sched_rt.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  6. {
  7. return container_of(rt_se, struct task_struct, rt);
  8. }
  9. #ifdef CONFIG_RT_GROUP_SCHED
  10. #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
  11. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  12. {
  13. return rt_rq->rq;
  14. }
  15. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  16. {
  17. return rt_se->rt_rq;
  18. }
  19. #else /* CONFIG_RT_GROUP_SCHED */
  20. #define rt_entity_is_task(rt_se) (1)
  21. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  22. {
  23. return container_of(rt_rq, struct rq, rt);
  24. }
  25. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  26. {
  27. struct task_struct *p = rt_task_of(rt_se);
  28. struct rq *rq = task_rq(p);
  29. return &rq->rt;
  30. }
  31. #endif /* CONFIG_RT_GROUP_SCHED */
  32. #ifdef CONFIG_SMP
  33. static inline int rt_overloaded(struct rq *rq)
  34. {
  35. return atomic_read(&rq->rd->rto_count);
  36. }
  37. static inline void rt_set_overload(struct rq *rq)
  38. {
  39. if (!rq->online)
  40. return;
  41. cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
  42. /*
  43. * Make sure the mask is visible before we set
  44. * the overload count. That is checked to determine
  45. * if we should look at the mask. It would be a shame
  46. * if we looked at the mask, but the mask was not
  47. * updated yet.
  48. */
  49. wmb();
  50. atomic_inc(&rq->rd->rto_count);
  51. }
  52. static inline void rt_clear_overload(struct rq *rq)
  53. {
  54. if (!rq->online)
  55. return;
  56. /* the order here really doesn't matter */
  57. atomic_dec(&rq->rd->rto_count);
  58. cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
  59. }
  60. static void update_rt_migration(struct rt_rq *rt_rq)
  61. {
  62. if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
  63. if (!rt_rq->overloaded) {
  64. rt_set_overload(rq_of_rt_rq(rt_rq));
  65. rt_rq->overloaded = 1;
  66. }
  67. } else if (rt_rq->overloaded) {
  68. rt_clear_overload(rq_of_rt_rq(rt_rq));
  69. rt_rq->overloaded = 0;
  70. }
  71. }
  72. static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  73. {
  74. if (!rt_entity_is_task(rt_se))
  75. return;
  76. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  77. rt_rq->rt_nr_total++;
  78. if (rt_se->nr_cpus_allowed > 1)
  79. rt_rq->rt_nr_migratory++;
  80. update_rt_migration(rt_rq);
  81. }
  82. static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  83. {
  84. if (!rt_entity_is_task(rt_se))
  85. return;
  86. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  87. rt_rq->rt_nr_total--;
  88. if (rt_se->nr_cpus_allowed > 1)
  89. rt_rq->rt_nr_migratory--;
  90. update_rt_migration(rt_rq);
  91. }
  92. static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  93. {
  94. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  95. plist_node_init(&p->pushable_tasks, p->prio);
  96. plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
  97. }
  98. static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  99. {
  100. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  101. }
  102. #else
  103. static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  104. {
  105. }
  106. static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  107. {
  108. }
  109. static inline
  110. void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  111. {
  112. }
  113. static inline
  114. void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  115. {
  116. }
  117. #endif /* CONFIG_SMP */
  118. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  119. {
  120. return !list_empty(&rt_se->run_list);
  121. }
  122. #ifdef CONFIG_RT_GROUP_SCHED
  123. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  124. {
  125. if (!rt_rq->tg)
  126. return RUNTIME_INF;
  127. return rt_rq->rt_runtime;
  128. }
  129. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  130. {
  131. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  132. }
  133. #define for_each_leaf_rt_rq(rt_rq, rq) \
  134. list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  135. #define for_each_sched_rt_entity(rt_se) \
  136. for (; rt_se; rt_se = rt_se->parent)
  137. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  138. {
  139. return rt_se->my_q;
  140. }
  141. static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
  142. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  143. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  144. {
  145. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  146. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  147. if (rt_rq->rt_nr_running) {
  148. if (rt_se && !on_rt_rq(rt_se))
  149. enqueue_rt_entity(rt_se);
  150. if (rt_rq->highest_prio.curr < curr->prio)
  151. resched_task(curr);
  152. }
  153. }
  154. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  155. {
  156. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  157. if (rt_se && on_rt_rq(rt_se))
  158. dequeue_rt_entity(rt_se);
  159. }
  160. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  161. {
  162. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  163. }
  164. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  165. {
  166. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  167. struct task_struct *p;
  168. if (rt_rq)
  169. return !!rt_rq->rt_nr_boosted;
  170. p = rt_task_of(rt_se);
  171. return p->prio != p->normal_prio;
  172. }
  173. #ifdef CONFIG_SMP
  174. static inline const struct cpumask *sched_rt_period_mask(void)
  175. {
  176. return cpu_rq(smp_processor_id())->rd->span;
  177. }
  178. #else
  179. static inline const struct cpumask *sched_rt_period_mask(void)
  180. {
  181. return cpu_online_mask;
  182. }
  183. #endif
  184. static inline
  185. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  186. {
  187. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  188. }
  189. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  190. {
  191. return &rt_rq->tg->rt_bandwidth;
  192. }
  193. #else /* !CONFIG_RT_GROUP_SCHED */
  194. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  195. {
  196. return rt_rq->rt_runtime;
  197. }
  198. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  199. {
  200. return ktime_to_ns(def_rt_bandwidth.rt_period);
  201. }
  202. #define for_each_leaf_rt_rq(rt_rq, rq) \
  203. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  204. #define for_each_sched_rt_entity(rt_se) \
  205. for (; rt_se; rt_se = NULL)
  206. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  207. {
  208. return NULL;
  209. }
  210. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  211. {
  212. if (rt_rq->rt_nr_running)
  213. resched_task(rq_of_rt_rq(rt_rq)->curr);
  214. }
  215. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  216. {
  217. }
  218. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  219. {
  220. return rt_rq->rt_throttled;
  221. }
  222. static inline const struct cpumask *sched_rt_period_mask(void)
  223. {
  224. return cpu_online_mask;
  225. }
  226. static inline
  227. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  228. {
  229. return &cpu_rq(cpu)->rt;
  230. }
  231. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  232. {
  233. return &def_rt_bandwidth;
  234. }
  235. #endif /* CONFIG_RT_GROUP_SCHED */
  236. #ifdef CONFIG_SMP
  237. /*
  238. * We ran out of runtime, see if we can borrow some from our neighbours.
