))
  870. return pfn_to_page(pfn);
  871. WARN_ON(kvm_is_mmio_pfn(pfn));
  872. get_page(bad_page);
  873. return bad_page;
  874. }
  875. EXPORT_SYMBOL_GPL(gfn_to_page);
  876. void kvm_release_page_clean(struct page *page)
  877. {
  878. kvm_release_pfn_clean(page_to_pfn(page));
  879. }
  880. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  881. void kvm_release_pfn_clean(pfn_t pfn)
  882. {
  883. if (!kvm_is_mmio_pfn(pfn))
  884. put_page(pfn_to_page(pfn));
  885. }
  886. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  887. void kvm_release_page_dirty(struct page *page)
  888. {
  889. kvm_release_pfn_dirty(page_to_pfn(page));
  890. }
  891. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  892. void kvm_release_pfn_dirty(pfn_t pfn)
  893. {
  894. kvm_set_pfn_dirty(pfn);
  895. kvm_release_pfn_clean(pfn);
  896. }
  897. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  898. void kvm_set_page_dirty(struct page *page)
  899. {
  900. kvm_set_pfn_dirty(page_to_pfn(page));
  901. }
  902. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  903. void kvm_set_pfn_dirty(pfn_t pfn)
  904. {
  905. if (!kvm_is_mmio_pfn(pfn)) {
  906. struct page *page = pfn_to_page(pfn);
  907. if (!PageReserved(page))
  908. SetPageDirty(page);
  909. }
  910. }
  911. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  912. void kvm_set_pfn_accessed(pfn_t pfn)
  913. {
  914. if (!kvm_is_mmio_pfn(pfn))
  915. mark_page_accessed(pfn_to_page(pfn));
  916. }
  917. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  918. void kvm_get_pfn(pfn_t pfn)
  919. {
  920. if (!kvm_is_mmio_pfn(pfn))
  921. get_page(pfn_to_page(pfn));
  922. }
  923. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  924. static int next_segment(unsigned long len, int offset)
  925. {
  926. if (len > PAGE_SIZE - offset)
  927. return PAGE_SIZE - offset;
  928. else
  929. return len;
  930. }
  931. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  932. int len)
  933. {
  934. int r;
  935. unsigned long addr;
  936. addr = gfn_to_hva(kvm, gfn);
  937. if (kvm_is_error_hva(addr))
  938. return -EFAULT;
  939. r = copy_from_user(data, (void __user *)addr + offset, len);
  940. if (r)
  941. return -EFAULT;
  942. return 0;
  943. }
  944. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  945. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  946. {
  947. gfn_t gfn = gpa >> PAGE_SHIFT;
  948. int seg;
  949. int offset = offset_in_page(gpa);
  950. int ret;
  951. while ((seg = next_segment(len, offset)) != 0) {
  952. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  953. if (ret < 0)
  954. return ret;
  955. offset = 0;
  956. len -= seg;
  957. data += seg;
  958. ++gfn;
  959. }
  960. return 0;
  961. }
  962. EXPORT_SYMBOL_GPL(kvm_read_guest);
  963. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  964. unsigned long len)
  965. {
  966. int r;
  967. unsigned long addr;
  968. gfn_t gfn = gpa >> PAGE_SHIFT;
  969. int offset = offset_in_page(gpa);
  970. addr = gfn_to_hva(kvm, gfn);
  971. if (kvm_is_error_hva(addr))
  972. return -EFAULT;
  973. pagefault_disable();
  974. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  975. pagefault_enable();
  976. if (r)
  977. return -EFAULT;
  978. return 0;
  979. }
  980. EXPORT_SYMBOL(kvm_read_guest_atomic);
  981. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  982. int offset, int len)
  983. {
  984. int r;
  985. unsigned long addr;
  986. addr = gfn_to_hva(kvm, gfn);
  987. if (kvm_is_error_hva(addr))
  988. return -EFAULT;
  989. r = copy_to_user((void __user *)addr + offset, data, len);
  990. if (r)
  991. return -EFAULT;
  992. mark_page_dirty(kvm, gfn);
  993. return 0;
  994. }
  995. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  996. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  997. unsigned long len)
