vc.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757
  1. /*
  2. * OMAP Voltage Controller (VC) interface
  3. *
  4. * Copyright (C) 2011 Texas Instruments, Inc.
  5. *
  6. * This file is licensed under the terms of the GNU General Public
  7. * License version 2. This program is licensed "as is" without any
  8. * warranty of any kind, whether express or implied.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/bug.h>
  14. #include <linux/io.h>
  15. #include <asm/div64.h>
  16. #include "iomap.h"
  17. #include "soc.h"
  18. #include "voltage.h"
  19. #include "vc.h"
  20. #include "prm-regbits-34xx.h"
  21. #include "prm-regbits-44xx.h"
  22. #include "prm44xx.h"
  23. #include "pm.h"
  24. #include "scrm44xx.h"
  25. #include "control.h"
  26. /**
  27. * struct omap_vc_channel_cfg - describe the cfg_channel bitfield
  28. * @sa: bit for slave address
  29. * @rav: bit for voltage configuration register
  30. * @rac: bit for command configuration register
  31. * @racen: enable bit for RAC
  32. * @cmd: bit for command value set selection
  33. *
  34. * Channel configuration bits, common for OMAP3+
  35. * OMAP3 register: PRM_VC_CH_CONF
  36. * OMAP4 register: PRM_VC_CFG_CHANNEL
  37. * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
  38. */
  39. struct omap_vc_channel_cfg {
  40. u8 sa;
  41. u8 rav;
  42. u8 rac;
  43. u8 racen;
  44. u8 cmd;
  45. };
  46. static struct omap_vc_channel_cfg vc_default_channel_cfg = {
  47. .sa = BIT(0),
  48. .rav = BIT(1),
  49. .rac = BIT(2),
  50. .racen = BIT(3),
  51. .cmd = BIT(4),
  52. };
  53. /*
  54. * On OMAP3+, all VC channels have the above default bitfield
  55. * configuration, except the OMAP4 MPU channel. This appears
  56. * to be a freak accident as every other VC channel has the
  57. * default configuration, thus creating a mutant channel config.
  58. */
  59. static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
  60. .sa = BIT(0),
  61. .rav = BIT(2),
  62. .rac = BIT(3),
  63. .racen = BIT(4),
  64. .cmd = BIT(1),
  65. };
  66. static struct omap_vc_channel_cfg *vc_cfg_bits;
  67. /* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */
  68. static u32 sr_i2c_pcb_length = 63;
  69. #define CFG_CHANNEL_MASK 0x1f
  70. /**
  71. * omap_vc_config_channel - configure VC channel to PMIC mappings
  72. * @voltdm: pointer to voltagdomain defining the desired VC channel
  73. *
  74. * Configures the VC channel to PMIC mappings for the following
  75. * PMIC settings
  76. * - i2c slave address (SA)
  77. * - voltage configuration address (RAV)
  78. * - command configuration address (RAC) and enable bit (RACEN)
  79. * - command values for ON, ONLP, RET and OFF (CMD)
  80. *
  81. * This function currently only allows flexible configuration of the
  82. * non-default channel. Starting with OMAP4, there are more than 2
  83. * channels, with one defined as the default (on OMAP4, it's MPU.)
  84. * Only the non-default channel can be configured.
  85. */
  86. static int omap_vc_config_channel(struct voltagedomain *voltdm)
  87. {
  88. struct omap_vc_channel *vc = voltdm->vc;
  89. /*
  90. * For default channel, the only configurable bit is RACEN.
  91. * All others must stay at zero (see function comment above.)