  239. */
  240. static int do_balance_runtime(struct rt_rq *rt_rq)
  241. {
  242. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  243. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  244. int i, weight, more = 0;
  245. u64 rt_period;
  246. weight = cpumask_weight(rd->span);
  247. spin_lock(&rt_b->rt_runtime_lock);
  248. rt_period = ktime_to_ns(rt_b->rt_period);
  249. for_each_cpu(i, rd->span) {
  250. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  251. s64 diff;
  252. if (iter == rt_rq)
  253. continue;
  254. spin_lock(&iter->rt_runtime_lock);
  255. /*
  256. * Either all rqs have inf runtime and there's nothing to steal
  257. * or __disable_runtime() below sets a specific rq to inf to
  258. * indicate its been disabled and disalow stealing.
  259. */
  260. if (iter->rt_runtime == RUNTIME_INF)
  261. goto next;
  262. /*
  263. * From runqueues with spare time, take 1/n part of their
  264. * spare time, but no more than our period.
  265. */
  266. diff = iter->rt_runtime - iter->rt_time;
  267. if (diff > 0) {
  268. diff = div_u64((u64)diff, weight);
  269. if (rt_rq->rt_runtime + diff > rt_period)
  270. diff = rt_period - rt_rq->rt_runtime;
  271. iter->rt_runtime -= diff;
  272. rt_rq->rt_runtime += diff;
  273. more = 1;
  274. if (rt_rq->rt_runtime == rt_period) {
  275. spin_unlock(&iter->rt_runtime_lock);
  276. break;
  277. }
  278. }
  279. next:
  280. spin_unlock(&iter->rt_runtime_lock);
  281. }
  282. spin_unlock(&rt_b->rt_runtime_lock);
  283. return more;
  284. }
  285. /*
  286. * Ensure this RQ takes back all the runtime it lend to its neighbours.
  287. */
  288. static void __disable_runtime(struct rq *rq)
  289. {
  290. struct root_domain *rd = rq->rd;
  291. struct rt_rq *rt_rq;
  292. if (unlikely(!scheduler_running))
  293. return;
  294. for_each_leaf_rt_rq(rt_rq, rq) {
  295. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  296. s64 want;
  297. int i;
  298. spin_lock(&rt_b->rt_runtime_lock);
  299. spin_lock(&rt_rq->rt_runtime_lock);
  300. /*
  301. * Either we're all inf and nobody needs to borrow, or we're
  302. * already disabled and thus have nothing to do, or we have
  303. * exactly the right amount of runtime to take out.
  304. */
  305. if (rt_rq->rt_runtime == RUNTIME_INF ||
  306. rt_rq->rt_runtime == rt_b->rt_runtime)
  307. goto balanced;
  308. spin_unlock(&rt_rq->rt_runtime_lock);
  309. /*
  310. * Calculate the difference between what we started out with
  311. * and what we current have, that's the amount of runtime
  312. * we lend and now have to reclaim.
  313. */
  314. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  315. /*
  316. * Greedy reclaim, take back as much as we can.
  317. */
  318. for_each_cpu(i, rd->span) {
  319. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  320. s64 diff;
  321. /*
  322. * Can't reclaim from ourselves or disabled runqueues.
  323. */
  324. if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
  325. continue;
  326. spin_lock(&iter->rt_runtime_lock);
  327. if (want > 0) {
  328. diff = min_t(s64, iter->rt_runtime, want);
  329. iter->rt_runtime -= diff;
  330. want -= diff;
  331. } else {
  332. iter->rt_runtime -= want;
  333. want -= want;
  334. }
  335. spin_unlock(&iter->rt_runtime_lock);
  336. if (!want)
  337. break;
  338. }
  339. spin_lock(&rt_rq->rt_runtime_lock);
  340. /*
  341. * We cannot be left wanting - that would mean some runtime
  342. * leaked out of the system.
  343. */
  344. BUG_ON(want);
  345. balanced:
  346. /*
  347. * Disable all the borrow logic by pretending we have inf
  348. * runtime - in which case borrowing doesn't make sense.