  998. {
  999. gfn_t gfn = gpa >> PAGE_SHIFT;
  1000. int seg;
  1001. int offset = offset_in_page(gpa);
  1002. int ret;
  1003. while ((seg = next_segment(len, offset)) != 0) {
  1004. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1005. if (ret < 0)
  1006. return ret;
  1007. offset = 0;
  1008. len -= seg;
  1009. data += seg;
  1010. ++gfn;
  1011. }
  1012. return 0;
  1013. }
  1014. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1015. {
  1016. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1017. }
  1018. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1019. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1020. {
  1021. gfn_t gfn = gpa >> PAGE_SHIFT;
  1022. int seg;
  1023. int offset = offset_in_page(gpa);
  1024. int ret;
  1025. while ((seg = next_segment(len, offset)) != 0) {
  1026. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1027. if (ret < 0)
  1028. return ret;
  1029. offset = 0;
  1030. len -= seg;
  1031. ++gfn;
  1032. }
  1033. return 0;
  1034. }
  1035. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1036. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1037. {
  1038. struct kvm_memory_slot *memslot;
  1039. gfn = unalias_gfn(kvm, gfn);
  1040. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1041. if (memslot && memslot->dirty_bitmap) {
  1042. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1043. /* avoid RMW */
  1044. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1045. set_bit(rel_gfn, memslot->dirty_bitmap);
  1046. }
  1047. }
  1048. /*
  1049. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1050. */
  1051. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1052. {
  1053. DEFINE_WAIT(wait);
  1054. for (;;) {
  1055. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1056. if (kvm_cpu_has_interrupt(vcpu) ||
  1057. kvm_cpu_has_pending_timer(vcpu) ||
  1058. kvm_arch_vcpu_runnable(vcpu)) {
  1059. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1060. break;
  1061. }
  1062. if (signal_pending(current))
  1063. break;
  1064. vcpu_put(vcpu);
  1065. schedule();
  1066. vcpu_load(vcpu);
  1067. }
  1068. finish_wait(&vcpu->wq, &wait);
  1069. }
  1070. void kvm_resched(struct kvm_vcpu *vcpu)
  1071. {
  1072. if (!need_resched())
  1073. return;
  1074. cond_resched();
  1075. }
  1076. EXPORT_SYMBOL_GPL(kvm_resched);
  1077. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1078. {
  1079. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1080. struct page *page;
  1081. if (vmf->pgoff == 0)
  1082. page = virt_to_page(vcpu->run);
  1083. #ifdef CONFIG_X86
  1084. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1085. page = virt_to_page(vcpu->arch.pio_data);
  1086. #endif
  1087. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1088. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1089. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1090. #endif
  1091. else
  1092. return VM_FAULT_SIGBUS;
  1093. get_page(page);
  1094. vmf->page = page;
  1095. return 0;
  1096. }
  1097. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1098. .fault = kvm_vcpu_fault,
  1099. };
  1100. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1101. {
  1102. vma->vm_ops = &kvm_vcpu_vm_ops;
  1103. return 0;
  1104. }
  1105. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1106. {
  1107. struct kvm_vcpu *vcpu = filp->private_data;
  1108. kvm_put_kvm(vcpu->kvm);
  1109. return 0;
  1110. }
  1111. static const struct file_operations kvm_vcpu_fops = {
  1112. .release = kvm_vcpu_release,
  1113. .unlocked_ioctl = kvm_vcpu_ioctl,
  1114. .compat_ioctl = kvm_vcpu_ioctl,
  1115. .mmap = kvm_vcpu_mmap,
  1116. };
  1117. /*
  1118. * Allocates an inode for the vcpu.
