sched.c 260 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_counter.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/reciprocal_div.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. #ifdef CONFIG_SMP
  113. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  114. /*
  115. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  116. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  117. */
  118. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  119. {
  120. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  121. }
  122. /*
  123. * Each time a sched group cpu_power is changed,
  124. * we must compute its reciprocal value
  125. */
  126. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  127. {
  128. sg->__cpu_power += val;
  129. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  130. }
  131. #endif
  132. static inline int rt_policy(int policy)
  133. {
  134. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  135. return 1;
  136. return 0;
  137. }
  138. static inline int task_has_rt_policy(struct task_struct *p)
  139. {
  140. return rt_policy(p->policy);
  141. }
  142. /*
  143. * This is the priority-queue data structure of the RT scheduling class:
  144. */
  145. struct rt_prio_array {
  146. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  147. struct list_head queue[MAX_RT_PRIO];
  148. };
  149. struct rt_bandwidth {
  150. /* nests inside the rq lock: */
  151. spinlock_t rt_runtime_lock;
  152. ktime_t rt_period;
  153. u64 rt_runtime;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. }
  184. static inline int rt_bandwidth_enabled(void)
  185. {
  186. return sysctl_sched_rt_runtime >= 0;
  187. }
  188. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  189. {
  190. ktime_t now;
  191. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. spin_lock(&rt_b->rt_runtime_lock);
  196. for (;;) {
  197. unsigned long delta;
  198. ktime_t soft, hard;
  199. if (hrtimer_active(&rt_b->rt_period_timer))
  200. break;
  201. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  202. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  203. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  204. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  205. delta = ktime_to_ns(ktime_sub(hard, soft));
  206. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  207. HRTIMER_MODE_ABS_PINNED, 0);
  208. }
  209. spin_unlock(&rt_b->rt_runtime_lock);
  210. }
  211. #ifdef CONFIG_RT_GROUP_SCHED
  212. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  213. {
  214. hrtimer_cancel(&rt_b->rt_period_timer);
  215. }
  216. #endif
  217. /*
  218. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  219. * detach_destroy_domains and partition_sched_domains.
  220. */
  221. static DEFINE_MUTEX(sched_domains_mutex);
  222. #ifdef CONFIG_GROUP_SCHED
  223. #include <linux/cgroup.h>
  224. struct cfs_rq;
  225. static LIST_HEAD(task_groups);
  226. /* task group related information */
  227. struct task_group {
  228. #ifdef CONFIG_CGROUP_SCHED
  229. struct cgroup_subsys_state css;
  230. #endif
  231. #ifdef CONFIG_USER_SCHED
  232. uid_t uid;
  233. #endif
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* schedulable entities of this group on each cpu */
  236. struct sched_entity **se;
  237. /* runqueue "owned" by this group on each cpu */
  238. struct cfs_rq **cfs_rq;
  239. unsigned long shares;
  240. #endif
  241. #ifdef CONFIG_RT_GROUP_SCHED
  242. struct sched_rt_entity **rt_se;
  243. struct rt_rq **rt_rq;
  244. struct rt_bandwidth rt_bandwidth;
  245. #endif
  246. struct rcu_head rcu;
  247. struct list_head list;
  248. struct task_group *parent;
  249. struct list_head siblings;
  250. struct list_head children;
  251. };
  252. #ifdef CONFIG_USER_SCHED
  253. /* Helper function to pass uid information to create_sched_user() */
  254. void set_tg_uid(struct user_struct *user)
  255. {
  256. user->tg->uid = user->uid;
  257. }
  258. /*
  259. * Root task group.
  260. * Every UID task group (including init_task_group aka UID-0) will
  261. * be a child to this group.
  262. */
  263. struct task_group root_task_group;
  264. #ifdef CONFIG_FAIR_GROUP_SCHED
  265. /* Default task group's sched entity on each cpu */
  266. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  267. /* Default task group's cfs_rq on each cpu */
  268. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  269. #endif /* CONFIG_FAIR_GROUP_SCHED */
  270. #ifdef CONFIG_RT_GROUP_SCHED
  271. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  272. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_RT_GROUP_SCHED */
  274. #else /* !CONFIG_USER_SCHED */
  275. #define root_task_group init_task_group
  276. #endif /* CONFIG_USER_SCHED */
  277. /* task_group_lock serializes add/remove of task groups and also changes to
  278. * a task group's cpu shares.
  279. */
  280. static DEFINE_SPINLOCK(task_group_lock);
  281. #ifdef CONFIG_SMP
  282. static int root_task_group_empty(void)
  283. {
  284. return list_empty(&root_task_group.children);
  285. }
  286. #endif
  287. #ifdef CONFIG_FAIR_GROUP_SCHED
  288. #ifdef CONFIG_USER_SCHED
  289. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  290. #else /* !CONFIG_USER_SCHED */
  291. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  292. #endif /* CONFIG_USER_SCHED */
  293. /*
  294. * A weight of 0 or 1 can cause arithmetics problems.
  295. * A weight of a cfs_rq is the sum of weights of which entities
  296. * are queued on this cfs_rq, so a weight of a entity should not be
  297. * too large, so as the shares value of a task group.
  298. * (The default weight is 1024 - so there's no practical
  299. * limitation from this.)
  300. */
  301. #define MIN_SHARES 2
  302. #define MAX_SHARES (1UL << 18)
  303. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  304. #endif
  305. /* Default task group.
  306. * Every task in system belong to this group at bootup.
  307. */
  308. struct task_group init_task_group;
  309. /* return group to which a task belongs */
  310. static inline struct task_group *task_group(struct task_struct *p)
  311. {
  312. struct task_group *tg;
  313. #ifdef CONFIG_USER_SCHED
  314. rcu_read_lock();
  315. tg = __task_cred(p)->user->tg;
  316. rcu_read_unlock();
  317. #elif defined(CONFIG_CGROUP_SCHED)
  318. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  319. struct task_group, css);
  320. #else
  321. tg = &init_task_group;
  322. #endif
  323. return tg;
  324. }
  325. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  326. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  327. {
  328. #ifdef CONFIG_FAIR_GROUP_SCHED
  329. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  330. p->se.parent = task_group(p)->se[cpu];
  331. #endif
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  334. p->rt.parent = task_group(p)->rt_se[cpu];
  335. #endif
  336. }
  337. #else
  338. #ifdef CONFIG_SMP
  339. static int root_task_group_empty(void)
  340. {
  341. return 1;
  342. }
  343. #endif
  344. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  345. static inline struct task_group *task_group(struct task_struct *p)
  346. {
  347. return NULL;
  348. }
  349. #endif /* CONFIG_GROUP_SCHED */
  350. /* CFS-related fields in a runqueue */
  351. struct cfs_rq {
  352. struct load_weight load;
  353. unsigned long nr_running;
  354. u64 exec_clock;
  355. u64 min_vruntime;
  356. struct rb_root tasks_timeline;
  357. struct rb_node *rb_leftmost;
  358. struct list_head tasks;
  359. struct list_head *balance_iterator;
  360. /*
  361. * 'curr' points to currently running entity on this cfs_rq.
  362. * It is set to NULL otherwise (i.e when none are currently running).
  363. */
  364. struct sched_entity *curr, *next, *last;
  365. unsigned int nr_spread_over;
  366. #ifdef CONFIG_FAIR_GROUP_SCHED
  367. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  368. /*
  369. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  370. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  371. * (like users, containers etc.)
  372. *
  373. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  374. * list is used during load balance.
  375. */
  376. struct list_head leaf_cfs_rq_list;
  377. struct task_group *tg; /* group that "owns" this runqueue */
  378. #ifdef CONFIG_SMP
  379. /*
  380. * the part of load.weight contributed by tasks
  381. */
  382. unsigned long task_weight;
  383. /*
  384. * h_load = weight * f(tg)
  385. *
  386. * Where f(tg) is the recursive weight fraction assigned to
  387. * this group.
  388. */
  389. unsigned long h_load;
  390. /*
  391. * this cpu's part of tg->shares
  392. */
  393. unsigned long shares;
  394. /*
  395. * load.weight at the time we set shares
  396. */
  397. unsigned long rq_weight;
  398. #endif
  399. #endif
  400. };
  401. /* Real-Time classes' related field in a runqueue: */
  402. struct rt_rq {
  403. struct rt_prio_array active;
  404. unsigned long rt_nr_running;
  405. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  406. struct {
  407. int curr; /* highest queued rt task prio */
  408. #ifdef CONFIG_SMP
  409. int next; /* next highest */
  410. #endif
  411. } highest_prio;
  412. #endif
  413. #ifdef CONFIG_SMP
  414. unsigned long rt_nr_migratory;
  415. unsigned long rt_nr_total;
  416. int overloaded;
  417. struct plist_head pushable_tasks;
  418. #endif
  419. int rt_throttled;
  420. u64 rt_time;
  421. u64 rt_runtime;
  422. /* Nests inside the rq lock: */
  423. spinlock_t rt_runtime_lock;
  424. #ifdef CONFIG_RT_GROUP_SCHED
  425. unsigned long rt_nr_boosted;
  426. struct rq *rq;
  427. struct list_head leaf_rt_rq_list;
  428. struct task_group *tg;
  429. struct sched_rt_entity *rt_se;
  430. #endif
  431. };
  432. #ifdef CONFIG_SMP
  433. /*
  434. * We add the notion of a root-domain which will be used to define per-domain
  435. * variables. Each exclusive cpuset essentially defines an island domain by
  436. * fully partitioning the member cpus from any other cpuset. Whenever a new
  437. * exclusive cpuset is created, we also create and attach a new root-domain
  438. * object.
  439. *
  440. */
  441. struct root_domain {
  442. atomic_t refcount;
  443. cpumask_var_t span;
  444. cpumask_var_t online;
  445. /*
  446. * The "RT overload" flag: it gets set if a CPU has more than
  447. * one runnable RT task.
  448. */
  449. cpumask_var_t rto_mask;
  450. atomic_t rto_count;
  451. #ifdef CONFIG_SMP
  452. struct cpupri cpupri;
  453. #endif
  454. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  455. /*
  456. * Preferred wake up cpu nominated by sched_mc balance that will be
  457. * used when most cpus are idle in the system indicating overall very
  458. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  459. */
  460. unsigned int sched_mc_preferred_wakeup_cpu;
  461. #endif
  462. };
  463. /*
  464. * By default the system creates a single root-domain with all cpus as
  465. * members (mimicking the global state we have today).
  466. */
  467. static struct root_domain def_root_domain;
  468. #endif
  469. /*
  470. * This is the main, per-CPU runqueue data structure.
  471. *
  472. * Locking rule: those places that want to lock multiple runqueues
  473. * (such as the load balancing or the thread migration code), lock
  474. * acquire operations must be ordered by ascending &runqueue.
  475. */
  476. struct rq {
  477. /* runqueue lock: */
  478. spinlock_t lock;
  479. /*
  480. * nr_running and cpu_load should be in the same cacheline because
  481. * remote CPUs use both these fields when doing load calculation.
  482. */
  483. unsigned long nr_running;
  484. #define CPU_LOAD_IDX_MAX 5
  485. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  486. #ifdef CONFIG_NO_HZ
  487. unsigned long last_tick_seen;
  488. unsigned char in_nohz_recently;
  489. #endif
  490. /* capture load from *all* tasks on this cpu: */
  491. struct load_weight load;
  492. unsigned long nr_load_updates;
  493. u64 nr_switches;
  494. u64 nr_migrations_in;
  495. struct cfs_rq cfs;
  496. struct rt_rq rt;
  497. #ifdef CONFIG_FAIR_GROUP_SCHED
  498. /* list of leaf cfs_rq on this cpu: */
  499. struct list_head leaf_cfs_rq_list;
  500. #endif
  501. #ifdef CONFIG_RT_GROUP_SCHED
  502. struct list_head leaf_rt_rq_list;
  503. #endif
  504. /*
  505. * This is part of a global counter where only the total sum
  506. * over all CPUs matters. A task can increase this counter on
  507. * one CPU and if it got migrated afterwards it may decrease
  508. * it on another CPU. Always updated under the runqueue lock:
  509. */
  510. unsigned long nr_uninterruptible;
  511. struct task_struct *curr, *idle;
  512. unsigned long next_balance;
  513. struct mm_struct *prev_mm;
  514. u64 clock;
  515. atomic_t nr_iowait;
  516. #ifdef CONFIG_SMP
  517. struct root_domain *rd;
  518. struct sched_domain *sd;
  519. unsigned char idle_at_tick;
  520. /* For active balancing */
  521. int post_schedule;
  522. int active_balance;
  523. int push_cpu;
  524. /* cpu of this runqueue: */
  525. int cpu;
  526. int online;
  527. unsigned long avg_load_per_task;
  528. struct task_struct *migration_thread;
  529. struct list_head migration_queue;
  530. #endif
  531. /* calc_load related fields */
  532. unsigned long calc_load_update;
  533. long calc_load_active;
  534. #ifdef CONFIG_SCHED_HRTICK
  535. #ifdef CONFIG_SMP
  536. int hrtick_csd_pending;
  537. struct call_single_data hrtick_csd;
  538. #endif
  539. struct hrtimer hrtick_timer;
  540. #endif
  541. #ifdef CONFIG_SCHEDSTATS
  542. /* latency stats */
  543. struct sched_info rq_sched_info;
  544. unsigned long long rq_cpu_time;
  545. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  546. /* sys_sched_yield() stats */
  547. unsigned int yld_count;
  548. /* schedule() stats */
  549. unsigned int sched_switch;
  550. unsigned int sched_count;
  551. unsigned int sched_goidle;
  552. /* try_to_wake_up() stats */
  553. unsigned int ttwu_count;
  554. unsigned int ttwu_local;
  555. /* BKL stats */
  556. unsigned int bkl_count;
  557. #endif
  558. };
  559. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  560. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  561. {
  562. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  563. }
  564. static inline int cpu_of(struct rq *rq)
  565. {
  566. #ifdef CONFIG_SMP
  567. return rq->cpu;
  568. #else
  569. return 0;
  570. #endif
  571. }
  572. /*
  573. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  574. * See detach_destroy_domains: synchronize_sched for details.
  575. *
  576. * The domain tree of any CPU may only be accessed from within
  577. * preempt-disabled sections.
  578. */
  579. #define for_each_domain(cpu, __sd) \
  580. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  581. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  582. #define this_rq() (&__get_cpu_var(runqueues))
  583. #define task_rq(p) cpu_rq(task_cpu(p))
  584. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  585. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  586. inline void update_rq_clock(struct rq *rq)
  587. {
  588. rq->clock = sched_clock_cpu(cpu_of(rq));
  589. }
  590. /*
  591. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  592. */
  593. #ifdef CONFIG_SCHED_DEBUG
  594. # define const_debug __read_mostly
  595. #else
  596. # define const_debug static const
  597. #endif
  598. /**
  599. * runqueue_is_locked
  600. *
  601. * Returns true if the current cpu runqueue is locked.
  602. * This interface allows printk to be called with the runqueue lock
  603. * held and know whether or not it is OK to wake up the klogd.