  349. */
  350. rt_rq->rt_runtime = RUNTIME_INF;
  351. spin_unlock(&rt_rq->rt_runtime_lock);
  352. spin_unlock(&rt_b->rt_runtime_lock);
  353. }
  354. }
  355. static void disable_runtime(struct rq *rq)
  356. {
  357. unsigned long flags;
  358. spin_lock_irqsave(&rq->lock, flags);
  359. __disable_runtime(rq);
  360. spin_unlock_irqrestore(&rq->lock, flags);
  361. }
  362. static void __enable_runtime(struct rq *rq)
  363. {
  364. struct rt_rq *rt_rq;
  365. if (unlikely(!scheduler_running))
  366. return;
  367. /*
  368. * Reset each runqueue's bandwidth settings
  369. */
  370. for_each_leaf_rt_rq(rt_rq, rq) {
  371. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  372. spin_lock(&rt_b->rt_runtime_lock);
  373. spin_lock(&rt_rq->rt_runtime_lock);
  374. rt_rq->rt_runtime = rt_b->rt_runtime;
  375. rt_rq->rt_time = 0;
  376. rt_rq->rt_throttled = 0;
  377. spin_unlock(&rt_rq->rt_runtime_lock);
  378. spin_unlock(&rt_b->rt_runtime_lock);
  379. }
  380. }
  381. static void enable_runtime(struct rq *rq)
  382. {
  383. unsigned long flags;
  384. spin_lock_irqsave(&rq->lock, flags);
  385. __enable_runtime(rq);
  386. spin_unlock_irqrestore(&rq->lock, flags);
  387. }
  388. static int balance_runtime(struct rt_rq *rt_rq)
  389. {
  390. int more = 0;
  391. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  392. spin_unlock(&rt_rq->rt_runtime_lock);
  393. more = do_balance_runtime(rt_rq);
  394. spin_lock(&rt_rq->rt_runtime_lock);
  395. }
  396. return more;
  397. }
  398. #else /* !CONFIG_SMP */
  399. static inline int balance_runtime(struct rt_rq *rt_rq)
  400. {
  401. return 0;
  402. }
  403. #endif /* CONFIG_SMP */
  404. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  405. {
  406. int i, idle = 1;
  407. const struct cpumask *span;
  408. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  409. return 1;
  410. span = sched_rt_period_mask();
  411. for_each_cpu(i, span) {
  412. int enqueue = 0;
  413. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  414. struct rq *rq = rq_of_rt_rq(rt_rq);
  415. spin_lock(&rq->lock);
  416. if (rt_rq->rt_time) {
  417. u64 runtime;
  418. spin_lock(&rt_rq->rt_runtime_lock);
  419. if (rt_rq->rt_throttled)
  420. balance_runtime(rt_rq);
  421. runtime = rt_rq->rt_runtime;
  422. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  423. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  424. rt_rq->rt_throttled = 0;
  425. enqueue = 1;
  426. }
  427. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  428. idle = 0;
  429. spin_unlock(&rt_rq->rt_runtime_lock);
  430. } else if (rt_rq->rt_nr_running)
  431. idle = 0;
  432. if (enqueue)
  433. sched_rt_rq_enqueue(rt_rq);
  434. spin_unlock(&rq->lock);
  435. }
  436. return idle;
  437. }
  438. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  439. {
  440. #ifdef CONFIG_RT_GROUP_SCHED
  441. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  442. if (rt_rq)
  443. return rt_rq->highest_prio.curr;
  444. #endif
  445. return rt_task_of(rt_se)->prio;
  446. }
  447. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  448. {
  449. u64 runtime = sched_rt_runtime(rt_rq);
  450. if (rt_rq->rt_throttled)
  451. return rt_rq_throttled(rt_rq);
  452. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  453. return 0;
  454. balance_runtime(rt_rq);
  455. runtime = sched_rt_runtime(rt_rq);
  456. if (runtime == RUNTIME_INF)
  457. return 0;
  458. if (rt_rq->rt_time > runtime) {
  459. rt_rq->rt_throttled = 1;
  460. if (rt_rq_throttled(rt_rq)) {
  461. sched_rt_rq_dequeue(rt_rq);
  462. return 1;
  463. }
  464. }
  465. return 0;
  466. }
  467. /*
  468. * Update the current task's runtime statistics. Skip current tasks that
  469. * are not in our scheduling class.
  470. */
  471. static void update_curr_rt(struct rq *rq)
  472. {
  473. struct task_struct *curr = rq->curr;
  474. struct sched_rt_entity *rt_se = &curr->rt;
  475. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  476. u64 delta_exec;
  477. if (!task_has_rt_policy(curr))
  478. return;
  479. delta_exec = rq->clock - curr->se.exec_start;
  480. if (unlikely((s64)delta_exec < 0))
  481. delta_exec = 0;
  482. schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
  483. curr->se.sum_exec_runtime += delta_exec;
  484. account_group_exec_runtime(curr, delta_exec);
  485. curr->se.exec_start = rq->clock;
  486. cpuacct_charge(curr, delta_exec);
  487. if (!rt_bandwidth_enabled())
  488. return;
  489. for_each_sched_rt_entity(rt_se) {
  490. rt_rq = rt_rq_of_se(rt_se);
  491. if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
  492. spin_lock(&rt_rq->rt_runtime_lock);
  493. rt_rq->rt_time += delta_exec;
  494. if (sched_rt_runtime_exceeded(rt_rq))
  495. resched_task(curr);
  496. spin_unlock(&rt_rq->rt_runtime_lock);
  497. }
  498. }
  499. }
  500. #if defined CONFIG_SMP
  501. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
  502. static inline int next_prio(struct rq *rq)
  503. {
  504. struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
  505. if (next && rt_prio(next->prio))
  506. return next->prio;
  507. else
  508. return MAX_RT_PRIO;
  509. }
  510. static void
  511. inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  512. {
  513. struct rq *rq = rq_of_rt_rq(rt_rq);
  514. if (prio < prev_prio) {
  515. /*
  516. * If the new task is higher in priority than anything on the
  517. * run-queue, we know that the previous high becomes our
  518. * next-highest.
  519. */
  520. rt_rq->highest_prio.next = prev_prio;
  521. if (rq->online)
  522. cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
  523. } else if (prio == rt_rq->highest_prio.curr)
  524. /*
  525. * If the next task is equal in priority to the highest on
  526. * the run-queue, then we implicitly know that the next highest
  527. * task cannot be any lower than current
  528. */
  529. rt_rq->highest_prio.next = prio;
  530. else if (prio < rt_rq->highest_prio.next)
  531. /*
  532. * Otherwise, we need to recompute next-highest
  533. */
  534. rt_rq->highest_prio.next = next_prio(rq);
  535. }
  536. static void
  537. dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  538. {
  539. struct rq *rq = rq_of_rt_rq(rt_rq);
  540. if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
  541. rt_rq->highest_prio.next = next_prio(rq);
  542. if (rq->online && rt_rq->highest_prio.curr != prev_prio)
  543. cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
  544. }
  545. #else /* CONFIG_SMP */
  546. static inline
  547. void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  548. static inline
  549. void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  550. #endif /* CONFIG_SMP */
  551. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  552. static void
  553. inc_rt_prio(struct rt_rq *rt_rq, int prio)
  554. {
  555. int prev_prio = rt_rq->highest_prio.curr;
  556. if (prio < prev_prio)
  557. rt_rq->highest_prio.curr = prio;