  1119. */
  1120. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1121. {
  1122. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1123. if (fd < 0)
  1124. kvm_put_kvm(vcpu->kvm);
  1125. return fd;
  1126. }
  1127. /*
  1128. * Creates some virtual cpus. Good luck creating more than one.
  1129. */
  1130. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1131. {
  1132. int r;
  1133. struct kvm_vcpu *vcpu;
  1134. if (!valid_vcpu(n))
  1135. return -EINVAL;
  1136. vcpu = kvm_arch_vcpu_create(kvm, n);
  1137. if (IS_ERR(vcpu))
  1138. return PTR_ERR(vcpu);
  1139. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1140. r = kvm_arch_vcpu_setup(vcpu);
  1141. if (r)
  1142. return r;
  1143. mutex_lock(&kvm->lock);
  1144. if (kvm->vcpus[n]) {
  1145. r = -EEXIST;
  1146. goto vcpu_destroy;
  1147. }
  1148. kvm->vcpus[n] = vcpu;
  1149. mutex_unlock(&kvm->lock);
  1150. /* Now it's all set up, let userspace reach it */
  1151. kvm_get_kvm(kvm);
  1152. r = create_vcpu_fd(vcpu);
  1153. if (r < 0)
  1154. goto unlink;
  1155. return r;
  1156. unlink:
  1157. mutex_lock(&kvm->lock);
  1158. kvm->vcpus[n] = NULL;
  1159. vcpu_destroy:
  1160. mutex_unlock(&kvm->lock);
  1161. kvm_arch_vcpu_destroy(vcpu);
  1162. return r;
  1163. }
  1164. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1165. {
  1166. if (sigset) {
  1167. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1168. vcpu->sigset_active = 1;
  1169. vcpu->sigset = *sigset;
  1170. } else
  1171. vcpu->sigset_active = 0;
  1172. return 0;
  1173. }
  1174. static long kvm_vcpu_ioctl(struct file *filp,
  1175. unsigned int ioctl, unsigned long arg)
  1176. {
  1177. struct kvm_vcpu *vcpu = filp->private_data;
  1178. void __user *argp = (void __user *)arg;
  1179. int r;
  1180. struct kvm_fpu *fpu = NULL;
  1181. struct kvm_sregs *kvm_sregs = NULL;
  1182. if (vcpu->kvm->mm != current->mm)
  1183. return -EIO;
  1184. switch (ioctl) {
  1185. case KVM_RUN:
  1186. r = -EINVAL;
  1187. if (arg)
  1188. goto out;
  1189. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1190. break;
  1191. case KVM_GET_REGS: {
  1192. struct kvm_regs *kvm_regs;
  1193. r = -ENOMEM;
  1194. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1195. if (!kvm_regs)
  1196. goto out;
  1197. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1198. if (r)
  1199. goto out_free1;
  1200. r = -EFAULT;
  1201. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1202. goto out_free1;
  1203. r = 0;
  1204. out_free1:
  1205. kfree(kvm_regs);
  1206. break;
  1207. }
  1208. case KVM_SET_REGS: {
  1209. struct kvm_regs *kvm_regs;
  1210. r = -ENOMEM;
  1211. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1212. if (!kvm_regs)
  1213. goto out;
  1214. r = -EFAULT;
  1215. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1216. goto out_free2;
  1217. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1218. if (r)
  1219. goto out_free2;
  1220. r = 0;
  1221. out_free2:
  1222. kfree(kvm_regs);
  1223. break;
  1224. }
  1225. case KVM_GET_SREGS: {
  1226. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1227. r = -ENOMEM;
  1228. if (!kvm_sregs)
  1229. goto out;
  1230. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1231. if (r)
  1232. goto out;
  1233. r = -EFAULT;
  1234. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1235. goto out;
  1236. r = 0;
  1237. break;
  1238. }