  604. */
  605. int runqueue_is_locked(void)
  606. {
  607. int cpu = get_cpu();
  608. struct rq *rq = cpu_rq(cpu);
  609. int ret;
  610. ret = spin_is_locked(&rq->lock);
  611. put_cpu();
  612. return ret;
  613. }
  614. /*
  615. * Debugging: various feature bits
  616. */
  617. #define SCHED_FEAT(name, enabled) \
  618. __SCHED_FEAT_##name ,
  619. enum {
  620. #include "sched_features.h"
  621. };
  622. #undef SCHED_FEAT
  623. #define SCHED_FEAT(name, enabled) \
  624. (1UL << __SCHED_FEAT_##name) * enabled |
  625. const_debug unsigned int sysctl_sched_features =
  626. #include "sched_features.h"
  627. 0;
  628. #undef SCHED_FEAT
  629. #ifdef CONFIG_SCHED_DEBUG
  630. #define SCHED_FEAT(name, enabled) \
  631. #name ,
  632. static __read_mostly char *sched_feat_names[] = {
  633. #include "sched_features.h"
  634. NULL
  635. };
  636. #undef SCHED_FEAT
  637. static int sched_feat_show(struct seq_file *m, void *v)
  638. {
  639. int i;
  640. for (i = 0; sched_feat_names[i]; i++) {
  641. if (!(sysctl_sched_features & (1UL << i)))
  642. seq_puts(m, "NO_");
  643. seq_printf(m, "%s ", sched_feat_names[i]);
  644. }
  645. seq_puts(m, "\n");
  646. return 0;
  647. }
  648. static ssize_t
  649. sched_feat_write(struct file *filp, const char __user *ubuf,
  650. size_t cnt, loff_t *ppos)
  651. {
  652. char buf[64];
  653. char *cmp = buf;
  654. int neg = 0;
  655. int i;
  656. if (cnt > 63)
  657. cnt = 63;
  658. if (copy_from_user(&buf, ubuf, cnt))
  659. return -EFAULT;
  660. buf[cnt] = 0;
  661. if (strncmp(buf, "NO_", 3) == 0) {
  662. neg = 1;
  663. cmp += 3;
  664. }
  665. for (i = 0; sched_feat_names[i]; i++) {
  666. int len = strlen(sched_feat_names[i]);
  667. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  668. if (neg)
  669. sysctl_sched_features &= ~(1UL << i);
  670. else
  671. sysctl_sched_features |= (1UL << i);
  672. break;
  673. }
  674. }
  675. if (!sched_feat_names[i])
  676. return -EINVAL;
  677. filp->f_pos += cnt;
  678. return cnt;
  679. }
  680. static int sched_feat_open(struct inode *inode, struct file *filp)
  681. {
  682. return single_open(filp, sched_feat_show, NULL);
  683. }
  684. static struct file_operations sched_feat_fops = {
  685. .open = sched_feat_open,
  686. .write = sched_feat_write,
  687. .read = seq_read,
  688. .llseek = seq_lseek,
  689. .release = single_release,
  690. };
  691. static __init int sched_init_debug(void)
  692. {
  693. debugfs_create_file("sched_features", 0644, NULL, NULL,
  694. &sched_feat_fops);
  695. return 0;
  696. }
  697. late_initcall(sched_init_debug);
  698. #endif
  699. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  700. /*
  701. * Number of tasks to iterate in a single balance run.
  702. * Limited because this is done with IRQs disabled.
  703. */
  704. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  705. /*
  706. * ratelimit for updating the group shares.
  707. * default: 0.25ms
  708. */
  709. unsigned int sysctl_sched_shares_ratelimit = 250000;
  710. /*
  711. * Inject some fuzzyness into changing the per-cpu group shares
  712. * this avoids remote rq-locks at the expense of fairness.
  713. * default: 4
  714. */
  715. unsigned int sysctl_sched_shares_thresh = 4;
  716. /*
  717. * period over which we measure -rt task cpu usage in us.
  718. * default: 1s
  719. */
  720. unsigned int sysctl_sched_rt_period = 1000000;
  721. static __read_mostly int scheduler_running;
  722. /*
  723. * part of the period that we allow rt tasks to run in us.
  724. * default: 0.95s
  725. */
  726. int sysctl_sched_rt_runtime = 950000;
  727. static inline u64 global_rt_period(void)
  728. {
  729. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  730. }
  731. static inline u64 global_rt_runtime(void)
  732. {
  733. if (sysctl_sched_rt_runtime < 0)
  734. return RUNTIME_INF;
  735. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  736. }
  737. #ifndef prepare_arch_switch
  738. # define prepare_arch_switch(next) do { } while (0)
  739. #endif
  740. #ifndef finish_arch_switch
  741. # define finish_arch_switch(prev) do { } while (0)
  742. #endif
  743. static inline int task_current(struct rq *rq, struct task_struct *p)
  744. {
  745. return rq->curr == p;
  746. }
  747. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  748. static inline int task_running(struct rq *rq, struct task_struct *p)
  749. {
  750. return task_current(rq, p);
  751. }
  752. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  753. {
  754. }
  755. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  756. {
  757. #ifdef CONFIG_DEBUG_SPINLOCK
  758. /* this is a valid case when another task releases the spinlock */
  759. rq->lock.owner = current;
  760. #endif
  761. /*
  762. * If we are tracking spinlock dependencies then we have to
  763. * fix up the runqueue lock - which gets 'carried over' from
  764. * prev into current:
  765. */
  766. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  767. spin_unlock_irq(&rq->lock);
  768. }
  769. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  770. static inline int task_running(struct rq *rq, struct task_struct *p)
  771. {
  772. #ifdef CONFIG_SMP
  773. return p->oncpu;
  774. #else
  775. return task_current(rq, p);
  776. #endif
  777. }
  778. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  779. {
  780. #ifdef CONFIG_SMP
  781. /*
  782. * We can optimise this out completely for !SMP, because the
  783. * SMP rebalancing from interrupt is the only thing that cares
  784. * here.
  785. */
  786. next->oncpu = 1;
  787. #endif
  788. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  789. spin_unlock_irq(&rq->lock);
  790. #else
  791. spin_unlock(&rq->lock);
  792. #endif
  793. }
  794. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  795. {
  796. #ifdef CONFIG_SMP
  797. /*
  798. * After ->oncpu is cleared, the task can be moved to a different CPU.
  799. * We must ensure this doesn't happen until the switch is completely
  800. * finished.
  801. */
  802. smp_wmb();
  803. prev->oncpu = 0;
  804. #endif
  805. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  806. local_irq_enable();
  807. #endif
  808. }
  809. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  810. /*
  811. * __task_rq_lock - lock the runqueue a given task resides on.
  812. * Must be called interrupts disabled.
  813. */
  814. static inline struct rq *__task_rq_lock(struct task_struct *p)
  815. __acquires(rq->lock)
  816. {
  817. for (;;) {
  818. struct rq *rq = task_rq(p);
  819. spin_lock(&rq->lock);
  820. if (likely(rq == task_rq(p)))
  821. return rq;
  822. spin_unlock(&rq->lock);
  823. }
  824. }
  825. /*
  826. * task_rq_lock - lock the runqueue a given task resides on and disable
  827. * interrupts. Note the ordering: we can safely lookup the task_rq without
  828. * explicitly disabling preemption.
  829. */
  830. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  831. __acquires(rq->lock)
  832. {
  833. struct rq *rq;
  834. for (;;) {
  835. local_irq_save(*flags);
  836. rq = task_rq(p);
  837. spin_lock(&rq->lock);
  838. if (likely(rq == task_rq(p)))
  839. return rq;
  840. spin_unlock_irqrestore(&rq->lock, *flags);
  841. }
  842. }
  843. void task_rq_unlock_wait(struct task_struct *p)
  844. {
  845. struct rq *rq = task_rq(p);
  846. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  847. spin_unlock_wait(&rq->lock);
  848. }
  849. static void __task_rq_unlock(struct rq *rq)
  850. __releases(rq->lock)
  851. {
  852. spin_unlock(&rq->lock);
  853. }
  854. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  855. __releases(rq->lock)
  856. {
  857. spin_unlock_irqrestore(&rq->lock, *flags);
  858. }
  859. /*
  860. * this_rq_lock - lock this runqueue and disable interrupts.
  861. */
  862. static struct rq *this_rq_lock(void)
  863. __acquires(rq->lock)
  864. {
  865. struct rq *rq;
  866. local_irq_disable();
  867. rq = this_rq();
  868. spin_lock(&rq->lock);
  869. return rq;
  870. }
  871. #ifdef CONFIG_SCHED_HRTICK
  872. /*
  873. * Use HR-timers to deliver accurate preemption points.
  874. *
  875. * Its all a bit involved since we cannot program an hrt while holding the
  876. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  877. * reschedule event.
  878. *
  879. * When we get rescheduled we reprogram the hrtick_timer outside of the
  880. * rq->lock.
  881. */
  882. /*
  883. * Use hrtick when:
  884. * - enabled by features
  885. * - hrtimer is actually high res
  886. */
  887. static inline int hrtick_enabled(struct rq *rq)
  888. {
  889. if (!sched_feat(HRTICK))
  890. return 0;
  891. if (!cpu_active(cpu_of(rq)))
  892. return 0;
  893. return hrtimer_is_hres_active(&rq->hrtick_timer);
  894. }
  895. static void hrtick_clear(struct rq *rq)
  896. {
  897. if (hrtimer_active(&rq->hrtick_timer))
  898. hrtimer_cancel(&rq->hrtick_timer);
  899. }
  900. /*
  901. * High-resolution timer tick.
  902. * Runs from hardirq context with interrupts disabled.
  903. */
  904. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  905. {
  906. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  907. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  908. spin_lock(&rq->lock);
  909. update_rq_clock(rq);
  910. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  911. spin_unlock(&rq->lock);
  912. return HRTIMER_NORESTART;
  913. }
  914. #ifdef CONFIG_SMP
  915. /*
  916. * called from hardirq (IPI) context
  917. */
  918. static void __hrtick_start(void *arg)
  919. {
  920. struct rq *rq = arg;
  921. spin_lock(&rq->lock);
  922. hrtimer_restart(&rq->hrtick_timer);
  923. rq->hrtick_csd_pending = 0;
  924. spin_unlock(&rq->lock);
  925. }
  926. /*
  927. * Called to set the hrtick timer state.
  928. *
  929. * called with rq->lock held and irqs disabled
  930. */
  931. static void hrtick_start(struct rq *rq, u64 delay)
  932. {
  933. struct hrtimer *timer = &rq->hrtick_timer;
  934. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  935. hrtimer_set_expires(timer, time);
  936. if (rq == this_rq()) {
  937. hrtimer_restart(timer);
  938. } else if (!rq->hrtick_csd_pending) {
  939. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  940. rq->hrtick_csd_pending = 1;
  941. }
  942. }
  943. static int
  944. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  945. {
  946. int cpu = (int)(long)hcpu;
  947. switch (action) {
  948. case CPU_UP_CANCELED:
  949. case CPU_UP_CANCELED_FROZEN:
  950. case CPU_DOWN_PREPARE:
  951. case CPU_DOWN_PREPARE_FROZEN:
  952. case CPU_DEAD:
  953. case CPU_DEAD_FROZEN:
  954. hrtick_clear(cpu_rq(cpu));
  955. return NOTIFY_OK;
  956. }
  957. return NOTIFY_DONE;
  958. }
  959. static __init void init_hrtick(void)
  960. {
  961. hotcpu_notifier(hotplug_hrtick, 0);
  962. }
  963. #else
  964. /*
  965. * Called to set the hrtick timer state.
  966. *
  967. * called with rq->lock held and irqs disabled
  968. */
  969. static void hrtick_start(struct rq *rq, u64 delay)
  970. {
  971. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  972. HRTIMER_MODE_REL_PINNED, 0);
  973. }
  974. static inline void init_hrtick(void)
  975. {
  976. }
  977. #endif /* CONFIG_SMP */
  978. static void init_rq_hrtick(struct rq *rq)
  979. {
  980. #ifdef CONFIG_SMP
  981. rq->hrtick_csd_pending = 0;
  982. rq->hrtick_csd.flags = 0;
  983. rq->hrtick_csd.func = __hrtick_start;
  984. rq->hrtick_csd.info = rq;
  985. #endif
  986. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  987. rq->hrtick_timer.function = hrtick;
  988. }
  989. #else /* CONFIG_SCHED_HRTICK */
  990. static inline void hrtick_clear(struct rq *rq)
  991. {
  992. }
  993. static inline void init_rq_hrtick(struct rq *rq)
  994. {
  995. }
  996. static inline void init_hrtick(void)
  997. {
  998. }
  999. #endif /* CONFIG_SCHED_HRTICK */
  1000. /*
  1001. * resched_task - mark a task 'to be rescheduled now'.
  1002. *
  1003. * On UP this means the setting of the need_resched flag, on SMP it
  1004. * might also involve a cross-CPU call to trigger the scheduler on
  1005. * the target CPU.
  1006. */
  1007. #ifdef CONFIG_SMP
  1008. #ifndef tsk_is_polling
  1009. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1010. #endif
  1011. static void resched_task(struct task_struct *p)
  1012. {
  1013. int cpu;
  1014. assert_spin_locked(&task_rq(p)->lock);
  1015. if (test_tsk_need_resched(p))
  1016. return;
  1017. set_tsk_need_resched(p);
  1018. cpu = task_cpu(p);
  1019. if (cpu == smp_processor_id())
  1020. return;
  1021. /* NEED_RESCHED must be visible before we test polling */
  1022. smp_mb();
  1023. if (!tsk_is_polling(p))
  1024. smp_send_reschedule(cpu);
  1025. }
  1026. static void resched_cpu(int cpu)
  1027. {
  1028. struct rq *rq = cpu_rq(cpu);
  1029. unsigned long flags;
  1030. if (!spin_trylock_irqsave(&rq->lock, flags))
  1031. return;
  1032. resched_task(cpu_curr(cpu));
  1033. spin_unlock_irqrestore(&rq->lock, flags);
  1034. }
  1035. #ifdef CONFIG_NO_HZ
  1036. /*
  1037. * When add_timer_on() enqueues a timer into the timer wheel of an
  1038. * idle CPU then this timer might expire before the next timer event
  1039. * which is scheduled to wake up that CPU. In case of a completely
  1040. * idle system the next event might even be infinite time into the
  1041. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1042. * leaves the inner idle loop so the newly added timer is taken into
  1043. * account when the CPU goes back to idle and evaluates the timer
  1044. * wheel for the next timer event.
  1045. */
  1046. void wake_up_idle_cpu(int cpu)
  1047. {
  1048. struct rq *rq = cpu_rq(cpu);
  1049. if (cpu == smp_processor_id())
  1050. return;
  1051. /*
  1052. * This is safe, as this function is called with the timer
  1053. * wheel base lock of (cpu) held. When the CPU is on the way
  1054. * to idle and has not yet set rq->curr to idle then it will
  1055. * be serialized on the timer wheel base lock and take the new
  1056. * timer into account automatically.