  558. inc_rt_prio_smp(rt_rq, prio, prev_prio);
  559. }
  560. static void
  561. dec_rt_prio(struct rt_rq *rt_rq, int prio)
  562. {
  563. int prev_prio = rt_rq->highest_prio.curr;
  564. if (rt_rq->rt_nr_running) {
  565. WARN_ON(prio < prev_prio);
  566. /*
  567. * This may have been our highest task, and therefore
  568. * we may have some recomputation to do
  569. */
  570. if (prio == prev_prio) {
  571. struct rt_prio_array *array = &rt_rq->active;
  572. rt_rq->highest_prio.curr =
  573. sched_find_first_bit(array->bitmap);
  574. }
  575. } else
  576. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  577. dec_rt_prio_smp(rt_rq, prio, prev_prio);
  578. }
  579. #else
  580. static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
  581. static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
  582. #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
  583. #ifdef CONFIG_RT_GROUP_SCHED
  584. static void
  585. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  586. {
  587. if (rt_se_boosted(rt_se))
  588. rt_rq->rt_nr_boosted++;
  589. if (rt_rq->tg)
  590. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  591. }
  592. static void
  593. dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  594. {
  595. if (rt_se_boosted(rt_se))
  596. rt_rq->rt_nr_boosted--;
  597. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  598. }
  599. #else /* CONFIG_RT_GROUP_SCHED */
  600. static void
  601. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  602. {
  603. start_rt_bandwidth(&def_rt_bandwidth);
  604. }
  605. static inline
  606. void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
  607. #endif /* CONFIG_RT_GROUP_SCHED */
  608. static inline
  609. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  610. {
  611. int prio = rt_se_prio(rt_se);
  612. WARN_ON(!rt_prio(prio));
  613. rt_rq->rt_nr_running++;
  614. inc_rt_prio(rt_rq, prio);
  615. inc_rt_migration(rt_se, rt_rq);
  616. inc_rt_group(rt_se, rt_rq);
  617. }
  618. static inline
  619. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  620. {
  621. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  622. WARN_ON(!rt_rq->rt_nr_running);
  623. rt_rq->rt_nr_running--;
  624. dec_rt_prio(rt_rq, rt_se_prio(rt_se));
  625. dec_rt_migration(rt_se, rt_rq);
  626. dec_rt_group(rt_se, rt_rq);
  627. }
  628. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
  629. {
  630. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  631. struct rt_prio_array *array = &rt_rq->active;
  632. struct rt_rq *group_rq = group_rt_rq(rt_se);
  633. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  634. /*
  635. * Don't enqueue the group if its throttled, or when empty.
  636. * The latter is a consequence of the former when a child group
  637. * get throttled and the current group doesn't have any other
  638. * active members.
  639. */
  640. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  641. return;
  642. list_add_tail(&rt_se->run_list, queue);
  643. __set_bit(rt_se_prio(rt_se), array->bitmap);
  644. inc_rt_tasks(rt_se, rt_rq);
  645. }
  646. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  647. {
  648. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  649. struct rt_prio_array *array = &rt_rq->active;
  650. list_del_init(&rt_se->run_list);
  651. if (list_empty(array->queue + rt_se_prio(rt_se)))
  652. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  653. dec_rt_tasks(rt_se, rt_rq);
  654. }
  655. /*
  656. * Because the prio of an upper entry depends on the lower
  657. * entries, we must remove entries top - down.
  658. */
  659. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  660. {
  661. struct sched_rt_entity *back = NULL;
  662. for_each_sched_rt_entity(rt_se) {
  663. rt_se->back = back;
  664. back = rt_se;
  665. }
  666. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  667. if (on_rt_rq(rt_se))
  668. __dequeue_rt_entity(rt_se);
  669. }
  670. }
  671. static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
  672. {
  673. dequeue_rt_stack(rt_se);
  674. for_each_sched_rt_entity(rt_se)
  675. __enqueue_rt_entity(rt_se);
  676. }
  677. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  678. {
  679. dequeue_rt_stack(rt_se);
  680. for_each_sched_rt_entity(rt_se) {
  681. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  682. if (rt_rq && rt_rq->rt_nr_running)
  683. __enqueue_rt_entity(rt_se);
  684. }
  685. }
  686. /*
  687. * Adding/removing a task to/from a priority array:
  688. */
  689. static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
  690. {
  691. struct sched_rt_entity *rt_se = &p->rt;
  692. if (wakeup)
  693. rt_se->timeout = 0;
  694. enqueue_rt_entity(rt_se);
  695. if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
  696. enqueue_pushable_task(rq, p);
  697. inc_cpu_load(rq, p->se.load.weight);
  698. }
  699. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
  700. {
  701. struct sched_rt_entity *rt_se = &p->rt;
  702. update_curr_rt(rq);
  703. dequeue_rt_entity(rt_se);
  704. dequeue_pushable_task(rq, p);
  705. dec_cpu_load(rq, p->se.load.weight);
  706. }
  707. /*
  708. * Put task to the end of the run list without the overhead of dequeue
  709. * followed by enqueue.
  710. */
  711. static void
  712. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  713. {
  714. if (on_rt_rq(rt_se)) {
  715. struct rt_prio_array *array = &rt_rq->active;
  716. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  717. if (head)
  718. list_move(&rt_se->run_list, queue);
  719. else
  720. list_move_tail(&rt_se->run_list, queue);
  721. }
  722. }
  723. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  724. {
  725. struct sched_rt_entity *rt_se = &p->rt;
  726. struct rt_rq *rt_rq;
  727. for_each_sched_rt_entity(rt_se) {
  728. rt_rq = rt_rq_of_se(rt_se);
  729. requeue_rt_entity(rt_rq, rt_se, head);
  730. }
  731. }
  732. static void yield_task_rt(struct rq *rq)
  733. {
  734. requeue_task_rt(rq, rq->curr, 0);
  735. }
  736. #ifdef CONFIG_SMP
  737. static int find_lowest_rq(struct task_struct *task);
  738. static int select_task_rq_rt(struct task_struct *p, int sync)
  739. {
  740. struct rq *rq = task_rq(p);
  741. /*
  742. * If the current task is an RT task, then
  743. * try to see if we can wake this RT task up on another
  744. * runqueue. Otherwise simply start this RT task
  745. * on its current runqueue.
  746. *
  747. * We want to avoid overloading runqueues. Even if
  748. * the RT task is of higher priority than the current RT task.
  749. * RT tasks behave differently than other tasks. If
  750. * one gets preempted, we try to push it off to another queue.
  751. * So trying to keep a preempting RT task on the same
  752. * cache hot CPU will force the running RT task to
  753. * a cold CPU. So we waste all the cache for the lower
  754. * RT task in hopes of saving some of a RT task
  755. * that is just being woken and probably will have
  756. * cold cache anyway.