  1239. case KVM_SET_SREGS: {
  1240. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1241. r = -ENOMEM;
  1242. if (!kvm_sregs)
  1243. goto out;
  1244. r = -EFAULT;
  1245. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1246. goto out;
  1247. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1248. if (r)
  1249. goto out;
  1250. r = 0;
  1251. break;
  1252. }
  1253. case KVM_GET_MP_STATE: {
  1254. struct kvm_mp_state mp_state;
  1255. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1256. if (r)
  1257. goto out;
  1258. r = -EFAULT;
  1259. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1260. goto out;
  1261. r = 0;
  1262. break;
  1263. }
  1264. case KVM_SET_MP_STATE: {
  1265. struct kvm_mp_state mp_state;
  1266. r = -EFAULT;
  1267. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1268. goto out;
  1269. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1270. if (r)
  1271. goto out;
  1272. r = 0;
  1273. break;
  1274. }
  1275. case KVM_TRANSLATE: {
  1276. struct kvm_translation tr;
  1277. r = -EFAULT;
  1278. if (copy_from_user(&tr, argp, sizeof tr))
  1279. goto out;
  1280. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1281. if (r)
  1282. goto out;
  1283. r = -EFAULT;
  1284. if (copy_to_user(argp, &tr, sizeof tr))
  1285. goto out;
  1286. r = 0;
  1287. break;
  1288. }
  1289. case KVM_DEBUG_GUEST: {
  1290. struct kvm_debug_guest dbg;
  1291. r = -EFAULT;
  1292. if (copy_from_user(&dbg, argp, sizeof dbg))
  1293. goto out;
  1294. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1295. if (r)
  1296. goto out;
  1297. r = 0;
  1298. break;
  1299. }
  1300. case KVM_SET_SIGNAL_MASK: {
  1301. struct kvm_signal_mask __user *sigmask_arg = argp;
  1302. struct kvm_signal_mask kvm_sigmask;
  1303. sigset_t sigset, *p;
  1304. p = NULL;
  1305. if (argp) {
  1306. r = -EFAULT;
  1307. if (copy_from_user(&kvm_sigmask, argp,
  1308. sizeof kvm_sigmask))
  1309. goto out;
  1310. r = -EINVAL;
  1311. if (kvm_sigmask.len != sizeof sigset)
  1312. goto out;
  1313. r = -EFAULT;
  1314. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1315. sizeof sigset))
  1316. goto out;
  1317. p = &sigset;
  1318. }
  1319. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1320. break;
  1321. }
  1322. case KVM_GET_FPU: {
  1323. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1324. r = -ENOMEM;
  1325. if (!fpu)
  1326. goto out;
  1327. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1328. if (r)
  1329. goto out;
  1330. r = -EFAULT;
  1331. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1332. goto out;
  1333. r = 0;
  1334. break;
  1335. }
  1336. case KVM_SET_FPU: {
  1337. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1338. r = -ENOMEM;
  1339. if (!fpu)
  1340. goto out;
  1341. r = -EFAULT;
  1342. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1343. goto out;
  1344. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1345. if (r)
  1346. goto out;
  1347. r = 0;
  1348. break;
  1349. }
  1350. default:
  1351. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1352. }
  1353. out:
  1354. kfree(fpu);
  1355. kfree(kvm_sregs);
  1356. return r;
  1357. }
  1358. static long kvm_vm_ioctl(struct file *filp,
  1359. unsigned int ioctl, unsigned long arg)
  1360. {
  1361. struct kvm *kvm = filp->private_data;
  1362. void __user *argp = (void __user *)arg;
  1363. int r;
  1364. if (kvm->mm != current->mm)