  1057. */
  1058. if (rq->curr != rq->idle)
  1059. return;
  1060. /*
  1061. * We can set TIF_RESCHED on the idle task of the other CPU
  1062. * lockless. The worst case is that the other CPU runs the
  1063. * idle task through an additional NOOP schedule()
  1064. */
  1065. set_tsk_need_resched(rq->idle);
  1066. /* NEED_RESCHED must be visible before we test polling */
  1067. smp_mb();
  1068. if (!tsk_is_polling(rq->idle))
  1069. smp_send_reschedule(cpu);
  1070. }
  1071. #endif /* CONFIG_NO_HZ */
  1072. #else /* !CONFIG_SMP */
  1073. static void resched_task(struct task_struct *p)
  1074. {
  1075. assert_spin_locked(&task_rq(p)->lock);
  1076. set_tsk_need_resched(p);
  1077. }
  1078. #endif /* CONFIG_SMP */
  1079. #if BITS_PER_LONG == 32
  1080. # define WMULT_CONST (~0UL)
  1081. #else
  1082. # define WMULT_CONST (1UL << 32)
  1083. #endif
  1084. #define WMULT_SHIFT 32
  1085. /*
  1086. * Shift right and round:
  1087. */
  1088. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1089. /*
  1090. * delta *= weight / lw
  1091. */
  1092. static unsigned long
  1093. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1094. struct load_weight *lw)
  1095. {
  1096. u64 tmp;
  1097. if (!lw->inv_weight) {
  1098. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1099. lw->inv_weight = 1;
  1100. else
  1101. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1102. / (lw->weight+1);
  1103. }
  1104. tmp = (u64)delta_exec * weight;
  1105. /*
  1106. * Check whether we'd overflow the 64-bit multiplication:
  1107. */
  1108. if (unlikely(tmp > WMULT_CONST))
  1109. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1110. WMULT_SHIFT/2);
  1111. else
  1112. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1113. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1114. }
  1115. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1116. {
  1117. lw->weight += inc;
  1118. lw->inv_weight = 0;
  1119. }
  1120. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1121. {
  1122. lw->weight -= dec;
  1123. lw->inv_weight = 0;
  1124. }
  1125. /*
  1126. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1127. * of tasks with abnormal "nice" values across CPUs the contribution that
  1128. * each task makes to its run queue's load is weighted according to its
  1129. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1130. * scaled version of the new time slice allocation that they receive on time
  1131. * slice expiry etc.
  1132. */
  1133. #define WEIGHT_IDLEPRIO 3
  1134. #define WMULT_IDLEPRIO 1431655765
  1135. /*
  1136. * Nice levels are multiplicative, with a gentle 10% change for every
  1137. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1138. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1139. * that remained on nice 0.
  1140. *
  1141. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1142. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1143. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1144. * If a task goes up by ~10% and another task goes down by ~10% then
  1145. * the relative distance between them is ~25%.)
  1146. */
  1147. static const int prio_to_weight[40] = {
  1148. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1149. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1150. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1151. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1152. /* 0 */ 1024, 820, 655, 526, 423,
  1153. /* 5 */ 335, 272, 215, 172, 137,
  1154. /* 10 */ 110, 87, 70, 56, 45,
  1155. /* 15 */ 36, 29, 23, 18, 15,
  1156. };
  1157. /*
  1158. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1159. *
  1160. * In cases where the weight does not change often, we can use the
  1161. * precalculated inverse to speed up arithmetics by turning divisions
  1162. * into multiplications:
  1163. */
  1164. static const u32 prio_to_wmult[40] = {
  1165. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1166. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1167. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1168. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1169. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1170. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1171. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1172. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1173. };
  1174. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1175. /*
  1176. * runqueue iterator, to support SMP load-balancing between different
  1177. * scheduling classes, without having to expose their internal data
  1178. * structures to the load-balancing proper:
  1179. */
  1180. struct rq_iterator {
  1181. void *arg;
  1182. struct task_struct *(*start)(void *);
  1183. struct task_struct *(*next)(void *);
  1184. };
  1185. #ifdef CONFIG_SMP
  1186. static unsigned long
  1187. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1188. unsigned long max_load_move, struct sched_domain *sd,
  1189. enum cpu_idle_type idle, int *all_pinned,
  1190. int *this_best_prio, struct rq_iterator *iterator);
  1191. static int
  1192. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1193. struct sched_domain *sd, enum cpu_idle_type idle,
  1194. struct rq_iterator *iterator);
  1195. #endif
  1196. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1197. enum cpuacct_stat_index {
  1198. CPUACCT_STAT_USER, /* ... user mode */
  1199. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1200. CPUACCT_STAT_NSTATS,
  1201. };
  1202. #ifdef CONFIG_CGROUP_CPUACCT
  1203. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1204. static void cpuacct_update_stats(struct task_struct *tsk,
  1205. enum cpuacct_stat_index idx, cputime_t val);
  1206. #else
  1207. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1208. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1209. enum cpuacct_stat_index idx, cputime_t val) {}
  1210. #endif
  1211. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1212. {
  1213. update_load_add(&rq->load, load);
  1214. }
  1215. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1216. {
  1217. update_load_sub(&rq->load, load);
  1218. }
  1219. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1220. typedef int (*tg_visitor)(struct task_group *, void *);
  1221. /*
  1222. * Iterate the full tree, calling @down when first entering a node and @up when
  1223. * leaving it for the final time.
  1224. */
  1225. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1226. {
  1227. struct task_group *parent, *child;
  1228. int ret;
  1229. rcu_read_lock();
  1230. parent = &root_task_group;
  1231. down:
  1232. ret = (*down)(parent, data);
  1233. if (ret)
  1234. goto out_unlock;
  1235. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1236. parent = child;
  1237. goto down;
  1238. up:
  1239. continue;
  1240. }
  1241. ret = (*up)(parent, data);
  1242. if (ret)
  1243. goto out_unlock;
  1244. child = parent;
  1245. parent = parent->parent;
  1246. if (parent)
  1247. goto up;
  1248. out_unlock:
  1249. rcu_read_unlock();
  1250. return ret;
  1251. }
  1252. static int tg_nop(struct task_group *tg, void *data)
  1253. {
  1254. return 0;
  1255. }
  1256. #endif
  1257. #ifdef CONFIG_SMP
  1258. static unsigned long source_load(int cpu, int type);
  1259. static unsigned long target_load(int cpu, int type);
  1260. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1261. static unsigned long cpu_avg_load_per_task(int cpu)
  1262. {
  1263. struct rq *rq = cpu_rq(cpu);
  1264. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1265. if (nr_running)
  1266. rq->avg_load_per_task = rq->load.weight / nr_running;
  1267. else
  1268. rq->avg_load_per_task = 0;
  1269. return rq->avg_load_per_task;
  1270. }
  1271. #ifdef CONFIG_FAIR_GROUP_SCHED
  1272. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1273. /*
  1274. * Calculate and set the cpu's group shares.
  1275. */
  1276. static void
  1277. update_group_shares_cpu(struct task_group *tg, int cpu,
  1278. unsigned long sd_shares, unsigned long sd_rq_weight)
  1279. {
  1280. unsigned long rq_weight;
  1281. unsigned long shares;
  1282. int boost = 0;
  1283. if (!tg->se[cpu])
  1284. return;
  1285. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1286. if (!rq_weight) {
  1287. boost = 1;
  1288. rq_weight = NICE_0_LOAD;
  1289. }
  1290. /*
  1291. * \Sum shares * rq_weight
  1292. * shares = -----------------------
  1293. * \Sum rq_weight
  1294. *
  1295. */
  1296. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1297. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1298. if (abs(shares - tg->se[cpu]->load.weight) >
  1299. sysctl_sched_shares_thresh) {
  1300. struct rq *rq = cpu_rq(cpu);
  1301. unsigned long flags;
  1302. spin_lock_irqsave(&rq->lock, flags);
  1303. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1304. __set_se_shares(tg->se[cpu], shares);
  1305. spin_unlock_irqrestore(&rq->lock, flags);
  1306. }
  1307. }
  1308. /*
  1309. * Re-compute the task group their per cpu shares over the given domain.
  1310. * This needs to be done in a bottom-up fashion because the rq weight of a
  1311. * parent group depends on the shares of its child groups.
  1312. */
  1313. static int tg_shares_up(struct task_group *tg, void *data)
  1314. {
  1315. unsigned long weight, rq_weight = 0, eff_weight = 0;
  1316. unsigned long shares = 0;
  1317. struct sched_domain *sd = data;
  1318. int i;
  1319. for_each_cpu(i, sched_domain_span(sd)) {
  1320. /*
  1321. * If there are currently no tasks on the cpu pretend there
  1322. * is one of average load so that when a new task gets to
  1323. * run here it will not get delayed by group starvation.
  1324. */
  1325. weight = tg->cfs_rq[i]->load.weight;
  1326. tg->cfs_rq[i]->rq_weight = weight;
  1327. rq_weight += weight;
  1328. if (!weight)
  1329. weight = NICE_0_LOAD;
  1330. eff_weight += weight;
  1331. shares += tg->cfs_rq[i]->shares;
  1332. }
  1333. if ((!shares && rq_weight) || shares > tg->shares)
  1334. shares = tg->shares;
  1335. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1336. shares = tg->shares;
  1337. for_each_cpu(i, sched_domain_span(sd)) {
  1338. unsigned long sd_rq_weight = rq_weight;
  1339. if (!tg->cfs_rq[i]->rq_weight)
  1340. sd_rq_weight = eff_weight;
  1341. update_group_shares_cpu(tg, i, shares, sd_rq_weight);
  1342. }
  1343. return 0;
  1344. }
  1345. /*
  1346. * Compute the cpu's hierarchical load factor for each task group.
  1347. * This needs to be done in a top-down fashion because the load of a child
  1348. * group is a fraction of its parents load.
  1349. */
  1350. static int tg_load_down(struct task_group *tg, void *data)
  1351. {
  1352. unsigned long load;
  1353. long cpu = (long)data;
  1354. if (!tg->parent) {
  1355. load = cpu_rq(cpu)->load.weight;
  1356. } else {
  1357. load = tg->parent->cfs_rq[cpu]->h_load;
  1358. load *= tg->cfs_rq[cpu]->shares;
  1359. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1360. }
  1361. tg->cfs_rq[cpu]->h_load = load;
  1362. return 0;
  1363. }
  1364. static void update_shares(struct sched_domain *sd)
  1365. {
  1366. s64 elapsed;
  1367. u64 now;
  1368. if (root_task_group_empty())
  1369. return;
  1370. now = cpu_clock(raw_smp_processor_id());
  1371. elapsed = now - sd->last_update;
  1372. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1373. sd->last_update = now;
  1374. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1375. }
  1376. }
  1377. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1378. {
  1379. if (root_task_group_empty())
  1380. return;
  1381. spin_unlock(&rq->lock);
  1382. update_shares(sd);
  1383. spin_lock(&rq->lock);
  1384. }
  1385. static void update_h_load(long cpu)
  1386. {
  1387. if (root_task_group_empty())
  1388. return;
  1389. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1390. }
  1391. #else
  1392. static inline void update_shares(struct sched_domain *sd)
  1393. {
  1394. }
  1395. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1396. {
  1397. }
  1398. #endif
  1399. #ifdef CONFIG_PREEMPT
  1400. /*
  1401. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1402. * way at the expense of forcing extra atomic operations in all
  1403. * invocations. This assures that the double_lock is acquired using the
  1404. * same underlying policy as the spinlock_t on this architecture, which
  1405. * reduces latency compared to the unfair variant below. However, it
  1406. * also adds more overhead and therefore may reduce throughput.
  1407. */
  1408. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1409. __releases(this_rq->lock)
  1410. __acquires(busiest->lock)
  1411. __acquires(this_rq->lock)
  1412. {
  1413. spin_unlock(&this_rq->lock);
  1414. double_rq_lock(this_rq, busiest);
  1415. return 1;
  1416. }
  1417. #else
  1418. /*
  1419. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1420. * latency by eliminating extra atomic operations when the locks are
  1421. * already in proper order on entry. This favors lower cpu-ids and will
  1422. * grant the double lock to lower cpus over higher ids under contention,
  1423. * regardless of entry order into the function.
  1424. */
  1425. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1426. __releases(this_rq->lock)
  1427. __acquires(busiest->lock)
  1428. __acquires(this_rq->lock)
  1429. {
  1430. int ret = 0;
  1431. if (unlikely(!spin_trylock(&busiest->lock))) {
  1432. if (busiest < this_rq) {
  1433. spin_unlock(&this_rq->lock);
  1434. spin_lock(&busiest->lock);
  1435. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1436. ret = 1;
  1437. } else
  1438. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1439. }
  1440. return ret;
  1441. }
  1442. #endif /* CONFIG_PREEMPT */
  1443. /*
  1444. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1445. */
  1446. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1447. {
  1448. if (unlikely(!irqs_disabled())) {
  1449. /* printk() doesn't work good under rq->lock */
  1450. spin_unlock(&this_rq->lock);
  1451. BUG_ON(1);
  1452. }
  1453. return _double_lock_balance(this_rq, busiest);
  1454. }
  1455. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1456. __releases(busiest->lock)
  1457. {
  1458. spin_unlock(&busiest->lock);
  1459. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1460. }
  1461. #endif
  1462. #ifdef CONFIG_FAIR_GROUP_SCHED
  1463. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1464. {
  1465. #ifdef CONFIG_SMP
  1466. cfs_rq->shares = shares;
  1467. #endif
  1468. }
  1469. #endif
  1470. static void calc_load_account_active(struct rq *this_rq);
  1471. #include "sched_stats.h"
  1472. #include "sched_idletask.c"
  1473. #include "sched_fair.c"
  1474. #include "sched_rt.c"
  1475. #ifdef CONFIG_SCHED_DEBUG
  1476. # include "sched_debug.c"
  1477. #endif
  1478. #define sched_class_highest (&rt_sched_class)
  1479. #define for_each_class(class) \
  1480. for (class = sched_class_highest; class; class = class->next)
  1481. static void inc_nr_running(struct rq *rq)
  1482. {
  1483. rq->nr_running++;
  1484. }
  1485. static void dec_nr_running(struct rq *rq)
  1486. {
  1487. rq->nr_running--;
  1488. }
  1489. static void set_load_weight(struct task_struct *p)
  1490. {
  1491. if (task_has_rt_policy(p)) {
  1492. p->se.load.weight = prio_to_weight[0] * 2;
  1493. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1494. return;
  1495. }
  1496. /*
  1497. * SCHED_IDLE tasks get minimal weight:
  1498. */
  1499. if (p->policy == SCHED_IDLE) {
  1500. p->se.load.weight = WEIGHT_IDLEPRIO;
  1501. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1502. return;
  1503. }
  1504. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1505. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1506. }
  1507. static void update_avg(u64 *avg, u64 sample)
  1508. {
  1509. s64 diff = sample - *avg;
  1510. *avg += diff >> 3;
  1511. }
  1512. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1513. {
  1514. if (wakeup)
  1515. p->se.start_runtime = p->se.sum_exec_runtime;
  1516. sched_info_queued(p);
  1517. p->sched_class->enqueue_task(rq, p, wakeup);
  1518. p->se.on_rq = 1;
  1519. }
  1520. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1521. {
  1522. if (sleep) {
  1523. if (p->se.last_wakeup) {
  1524. update_avg(&p->se.avg_overlap,
  1525. p->se.sum_exec_runtime - p->se.last_wakeup);
  1526. p->se.last_wakeup = 0;
  1527. } else {
  1528. update_avg(&p->se.avg_wakeup,
  1529. sysctl_sched_wakeup_granularity);
  1530. }
  1531. }
  1532. sched_info_dequeued(p);
  1533. p->sched_class->dequeue_task(rq, p, sleep);
  1534. p->se.on_rq = 0;
  1535. }
  1536. /*
  1537. * __normal_prio - return the priority that is based on the static prio
  1538. */
  1539. static inline int __normal_prio(struct task_struct *p)
  1540. {
  1541. return p->static_prio;
  1542. }
  1543. /*
  1544. * Calculate the expected normal priority: i.e. priority
  1545. * without taking RT-inheritance into account. Might be
  1546. * boosted by interactivity modifiers. Changes upon fork,
  1547. * setprio syscalls, and whenever the interactivity
  1548. * estimator recalculates.