  757. */
  758. if (unlikely(rt_task(rq->curr)) &&
  759. (p->rt.nr_cpus_allowed > 1)) {
  760. int cpu = find_lowest_rq(p);
  761. return (cpu == -1) ? task_cpu(p) : cpu;
  762. }
  763. /*
  764. * Otherwise, just let it ride on the affined RQ and the
  765. * post-schedule router will push the preempted task away
  766. */
  767. return task_cpu(p);
  768. }
  769. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  770. {
  771. if (rq->curr->rt.nr_cpus_allowed == 1)
  772. return;
  773. if (p->rt.nr_cpus_allowed != 1
  774. && cpupri_find(&rq->rd->cpupri, p, NULL))
  775. return;
  776. if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
  777. return;
  778. /*
  779. * There appears to be other cpus that can accept
  780. * current and none to run 'p', so lets reschedule
  781. * to try and push current away:
  782. */
  783. requeue_task_rt(rq, p, 1);
  784. resched_task(rq->curr);
  785. }
  786. #endif /* CONFIG_SMP */
  787. /*
  788. * Preempt the current task with a newly woken task if needed:
  789. */
  790. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
  791. {
  792. if (p->prio < rq->curr->prio) {
  793. resched_task(rq->curr);
  794. return;
  795. }
  796. #ifdef CONFIG_SMP
  797. /*
  798. * If:
  799. *
  800. * - the newly woken task is of equal priority to the current task
  801. * - the newly woken task is non-migratable while current is migratable
  802. * - current will be preempted on the next reschedule
  803. *
  804. * we should check to see if current can readily move to a different
  805. * cpu. If so, we will reschedule to allow the push logic to try
  806. * to move current somewhere else, making room for our non-migratable
  807. * task.
  808. */
  809. if (p->prio == rq->curr->prio && !need_resched())
  810. check_preempt_equal_prio(rq, p);
  811. #endif
  812. }
  813. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  814. struct rt_rq *rt_rq)
  815. {
  816. struct rt_prio_array *array = &rt_rq->active;
  817. struct sched_rt_entity *next = NULL;
  818. struct list_head *queue;
  819. int idx;
  820. idx = sched_find_first_bit(array->bitmap);
  821. BUG_ON(idx >= MAX_RT_PRIO);
  822. queue = array->queue + idx;
  823. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  824. return next;
  825. }
  826. static struct task_struct *_pick_next_task_rt(struct rq *rq)
  827. {
  828. struct sched_rt_entity *rt_se;
  829. struct task_struct *p;
  830. struct rt_rq *rt_rq;
  831. rt_rq = &rq->rt;
  832. if (unlikely(!rt_rq->rt_nr_running))
  833. return NULL;
  834. if (rt_rq_throttled(rt_rq))
  835. return NULL;
  836. do {
  837. rt_se = pick_next_rt_entity(rq, rt_rq);
  838. BUG_ON(!rt_se);
  839. rt_rq = group_rt_rq(rt_se);
  840. } while (rt_rq);
  841. p = rt_task_of(rt_se);
  842. p->se.exec_start = rq->clock;
  843. return p;
  844. }
  845. static inline int has_pushable_tasks(struct rq *rq)
  846. {
  847. return !plist_head_empty(&rq->rt.pushable_tasks);
  848. }
  849. static struct task_struct *pick_next_task_rt(struct rq *rq)
  850. {
  851. struct task_struct *p = _pick_next_task_rt(rq);
  852. /* The running task is never eligible for pushing */
  853. if (p)
  854. dequeue_pushable_task(rq, p);
  855. /*
  856. * We detect this state here so that we can avoid taking the RQ
  857. * lock again later if there is no need to push
  858. */
  859. rq->post_schedule = has_pushable_tasks(rq);
  860. return p;
  861. }
  862. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  863. {
  864. update_curr_rt(rq);
  865. p->se.exec_start = 0;
  866. /*
  867. * The previous task needs to be made eligible for pushing
  868. * if it is still active
  869. */
  870. if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
  871. enqueue_pushable_task(rq, p);
  872. }
  873. #ifdef CONFIG_SMP
  874. /* Only try algorithms three times */
  875. #define RT_MAX_TRIES 3
  876. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  877. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  878. {
  879. if (!task_running(rq, p) &&
  880. (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
  881. (p->rt.nr_cpus_allowed > 1))
  882. return 1;
  883. return 0;
  884. }
  885. /* Return the second highest RT task, NULL otherwise */
  886. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  887. {
  888. struct task_struct *next = NULL;
  889. struct sched_rt_entity *rt_se;
  890. struct rt_prio_array *array;
  891. struct rt_rq *rt_rq;
  892. int idx;
  893. for_each_leaf_rt_rq(rt_rq, rq) {
  894. array = &rt_rq->active;
  895. idx = sched_find_first_bit(array->bitmap);
  896. next_idx:
  897. if (idx >= MAX_RT_PRIO)
  898. continue;
  899. if (next && next->prio < idx)
  900. continue;
  901. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  902. struct task_struct *p = rt_task_of(rt_se);
  903. if (pick_rt_task(rq, p, cpu)) {
  904. next = p;
  905. break;
  906. }
  907. }
  908. if (!next) {
  909. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  910. goto next_idx;
  911. }
  912. }
  913. return next;
  914. }
  915. static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
  916. static inline int pick_optimal_cpu(int this_cpu,
  917. const struct cpumask *mask)
  918. {
  919. int first;
  920. /* "this_cpu" is cheaper to preempt than a remote processor */
  921. if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
  922. return this_cpu;
  923. first = cpumask_first(mask);
  924. if (first < nr_cpu_ids)
  925. return first;
  926. return -1;
  927. }
  928. static int find_lowest_rq(struct task_struct *task)
  929. {
  930. struct sched_domain *sd;
  931. struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
  932. int this_cpu = smp_processor_id();
  933. int cpu = task_cpu(task);
  934. cpumask_var_t domain_mask;
  935. if (task->rt.nr_cpus_allowed == 1)
  936. return -1; /* No other targets possible */
  937. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  938. return -1; /* No targets found */
  939. /*
  940. * At this point we have built a mask of cpus representing the
  941. * lowest priority tasks in the system. Now we want to elect
  942. * the best one based on our affinity and topology.