  1365. return -EIO;
  1366. switch (ioctl) {
  1367. case KVM_CREATE_VCPU:
  1368. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1369. if (r < 0)
  1370. goto out;
  1371. break;
  1372. case KVM_SET_USER_MEMORY_REGION: {
  1373. struct kvm_userspace_memory_region kvm_userspace_mem;
  1374. r = -EFAULT;
  1375. if (copy_from_user(&kvm_userspace_mem, argp,
  1376. sizeof kvm_userspace_mem))
  1377. goto out;
  1378. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1379. if (r)
  1380. goto out;
  1381. break;
  1382. }
  1383. case KVM_GET_DIRTY_LOG: {
  1384. struct kvm_dirty_log log;
  1385. r = -EFAULT;
  1386. if (copy_from_user(&log, argp, sizeof log))
  1387. goto out;
  1388. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1389. if (r)
  1390. goto out;
  1391. break;
  1392. }
  1393. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1394. case KVM_REGISTER_COALESCED_MMIO: {
  1395. struct kvm_coalesced_mmio_zone zone;
  1396. r = -EFAULT;
  1397. if (copy_from_user(&zone, argp, sizeof zone))
  1398. goto out;
  1399. r = -ENXIO;
  1400. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1401. if (r)
  1402. goto out;
  1403. r = 0;
  1404. break;
  1405. }
  1406. case KVM_UNREGISTER_COALESCED_MMIO: {
  1407. struct kvm_coalesced_mmio_zone zone;
  1408. r = -EFAULT;
  1409. if (copy_from_user(&zone, argp, sizeof zone))
  1410. goto out;
  1411. r = -ENXIO;
  1412. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1413. if (r)
  1414. goto out;
  1415. r = 0;
  1416. break;
  1417. }
  1418. #endif
  1419. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1420. case KVM_ASSIGN_PCI_DEVICE: {
  1421. struct kvm_assigned_pci_dev assigned_dev;
  1422. r = -EFAULT;
  1423. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1424. goto out;
  1425. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1426. if (r)
  1427. goto out;
  1428. break;
  1429. }
  1430. case KVM_ASSIGN_IRQ: {
  1431. struct kvm_assigned_irq assigned_irq;
  1432. r = -EFAULT;
  1433. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1434. goto out;
  1435. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1436. if (r)
  1437. goto out;
  1438. break;
  1439. }
  1440. #endif
  1441. default:
  1442. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1443. }
  1444. out:
  1445. return r;
  1446. }
  1447. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1448. {
  1449. struct page *page[1];
  1450. unsigned long addr;
  1451. int npages;
  1452. gfn_t gfn = vmf->pgoff;
  1453. struct kvm *kvm = vma->vm_file->private_data;
  1454. addr = gfn_to_hva(kvm, gfn);
  1455. if (kvm_is_error_hva(addr))
  1456. return VM_FAULT_SIGBUS;
  1457. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1458. NULL);
  1459. if (unlikely(npages != 1))
  1460. return VM_FAULT_SIGBUS;
  1461. vmf->page = page[0];
  1462. return 0;
  1463. }
  1464. static struct vm_operations_struct kvm_vm_vm_ops = {
  1465. .fault = kvm_vm_fault,
  1466. };
  1467. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1468. {
  1469. vma->vm_ops = &kvm_vm_vm_ops;
  1470. return 0;
  1471. }
  1472. static const struct file_operations kvm_vm_fops = {
  1473. .release = kvm_vm_release,
  1474. .unlocked_ioctl = kvm_vm_ioctl,
  1475. .compat_ioctl = kvm_vm_ioctl,
  1476. .mmap = kvm_vm_mmap,
  1477. };
  1478. static int kvm_dev_ioctl_create_vm(void)
  1479. {
  1480. int fd;
  1481. struct kvm *kvm;