  1549. */
  1550. static inline int normal_prio(struct task_struct *p)
  1551. {
  1552. int prio;
  1553. if (task_has_rt_policy(p))
  1554. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1555. else
  1556. prio = __normal_prio(p);
  1557. return prio;
  1558. }
  1559. /*
  1560. * Calculate the current priority, i.e. the priority
  1561. * taken into account by the scheduler. This value might
  1562. * be boosted by RT tasks, or might be boosted by
  1563. * interactivity modifiers. Will be RT if the task got
  1564. * RT-boosted. If not then it returns p->normal_prio.
  1565. */
  1566. static int effective_prio(struct task_struct *p)
  1567. {
  1568. p->normal_prio = normal_prio(p);
  1569. /*
  1570. * If we are RT tasks or we were boosted to RT priority,
  1571. * keep the priority unchanged. Otherwise, update priority
  1572. * to the normal priority:
  1573. */
  1574. if (!rt_prio(p->prio))
  1575. return p->normal_prio;
  1576. return p->prio;
  1577. }
  1578. /*
  1579. * activate_task - move a task to the runqueue.
  1580. */
  1581. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1582. {
  1583. if (task_contributes_to_load(p))
  1584. rq->nr_uninterruptible--;
  1585. enqueue_task(rq, p, wakeup);
  1586. inc_nr_running(rq);
  1587. }
  1588. /*
  1589. * deactivate_task - remove a task from the runqueue.
  1590. */
  1591. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1592. {
  1593. if (task_contributes_to_load(p))
  1594. rq->nr_uninterruptible++;
  1595. dequeue_task(rq, p, sleep);
  1596. dec_nr_running(rq);
  1597. }
  1598. /**
  1599. * task_curr - is this task currently executing on a CPU?
  1600. * @p: the task in question.
  1601. */
  1602. inline int task_curr(const struct task_struct *p)
  1603. {
  1604. return cpu_curr(task_cpu(p)) == p;
  1605. }
  1606. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1607. {
  1608. set_task_rq(p, cpu);
  1609. #ifdef CONFIG_SMP
  1610. /*
  1611. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1612. * successfuly executed on another CPU. We must ensure that updates of
  1613. * per-task data have been completed by this moment.
  1614. */
  1615. smp_wmb();
  1616. task_thread_info(p)->cpu = cpu;
  1617. #endif
  1618. }
  1619. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1620. const struct sched_class *prev_class,
  1621. int oldprio, int running)
  1622. {
  1623. if (prev_class != p->sched_class) {
  1624. if (prev_class->switched_from)
  1625. prev_class->switched_from(rq, p, running);
  1626. p->sched_class->switched_to(rq, p, running);
  1627. } else
  1628. p->sched_class->prio_changed(rq, p, oldprio, running);
  1629. }
  1630. #ifdef CONFIG_SMP
  1631. /* Used instead of source_load when we know the type == 0 */
  1632. static unsigned long weighted_cpuload(const int cpu)
  1633. {
  1634. return cpu_rq(cpu)->load.weight;
  1635. }
  1636. /*
  1637. * Is this task likely cache-hot:
  1638. */
  1639. static int
  1640. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1641. {
  1642. s64 delta;
  1643. /*
  1644. * Buddy candidates are cache hot:
  1645. */
  1646. if (sched_feat(CACHE_HOT_BUDDY) &&
  1647. (&p->se == cfs_rq_of(&p->se)->next ||
  1648. &p->se == cfs_rq_of(&p->se)->last))
  1649. return 1;
  1650. if (p->sched_class != &fair_sched_class)
  1651. return 0;
  1652. if (sysctl_sched_migration_cost == -1)
  1653. return 1;
  1654. if (sysctl_sched_migration_cost == 0)
  1655. return 0;
  1656. delta = now - p->se.exec_start;
  1657. return delta < (s64)sysctl_sched_migration_cost;
  1658. }
  1659. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1660. {
  1661. int old_cpu = task_cpu(p);
  1662. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1663. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1664. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1665. u64 clock_offset;
  1666. clock_offset = old_rq->clock - new_rq->clock;
  1667. trace_sched_migrate_task(p, new_cpu);
  1668. #ifdef CONFIG_SCHEDSTATS
  1669. if (p->se.wait_start)
  1670. p->se.wait_start -= clock_offset;
  1671. if (p->se.sleep_start)
  1672. p->se.sleep_start -= clock_offset;
  1673. if (p->se.block_start)
  1674. p->se.block_start -= clock_offset;
  1675. #endif
  1676. if (old_cpu != new_cpu) {
  1677. p->se.nr_migrations++;
  1678. new_rq->nr_migrations_in++;
  1679. #ifdef CONFIG_SCHEDSTATS
  1680. if (task_hot(p, old_rq->clock, NULL))
  1681. schedstat_inc(p, se.nr_forced2_migrations);
  1682. #endif
  1683. perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1684. 1, 1, NULL, 0);
  1685. }
  1686. p->se.vruntime -= old_cfsrq->min_vruntime -
  1687. new_cfsrq->min_vruntime;
  1688. __set_task_cpu(p, new_cpu);
  1689. }
  1690. struct migration_req {
  1691. struct list_head list;
  1692. struct task_struct *task;
  1693. int dest_cpu;
  1694. struct completion done;
  1695. };
  1696. /*
  1697. * The task's runqueue lock must be held.
  1698. * Returns true if you have to wait for migration thread.
  1699. */
  1700. static int
  1701. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1702. {
  1703. struct rq *rq = task_rq(p);
  1704. /*
  1705. * If the task is not on a runqueue (and not running), then
  1706. * it is sufficient to simply update the task's cpu field.
  1707. */
  1708. if (!p->se.on_rq && !task_running(rq, p)) {
  1709. set_task_cpu(p, dest_cpu);
  1710. return 0;
  1711. }
  1712. init_completion(&req->done);
  1713. req->task = p;
  1714. req->dest_cpu = dest_cpu;
  1715. list_add(&req->list, &rq->migration_queue);
  1716. return 1;
  1717. }
  1718. /*
  1719. * wait_task_context_switch - wait for a thread to complete at least one
  1720. * context switch.
  1721. *
  1722. * @p must not be current.
  1723. */
  1724. void wait_task_context_switch(struct task_struct *p)
  1725. {
  1726. unsigned long nvcsw, nivcsw, flags;
  1727. int running;
  1728. struct rq *rq;
  1729. nvcsw = p->nvcsw;
  1730. nivcsw = p->nivcsw;
  1731. for (;;) {
  1732. /*
  1733. * The runqueue is assigned before the actual context
  1734. * switch. We need to take the runqueue lock.
  1735. *
  1736. * We could check initially without the lock but it is
  1737. * very likely that we need to take the lock in every
  1738. * iteration.
  1739. */
  1740. rq = task_rq_lock(p, &flags);
  1741. running = task_running(rq, p);
  1742. task_rq_unlock(rq, &flags);
  1743. if (likely(!running))
  1744. break;
  1745. /*
  1746. * The switch count is incremented before the actual
  1747. * context switch. We thus wait for two switches to be
  1748. * sure at least one completed.
  1749. */
  1750. if ((p->nvcsw - nvcsw) > 1)
  1751. break;
  1752. if ((p->nivcsw - nivcsw) > 1)
  1753. break;
  1754. cpu_relax();
  1755. }
  1756. }
  1757. /*
  1758. * wait_task_inactive - wait for a thread to unschedule.
  1759. *
  1760. * If @match_state is nonzero, it's the @p->state value just checked and
  1761. * not expected to change. If it changes, i.e. @p might have woken up,
  1762. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1763. * we return a positive number (its total switch count). If a second call
  1764. * a short while later returns the same number, the caller can be sure that
  1765. * @p has remained unscheduled the whole time.
  1766. *
  1767. * The caller must ensure that the task *will* unschedule sometime soon,
  1768. * else this function might spin for a *long* time. This function can't
  1769. * be called with interrupts off, or it may introduce deadlock with
  1770. * smp_call_function() if an IPI is sent by the same process we are
  1771. * waiting to become inactive.
  1772. */
  1773. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1774. {
  1775. unsigned long flags;
  1776. int running, on_rq;
  1777. unsigned long ncsw;
  1778. struct rq *rq;
  1779. for (;;) {
  1780. /*
  1781. * We do the initial early heuristics without holding
  1782. * any task-queue locks at all. We'll only try to get
  1783. * the runqueue lock when things look like they will
  1784. * work out!
  1785. */
  1786. rq = task_rq(p);
  1787. /*
  1788. * If the task is actively running on another CPU
  1789. * still, just relax and busy-wait without holding
  1790. * any locks.
  1791. *
  1792. * NOTE! Since we don't hold any locks, it's not
  1793. * even sure that "rq" stays as the right runqueue!
  1794. * But we don't care, since "task_running()" will
  1795. * return false if the runqueue has changed and p
  1796. * is actually now running somewhere else!
  1797. */
  1798. while (task_running(rq, p)) {
  1799. if (match_state && unlikely(p->state != match_state))
  1800. return 0;
  1801. cpu_relax();
  1802. }
  1803. /*
  1804. * Ok, time to look more closely! We need the rq
  1805. * lock now, to be *sure*. If we're wrong, we'll
  1806. * just go back and repeat.
  1807. */
  1808. rq = task_rq_lock(p, &flags);
  1809. trace_sched_wait_task(rq, p);
  1810. running = task_running(rq, p);
  1811. on_rq = p->se.on_rq;
  1812. ncsw = 0;
  1813. if (!match_state || p->state == match_state)
  1814. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1815. task_rq_unlock(rq, &flags);
  1816. /*
  1817. * If it changed from the expected state, bail out now.
  1818. */
  1819. if (unlikely(!ncsw))
  1820. break;
  1821. /*
  1822. * Was it really running after all now that we
  1823. * checked with the proper locks actually held?
  1824. *
  1825. * Oops. Go back and try again..
  1826. */
  1827. if (unlikely(running)) {
  1828. cpu_relax();
  1829. continue;
  1830. }
  1831. /*
  1832. * It's not enough that it's not actively running,
  1833. * it must be off the runqueue _entirely_, and not
  1834. * preempted!
  1835. *
  1836. * So if it was still runnable (but just not actively
  1837. * running right now), it's preempted, and we should
  1838. * yield - it could be a while.
  1839. */
  1840. if (unlikely(on_rq)) {
  1841. schedule_timeout_uninterruptible(1);
  1842. continue;
  1843. }
  1844. /*
  1845. * Ahh, all good. It wasn't running, and it wasn't
  1846. * runnable, which means that it will never become
  1847. * running in the future either. We're all done!
  1848. */
  1849. break;
  1850. }
  1851. return ncsw;
  1852. }
  1853. /***
  1854. * kick_process - kick a running thread to enter/exit the kernel
  1855. * @p: the to-be-kicked thread
  1856. *
  1857. * Cause a process which is running on another CPU to enter
  1858. * kernel-mode, without any delay. (to get signals handled.)
  1859. *
  1860. * NOTE: this function doesnt have to take the runqueue lock,
  1861. * because all it wants to ensure is that the remote task enters
  1862. * the kernel. If the IPI races and the task has been migrated
  1863. * to another CPU then no harm is done and the purpose has been
  1864. * achieved as well.
  1865. */
  1866. void kick_process(struct task_struct *p)
  1867. {
  1868. int cpu;
  1869. preempt_disable();
  1870. cpu = task_cpu(p);
  1871. if ((cpu != smp_processor_id()) && task_curr(p))
  1872. smp_send_reschedule(cpu);
  1873. preempt_enable();
  1874. }
  1875. EXPORT_SYMBOL_GPL(kick_process);
  1876. /*
  1877. * Return a low guess at the load of a migration-source cpu weighted
  1878. * according to the scheduling class and "nice" value.
  1879. *
  1880. * We want to under-estimate the load of migration sources, to
  1881. * balance conservatively.
  1882. */
  1883. static unsigned long source_load(int cpu, int type)
  1884. {
  1885. struct rq *rq = cpu_rq(cpu);
  1886. unsigned long total = weighted_cpuload(cpu);
  1887. if (type == 0 || !sched_feat(LB_BIAS))
  1888. return total;
  1889. return min(rq->cpu_load[type-1], total);
  1890. }
  1891. /*
  1892. * Return a high guess at the load of a migration-target cpu weighted
  1893. * according to the scheduling class and "nice" value.
  1894. */
  1895. static unsigned long target_load(int cpu, int type)
  1896. {
  1897. struct rq *rq = cpu_rq(cpu);
  1898. unsigned long total = weighted_cpuload(cpu);
  1899. if (type == 0 || !sched_feat(LB_BIAS))
  1900. return total;
  1901. return max(rq->cpu_load[type-1], total);
  1902. }
  1903. /*
  1904. * find_idlest_group finds and returns the least busy CPU group within the
  1905. * domain.
  1906. */
  1907. static struct sched_group *
  1908. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1909. {
  1910. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1911. unsigned long min_load = ULONG_MAX, this_load = 0;
  1912. int load_idx = sd->forkexec_idx;
  1913. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1914. do {
  1915. unsigned long load, avg_load;
  1916. int local_group;
  1917. int i;
  1918. /* Skip over this group if it has no CPUs allowed */
  1919. if (!cpumask_intersects(sched_group_cpus(group),
  1920. &p->cpus_allowed))
  1921. continue;
  1922. local_group = cpumask_test_cpu(this_cpu,
  1923. sched_group_cpus(group));
  1924. /* Tally up the load of all CPUs in the group */
  1925. avg_load = 0;
  1926. for_each_cpu(i, sched_group_cpus(group)) {
  1927. /* Bias balancing toward cpus of our domain */
  1928. if (local_group)
  1929. load = source_load(i, load_idx);
  1930. else
  1931. load = target_load(i, load_idx);
  1932. avg_load += load;
  1933. }
  1934. /* Adjust by relative CPU power of the group */
  1935. avg_load = sg_div_cpu_power(group,
  1936. avg_load * SCHED_LOAD_SCALE);
  1937. if (local_group) {
  1938. this_load = avg_load;
  1939. this = group;
  1940. } else if (avg_load < min_load) {
  1941. min_load = avg_load;
  1942. idlest = group;
  1943. }
  1944. } while (group = group->next, group != sd->groups);
  1945. if (!idlest || 100*this_load < imbalance*min_load)
  1946. return NULL;
  1947. return idlest;
  1948. }
  1949. /*
  1950. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1951. */
  1952. static int
  1953. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1954. {
  1955. unsigned long load, min_load = ULONG_MAX;
  1956. int idlest = -1;
  1957. int i;
  1958. /* Traverse only the allowed CPUs */
  1959. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1960. load = weighted_cpuload(i);
  1961. if (load < min_load || (load == min_load && i == this_cpu)) {
  1962. min_load = load;
  1963. idlest = i;
  1964. }
  1965. }
  1966. return idlest;
  1967. }
  1968. /*
  1969. * sched_balance_self: balance the current task (running on cpu) in domains
  1970. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1971. * SD_BALANCE_EXEC.