  92. */
  93. if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
  94. vc->cfg_channel &= vc_cfg_bits->racen;
  95. voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
  96. vc->cfg_channel << vc->cfg_channel_sa_shift,
  97. vc->cfg_channel_reg);
  98. return 0;
  99. }
  100. /* Voltage scale and accessory APIs */
  101. int omap_vc_pre_scale(struct voltagedomain *voltdm,
  102. unsigned long target_volt,
  103. u8 *target_vsel, u8 *current_vsel)
  104. {
  105. struct omap_vc_channel *vc = voltdm->vc;
  106. u32 vc_cmdval;
  107. /* Check if sufficient pmic info is available for this vdd */
  108. if (!voltdm->pmic) {
  109. pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
  110. __func__, voltdm->name);
  111. return -EINVAL;
  112. }
  113. if (!voltdm->pmic->uv_to_vsel) {
  114. pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n",
  115. __func__, voltdm->name);
  116. return -ENODATA;
  117. }
  118. if (!voltdm->read || !voltdm->write) {
  119. pr_err("%s: No read/write API for accessing vdd_%s regs\n",
  120. __func__, voltdm->name);
  121. return -EINVAL;
  122. }
  123. *target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
  124. *current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt);
  125. /* Setting the ON voltage to the new target voltage */
  126. vc_cmdval = voltdm->read(vc->cmdval_reg);
  127. vc_cmdval &= ~vc->common->cmd_on_mask;
  128. vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
  129. voltdm->write(vc_cmdval, vc->cmdval_reg);
  130. voltdm->vc_param->on = target_volt;
  131. omap_vp_update_errorgain(voltdm, target_volt);
  132. return 0;
  133. }
  134. void omap_vc_post_scale(struct voltagedomain *voltdm,
  135. unsigned long target_volt,
  136. u8 target_vsel, u8 current_vsel)
  137. {
  138. u32 smps_steps = 0, smps_delay = 0;
  139. smps_steps = abs(target_vsel - current_vsel);
  140. /* SMPS slew rate / step size. 2us added as buffer. */
  141. smps_delay = ((smps_steps * voltdm->pmic->step_size) /
  142. voltdm->pmic->slew_rate) + 2;
  143. udelay(smps_delay);
  144. }
  145. /* vc_bypass_scale - VC bypass method of voltage scaling */
  146. int omap_vc_bypass_scale(struct voltagedomain *voltdm,
  147. unsigned long target_volt)
  148. {
  149. struct omap_vc_channel *vc = voltdm->vc;
  150. u32 loop_cnt = 0, retries_cnt = 0;
  151. u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
  152. u8 target_vsel, current_vsel;
  153. int ret;
  154. ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, &current_vsel);
  155. if (ret)
  156. return ret;
  157. vc_valid = vc->common->valid;
  158. vc_bypass_val_reg = vc->common->bypass_val_reg;
  159. vc_bypass_value = (target_vsel << vc->common->data_shift) |
  160. (vc->volt_reg_addr << vc->common->regaddr_shift) |
  161. (vc->i2c_slave_addr << vc->common->slaveaddr_shift);
  162. voltdm->write(vc_bypass_value, vc_bypass_val_reg);
  163. voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
  164. vc_bypass_value = voltdm->read(vc_bypass_val_reg);
  165. /*
  166. * Loop till the bypass command is acknowledged from the SMPS.
  167. * NOTE: This is legacy code. The loop count and retry count needs
  168. * to be revisited.
  169. */
  170. while (!(vc_bypass_value & vc_valid)) {
  171. loop_cnt++;
  172. if (retries_cnt > 10) {
  173. pr_warning("%s: Retry count exceeded\n", __func__);
  174. return -ETIMEDOUT;
  175. }
  176. if (loop_cnt > 50) {
  177. retries_cnt++;
  178. loop_cnt = 0;
  179. udelay(10);
  180. }
  181. vc_bypass_value = voltdm->read(vc_bypass_val_reg);
  182. }
  183. omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
  184. return 0;
  185. }
  186. /* Convert microsecond value to number of 32kHz clock cycles */
  187. static inline u32 omap_usec_to_32k(u32 usec)
  188. {
  189. return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL);
  190. }
  191. /* Set oscillator setup time for omap3 */
  192. static void omap3_set_clksetup(u32 usec, struct voltagedomain *voltdm)
  193. {
  194. voltdm->write(omap_usec_to_32k(usec), OMAP3_PRM_CLKSETUP_OFFSET);
  195. }
  196. /**
  197. * omap3_set_i2c_timings - sets i2c sleep timings for a channel
  198. * @voltdm: channel to configure
  199. * @off_mode: select whether retention or off mode values used
  200. *
  201. * Calculates and sets up voltage controller to use I2C based
  202. * voltage scaling for sleep modes. This can be used for either off mode
  203. * or retention. Off mode has additionally an option to use sys_off_mode
  204. * pad, which uses a global signal to program the whole power IC to
  205. * off-mode.