  943. *
  944. * We prioritize the last cpu that the task executed on since
  945. * it is most likely cache-hot in that location.
  946. */
  947. if (cpumask_test_cpu(cpu, lowest_mask))
  948. return cpu;
  949. /*
  950. * Otherwise, we consult the sched_domains span maps to figure
  951. * out which cpu is logically closest to our hot cache data.
  952. */
  953. if (this_cpu == cpu)
  954. this_cpu = -1; /* Skip this_cpu opt if the same */
  955. if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
  956. for_each_domain(cpu, sd) {
  957. if (sd->flags & SD_WAKE_AFFINE) {
  958. int best_cpu;
  959. cpumask_and(domain_mask,
  960. sched_domain_span(sd),
  961. lowest_mask);
  962. best_cpu = pick_optimal_cpu(this_cpu,
  963. domain_mask);
  964. if (best_cpu != -1) {
  965. free_cpumask_var(domain_mask);
  966. return best_cpu;
  967. }
  968. }
  969. }
  970. free_cpumask_var(domain_mask);
  971. }
  972. /*
  973. * And finally, if there were no matches within the domains
  974. * just give the caller *something* to work with from the compatible
  975. * locations.
  976. */
  977. return pick_optimal_cpu(this_cpu, lowest_mask);
  978. }
  979. /* Will lock the rq it finds */
  980. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  981. {
  982. struct rq *lowest_rq = NULL;
  983. int tries;
  984. int cpu;
  985. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  986. cpu = find_lowest_rq(task);
  987. if ((cpu == -1) || (cpu == rq->cpu))
  988. break;
  989. lowest_rq = cpu_rq(cpu);
  990. /* if the prio of this runqueue changed, try again */
  991. if (double_lock_balance(rq, lowest_rq)) {
  992. /*
  993. * We had to unlock the run queue. In
  994. * the mean time, task could have
  995. * migrated already or had its affinity changed.
  996. * Also make sure that it wasn't scheduled on its rq.
  997. */
  998. if (unlikely(task_rq(task) != rq ||
  999. !cpumask_test_cpu(lowest_rq->cpu,
  1000. &task->cpus_allowed) ||
  1001. task_running(rq, task) ||
  1002. !task->se.on_rq)) {
  1003. spin_unlock(&lowest_rq->lock);
  1004. lowest_rq = NULL;
  1005. break;
  1006. }
  1007. }
  1008. /* If this rq is still suitable use it. */
  1009. if (lowest_rq->rt.highest_prio.curr > task->prio)
  1010. break;
  1011. /* try again */
  1012. double_unlock_balance(rq, lowest_rq);
  1013. lowest_rq = NULL;
  1014. }
  1015. return lowest_rq;
  1016. }
  1017. static struct task_struct *pick_next_pushable_task(struct rq *rq)
  1018. {
  1019. struct task_struct *p;
  1020. if (!has_pushable_tasks(rq))
  1021. return NULL;
  1022. p = plist_first_entry(&rq->rt.pushable_tasks,
  1023. struct task_struct, pushable_tasks);
  1024. BUG_ON(rq->cpu != task_cpu(p));
  1025. BUG_ON(task_current(rq, p));
  1026. BUG_ON(p->rt.nr_cpus_allowed <= 1);
  1027. BUG_ON(!p->se.on_rq);
  1028. BUG_ON(!rt_task(p));
  1029. return p;
  1030. }
  1031. /*
  1032. * If the current CPU has more than one RT task, see if the non
  1033. * running task can migrate over to a CPU that is running a task
  1034. * of lesser priority.
  1035. */
  1036. static int push_rt_task(struct rq *rq)
  1037. {
  1038. struct task_struct *next_task;
  1039. struct rq *lowest_rq;
  1040. if (!rq->rt.overloaded)
  1041. return 0;
  1042. next_task = pick_next_pushable_task(rq);
  1043. if (!next_task)
  1044. return 0;
  1045. retry:
  1046. if (unlikely(next_task == rq->curr)) {
  1047. WARN_ON(1);
  1048. return 0;
  1049. }
  1050. /*
  1051. * It's possible that the next_task slipped in of
  1052. * higher priority than current. If that's the case
  1053. * just reschedule current.
  1054. */
  1055. if (unlikely(next_task->prio < rq->curr->prio)) {
  1056. resched_task(rq->curr);
  1057. return 0;
  1058. }
  1059. /* We might release rq lock */
  1060. get_task_struct(next_task);
  1061. /* find_lock_lowest_rq locks the rq if found */
  1062. lowest_rq = find_lock_lowest_rq(next_task, rq);
  1063. if (!lowest_rq) {
  1064. struct task_struct *task;
  1065. /*
  1066. * find lock_lowest_rq releases rq->lock
  1067. * so it is possible that next_task has migrated.
  1068. *
  1069. * We need to make sure that the task is still on the same
  1070. * run-queue and is also still the next task eligible for
  1071. * pushing.
  1072. */
  1073. task = pick_next_pushable_task(rq);
  1074. if (task_cpu(next_task) == rq->cpu && task == next_task) {
  1075. /*
  1076. * If we get here, the task hasnt moved at all, but
  1077. * it has failed to push. We will not try again,
  1078. * since the other cpus will pull from us when they
  1079. * are ready.
  1080. */
  1081. dequeue_pushable_task(rq, next_task);
  1082. goto out;
  1083. }
  1084. if (!task)
  1085. /* No more tasks, just exit */
  1086. goto out;
  1087. /*
  1088. * Something has shifted, try again.