  1972. *
  1973. * Balance, ie. select the least loaded group.
  1974. *
  1975. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1976. *
  1977. * preempt must be disabled.
  1978. */
  1979. static int sched_balance_self(int cpu, int flag)
  1980. {
  1981. struct task_struct *t = current;
  1982. struct sched_domain *tmp, *sd = NULL;
  1983. for_each_domain(cpu, tmp) {
  1984. /*
  1985. * If power savings logic is enabled for a domain, stop there.
  1986. */
  1987. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1988. break;
  1989. if (tmp->flags & flag)
  1990. sd = tmp;
  1991. }
  1992. if (sd)
  1993. update_shares(sd);
  1994. while (sd) {
  1995. struct sched_group *group;
  1996. int new_cpu, weight;
  1997. if (!(sd->flags & flag)) {
  1998. sd = sd->child;
  1999. continue;
  2000. }
  2001. group = find_idlest_group(sd, t, cpu);
  2002. if (!group) {
  2003. sd = sd->child;
  2004. continue;
  2005. }
  2006. new_cpu = find_idlest_cpu(group, t, cpu);
  2007. if (new_cpu == -1 || new_cpu == cpu) {
  2008. /* Now try balancing at a lower domain level of cpu */
  2009. sd = sd->child;
  2010. continue;
  2011. }
  2012. /* Now try balancing at a lower domain level of new_cpu */
  2013. cpu = new_cpu;
  2014. weight = cpumask_weight(sched_domain_span(sd));
  2015. sd = NULL;
  2016. for_each_domain(cpu, tmp) {
  2017. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  2018. break;
  2019. if (tmp->flags & flag)
  2020. sd = tmp;
  2021. }
  2022. /* while loop will break here if sd == NULL */
  2023. }
  2024. return cpu;
  2025. }
  2026. #endif /* CONFIG_SMP */
  2027. /**
  2028. * task_oncpu_function_call - call a function on the cpu on which a task runs
  2029. * @p: the task to evaluate
  2030. * @func: the function to be called
  2031. * @info: the function call argument
  2032. *
  2033. * Calls the function @func when the task is currently running. This might
  2034. * be on the current CPU, which just calls the function directly
  2035. */
  2036. void task_oncpu_function_call(struct task_struct *p,
  2037. void (*func) (void *info), void *info)
  2038. {
  2039. int cpu;
  2040. preempt_disable();
  2041. cpu = task_cpu(p);
  2042. if (task_curr(p))
  2043. smp_call_function_single(cpu, func, info, 1);
  2044. preempt_enable();
  2045. }
  2046. /***
  2047. * try_to_wake_up - wake up a thread
  2048. * @p: the to-be-woken-up thread
  2049. * @state: the mask of task states that can be woken
  2050. * @sync: do a synchronous wakeup?
  2051. *
  2052. * Put it on the run-queue if it's not already there. The "current"
  2053. * thread is always on the run-queue (except when the actual
  2054. * re-schedule is in progress), and as such you're allowed to do
  2055. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2056. * runnable without the overhead of this.
  2057. *
  2058. * returns failure only if the task is already active.
  2059. */
  2060. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2061. {
  2062. int cpu, orig_cpu, this_cpu, success = 0;
  2063. unsigned long flags;
  2064. long old_state;
  2065. struct rq *rq;
  2066. if (!sched_feat(SYNC_WAKEUPS))
  2067. sync = 0;
  2068. #ifdef CONFIG_SMP
  2069. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2070. struct sched_domain *sd;
  2071. this_cpu = raw_smp_processor_id();
  2072. cpu = task_cpu(p);
  2073. for_each_domain(this_cpu, sd) {
  2074. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2075. update_shares(sd);
  2076. break;
  2077. }
  2078. }
  2079. }
  2080. #endif
  2081. smp_wmb();
  2082. rq = task_rq_lock(p, &flags);
  2083. update_rq_clock(rq);
  2084. old_state = p->state;
  2085. if (!(old_state & state))
  2086. goto out;
  2087. if (p->se.on_rq)
  2088. goto out_running;
  2089. cpu = task_cpu(p);
  2090. orig_cpu = cpu;
  2091. this_cpu = smp_processor_id();
  2092. #ifdef CONFIG_SMP
  2093. if (unlikely(task_running(rq, p)))
  2094. goto out_activate;
  2095. cpu = p->sched_class->select_task_rq(p, sync);
  2096. if (cpu != orig_cpu) {
  2097. set_task_cpu(p, cpu);
  2098. task_rq_unlock(rq, &flags);
  2099. /* might preempt at this point */
  2100. rq = task_rq_lock(p, &flags);
  2101. old_state = p->state;
  2102. if (!(old_state & state))
  2103. goto out;
  2104. if (p->se.on_rq)
  2105. goto out_running;
  2106. this_cpu = smp_processor_id();
  2107. cpu = task_cpu(p);
  2108. }
  2109. #ifdef CONFIG_SCHEDSTATS
  2110. schedstat_inc(rq, ttwu_count);
  2111. if (cpu == this_cpu)
  2112. schedstat_inc(rq, ttwu_local);
  2113. else {
  2114. struct sched_domain *sd;
  2115. for_each_domain(this_cpu, sd) {
  2116. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2117. schedstat_inc(sd, ttwu_wake_remote);
  2118. break;
  2119. }
  2120. }
  2121. }
  2122. #endif /* CONFIG_SCHEDSTATS */
  2123. out_activate:
  2124. #endif /* CONFIG_SMP */
  2125. schedstat_inc(p, se.nr_wakeups);
  2126. if (sync)
  2127. schedstat_inc(p, se.nr_wakeups_sync);
  2128. if (orig_cpu != cpu)
  2129. schedstat_inc(p, se.nr_wakeups_migrate);
  2130. if (cpu == this_cpu)
  2131. schedstat_inc(p, se.nr_wakeups_local);
  2132. else
  2133. schedstat_inc(p, se.nr_wakeups_remote);
  2134. activate_task(rq, p, 1);
  2135. success = 1;
  2136. /*
  2137. * Only attribute actual wakeups done by this task.
  2138. */
  2139. if (!in_interrupt()) {
  2140. struct sched_entity *se = &current->se;
  2141. u64 sample = se->sum_exec_runtime;
  2142. if (se->last_wakeup)
  2143. sample -= se->last_wakeup;
  2144. else
  2145. sample -= se->start_runtime;
  2146. update_avg(&se->avg_wakeup, sample);
  2147. se->last_wakeup = se->sum_exec_runtime;
  2148. }
  2149. out_running:
  2150. trace_sched_wakeup(rq, p, success);
  2151. check_preempt_curr(rq, p, sync);
  2152. p->state = TASK_RUNNING;
  2153. #ifdef CONFIG_SMP
  2154. if (p->sched_class->task_wake_up)
  2155. p->sched_class->task_wake_up(rq, p);
  2156. #endif
  2157. out:
  2158. task_rq_unlock(rq, &flags);
  2159. return success;
  2160. }
  2161. /**
  2162. * wake_up_process - Wake up a specific process
  2163. * @p: The process to be woken up.
  2164. *
  2165. * Attempt to wake up the nominated process and move it to the set of runnable
  2166. * processes. Returns 1 if the process was woken up, 0 if it was already
  2167. * running.
  2168. *
  2169. * It may be assumed that this function implies a write memory barrier before
  2170. * changing the task state if and only if any tasks are woken up.
  2171. */
  2172. int wake_up_process(struct task_struct *p)
  2173. {
  2174. return try_to_wake_up(p, TASK_ALL, 0);
  2175. }
  2176. EXPORT_SYMBOL(wake_up_process);
  2177. int wake_up_state(struct task_struct *p, unsigned int state)
  2178. {
  2179. return try_to_wake_up(p, state, 0);
  2180. }
  2181. /*
  2182. * Perform scheduler related setup for a newly forked process p.
  2183. * p is forked by current.
  2184. *
  2185. * __sched_fork() is basic setup used by init_idle() too:
  2186. */
  2187. static void __sched_fork(struct task_struct *p)
  2188. {
  2189. p->se.exec_start = 0;
  2190. p->se.sum_exec_runtime = 0;
  2191. p->se.prev_sum_exec_runtime = 0;
  2192. p->se.nr_migrations = 0;
  2193. p->se.last_wakeup = 0;
  2194. p->se.avg_overlap = 0;
  2195. p->se.start_runtime = 0;
  2196. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2197. #ifdef CONFIG_SCHEDSTATS
  2198. p->se.wait_start = 0;
  2199. p->se.wait_max = 0;
  2200. p->se.wait_count = 0;
  2201. p->se.wait_sum = 0;
  2202. p->se.sleep_start = 0;
  2203. p->se.sleep_max = 0;
  2204. p->se.sum_sleep_runtime = 0;
  2205. p->se.block_start = 0;
  2206. p->se.block_max = 0;
  2207. p->se.exec_max = 0;
  2208. p->se.slice_max = 0;
  2209. p->se.nr_migrations_cold = 0;
  2210. p->se.nr_failed_migrations_affine = 0;
  2211. p->se.nr_failed_migrations_running = 0;
  2212. p->se.nr_failed_migrations_hot = 0;
  2213. p->se.nr_forced_migrations = 0;
  2214. p->se.nr_forced2_migrations = 0;
  2215. p->se.nr_wakeups = 0;
  2216. p->se.nr_wakeups_sync = 0;
  2217. p->se.nr_wakeups_migrate = 0;
  2218. p->se.nr_wakeups_local = 0;
  2219. p->se.nr_wakeups_remote = 0;
  2220. p->se.nr_wakeups_affine = 0;
  2221. p->se.nr_wakeups_affine_attempts = 0;
  2222. p->se.nr_wakeups_passive = 0;
  2223. p->se.nr_wakeups_idle = 0;
  2224. #endif
  2225. INIT_LIST_HEAD(&p->rt.run_list);
  2226. p->se.on_rq = 0;
  2227. INIT_LIST_HEAD(&p->se.group_node);
  2228. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2229. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2230. #endif
  2231. /*
  2232. * We mark the process as running here, but have not actually
  2233. * inserted it onto the runqueue yet. This guarantees that
  2234. * nobody will actually run it, and a signal or other external
  2235. * event cannot wake it up and insert it on the runqueue either.
  2236. */
  2237. p->state = TASK_RUNNING;
  2238. }
  2239. /*
  2240. * fork()/clone()-time setup:
  2241. */
  2242. void sched_fork(struct task_struct *p, int clone_flags)
  2243. {
  2244. int cpu = get_cpu();
  2245. __sched_fork(p);
  2246. #ifdef CONFIG_SMP
  2247. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2248. #endif
  2249. set_task_cpu(p, cpu);
  2250. /*
  2251. * Make sure we do not leak PI boosting priority to the child.
  2252. */
  2253. p->prio = current->normal_prio;
  2254. /*
  2255. * Revert to default priority/policy on fork if requested.
  2256. */
  2257. if (unlikely(p->sched_reset_on_fork)) {
  2258. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
  2259. p->policy = SCHED_NORMAL;
  2260. if (p->normal_prio < DEFAULT_PRIO)
  2261. p->prio = DEFAULT_PRIO;
  2262. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2263. p->static_prio = NICE_TO_PRIO(0);
  2264. set_load_weight(p);
  2265. }
  2266. /*
  2267. * We don't need the reset flag anymore after the fork. It has
  2268. * fulfilled its duty:
  2269. */
  2270. p->sched_reset_on_fork = 0;
  2271. }
  2272. if (!rt_prio(p->prio))
  2273. p->sched_class = &fair_sched_class;
  2274. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2275. if (likely(sched_info_on()))
  2276. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2277. #endif
  2278. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2279. p->oncpu = 0;
  2280. #endif
  2281. #ifdef CONFIG_PREEMPT
  2282. /* Want to start with kernel preemption disabled. */
  2283. task_thread_info(p)->preempt_count = 1;
  2284. #endif
  2285. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2286. put_cpu();
  2287. }
  2288. /*
  2289. * wake_up_new_task - wake up a newly created task for the first time.
  2290. *
  2291. * This function will do some initial scheduler statistics housekeeping
  2292. * that must be done for every newly created context, then puts the task
  2293. * on the runqueue and wakes it.
  2294. */
  2295. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2296. {
  2297. unsigned long flags;
  2298. struct rq *rq;
  2299. rq = task_rq_lock(p, &flags);
  2300. BUG_ON(p->state != TASK_RUNNING);
  2301. update_rq_clock(rq);
  2302. p->prio = effective_prio(p);
  2303. if (!p->sched_class->task_new || !current->se.on_rq) {
  2304. activate_task(rq, p, 0);
  2305. } else {
  2306. /*
  2307. * Let the scheduling class do new task startup
  2308. * management (if any):
  2309. */
  2310. p->sched_class->task_new(rq, p);
  2311. inc_nr_running(rq);
  2312. }
  2313. trace_sched_wakeup_new(rq, p, 1);
  2314. check_preempt_curr(rq, p, 0);
  2315. #ifdef CONFIG_SMP
  2316. if (p->sched_class->task_wake_up)
  2317. p->sched_class->task_wake_up(rq, p);
  2318. #endif
  2319. task_rq_unlock(rq, &flags);
  2320. }
  2321. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2322. /**
  2323. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2324. * @notifier: notifier struct to register
  2325. */
  2326. void preempt_notifier_register(struct preempt_notifier *notifier)
  2327. {
  2328. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2329. }
  2330. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2331. /**
  2332. * preempt_notifier_unregister - no longer interested in preemption notifications
  2333. * @notifier: notifier struct to unregister
  2334. *
  2335. * This is safe to call from within a preemption notifier.
  2336. */
  2337. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2338. {
  2339. hlist_del(&notifier->link);
  2340. }
  2341. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2342. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2343. {
  2344. struct preempt_notifier *notifier;
  2345. struct hlist_node *node;
  2346. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2347. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2348. }
  2349. static void
  2350. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2351. struct task_struct *next)
  2352. {
  2353. struct preempt_notifier *notifier;
  2354. struct hlist_node *node;
  2355. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2356. notifier->ops->sched_out(notifier, next);
  2357. }
  2358. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2359. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2360. {
  2361. }
  2362. static void
  2363. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2364. struct task_struct *next)
  2365. {
  2366. }
  2367. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2368. /**
  2369. * prepare_task_switch - prepare to switch tasks
  2370. * @rq: the runqueue preparing to switch
  2371. * @prev: the current task that is being switched out
  2372. * @next: the task we are going to switch to.
  2373. *
  2374. * This is called with the rq lock held and interrupts off. It must
  2375. * be paired with a subsequent finish_task_switch after the context
  2376. * switch.
  2377. *
  2378. * prepare_task_switch sets up locking and calls architecture specific
  2379. * hooks.