  1482. kvm = kvm_create_vm();
  1483. if (IS_ERR(kvm))
  1484. return PTR_ERR(kvm);
  1485. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1486. if (fd < 0)
  1487. kvm_put_kvm(kvm);
  1488. return fd;
  1489. }
  1490. static long kvm_dev_ioctl(struct file *filp,
  1491. unsigned int ioctl, unsigned long arg)
  1492. {
  1493. long r = -EINVAL;
  1494. switch (ioctl) {
  1495. case KVM_GET_API_VERSION:
  1496. r = -EINVAL;
  1497. if (arg)
  1498. goto out;
  1499. r = KVM_API_VERSION;
  1500. break;
  1501. case KVM_CREATE_VM:
  1502. r = -EINVAL;
  1503. if (arg)
  1504. goto out;
  1505. r = kvm_dev_ioctl_create_vm();
  1506. break;
  1507. case KVM_CHECK_EXTENSION:
  1508. r = kvm_dev_ioctl_check_extension(arg);
  1509. break;
  1510. case KVM_GET_VCPU_MMAP_SIZE:
  1511. r = -EINVAL;
  1512. if (arg)
  1513. goto out;
  1514. r = PAGE_SIZE; /* struct kvm_run */
  1515. #ifdef CONFIG_X86
  1516. r += PAGE_SIZE; /* pio data page */
  1517. #endif
  1518. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1519. r += PAGE_SIZE; /* coalesced mmio ring page */
  1520. #endif
  1521. break;
  1522. case KVM_TRACE_ENABLE:
  1523. case KVM_TRACE_PAUSE:
  1524. case KVM_TRACE_DISABLE:
  1525. r = kvm_trace_ioctl(ioctl, arg);
  1526. break;
  1527. default:
  1528. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1529. }
  1530. out:
  1531. return r;
  1532. }
  1533. static struct file_operations kvm_chardev_ops = {
  1534. .unlocked_ioctl = kvm_dev_ioctl,
  1535. .compat_ioctl = kvm_dev_ioctl,
  1536. };
  1537. static struct miscdevice kvm_dev = {
  1538. KVM_MINOR,
  1539. "kvm",
  1540. &kvm_chardev_ops,
  1541. };
  1542. static void hardware_enable(void *junk)
  1543. {
  1544. int cpu = raw_smp_processor_id();
  1545. if (cpu_isset(cpu, cpus_hardware_enabled))
  1546. return;
  1547. cpu_set(cpu, cpus_hardware_enabled);
  1548. kvm_arch_hardware_enable(NULL);
  1549. }
  1550. static void hardware_disable(void *junk)
  1551. {
  1552. int cpu = raw_smp_processor_id();
  1553. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1554. return;
  1555. cpu_clear(cpu, cpus_hardware_enabled);
  1556. kvm_arch_hardware_disable(NULL);
  1557. }
  1558. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1559. void *v)
  1560. {
  1561. int cpu = (long)v;
  1562. val &= ~CPU_TASKS_FROZEN;
  1563. switch (val) {
  1564. case CPU_DYING:
  1565. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1566. cpu);
  1567. hardware_disable(NULL);
  1568. break;
  1569. case CPU_UP_CANCELED:
  1570. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1571. cpu);
  1572. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1573. break;
  1574. case CPU_ONLINE:
  1575. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1576. cpu);
  1577. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1578. break;
  1579. }
  1580. return NOTIFY_OK;
  1581. }
  1582. asmlinkage void kvm_handle_fault_on_reboot(void)
  1583. {
  1584. if (kvm_rebooting)
  1585. /* spin while reset goes on */
  1586. while (true)
  1587. ;
  1588. /* Fault while not rebooting. We want the trace. */
  1589. BUG();
  1590. }
  1591. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1592. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1593. void *v)
  1594. {
  1595. if (val == SYS_RESTART) {
  1596. /*
  1597. * Some (well, at least mine) BIOSes hang on reboot if
  1598. * in vmx root mode.