  1089. */
  1090. put_task_struct(next_task);
  1091. next_task = task;
  1092. goto retry;
  1093. }
  1094. deactivate_task(rq, next_task, 0);
  1095. set_task_cpu(next_task, lowest_rq->cpu);
  1096. activate_task(lowest_rq, next_task, 0);
  1097. resched_task(lowest_rq->curr);
  1098. double_unlock_balance(rq, lowest_rq);
  1099. out:
  1100. put_task_struct(next_task);
  1101. return 1;
  1102. }
  1103. static void push_rt_tasks(struct rq *rq)
  1104. {
  1105. /* push_rt_task will return true if it moved an RT */
  1106. while (push_rt_task(rq))
  1107. ;
  1108. }
  1109. static int pull_rt_task(struct rq *this_rq)
  1110. {
  1111. int this_cpu = this_rq->cpu, ret = 0, cpu;
  1112. struct task_struct *p;
  1113. struct rq *src_rq;
  1114. if (likely(!rt_overloaded(this_rq)))
  1115. return 0;
  1116. for_each_cpu(cpu, this_rq->rd->rto_mask) {
  1117. if (this_cpu == cpu)
  1118. continue;
  1119. src_rq = cpu_rq(cpu);
  1120. /*
  1121. * Don't bother taking the src_rq->lock if the next highest
  1122. * task is known to be lower-priority than our current task.
  1123. * This may look racy, but if this value is about to go
  1124. * logically higher, the src_rq will push this task away.
  1125. * And if its going logically lower, we do not care
  1126. */
  1127. if (src_rq->rt.highest_prio.next >=
  1128. this_rq->rt.highest_prio.curr)
  1129. continue;
  1130. /*
  1131. * We can potentially drop this_rq's lock in
  1132. * double_lock_balance, and another CPU could
  1133. * alter this_rq
  1134. */
  1135. double_lock_balance(this_rq, src_rq);
  1136. /*
  1137. * Are there still pullable RT tasks?
  1138. */
  1139. if (src_rq->rt.rt_nr_running <= 1)
  1140. goto skip;
  1141. p = pick_next_highest_task_rt(src_rq, this_cpu);
  1142. /*
  1143. * Do we have an RT task that preempts
  1144. * the to-be-scheduled task?
  1145. */
  1146. if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
  1147. WARN_ON(p == src_rq->curr);
  1148. WARN_ON(!p->se.on_rq);
  1149. /*
  1150. * There's a chance that p is higher in priority
  1151. * than what's currently running on its cpu.
  1152. * This is just that p is wakeing up and hasn't
  1153. * had a chance to schedule. We only pull
  1154. * p if it is lower in priority than the
  1155. * current task on the run queue
  1156. */
  1157. if (p->prio < src_rq->curr->prio)
  1158. goto skip;
  1159. ret = 1;
  1160. deactivate_task(src_rq, p, 0);
  1161. set_task_cpu(p, this_cpu);
  1162. activate_task(this_rq, p, 0);
  1163. /*
  1164. * We continue with the search, just in
  1165. * case there's an even higher prio task
  1166. * in another runqueue. (low likelyhood
  1167. * but possible)
  1168. */
  1169. }
  1170. skip:
  1171. double_unlock_balance(this_rq, src_rq);
  1172. }
  1173. return ret;
  1174. }
  1175. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  1176. {
  1177. /* Try to pull RT tasks here if we lower this rq's prio */
  1178. if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
  1179. pull_rt_task(rq);
  1180. }
  1181. static void post_schedule_rt(struct rq *rq)
  1182. {
  1183. push_rt_tasks(rq);
  1184. }
  1185. /*
  1186. * If we are not running and we are not going to reschedule soon, we should
  1187. * try to push tasks away now
  1188. */
  1189. static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
  1190. {
  1191. if (!task_running(rq, p) &&
  1192. !test_tsk_need_resched(rq->curr) &&
  1193. has_pushable_tasks(rq) &&
  1194. p->rt.nr_cpus_allowed > 1)
  1195. push_rt_tasks(rq);
  1196. }
  1197. static unsigned long
  1198. load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1199. unsigned long max_load_move,
  1200. struct sched_domain *sd, enum cpu_idle_type idle,
  1201. int *all_pinned, int *this_best_prio)
  1202. {
  1203. /* don't touch RT tasks */
  1204. return 0;
  1205. }
  1206. static int
  1207. move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1208. struct sched_domain *sd, enum cpu_idle_type idle)
  1209. {
  1210. /* don't touch RT tasks */
  1211. return 0;
  1212. }
  1213. static void set_cpus_allowed_rt(struct task_struct *p,
  1214. const struct cpumask *new_mask)
  1215. {
  1216. int weight = cpumask_weight(new_mask);
  1217. BUG_ON(!rt_task(p));
  1218. /*
  1219. * Update the migration status of the RQ if we have an RT task
  1220. * which is running AND changing its weight value.
  1221. */
  1222. if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
  1223. struct rq *rq = task_rq(p);
  1224. if (!task_current(rq, p)) {
  1225. /*
  1226. * Make sure we dequeue this task from the pushable list
  1227. * before going further. It will either remain off of
  1228. * the list because we are no longer pushable, or it
  1229. * will be requeued.
  1230. */
  1231. if (p->rt.nr_cpus_allowed > 1)
  1232. dequeue_pushable_task(rq, p);
  1233. /*
  1234. * Requeue if our weight is changing and still > 1
  1235. */
  1236. if (weight > 1)
  1237. enqueue_pushable_task(rq, p);
  1238. }
  1239. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  1240. rq->rt.rt_nr_migratory++;
  1241. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  1242. BUG_ON(!rq->rt.rt_nr_migratory);
  1243. rq->rt.rt_nr_migratory--;
  1244. }
  1245. update_rt_migration(&rq->rt);
  1246. }
  1247. cpumask_copy(&p->cpus_allowed, new_mask);
  1248. p->rt.nr_cpus_allowed = weight;
  1249. }
  1250. /* Assumes rq->lock is held */
  1251. static void rq_online_rt(struct rq *rq)
  1252. {
  1253. if (rq->rt.overloaded)
  1254. rt_set_overload(rq);
  1255. __enable_runtime(rq);
  1256. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
  1257. }
  1258. /* Assumes rq->lock is held */
  1259. static void rq_offline_rt(struct rq *rq)
  1260. {
  1261. if (rq->rt.overloaded)
  1262. rt_clear_overload(rq);
  1263. __disable_runtime(rq);
  1264. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1265. }
  1266. /*
  1267. * When switch from the rt queue, we bring ourselves to a position
  1268. * that we might want to pull RT tasks from other runqueues.