  2380. */
  2381. static inline void
  2382. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2383. struct task_struct *next)
  2384. {
  2385. fire_sched_out_preempt_notifiers(prev, next);
  2386. prepare_lock_switch(rq, next);
  2387. prepare_arch_switch(next);
  2388. }
  2389. /**
  2390. * finish_task_switch - clean up after a task-switch
  2391. * @rq: runqueue associated with task-switch
  2392. * @prev: the thread we just switched away from.
  2393. *
  2394. * finish_task_switch must be called after the context switch, paired
  2395. * with a prepare_task_switch call before the context switch.
  2396. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2397. * and do any other architecture-specific cleanup actions.
  2398. *
  2399. * Note that we may have delayed dropping an mm in context_switch(). If
  2400. * so, we finish that here outside of the runqueue lock. (Doing it
  2401. * with the lock held can cause deadlocks; see schedule() for
  2402. * details.)
  2403. */
  2404. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2405. __releases(rq->lock)
  2406. {
  2407. struct mm_struct *mm = rq->prev_mm;
  2408. long prev_state;
  2409. rq->prev_mm = NULL;
  2410. /*
  2411. * A task struct has one reference for the use as "current".
  2412. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2413. * schedule one last time. The schedule call will never return, and
  2414. * the scheduled task must drop that reference.
  2415. * The test for TASK_DEAD must occur while the runqueue locks are
  2416. * still held, otherwise prev could be scheduled on another cpu, die
  2417. * there before we look at prev->state, and then the reference would
  2418. * be dropped twice.
  2419. * Manfred Spraul <manfred@colorfullife.com>
  2420. */
  2421. prev_state = prev->state;
  2422. finish_arch_switch(prev);
  2423. perf_counter_task_sched_in(current, cpu_of(rq));
  2424. finish_lock_switch(rq, prev);
  2425. fire_sched_in_preempt_notifiers(current);
  2426. if (mm)
  2427. mmdrop(mm);
  2428. if (unlikely(prev_state == TASK_DEAD)) {
  2429. /*
  2430. * Remove function-return probe instances associated with this
  2431. * task and put them back on the free list.
  2432. */
  2433. kprobe_flush_task(prev);
  2434. put_task_struct(prev);
  2435. }
  2436. }
  2437. #ifdef CONFIG_SMP
  2438. /* assumes rq->lock is held */
  2439. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2440. {
  2441. if (prev->sched_class->pre_schedule)
  2442. prev->sched_class->pre_schedule(rq, prev);
  2443. }
  2444. /* rq->lock is NOT held, but preemption is disabled */
  2445. static inline void post_schedule(struct rq *rq)
  2446. {
  2447. if (rq->post_schedule) {
  2448. unsigned long flags;
  2449. spin_lock_irqsave(&rq->lock, flags);
  2450. if (rq->curr->sched_class->post_schedule)
  2451. rq->curr->sched_class->post_schedule(rq);
  2452. spin_unlock_irqrestore(&rq->lock, flags);
  2453. rq->post_schedule = 0;
  2454. }
  2455. }
  2456. #else
  2457. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2458. {
  2459. }
  2460. static inline void post_schedule(struct rq *rq)
  2461. {
  2462. }
  2463. #endif
  2464. /**
  2465. * schedule_tail - first thing a freshly forked thread must call.
  2466. * @prev: the thread we just switched away from.
  2467. */
  2468. asmlinkage void schedule_tail(struct task_struct *prev)
  2469. __releases(rq->lock)
  2470. {
  2471. struct rq *rq = this_rq();
  2472. finish_task_switch(rq, prev);
  2473. /*
  2474. * FIXME: do we need to worry about rq being invalidated by the
  2475. * task_switch?
  2476. */
  2477. post_schedule(rq);
  2478. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2479. /* In this case, finish_task_switch does not reenable preemption */
  2480. preempt_enable();
  2481. #endif
  2482. if (current->set_child_tid)
  2483. put_user(task_pid_vnr(current), current->set_child_tid);
  2484. }
  2485. /*
  2486. * context_switch - switch to the new MM and the new
  2487. * thread's register state.
  2488. */
  2489. static inline void
  2490. context_switch(struct rq *rq, struct task_struct *prev,
  2491. struct task_struct *next)
  2492. {
  2493. struct mm_struct *mm, *oldmm;
  2494. prepare_task_switch(rq, prev, next);
  2495. trace_sched_switch(rq, prev, next);
  2496. mm = next->mm;
  2497. oldmm = prev->active_mm;
  2498. /*
  2499. * For paravirt, this is coupled with an exit in switch_to to
  2500. * combine the page table reload and the switch backend into
  2501. * one hypercall.
  2502. */
  2503. arch_start_context_switch(prev);
  2504. if (unlikely(!mm)) {
  2505. next->active_mm = oldmm;
  2506. atomic_inc(&oldmm->mm_count);
  2507. enter_lazy_tlb(oldmm, next);
  2508. } else
  2509. switch_mm(oldmm, mm, next);
  2510. if (unlikely(!prev->mm)) {
  2511. prev->active_mm = NULL;
  2512. rq->prev_mm = oldmm;
  2513. }
  2514. /*
  2515. * Since the runqueue lock will be released by the next
  2516. * task (which is an invalid locking op but in the case
  2517. * of the scheduler it's an obvious special-case), so we
  2518. * do an early lockdep release here:
  2519. */
  2520. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2521. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2522. #endif
  2523. /* Here we just switch the register state and the stack. */
  2524. switch_to(prev, next, prev);
  2525. barrier();
  2526. /*
  2527. * this_rq must be evaluated again because prev may have moved
  2528. * CPUs since it called schedule(), thus the 'rq' on its stack
  2529. * frame will be invalid.
  2530. */
  2531. finish_task_switch(this_rq(), prev);
  2532. }
  2533. /*
  2534. * nr_running, nr_uninterruptible and nr_context_switches:
  2535. *
  2536. * externally visible scheduler statistics: current number of runnable
  2537. * threads, current number of uninterruptible-sleeping threads, total
  2538. * number of context switches performed since bootup.
  2539. */
  2540. unsigned long nr_running(void)
  2541. {
  2542. unsigned long i, sum = 0;
  2543. for_each_online_cpu(i)
  2544. sum += cpu_rq(i)->nr_running;
  2545. return sum;
  2546. }
  2547. unsigned long nr_uninterruptible(void)
  2548. {
  2549. unsigned long i, sum = 0;
  2550. for_each_possible_cpu(i)
  2551. sum += cpu_rq(i)->nr_uninterruptible;
  2552. /*
  2553. * Since we read the counters lockless, it might be slightly
  2554. * inaccurate. Do not allow it to go below zero though:
  2555. */
  2556. if (unlikely((long)sum < 0))
  2557. sum = 0;
  2558. return sum;
  2559. }
  2560. unsigned long long nr_context_switches(void)
  2561. {
  2562. int i;
  2563. unsigned long long sum = 0;
  2564. for_each_possible_cpu(i)
  2565. sum += cpu_rq(i)->nr_switches;
  2566. return sum;
  2567. }
  2568. unsigned long nr_iowait(void)
  2569. {
  2570. unsigned long i, sum = 0;
  2571. for_each_possible_cpu(i)
  2572. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2573. return sum;
  2574. }
  2575. /* Variables and functions for calc_load */
  2576. static atomic_long_t calc_load_tasks;
  2577. static unsigned long calc_load_update;
  2578. unsigned long avenrun[3];
  2579. EXPORT_SYMBOL(avenrun);
  2580. /**
  2581. * get_avenrun - get the load average array
  2582. * @loads: pointer to dest load array
  2583. * @offset: offset to add
  2584. * @shift: shift count to shift the result left
  2585. *
  2586. * These values are estimates at best, so no need for locking.
  2587. */
  2588. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2589. {
  2590. loads[0] = (avenrun[0] + offset) << shift;
  2591. loads[1] = (avenrun[1] + offset) << shift;
  2592. loads[2] = (avenrun[2] + offset) << shift;
  2593. }
  2594. static unsigned long
  2595. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2596. {
  2597. load *= exp;
  2598. load += active * (FIXED_1 - exp);
  2599. return load >> FSHIFT;
  2600. }
  2601. /*
  2602. * calc_load - update the avenrun load estimates 10 ticks after the
  2603. * CPUs have updated calc_load_tasks.
  2604. */
  2605. void calc_global_load(void)
  2606. {
  2607. unsigned long upd = calc_load_update + 10;
  2608. long active;
  2609. if (time_before(jiffies, upd))
  2610. return;
  2611. active = atomic_long_read(&calc_load_tasks);
  2612. active = active > 0 ? active * FIXED_1 : 0;
  2613. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2614. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2615. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2616. calc_load_update += LOAD_FREQ;
  2617. }
  2618. /*
  2619. * Either called from update_cpu_load() or from a cpu going idle
  2620. */
  2621. static void calc_load_account_active(struct rq *this_rq)
  2622. {
  2623. long nr_active, delta;
  2624. nr_active = this_rq->nr_running;
  2625. nr_active += (long) this_rq->nr_uninterruptible;
  2626. if (nr_active != this_rq->calc_load_active) {
  2627. delta = nr_active - this_rq->calc_load_active;
  2628. this_rq->calc_load_active = nr_active;
  2629. atomic_long_add(delta, &calc_load_tasks);
  2630. }
  2631. }
  2632. /*
  2633. * Externally visible per-cpu scheduler statistics:
  2634. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2635. */
  2636. u64 cpu_nr_migrations(int cpu)
  2637. {
  2638. return cpu_rq(cpu)->nr_migrations_in;
  2639. }
  2640. /*
  2641. * Update rq->cpu_load[] statistics. This function is usually called every
  2642. * scheduler tick (TICK_NSEC).
  2643. */
  2644. static void update_cpu_load(struct rq *this_rq)
  2645. {
  2646. unsigned long this_load = this_rq->load.weight;
  2647. int i, scale;
  2648. this_rq->nr_load_updates++;
  2649. /* Update our load: */
  2650. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2651. unsigned long old_load, new_load;
  2652. /* scale is effectively 1 << i now, and >> i divides by scale */
  2653. old_load = this_rq->cpu_load[i];
  2654. new_load = this_load;
  2655. /*
  2656. * Round up the averaging division if load is increasing. This
  2657. * prevents us from getting stuck on 9 if the load is 10, for
  2658. * example.
  2659. */
  2660. if (new_load > old_load)
  2661. new_load += scale-1;
  2662. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2663. }
  2664. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2665. this_rq->calc_load_update += LOAD_FREQ;
  2666. calc_load_account_active(this_rq);
  2667. }
  2668. }
  2669. #ifdef CONFIG_SMP
  2670. /*
  2671. * double_rq_lock - safely lock two runqueues
  2672. *
  2673. * Note this does not disable interrupts like task_rq_lock,
  2674. * you need to do so manually before calling.
  2675. */
  2676. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2677. __acquires(rq1->lock)
  2678. __acquires(rq2->lock)
  2679. {
  2680. BUG_ON(!irqs_disabled());
  2681. if (rq1 == rq2) {
  2682. spin_lock(&rq1->lock);
  2683. __acquire(rq2->lock); /* Fake it out ;) */
  2684. } else {
  2685. if (rq1 < rq2) {
  2686. spin_lock(&rq1->lock);
  2687. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2688. } else {
  2689. spin_lock(&rq2->lock);
  2690. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2691. }
  2692. }
  2693. update_rq_clock(rq1);
  2694. update_rq_clock(rq2);
  2695. }
  2696. /*
  2697. * double_rq_unlock - safely unlock two runqueues
  2698. *
  2699. * Note this does not restore interrupts like task_rq_unlock,
  2700. * you need to do so manually after calling.
  2701. */
  2702. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2703. __releases(rq1->lock)
  2704. __releases(rq2->lock)
  2705. {
  2706. spin_unlock(&rq1->lock);
  2707. if (rq1 != rq2)
  2708. spin_unlock(&rq2->lock);
  2709. else
  2710. __release(rq2->lock);
  2711. }
  2712. /*
  2713. * If dest_cpu is allowed for this process, migrate the task to it.
  2714. * This is accomplished by forcing the cpu_allowed mask to only
  2715. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2716. * the cpu_allowed mask is restored.
  2717. */
  2718. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2719. {
  2720. struct migration_req req;
  2721. unsigned long flags;
  2722. struct rq *rq;
  2723. rq = task_rq_lock(p, &flags);
  2724. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2725. || unlikely(!cpu_active(dest_cpu)))
  2726. goto out;
  2727. /* force the process onto the specified CPU */
  2728. if (migrate_task(p, dest_cpu, &req)) {
  2729. /* Need to wait for migration thread (might exit: take ref). */
  2730. struct task_struct *mt = rq->migration_thread;
  2731. get_task_struct(mt);
  2732. task_rq_unlock(rq, &flags);
  2733. wake_up_process(mt);
  2734. put_task_struct(mt);
  2735. wait_for_completion(&req.done);
  2736. return;
  2737. }
  2738. out:
  2739. task_rq_unlock(rq, &flags);
  2740. }
  2741. /*
  2742. * sched_exec - execve() is a valuable balancing opportunity, because at
  2743. * this point the task has the smallest effective memory and cache footprint.
  2744. */
  2745. void sched_exec(void)
  2746. {
  2747. int new_cpu, this_cpu = get_cpu();
  2748. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2749. put_cpu();
  2750. if (new_cpu != this_cpu)
  2751. sched_migrate_task(current, new_cpu);
  2752. }
  2753. /*
  2754. * pull_task - move a task from a remote runqueue to the local runqueue.
  2755. * Both runqueues must be locked.
  2756. */
  2757. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2758. struct rq *this_rq, int this_cpu)
  2759. {
  2760. deactivate_task(src_rq, p, 0);
  2761. set_task_cpu(p, this_cpu);
  2762. activate_task(this_rq, p, 0);
  2763. /*
  2764. * Note that idle threads have a prio of MAX_PRIO, for this test
  2765. * to be always true for them.
  2766. */
  2767. check_preempt_curr(this_rq, p, 0);
  2768. }
  2769. /*
  2770. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2771. */
  2772. static
  2773. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2774. struct sched_domain *sd, enum cpu_idle_type idle,
  2775. int *all_pinned)
  2776. {
  2777. int tsk_cache_hot = 0;
  2778. /*
  2779. * We do not migrate tasks that are:
  2780. * 1) running (obviously), or
  2781. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2782. * 3) are cache-hot on their current CPU.
  2783. */
  2784. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2785. schedstat_inc(p, se.nr_failed_migrations_affine);
  2786. return 0;
  2787. }
  2788. *all_pinned = 0;
  2789. if (task_running(rq, p)) {
  2790. schedstat_inc(p, se.nr_failed_migrations_running);
  2791. return 0;
  2792. }
  2793. /*
  2794. * Aggressive migration if:
  2795. * 1) task is cache cold, or
  2796. * 2) too many balance attempts have failed.