  1599. */
  1600. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1601. kvm_rebooting = true;
  1602. on_each_cpu(hardware_disable, NULL, 1);
  1603. }
  1604. return NOTIFY_OK;
  1605. }
  1606. static struct notifier_block kvm_reboot_notifier = {
  1607. .notifier_call = kvm_reboot,
  1608. .priority = 0,
  1609. };
  1610. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1611. {
  1612. memset(bus, 0, sizeof(*bus));
  1613. }
  1614. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1615. {
  1616. int i;
  1617. for (i = 0; i < bus->dev_count; i++) {
  1618. struct kvm_io_device *pos = bus->devs[i];
  1619. kvm_iodevice_destructor(pos);
  1620. }
  1621. }
  1622. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  1623. gpa_t addr, int len, int is_write)
  1624. {
  1625. int i;
  1626. for (i = 0; i < bus->dev_count; i++) {
  1627. struct kvm_io_device *pos = bus->devs[i];
  1628. if (pos->in_range(pos, addr, len, is_write))
  1629. return pos;
  1630. }
  1631. return NULL;
  1632. }
  1633. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1634. {
  1635. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1636. bus->devs[bus->dev_count++] = dev;
  1637. }
  1638. static struct notifier_block kvm_cpu_notifier = {
  1639. .notifier_call = kvm_cpu_hotplug,
  1640. .priority = 20, /* must be > scheduler priority */
  1641. };
  1642. static int vm_stat_get(void *_offset, u64 *val)
  1643. {
  1644. unsigned offset = (long)_offset;
  1645. struct kvm *kvm;
  1646. *val = 0;
  1647. spin_lock(&kvm_lock);
  1648. list_for_each_entry(kvm, &vm_list, vm_list)
  1649. *val += *(u32 *)((void *)kvm + offset);
  1650. spin_unlock(&kvm_lock);
  1651. return 0;
  1652. }
  1653. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1654. static int vcpu_stat_get(void *_offset, u64 *val)
  1655. {
  1656. unsigned offset = (long)_offset;
  1657. struct kvm *kvm;
  1658. struct kvm_vcpu *vcpu;
  1659. int i;
  1660. *val = 0;
  1661. spin_lock(&kvm_lock);
  1662. list_for_each_entry(kvm, &vm_list, vm_list)
  1663. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1664. vcpu = kvm->vcpus[i];
  1665. if (vcpu)
  1666. *val += *(u32 *)((void *)vcpu + offset);
  1667. }
  1668. spin_unlock(&kvm_lock);
  1669. return 0;
  1670. }
  1671. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1672. static struct file_operations *stat_fops[] = {
  1673. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1674. [KVM_STAT_VM] = &vm_stat_fops,
  1675. };
  1676. static void kvm_init_debug(void)
  1677. {
  1678. struct kvm_stats_debugfs_item *p;
  1679. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1680. for (p = debugfs_entries; p->name; ++p)
  1681. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1682. (void *)(long)p->offset,
  1683. stat_fops[p->kind]);
  1684. }
  1685. static void kvm_exit_debug(void)
  1686. {
  1687. struct kvm_stats_debugfs_item *p;
  1688. for (p = debugfs_entries; p->name; ++p)
  1689. debugfs_remove(p->dentry);
  1690. debugfs_remove(kvm_debugfs_dir);
  1691. }
  1692. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1693. {
  1694. hardware_disable(NULL);
  1695. return 0;
  1696. }
  1697. static int kvm_resume(struct sys_device *dev)
  1698. {
  1699. hardware_enable(NULL);
  1700. return 0;
  1701. }
  1702. static struct sysdev_class kvm_sysdev_class = {
  1703. .name = "kvm",
  1704. .suspend = kvm_suspend,
  1705. .resume = kvm_resume,
  1706. };
  1707. static struct sys_device kvm_sysdev = {