  1269. */
  1270. static void switched_from_rt(struct rq *rq, struct task_struct *p,
  1271. int running)
  1272. {
  1273. /*
  1274. * If there are other RT tasks then we will reschedule
  1275. * and the scheduling of the other RT tasks will handle
  1276. * the balancing. But if we are the last RT task
  1277. * we may need to handle the pulling of RT tasks
  1278. * now.
  1279. */
  1280. if (!rq->rt.rt_nr_running)
  1281. pull_rt_task(rq);
  1282. }
  1283. static inline void init_sched_rt_class(void)
  1284. {
  1285. unsigned int i;
  1286. for_each_possible_cpu(i)
  1287. zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
  1288. GFP_KERNEL, cpu_to_node(i));
  1289. }
  1290. #endif /* CONFIG_SMP */
  1291. /*
  1292. * When switching a task to RT, we may overload the runqueue
  1293. * with RT tasks. In this case we try to push them off to
  1294. * other runqueues.
  1295. */
  1296. static void switched_to_rt(struct rq *rq, struct task_struct *p,
  1297. int running)
  1298. {
  1299. int check_resched = 1;
  1300. /*
  1301. * If we are already running, then there's nothing
  1302. * that needs to be done. But if we are not running
  1303. * we may need to preempt the current running task.
  1304. * If that current running task is also an RT task
  1305. * then see if we can move to another run queue.
  1306. */
  1307. if (!running) {
  1308. #ifdef CONFIG_SMP
  1309. if (rq->rt.overloaded && push_rt_task(rq) &&
  1310. /* Don't resched if we changed runqueues */
  1311. rq != task_rq(p))
  1312. check_resched = 0;
  1313. #endif /* CONFIG_SMP */
  1314. if (check_resched && p->prio < rq->curr->prio)
  1315. resched_task(rq->curr);
  1316. }
  1317. }
  1318. /*
  1319. * Priority of the task has changed. This may cause
  1320. * us to initiate a push or pull.
  1321. */
  1322. static void prio_changed_rt(struct rq *rq, struct task_struct *p,
  1323. int oldprio, int running)
  1324. {
  1325. if (running) {
  1326. #ifdef CONFIG_SMP
  1327. /*
  1328. * If our priority decreases while running, we
  1329. * may need to pull tasks to this runqueue.
  1330. */
  1331. if (oldprio < p->prio)
  1332. pull_rt_task(rq);
  1333. /*
  1334. * If there's a higher priority task waiting to run
  1335. * then reschedule. Note, the above pull_rt_task
  1336. * can release the rq lock and p could migrate.
  1337. * Only reschedule if p is still on the same runqueue.
  1338. */
  1339. if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
  1340. resched_task(p);
  1341. #else
  1342. /* For UP simply resched on drop of prio */
  1343. if (oldprio < p->prio)
  1344. resched_task(p);
  1345. #endif /* CONFIG_SMP */
  1346. } else {
  1347. /*
  1348. * This task is not running, but if it is
  1349. * greater than the current running task
  1350. * then reschedule.
  1351. */
  1352. if (p->prio < rq->curr->prio)
  1353. resched_task(rq->curr);
  1354. }
  1355. }
  1356. static void watchdog(struct rq *rq, struct task_struct *p)
  1357. {
  1358. unsigned long soft, hard;
  1359. if (!p->signal)
  1360. return;
  1361. soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
  1362. hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
  1363. if (soft != RLIM_INFINITY) {
  1364. unsigned long next;
  1365. p->rt.timeout++;
  1366. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1367. if (p->rt.timeout > next)
  1368. p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
  1369. }
  1370. }
  1371. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1372. {
  1373. update_curr_rt(rq);
  1374. watchdog(rq, p);
  1375. /*
  1376. * RR tasks need a special form of timeslice management.
  1377. * FIFO tasks have no timeslices.
  1378. */
  1379. if (p->policy != SCHED_RR)
  1380. return;
  1381. if (--p->rt.time_slice)
  1382. return;
  1383. p->rt.time_slice = DEF_TIMESLICE;
  1384. /*
  1385. * Requeue to the end of queue if we are not the only element
  1386. * on the queue:
  1387. */
  1388. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1389. requeue_task_rt(rq, p, 0);
  1390. set_tsk_need_resched(p);
  1391. }
  1392. }
  1393. static void set_curr_task_rt(struct rq *rq)
  1394. {
  1395. struct task_struct *p = rq->curr;
  1396. p->se.exec_start = rq->clock;
  1397. /* The running task is never eligible for pushing */
  1398. dequeue_pushable_task(rq, p);
  1399. }
  1400. static const struct sched_class rt_sched_class = {
  1401. .next = &fair_sched_class,
  1402. .enqueue_task = enqueue_task_rt,
  1403. .dequeue_task = dequeue_task_rt,
  1404. .yield_task = yield_task_rt,
  1405. .check_preempt_curr = check_preempt_curr_rt,
  1406. .pick_next_task = pick_next_task_rt,
  1407. .put_prev_task = put_prev_task_rt,
  1408. #ifdef CONFIG_SMP
  1409. .select_task_rq = select_task_rq_rt,
  1410. .load_balance = load_balance_rt,
  1411. .move_one_task = move_one_task_rt,
  1412. .set_cpus_allowed = set_cpus_allowed_rt,
  1413. .rq_online = rq_online_rt,
  1414. .rq_offline = rq_offline_rt,
  1415. .pre_schedule = pre_schedule_rt,
  1416. .post_schedule = post_schedule_rt,
  1417. .task_wake_up = task_wake_up_rt,
  1418. .switched_from = switched_from_rt,
  1419. #endif
  1420. .set_curr_task = set_curr_task_rt,
  1421. .task_tick = task_tick_rt,
  1422. .prio_changed = prio_changed_rt,
  1423. .switched_to = switched_to_rt,
  1424. };
  1425. #ifdef CONFIG_SCHED_DEBUG
  1426. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1427. static void print_rt_stats(struct seq_file *m, int cpu)
  1428. {
  1429. struct rt_rq *rt_rq;
  1430. rcu_read_lock();
  1431. for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
  1432. print_rt_rq(m, cpu, rt_rq);
  1433. rcu_read_unlock();
  1434. }
  1435. #endif /* CONFIG_SCHED_DEBUG */