  2797. */
  2798. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2799. if (!tsk_cache_hot ||
  2800. sd->nr_balance_failed > sd->cache_nice_tries) {
  2801. #ifdef CONFIG_SCHEDSTATS
  2802. if (tsk_cache_hot) {
  2803. schedstat_inc(sd, lb_hot_gained[idle]);
  2804. schedstat_inc(p, se.nr_forced_migrations);
  2805. }
  2806. #endif
  2807. return 1;
  2808. }
  2809. if (tsk_cache_hot) {
  2810. schedstat_inc(p, se.nr_failed_migrations_hot);
  2811. return 0;
  2812. }
  2813. return 1;
  2814. }
  2815. static unsigned long
  2816. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2817. unsigned long max_load_move, struct sched_domain *sd,
  2818. enum cpu_idle_type idle, int *all_pinned,
  2819. int *this_best_prio, struct rq_iterator *iterator)
  2820. {
  2821. int loops = 0, pulled = 0, pinned = 0;
  2822. struct task_struct *p;
  2823. long rem_load_move = max_load_move;
  2824. if (max_load_move == 0)
  2825. goto out;
  2826. pinned = 1;
  2827. /*
  2828. * Start the load-balancing iterator:
  2829. */
  2830. p = iterator->start(iterator->arg);
  2831. next:
  2832. if (!p || loops++ > sysctl_sched_nr_migrate)
  2833. goto out;
  2834. if ((p->se.load.weight >> 1) > rem_load_move ||
  2835. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2836. p = iterator->next(iterator->arg);
  2837. goto next;
  2838. }
  2839. pull_task(busiest, p, this_rq, this_cpu);
  2840. pulled++;
  2841. rem_load_move -= p->se.load.weight;
  2842. #ifdef CONFIG_PREEMPT
  2843. /*
  2844. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2845. * will stop after the first task is pulled to minimize the critical
  2846. * section.
  2847. */
  2848. if (idle == CPU_NEWLY_IDLE)
  2849. goto out;
  2850. #endif
  2851. /*
  2852. * We only want to steal up to the prescribed amount of weighted load.
  2853. */
  2854. if (rem_load_move > 0) {
  2855. if (p->prio < *this_best_prio)
  2856. *this_best_prio = p->prio;
  2857. p = iterator->next(iterator->arg);
  2858. goto next;
  2859. }
  2860. out:
  2861. /*
  2862. * Right now, this is one of only two places pull_task() is called,
  2863. * so we can safely collect pull_task() stats here rather than
  2864. * inside pull_task().
  2865. */
  2866. schedstat_add(sd, lb_gained[idle], pulled);
  2867. if (all_pinned)
  2868. *all_pinned = pinned;
  2869. return max_load_move - rem_load_move;
  2870. }
  2871. /*
  2872. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2873. * this_rq, as part of a balancing operation within domain "sd".
  2874. * Returns 1 if successful and 0 otherwise.
  2875. *
  2876. * Called with both runqueues locked.
  2877. */
  2878. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2879. unsigned long max_load_move,
  2880. struct sched_domain *sd, enum cpu_idle_type idle,
  2881. int *all_pinned)
  2882. {
  2883. const struct sched_class *class = sched_class_highest;
  2884. unsigned long total_load_moved = 0;
  2885. int this_best_prio = this_rq->curr->prio;
  2886. do {
  2887. total_load_moved +=
  2888. class->load_balance(this_rq, this_cpu, busiest,
  2889. max_load_move - total_load_moved,
  2890. sd, idle, all_pinned, &this_best_prio);
  2891. class = class->next;
  2892. #ifdef CONFIG_PREEMPT
  2893. /*
  2894. * NEWIDLE balancing is a source of latency, so preemptible
  2895. * kernels will stop after the first task is pulled to minimize
  2896. * the critical section.
  2897. */
  2898. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2899. break;
  2900. #endif
  2901. } while (class && max_load_move > total_load_moved);
  2902. return total_load_moved > 0;
  2903. }
  2904. static int
  2905. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2906. struct sched_domain *sd, enum cpu_idle_type idle,
  2907. struct rq_iterator *iterator)
  2908. {
  2909. struct task_struct *p = iterator->start(iterator->arg);
  2910. int pinned = 0;
  2911. while (p) {
  2912. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2913. pull_task(busiest, p, this_rq, this_cpu);
  2914. /*
  2915. * Right now, this is only the second place pull_task()
  2916. * is called, so we can safely collect pull_task()
  2917. * stats here rather than inside pull_task().
  2918. */
  2919. schedstat_inc(sd, lb_gained[idle]);
  2920. return 1;
  2921. }
  2922. p = iterator->next(iterator->arg);
  2923. }
  2924. return 0;
  2925. }
  2926. /*
  2927. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2928. * part of active balancing operations within "domain".
  2929. * Returns 1 if successful and 0 otherwise.
  2930. *
  2931. * Called with both runqueues locked.
  2932. */
  2933. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2934. struct sched_domain *sd, enum cpu_idle_type idle)
  2935. {
  2936. const struct sched_class *class;
  2937. for (class = sched_class_highest; class; class = class->next)
  2938. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2939. return 1;
  2940. return 0;
  2941. }
  2942. /********** Helpers for find_busiest_group ************************/
  2943. /*
  2944. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2945. * during load balancing.
  2946. */
  2947. struct sd_lb_stats {
  2948. struct sched_group *busiest; /* Busiest group in this sd */
  2949. struct sched_group *this; /* Local group in this sd */
  2950. unsigned long total_load; /* Total load of all groups in sd */
  2951. unsigned long total_pwr; /* Total power of all groups in sd */
  2952. unsigned long avg_load; /* Average load across all groups in sd */
  2953. /** Statistics of this group */
  2954. unsigned long this_load;
  2955. unsigned long this_load_per_task;
  2956. unsigned long this_nr_running;
  2957. /* Statistics of the busiest group */
  2958. unsigned long max_load;
  2959. unsigned long busiest_load_per_task;
  2960. unsigned long busiest_nr_running;
  2961. int group_imb; /* Is there imbalance in this sd */
  2962. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2963. int power_savings_balance; /* Is powersave balance needed for this sd */
  2964. struct sched_group *group_min; /* Least loaded group in sd */
  2965. struct sched_group *group_leader; /* Group which relieves group_min */
  2966. unsigned long min_load_per_task; /* load_per_task in group_min */
  2967. unsigned long leader_nr_running; /* Nr running of group_leader */
  2968. unsigned long min_nr_running; /* Nr running of group_min */
  2969. #endif
  2970. };
  2971. /*
  2972. * sg_lb_stats - stats of a sched_group required for load_balancing
  2973. */
  2974. struct sg_lb_stats {
  2975. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2976. unsigned long group_load; /* Total load over the CPUs of the group */
  2977. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2978. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2979. unsigned long group_capacity;
  2980. int group_imb; /* Is there an imbalance in the group ? */
  2981. };
  2982. /**
  2983. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2984. * @group: The group whose first cpu is to be returned.
  2985. */
  2986. static inline unsigned int group_first_cpu(struct sched_group *group)
  2987. {
  2988. return cpumask_first(sched_group_cpus(group));
  2989. }
  2990. /**
  2991. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2992. * @sd: The sched_domain whose load_idx is to be obtained.
  2993. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2994. */
  2995. static inline int get_sd_load_idx(struct sched_domain *sd,
  2996. enum cpu_idle_type idle)
  2997. {
  2998. int load_idx;
  2999. switch (idle) {
  3000. case CPU_NOT_IDLE:
  3001. load_idx = sd->busy_idx;
  3002. break;
  3003. case CPU_NEWLY_IDLE:
  3004. load_idx = sd->newidle_idx;
  3005. break;
  3006. default:
  3007. load_idx = sd->idle_idx;
  3008. break;
  3009. }
  3010. return load_idx;
  3011. }
  3012. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3013. /**
  3014. * init_sd_power_savings_stats - Initialize power savings statistics for
  3015. * the given sched_domain, during load balancing.
  3016. *
  3017. * @sd: Sched domain whose power-savings statistics are to be initialized.
  3018. * @sds: Variable containing the statistics for sd.
  3019. * @idle: Idle status of the CPU at which we're performing load-balancing.
  3020. */
  3021. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3022. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3023. {
  3024. /*
  3025. * Busy processors will not participate in power savings
  3026. * balance.
  3027. */
  3028. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  3029. sds->power_savings_balance = 0;
  3030. else {
  3031. sds->power_savings_balance = 1;
  3032. sds->min_nr_running = ULONG_MAX;
  3033. sds->leader_nr_running = 0;
  3034. }
  3035. }
  3036. /**
  3037. * update_sd_power_savings_stats - Update the power saving stats for a
  3038. * sched_domain while performing load balancing.
  3039. *
  3040. * @group: sched_group belonging to the sched_domain under consideration.
  3041. * @sds: Variable containing the statistics of the sched_domain
  3042. * @local_group: Does group contain the CPU for which we're performing
  3043. * load balancing ?
  3044. * @sgs: Variable containing the statistics of the group.
  3045. */
  3046. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3047. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3048. {
  3049. if (!sds->power_savings_balance)
  3050. return;
  3051. /*
  3052. * If the local group is idle or completely loaded
  3053. * no need to do power savings balance at this domain
  3054. */
  3055. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  3056. !sds->this_nr_running))
  3057. sds->power_savings_balance = 0;
  3058. /*
  3059. * If a group is already running at full capacity or idle,
  3060. * don't include that group in power savings calculations
  3061. */
  3062. if (!sds->power_savings_balance ||
  3063. sgs->sum_nr_running >= sgs->group_capacity ||
  3064. !sgs->sum_nr_running)
  3065. return;
  3066. /*
  3067. * Calculate the group which has the least non-idle load.
  3068. * This is the group from where we need to pick up the load
  3069. * for saving power
  3070. */
  3071. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3072. (sgs->sum_nr_running == sds->min_nr_running &&
  3073. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3074. sds->group_min = group;
  3075. sds->min_nr_running = sgs->sum_nr_running;
  3076. sds->min_load_per_task = sgs->sum_weighted_load /
  3077. sgs->sum_nr_running;
  3078. }
  3079. /*
  3080. * Calculate the group which is almost near its
  3081. * capacity but still has some space to pick up some load
  3082. * from other group and save more power
  3083. */
  3084. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  3085. return;
  3086. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3087. (sgs->sum_nr_running == sds->leader_nr_running &&
  3088. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3089. sds->group_leader = group;
  3090. sds->leader_nr_running = sgs->sum_nr_running;
  3091. }
  3092. }
  3093. /**
  3094. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3095. * @sds: Variable containing the statistics of the sched_domain
  3096. * under consideration.
  3097. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3098. * @imbalance: Variable to store the imbalance.
  3099. *
  3100. * Description:
  3101. * Check if we have potential to perform some power-savings balance.
  3102. * If yes, set the busiest group to be the least loaded group in the
  3103. * sched_domain, so that it's CPUs can be put to idle.
  3104. *
  3105. * Returns 1 if there is potential to perform power-savings balance.
  3106. * Else returns 0.
  3107. */
  3108. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3109. int this_cpu, unsigned long *imbalance)
  3110. {
  3111. if (!sds->power_savings_balance)
  3112. return 0;
  3113. if (sds->this != sds->group_leader ||
  3114. sds->group_leader == sds->group_min)
  3115. return 0;
  3116. *imbalance = sds->min_load_per_task;
  3117. sds->busiest = sds->group_min;
  3118. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  3119. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  3120. group_first_cpu(sds->group_leader);
  3121. }
  3122. return 1;
  3123. }
  3124. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3125. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3126. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3127. {
  3128. return;
  3129. }
  3130. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3131. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3132. {
  3133. return;
  3134. }
  3135. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3136. int this_cpu, unsigned long *imbalance)
  3137. {
  3138. return 0;
  3139. }
  3140. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3141. /**
  3142. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3143. * @group: sched_group whose statistics are to be updated.
  3144. * @this_cpu: Cpu for which load balance is currently performed.
  3145. * @idle: Idle status of this_cpu
  3146. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3147. * @sd_idle: Idle status of the sched_domain containing group.
  3148. * @local_group: Does group contain this_cpu.
  3149. * @cpus: Set of cpus considered for load balancing.
  3150. * @balance: Should we balance.
  3151. * @sgs: variable to hold the statistics for this group.
  3152. */
  3153. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  3154. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3155. int local_group, const struct cpumask *cpus,
  3156. int *balance, struct sg_lb_stats *sgs)
  3157. {
  3158. unsigned long load, max_cpu_load, min_cpu_load;
  3159. int i;
  3160. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3161. unsigned long sum_avg_load_per_task;
  3162. unsigned long avg_load_per_task;
  3163. if (local_group)
  3164. balance_cpu = group_first_cpu(group);
  3165. /* Tally up the load of all CPUs in the group */
  3166. sum_avg_load_per_task = avg_load_per_task = 0;
  3167. max_cpu_load = 0;
  3168. min_cpu_load = ~0UL;
  3169. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3170. struct rq *rq = cpu_rq(i);
  3171. if (*sd_idle && rq->nr_running)
  3172. *sd_idle = 0;
  3173. /* Bias balancing toward cpus of our domain */
  3174. if (local_group) {
  3175. if (idle_cpu(i) && !first_idle_cpu) {
  3176. first_idle_cpu = 1;
  3177. balance_cpu = i;
  3178. }
  3179. load = target_load(i, load_idx);
  3180. } else {
  3181. load = source_load(i, load_idx);
  3182. if (load > max_cpu_load)
  3183. max_cpu_load = load;
  3184. if (min_cpu_load > load)
  3185. min_cpu_load = load;
  3186. }
  3187. sgs->group_load += load;
  3188. sgs->sum_nr_running += rq->nr_running;
  3189. sgs->sum_weighted_load += weighted_cpuload(i);
  3190. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3191. }
  3192. /*
  3193. * First idle cpu or the first cpu(busiest) in this sched group
  3194. * is eligible for doing load balancing at this and above
  3195. * domains. In the newly idle case, we will allow all the cpu's
  3196. * to do the newly idle load balance.
  3197. */
  3198. if (idle != CPU_NEWLY_IDLE && local_group &&
  3199. balance_cpu != this_cpu && balance) {
  3200. *balance = 0;
  3201. return;
  3202. }
  3203. /* Adjust by relative CPU power of the group */
  3204. sgs->avg_load = sg_div_cpu_power(group,
  3205. sgs->group_load * SCHED_LOAD_SCALE);
  3206. /*
  3207. * Consider the group unbalanced when the imbalance is larger
  3208. * than the average weight of two tasks.
  3209. *
  3210. * APZ: with cgroup the avg task weight can vary wildly and
  3211. * might not be a suitable number - should we keep a
  3212. * normalized nr_running number somewhere that negates
  3213. * the hierarchy?
  3214. */
  3215. avg_load_per_task = sg_div_cpu_power(group,
  3216. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3217. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3218. sgs->group_imb = 1;
  3219. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3220. }
  3221. /**
  3222. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3223. * @sd: sched_domain whose statistics are to be updated.
  3224. * @this_cpu: Cpu for which load balance is currently performed.
  3225. * @idle: Idle status of this_cpu
  3226. * @sd_idle: Idle status of the sched_domain containing group.
  3227. * @cpus: Set of cpus considered for load balancing.
  3228. * @balance: Should we balance.
  3229. * @sds: variable to hold the statistics for this sched_domain.