  206. */
  207. static void omap3_set_i2c_timings(struct voltagedomain *voltdm, bool off_mode)
  208. {
  209. unsigned long voltsetup1;
  210. u32 tgt_volt;
  211. /*
  212. * Oscillator is shut down only if we are using sys_off_mode pad,
  213. * thus we set a minimal setup time here
  214. */
  215. omap3_set_clksetup(1, voltdm);
  216. if (off_mode)
  217. tgt_volt = voltdm->vc_param->off;
  218. else
  219. tgt_volt = voltdm->vc_param->ret;
  220. voltsetup1 = (voltdm->vc_param->on - tgt_volt) /
  221. voltdm->pmic->slew_rate;
  222. voltsetup1 = voltsetup1 * voltdm->sys_clk.rate / 8 / 1000000 + 1;
  223. voltdm->rmw(voltdm->vfsm->voltsetup_mask,
  224. voltsetup1 << __ffs(voltdm->vfsm->voltsetup_mask),
  225. voltdm->vfsm->voltsetup_reg);
  226. /*
  227. * pmic is not controlling the voltage scaling during retention,
  228. * thus set voltsetup2 to 0
  229. */
  230. voltdm->write(0, OMAP3_PRM_VOLTSETUP2_OFFSET);
  231. }
  232. /**
  233. * omap3_set_off_timings - sets off-mode timings for a channel
  234. * @voltdm: channel to configure
  235. *
  236. * Calculates and sets up off-mode timings for a channel. Off-mode
  237. * can use either I2C based voltage scaling, or alternatively
  238. * sys_off_mode pad can be used to send a global command to power IC.
  239. * This function first checks which mode is being used, and calls
  240. * omap3_set_i2c_timings() if the system is using I2C control mode.
  241. * sys_off_mode has the additional benefit that voltages can be
  242. * scaled to zero volt level with TWL4030 / TWL5030, I2C can only
  243. * scale to 600mV.
  244. */
  245. static void omap3_set_off_timings(struct voltagedomain *voltdm)
  246. {
  247. unsigned long clksetup;
  248. unsigned long voltsetup2;
  249. unsigned long voltsetup2_old;
  250. u32 val;
  251. u32 tstart, tshut;
  252. /* check if sys_off_mode is used to control off-mode voltages */
  253. val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET);
  254. if (!(val & OMAP3430_SEL_OFF_MASK)) {
  255. /* No, omap is controlling them over I2C */
  256. omap3_set_i2c_timings(voltdm, true);
  257. return;
  258. }
  259. omap_pm_get_oscillator(&tstart, &tshut);
  260. omap3_set_clksetup(tstart, voltdm);
  261. clksetup = voltdm->read(OMAP3_PRM_CLKSETUP_OFFSET);
  262. /* voltsetup 2 in us */
  263. voltsetup2 = voltdm->vc_param->on / voltdm->pmic->slew_rate;
  264. /* convert to 32k clk cycles */
  265. voltsetup2 = DIV_ROUND_UP(voltsetup2 * 32768, 1000000);
  266. voltsetup2_old = voltdm->read(OMAP3_PRM_VOLTSETUP2_OFFSET);
  267. /*
  268. * Update voltsetup2 if higher than current value (needed because
  269. * we have multiple channels with different ramp times), also
  270. * update voltoffset always to value recommended by TRM
  271. */
  272. if (voltsetup2 > voltsetup2_old) {
  273. voltdm->write(voltsetup2, OMAP3_PRM_VOLTSETUP2_OFFSET);
  274. voltdm->write(clksetup - voltsetup2,
  275. OMAP3_PRM_VOLTOFFSET_OFFSET);
  276. } else
  277. voltdm->write(clksetup - voltsetup2_old,
  278. OMAP3_PRM_VOLTOFFSET_OFFSET);
  279. /*
  280. * omap is not controlling voltage scaling during off-mode,
  281. * thus set voltsetup1 to 0
  282. */
  283. voltdm->rmw(voltdm->vfsm->voltsetup_mask, 0,
  284. voltdm->vfsm->voltsetup_reg);
  285. /* voltoffset must be clksetup minus voltsetup2 according to TRM */
  286. voltdm->write(clksetup - voltsetup2, OMAP3_PRM_VOLTOFFSET_OFFSET);
  287. }
  288. static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
  289. {
  290. omap3_set_off_timings(voltdm);
  291. }
  292. /**
  293. * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4
  294. * @voltdm: channel to calculate values for
  295. * @voltage_diff: voltage difference in microvolts
  296. *
  297. * Calculates voltage ramp prescaler + counter values for a voltage
  298. * difference on omap4. Returns a field value suitable for writing to
  299. * VOLTSETUP register for a channel in following format:
  300. * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference.