  1708. .id = 0,
  1709. .cls = &kvm_sysdev_class,
  1710. };
  1711. struct page *bad_page;
  1712. pfn_t bad_pfn;
  1713. static inline
  1714. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1715. {
  1716. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1717. }
  1718. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1719. {
  1720. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1721. kvm_arch_vcpu_load(vcpu, cpu);
  1722. }
  1723. static void kvm_sched_out(struct preempt_notifier *pn,
  1724. struct task_struct *next)
  1725. {
  1726. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1727. kvm_arch_vcpu_put(vcpu);
  1728. }
  1729. int kvm_init(void *opaque, unsigned int vcpu_size,
  1730. struct module *module)
  1731. {
  1732. int r;
  1733. int cpu;
  1734. kvm_init_debug();
  1735. r = kvm_arch_init(opaque);
  1736. if (r)
  1737. goto out_fail;
  1738. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1739. if (bad_page == NULL) {
  1740. r = -ENOMEM;
  1741. goto out;
  1742. }
  1743. bad_pfn = page_to_pfn(bad_page);
  1744. r = kvm_arch_hardware_setup();
  1745. if (r < 0)
  1746. goto out_free_0;
  1747. for_each_online_cpu(cpu) {
  1748. smp_call_function_single(cpu,
  1749. kvm_arch_check_processor_compat,
  1750. &r, 1);
  1751. if (r < 0)
  1752. goto out_free_1;
  1753. }
  1754. on_each_cpu(hardware_enable, NULL, 1);
  1755. r = register_cpu_notifier(&kvm_cpu_notifier);
  1756. if (r)
  1757. goto out_free_2;
  1758. register_reboot_notifier(&kvm_reboot_notifier);
  1759. r = sysdev_class_register(&kvm_sysdev_class);
  1760. if (r)
  1761. goto out_free_3;
  1762. r = sysdev_register(&kvm_sysdev);
  1763. if (r)
  1764. goto out_free_4;
  1765. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1766. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1767. __alignof__(struct kvm_vcpu),
  1768. 0, NULL);
  1769. if (!kvm_vcpu_cache) {
  1770. r = -ENOMEM;
  1771. goto out_free_5;
  1772. }
  1773. kvm_chardev_ops.owner = module;
  1774. r = misc_register(&kvm_dev);
  1775. if (r) {
  1776. printk(KERN_ERR "kvm: misc device register failed\n");
  1777. goto out_free;
  1778. }
  1779. kvm_preempt_ops.sched_in = kvm_sched_in;
  1780. kvm_preempt_ops.sched_out = kvm_sched_out;
  1781. return 0;
  1782. out_free:
  1783. kmem_cache_destroy(kvm_vcpu_cache);
  1784. out_free_5:
  1785. sysdev_unregister(&kvm_sysdev);
  1786. out_free_4:
  1787. sysdev_class_unregister(&kvm_sysdev_class);
  1788. out_free_3:
  1789. unregister_reboot_notifier(&kvm_reboot_notifier);
  1790. unregister_cpu_notifier(&kvm_cpu_notifier);
  1791. out_free_2:
  1792. on_each_cpu(hardware_disable, NULL, 1);
  1793. out_free_1:
  1794. kvm_arch_hardware_unsetup();
  1795. out_free_0:
  1796. __free_page(bad_page);
  1797. out:
  1798. kvm_arch_exit();
  1799. kvm_exit_debug();
  1800. out_fail:
  1801. return r;
  1802. }
  1803. EXPORT_SYMBOL_GPL(kvm_init);
  1804. void kvm_exit(void)
  1805. {
  1806. kvm_trace_cleanup();
  1807. misc_deregister(&kvm_dev);
  1808. kmem_cache_destroy(kvm_vcpu_cache);
  1809. sysdev_unregister(&kvm_sysdev);
  1810. sysdev_class_unregister(&kvm_sysdev_class);
  1811. unregister_reboot_notifier(&kvm_reboot_notifier);
  1812. unregister_cpu_notifier(&kvm_cpu_notifier);
  1813. on_each_cpu(hardware_disable, NULL, 1);
  1814. kvm_arch_hardware_unsetup();
  1815. kvm_arch_exit();
  1816. kvm_exit_debug();
  1817. __free_page(bad_page);
  1818. }
  1819. EXPORT_SYMBOL_GPL(kvm_exit);