  301. */
  302. static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff)
  303. {
  304. u32 prescaler;
  305. u32 cycles;
  306. u32 time;
  307. time = voltage_diff / voltdm->pmic->slew_rate;
  308. cycles = voltdm->sys_clk.rate / 1000 * time / 1000;
  309. cycles /= 64;
  310. prescaler = 0;
  311. /* shift to next prescaler until no overflow */
  312. /* scale for div 256 = 64 * 4 */
  313. if (cycles > 63) {
  314. cycles /= 4;
  315. prescaler++;
  316. }
  317. /* scale for div 512 = 256 * 2 */
  318. if (cycles > 63) {
  319. cycles /= 2;
  320. prescaler++;
  321. }
  322. /* scale for div 2048 = 512 * 4 */
  323. if (cycles > 63) {
  324. cycles /= 4;
  325. prescaler++;
  326. }
  327. /* check for overflow => invalid ramp time */
  328. if (cycles > 63) {
  329. pr_warn("%s: invalid setuptime for vdd_%s\n", __func__,
  330. voltdm->name);
  331. return 0;
  332. }
  333. cycles++;
  334. return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
  335. (cycles << OMAP4430_RAMP_UP_COUNT_SHIFT);
  336. }
  337. /**
  338. * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield
  339. * @usec: microseconds
  340. * @shift: number of bits to shift left
  341. * @mask: bitfield mask
  342. *
  343. * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is
  344. * shifted to requested position, and checked agains the mask value.
  345. * If larger, forced to the max value of the field (i.e. the mask itself.)
  346. * Returns the SCRM bitfield value.
  347. */
  348. static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask)
  349. {
  350. u32 val;
  351. val = omap_usec_to_32k(usec) << shift;
  352. /* Check for overflow, if yes, force to max value */
  353. if (val > mask)
  354. val = mask;
  355. return val;
  356. }
  357. /**
  358. * omap4_set_timings - set voltage ramp timings for a channel
  359. * @voltdm: channel to configure
  360. * @off_mode: whether off-mode values are used
  361. *
  362. * Calculates and sets the voltage ramp up / down values for a channel.
  363. */
  364. static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode)
  365. {
  366. u32 val;
  367. u32 ramp;
  368. int offset;
  369. u32 tstart, tshut;
  370. if (off_mode) {
  371. ramp = omap4_calc_volt_ramp(voltdm,
  372. voltdm->vc_param->on - voltdm->vc_param->off);
  373. offset = voltdm->vfsm->voltsetup_off_reg;
  374. } else {
  375. ramp = omap4_calc_volt_ramp(voltdm,
  376. voltdm->vc_param->on - voltdm->vc_param->ret);
  377. offset = voltdm->vfsm->voltsetup_reg;
  378. }
  379. if (!ramp)
  380. return;
  381. val = voltdm->read(offset);
  382. val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT;
  383. val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT;
  384. voltdm->write(val, offset);
  385. omap_pm_get_oscillator(&tstart, &tshut);
  386. val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT,
  387. OMAP4_SETUPTIME_MASK);
  388. val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT,
  389. OMAP4_DOWNTIME_MASK);
  390. __raw_writel(val, OMAP4_SCRM_CLKSETUPTIME);
  391. }
  392. /* OMAP4 specific voltage init functions */
  393. static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
  394. {
  395. omap4_set_timings(voltdm, true);
  396. omap4_set_timings(voltdm, false);
  397. }
  398. struct i2c_init_data {
  399. u8 loadbits;
  400. u8 load;
  401. u8 hsscll_38_4;
  402. u8 hsscll_26;
  403. u8 hsscll_19_2;
  404. u8 hsscll_16_8;
  405. u8 hsscll_12;
  406. };
  407. static const __initdata struct i2c_init_data omap4_i2c_timing_data[] = {
  408. {
  409. .load = 50,
  410. .loadbits = 0x3,
  411. .hsscll_38_4 = 13,
  412. .hsscll_26 = 11,
  413. .hsscll_19_2 = 9,
  414. .hsscll_16_8 = 9,
  415. .hsscll_12 = 8,
  416. },
  417. {
  418. .load = 25,
  419. .loadbits = 0x2,
  420. .hsscll_38_4 = 13,
  421. .hsscll_26 = 11,
  422. .hsscll_19_2 = 9,
  423. .hsscll_16_8 = 9,
  424. .hsscll_12 = 8,
  425. },
  426. {
  427. .load = 12,
  428. .loadbits = 0x1,
  429. .hsscll_38_4 = 11,
  430. .hsscll_26 = 10,
  431. .hsscll_19_2 = 9,
  432. .hsscll_16_8 = 9,
  433. .hsscll_12 = 8,
  434. },
  435. {
  436. .load = 0,
  437. .loadbits = 0x0,
  438. .hsscll_38_4 = 12,
  439. .hsscll_26 = 10,
  440. .hsscll_19_2 = 9,
  441. .hsscll_16_8 = 8,
  442. .hsscll_12 = 8,
  443. },
  444. };
  445. /**
  446. * omap4_vc_i2c_timing_init - sets up board I2C timing parameters
  447. * @voltdm: voltagedomain pointer to get data from
  448. *
  449. * Use PMIC + board supplied settings for calculating the total I2C
  450. * channel capacitance and set the timing parameters based on this.
  451. * Pre-calculated values are provided in data tables, as it is not
  452. * too straightforward to calculate these runtime.
  453. */
  454. static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm)
  455. {
  456. u32 capacitance;
  457. u32 val;
  458. u16 hsscll;
  459. const struct i2c_init_data *i2c_data;
  460. if (!voltdm->pmic->i2c_high_speed) {
  461. pr_warn("%s: only high speed supported!\n", __func__);
  462. return;
  463. }
  464. /* PCB trace capacitance, 0.125pF / mm => mm / 8 */
  465. capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8);
  466. /* OMAP pad capacitance */
  467. capacitance += 4;
  468. /* PMIC pad capacitance */
  469. capacitance += voltdm->pmic->i2c_pad_load;
  470. /* Search for capacitance match in the table */
  471. i2c_data = omap4_i2c_timing_data;
  472. while (i2c_data->load > capacitance)
  473. i2c_data++;
  474. /* Select proper values based on sysclk frequency */
  475. switch (voltdm->sys_clk.rate) {
  476. case 38400000:
  477. hsscll = i2c_data->hsscll_38_4;
  478. break;
  479. case 26000000:
  480. hsscll = i2c_data->hsscll_26;
  481. break;
  482. case 19200000:
  483. hsscll = i2c_data->hsscll_19_2;
  484. break;
  485. case 16800000:
  486. hsscll = i2c_data->hsscll_16_8;
  487. break;
  488. case 12000000:
  489. hsscll = i2c_data->hsscll_12;
  490. break;
  491. default:
  492. pr_warn("%s: unsupported sysclk rate: %d!\n", __func__,
  493. voltdm->sys_clk.rate);
  494. return;
  495. }
  496. /* Loadbits define pull setup for the I2C channels */
  497. val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29;
  498. /* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */
  499. __raw_writel(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP +
  500. OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2));
  501. /* HSSCLH can always be zero */
  502. val = hsscll << OMAP4430_HSSCLL_SHIFT;
  503. val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT);
  504. /* Write setup times to I2C config register */
  505. voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
  506. }
  507. /**
  508. * omap_vc_i2c_init - initialize I2C interface to PMIC
  509. * @voltdm: voltage domain containing VC data
  510. *
  511. * Use PMIC supplied settings for I2C high-speed mode and
  512. * master code (if set) and program the VC I2C configuration
  513. * register.
  514. *
  515. * The VC I2C configuration is common to all VC channels,
  516. * so this function only configures I2C for the first VC
  517. * channel registers. All other VC channels will use the
  518. * same configuration.
  519. */
  520. static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
  521. {
  522. struct omap_vc_channel *vc = voltdm->vc;
  523. static bool initialized;
  524. static bool i2c_high_speed;
  525. u8 mcode;
  526. if (initialized) {
  527. if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
  528. pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).",
  529. __func__, voltdm->name, i2c_high_speed);
  530. return;
  531. }
  532. i2c_high_speed = voltdm->pmic->i2c_high_speed;
  533. if (i2c_high_speed)
  534. voltdm->rmw(vc->common->i2c_cfg_hsen_mask,
  535. vc->common->i2c_cfg_hsen_mask,
  536. vc->common->i2c_cfg_reg);
  537. mcode = voltdm->pmic->i2c_mcode;
  538. if (mcode)
  539. voltdm->rmw(vc->common->i2c_mcode_mask,
  540. mcode << __ffs(vc->common->i2c_mcode_mask),
  541. vc->common->i2c_cfg_reg);
  542. if (cpu_is_omap44xx())
  543. omap4_vc_i2c_timing_init(voltdm);
  544. initialized = true;
  545. }
  546. /**
  547. * omap_vc_calc_vsel - calculate vsel value for a channel
  548. * @voltdm: channel to calculate value for
  549. * @uvolt: microvolt value to convert to vsel
  550. *
  551. * Converts a microvolt value to vsel value for the used PMIC.
  552. * This checks whether the microvolt value is out of bounds, and
  553. * adjusts the value accordingly. If unsupported value detected,
  554. * warning is thrown.
  555. */
  556. static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt)
  557. {
  558. if (voltdm->pmic->vddmin > uvolt)
  559. uvolt = voltdm->pmic->vddmin;
  560. if (voltdm->pmic->vddmax < uvolt) {
  561. WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n",
  562. __func__, uvolt, voltdm->pmic->vddmax);
  563. /* Lets try maximum value anyway */
  564. uvolt = voltdm->pmic->vddmax;
  565. }
  566. return voltdm->pmic->uv_to_vsel(uvolt);
  567. }
  568. /**
  569. * omap_pm_setup_sr_i2c_pcb_length - set length of SR I2C traces on PCB
  570. * @mm: length of the PCB trace in millimetres
  571. *
  572. * Sets the PCB trace length for the I2C channel. By default uses 63mm.
  573. * This is needed for properly calculating the capacitance value for
  574. * the PCB trace, and for setting the SR I2C channel timing parameters.
  575. */
  576. void __init omap_pm_setup_sr_i2c_pcb_length(u32 mm)
  577. {
  578. sr_i2c_pcb_length = mm;
  579. }
  580. void __init omap_vc_init_channel(struct voltagedomain *voltdm)
  581. {
  582. struct omap_vc_channel *vc = voltdm->vc;
  583. u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
  584. u32 val;
  585. if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
  586. pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
  587. return;
  588. }
  589. if (!voltdm->read || !voltdm->write) {
  590. pr_err("%s: No read/write API for accessing vdd_%s regs\n",
  591. __func__, voltdm->name);
  592. return;
  593. }
  594. vc->cfg_channel = 0;
  595. if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
  596. vc_cfg_bits = &vc_mutant_channel_cfg;
  597. else
  598. vc_cfg_bits = &vc_default_channel_cfg;
  599. /* get PMIC/board specific settings */
  600. vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
  601. vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
  602. vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
  603. /* Configure the i2c slave address for this VC */
  604. voltdm->rmw(vc->smps_sa_mask,
  605. vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
  606. vc->smps_sa_reg);
  607. vc->cfg_channel |= vc_cfg_bits->sa;
  608. /*
  609. * Configure the PMIC register addresses.
  610. */
  611. voltdm->rmw(vc->smps_volra_mask,
  612. vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
  613. vc->smps_volra_reg);
  614. vc->cfg_channel |= vc_cfg_bits->rav;
  615. if (vc->cmd_reg_addr) {
  616. voltdm->rmw(vc->smps_cmdra_mask,
  617. vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
  618. vc->smps_cmdra_reg);
  619. vc->cfg_channel |= vc_cfg_bits->rac;
  620. }
  621. if (vc->cmd_reg_addr == vc->volt_reg_addr)
  622. vc->cfg_channel |= vc_cfg_bits->racen;
  623. /* Set up the on, inactive, retention and off voltage */
  624. on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on);
  625. onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp);
  626. ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret);
  627. off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off);
  628. val = ((on_vsel << vc->common->cmd_on_shift) |
  629. (onlp_vsel << vc->common->cmd_onlp_shift) |
  630. (ret_vsel << vc->common->cmd_ret_shift) |
  631. (off_vsel << vc->common->cmd_off_shift));
  632. voltdm->write(val, vc->cmdval_reg);
  633. vc->cfg_channel |= vc_cfg_bits->cmd;
  634. /* Channel configuration */
  635. omap_vc_config_channel(voltdm);
  636. omap_vc_i2c_init(voltdm);
  637. if (cpu_is_omap34xx())
  638. omap3_vc_init_channel(voltdm);
  639. else if (cpu_is_omap44xx())
  640. omap4_vc_init_channel(voltdm);
  641. }