  3230. */
  3231. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3232. enum cpu_idle_type idle, int *sd_idle,
  3233. const struct cpumask *cpus, int *balance,
  3234. struct sd_lb_stats *sds)
  3235. {
  3236. struct sched_group *group = sd->groups;
  3237. struct sg_lb_stats sgs;
  3238. int load_idx;
  3239. init_sd_power_savings_stats(sd, sds, idle);
  3240. load_idx = get_sd_load_idx(sd, idle);
  3241. do {
  3242. int local_group;
  3243. local_group = cpumask_test_cpu(this_cpu,
  3244. sched_group_cpus(group));
  3245. memset(&sgs, 0, sizeof(sgs));
  3246. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3247. local_group, cpus, balance, &sgs);
  3248. if (local_group && balance && !(*balance))
  3249. return;
  3250. sds->total_load += sgs.group_load;
  3251. sds->total_pwr += group->__cpu_power;
  3252. if (local_group) {
  3253. sds->this_load = sgs.avg_load;
  3254. sds->this = group;
  3255. sds->this_nr_running = sgs.sum_nr_running;
  3256. sds->this_load_per_task = sgs.sum_weighted_load;
  3257. } else if (sgs.avg_load > sds->max_load &&
  3258. (sgs.sum_nr_running > sgs.group_capacity ||
  3259. sgs.group_imb)) {
  3260. sds->max_load = sgs.avg_load;
  3261. sds->busiest = group;
  3262. sds->busiest_nr_running = sgs.sum_nr_running;
  3263. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3264. sds->group_imb = sgs.group_imb;
  3265. }
  3266. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3267. group = group->next;
  3268. } while (group != sd->groups);
  3269. }
  3270. /**
  3271. * fix_small_imbalance - Calculate the minor imbalance that exists
  3272. * amongst the groups of a sched_domain, during
  3273. * load balancing.
  3274. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3275. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3276. * @imbalance: Variable to store the imbalance.
  3277. */
  3278. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3279. int this_cpu, unsigned long *imbalance)
  3280. {
  3281. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3282. unsigned int imbn = 2;
  3283. if (sds->this_nr_running) {
  3284. sds->this_load_per_task /= sds->this_nr_running;
  3285. if (sds->busiest_load_per_task >
  3286. sds->this_load_per_task)
  3287. imbn = 1;
  3288. } else
  3289. sds->this_load_per_task =
  3290. cpu_avg_load_per_task(this_cpu);
  3291. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3292. sds->busiest_load_per_task * imbn) {
  3293. *imbalance = sds->busiest_load_per_task;
  3294. return;
  3295. }
  3296. /*
  3297. * OK, we don't have enough imbalance to justify moving tasks,
  3298. * however we may be able to increase total CPU power used by
  3299. * moving them.
  3300. */
  3301. pwr_now += sds->busiest->__cpu_power *
  3302. min(sds->busiest_load_per_task, sds->max_load);
  3303. pwr_now += sds->this->__cpu_power *
  3304. min(sds->this_load_per_task, sds->this_load);
  3305. pwr_now /= SCHED_LOAD_SCALE;
  3306. /* Amount of load we'd subtract */
  3307. tmp = sg_div_cpu_power(sds->busiest,
  3308. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3309. if (sds->max_load > tmp)
  3310. pwr_move += sds->busiest->__cpu_power *
  3311. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3312. /* Amount of load we'd add */
  3313. if (sds->max_load * sds->busiest->__cpu_power <
  3314. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3315. tmp = sg_div_cpu_power(sds->this,
  3316. sds->max_load * sds->busiest->__cpu_power);
  3317. else
  3318. tmp = sg_div_cpu_power(sds->this,
  3319. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3320. pwr_move += sds->this->__cpu_power *
  3321. min(sds->this_load_per_task, sds->this_load + tmp);
  3322. pwr_move /= SCHED_LOAD_SCALE;
  3323. /* Move if we gain throughput */
  3324. if (pwr_move > pwr_now)
  3325. *imbalance = sds->busiest_load_per_task;
  3326. }
  3327. /**
  3328. * calculate_imbalance - Calculate the amount of imbalance present within the
  3329. * groups of a given sched_domain during load balance.
  3330. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3331. * @this_cpu: Cpu for which currently load balance is being performed.
  3332. * @imbalance: The variable to store the imbalance.
  3333. */
  3334. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3335. unsigned long *imbalance)
  3336. {
  3337. unsigned long max_pull;
  3338. /*
  3339. * In the presence of smp nice balancing, certain scenarios can have
  3340. * max load less than avg load(as we skip the groups at or below
  3341. * its cpu_power, while calculating max_load..)
  3342. */
  3343. if (sds->max_load < sds->avg_load) {
  3344. *imbalance = 0;
  3345. return fix_small_imbalance(sds, this_cpu, imbalance);
  3346. }
  3347. /* Don't want to pull so many tasks that a group would go idle */
  3348. max_pull = min(sds->max_load - sds->avg_load,
  3349. sds->max_load - sds->busiest_load_per_task);
  3350. /* How much load to actually move to equalise the imbalance */
  3351. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3352. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3353. / SCHED_LOAD_SCALE;
  3354. /*
  3355. * if *imbalance is less than the average load per runnable task
  3356. * there is no gaurantee that any tasks will be moved so we'll have
  3357. * a think about bumping its value to force at least one task to be
  3358. * moved
  3359. */
  3360. if (*imbalance < sds->busiest_load_per_task)
  3361. return fix_small_imbalance(sds, this_cpu, imbalance);
  3362. }
  3363. /******* find_busiest_group() helpers end here *********************/
  3364. /**
  3365. * find_busiest_group - Returns the busiest group within the sched_domain
  3366. * if there is an imbalance. If there isn't an imbalance, and
  3367. * the user has opted for power-savings, it returns a group whose
  3368. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3369. * such a group exists.
  3370. *
  3371. * Also calculates the amount of weighted load which should be moved
  3372. * to restore balance.
  3373. *
  3374. * @sd: The sched_domain whose busiest group is to be returned.
  3375. * @this_cpu: The cpu for which load balancing is currently being performed.
  3376. * @imbalance: Variable which stores amount of weighted load which should
  3377. * be moved to restore balance/put a group to idle.
  3378. * @idle: The idle status of this_cpu.
  3379. * @sd_idle: The idleness of sd
  3380. * @cpus: The set of CPUs under consideration for load-balancing.
  3381. * @balance: Pointer to a variable indicating if this_cpu
  3382. * is the appropriate cpu to perform load balancing at this_level.
  3383. *
  3384. * Returns: - the busiest group if imbalance exists.
  3385. * - If no imbalance and user has opted for power-savings balance,
  3386. * return the least loaded group whose CPUs can be
  3387. * put to idle by rebalancing its tasks onto our group.
  3388. */
  3389. static struct sched_group *
  3390. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3391. unsigned long *imbalance, enum cpu_idle_type idle,
  3392. int *sd_idle, const struct cpumask *cpus, int *balance)
  3393. {
  3394. struct sd_lb_stats sds;
  3395. memset(&sds, 0, sizeof(sds));
  3396. /*
  3397. * Compute the various statistics relavent for load balancing at
  3398. * this level.
  3399. */
  3400. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3401. balance, &sds);
  3402. /* Cases where imbalance does not exist from POV of this_cpu */
  3403. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3404. * at this level.
  3405. * 2) There is no busy sibling group to pull from.
  3406. * 3) This group is the busiest group.
  3407. * 4) This group is more busy than the avg busieness at this
  3408. * sched_domain.
  3409. * 5) The imbalance is within the specified limit.
  3410. * 6) Any rebalance would lead to ping-pong
  3411. */
  3412. if (balance && !(*balance))
  3413. goto ret;
  3414. if (!sds.busiest || sds.busiest_nr_running == 0)
  3415. goto out_balanced;
  3416. if (sds.this_load >= sds.max_load)
  3417. goto out_balanced;
  3418. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3419. if (sds.this_load >= sds.avg_load)
  3420. goto out_balanced;
  3421. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3422. goto out_balanced;
  3423. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3424. if (sds.group_imb)
  3425. sds.busiest_load_per_task =
  3426. min(sds.busiest_load_per_task, sds.avg_load);
  3427. /*
  3428. * We're trying to get all the cpus to the average_load, so we don't
  3429. * want to push ourselves above the average load, nor do we wish to
  3430. * reduce the max loaded cpu below the average load, as either of these
  3431. * actions would just result in more rebalancing later, and ping-pong
  3432. * tasks around. Thus we look for the minimum possible imbalance.
  3433. * Negative imbalances (*we* are more loaded than anyone else) will
  3434. * be counted as no imbalance for these purposes -- we can't fix that
  3435. * by pulling tasks to us. Be careful of negative numbers as they'll
  3436. * appear as very large values with unsigned longs.
  3437. */
  3438. if (sds.max_load <= sds.busiest_load_per_task)
  3439. goto out_balanced;
  3440. /* Looks like there is an imbalance. Compute it */
  3441. calculate_imbalance(&sds, this_cpu, imbalance);
  3442. return sds.busiest;
  3443. out_balanced:
  3444. /*
  3445. * There is no obvious imbalance. But check if we can do some balancing
  3446. * to save power.
  3447. */
  3448. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3449. return sds.busiest;
  3450. ret:
  3451. *imbalance = 0;
  3452. return NULL;
  3453. }
  3454. /*
  3455. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3456. */
  3457. static struct rq *
  3458. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3459. unsigned long imbalance, const struct cpumask *cpus)
  3460. {
  3461. struct rq *busiest = NULL, *rq;
  3462. unsigned long max_load = 0;
  3463. int i;
  3464. for_each_cpu(i, sched_group_cpus(group)) {
  3465. unsigned long wl;
  3466. if (!cpumask_test_cpu(i, cpus))
  3467. continue;
  3468. rq = cpu_rq(i);
  3469. wl = weighted_cpuload(i);
  3470. if (rq->nr_running == 1 && wl > imbalance)
  3471. continue;
  3472. if (wl > max_load) {
  3473. max_load = wl;
  3474. busiest = rq;
  3475. }
  3476. }
  3477. return busiest;
  3478. }
  3479. /*
  3480. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3481. * so long as it is large enough.
  3482. */
  3483. #define MAX_PINNED_INTERVAL 512
  3484. /* Working cpumask for load_balance and load_balance_newidle. */
  3485. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3486. /*
  3487. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3488. * tasks if there is an imbalance.
  3489. */
  3490. static int load_balance(int this_cpu, struct rq *this_rq,
  3491. struct sched_domain *sd, enum cpu_idle_type idle,
  3492. int *balance)
  3493. {
  3494. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3495. struct sched_group *group;
  3496. unsigned long imbalance;
  3497. struct rq *busiest;
  3498. unsigned long flags;
  3499. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3500. cpumask_setall(cpus);
  3501. /*
  3502. * When power savings policy is enabled for the parent domain, idle
  3503. * sibling can pick up load irrespective of busy siblings. In this case,
  3504. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3505. * portraying it as CPU_NOT_IDLE.
  3506. */
  3507. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3508. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3509. sd_idle = 1;
  3510. schedstat_inc(sd, lb_count[idle]);
  3511. redo:
  3512. update_shares(sd);
  3513. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3514. cpus, balance);
  3515. if (*balance == 0)
  3516. goto out_balanced;
  3517. if (!group) {
  3518. schedstat_inc(sd, lb_nobusyg[idle]);
  3519. goto out_balanced;
  3520. }
  3521. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3522. if (!busiest) {
  3523. schedstat_inc(sd, lb_nobusyq[idle]);
  3524. goto out_balanced;
  3525. }
  3526. BUG_ON(busiest == this_rq);
  3527. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3528. ld_moved = 0;
  3529. if (busiest->nr_running > 1) {
  3530. /*
  3531. * Attempt to move tasks. If find_busiest_group has found
  3532. * an imbalance but busiest->nr_running <= 1, the group is
  3533. * still unbalanced. ld_moved simply stays zero, so it is
  3534. * correctly treated as an imbalance.
  3535. */
  3536. local_irq_save(flags);
  3537. double_rq_lock(this_rq, busiest);
  3538. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3539. imbalance, sd, idle, &all_pinned);
  3540. double_rq_unlock(this_rq, busiest);
  3541. local_irq_restore(flags);
  3542. /*
  3543. * some other cpu did the load balance for us.
  3544. */
  3545. if (ld_moved && this_cpu != smp_processor_id())
  3546. resched_cpu(this_cpu);
  3547. /* All tasks on this runqueue were pinned by CPU affinity */
  3548. if (unlikely(all_pinned)) {
  3549. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3550. if (!cpumask_empty(cpus))
  3551. goto redo;
  3552. goto out_balanced;
  3553. }
  3554. }
  3555. if (!ld_moved) {
  3556. schedstat_inc(sd, lb_failed[idle]);
  3557. sd->nr_balance_failed++;
  3558. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3559. spin_lock_irqsave(&busiest->lock, flags);
  3560. /* don't kick the migration_thread, if the curr
  3561. * task on busiest cpu can't be moved to this_cpu
  3562. */
  3563. if (!cpumask_test_cpu(this_cpu,
  3564. &busiest->curr->cpus_allowed)) {
  3565. spin_unlock_irqrestore(&busiest->lock, flags);
  3566. all_pinned = 1;
  3567. goto out_one_pinned;
  3568. }
  3569. if (!busiest->active_balance) {
  3570. busiest->active_balance = 1;
  3571. busiest->push_cpu = this_cpu;
  3572. active_balance = 1;
  3573. }
  3574. spin_unlock_irqrestore(&busiest->lock, flags);
  3575. if (active_balance)
  3576. wake_up_process(busiest->migration_thread);
  3577. /*
  3578. * We've kicked active balancing, reset the failure
  3579. * counter.
  3580. */
  3581. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3582. }
  3583. } else
  3584. sd->nr_balance_failed = 0;
  3585. if (likely(!active_balance)) {
  3586. /* We were unbalanced, so reset the balancing interval */
  3587. sd->balance_interval = sd->min_interval;
  3588. } else {
  3589. /*
  3590. * If we've begun active balancing, start to back off. This
  3591. * case may not be covered by the all_pinned logic if there
  3592. * is only 1 task on the busy runqueue (because we don't call
  3593. * move_tasks).
  3594. */
  3595. if (sd->balance_interval < sd->max_interval)
  3596. sd->balance_interval *= 2;
  3597. }
  3598. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3599. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3600. ld_moved = -1;
  3601. goto out;
  3602. out_balanced:
  3603. schedstat_inc(sd, lb_balanced[idle]);
  3604. sd->nr_balance_failed = 0;
  3605. out_one_pinned:
  3606. /* tune up the balancing interval */
  3607. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3608. (sd->balance_interval < sd->max_interval))
  3609. sd->balance_interval *= 2;
  3610. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3611. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3612. ld_moved = -1;
  3613. else
  3614. ld_moved = 0;
  3615. out:
  3616. if (ld_moved)
  3617. update_shares(sd);
  3618. return ld_moved;
  3619. }
  3620. /*
  3621. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3622. * tasks if there is an imbalance.
  3623. *
  3624. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3625. * this_rq is locked.
  3626. */
  3627. static int
  3628. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3629. {
  3630. struct sched_group *group;
  3631. struct rq *busiest = NULL;
  3632. unsigned long imbalance;
  3633. int ld_moved = 0;
  3634. int sd_idle = 0;
  3635. int all_pinned = 0;
  3636. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3637. cpumask_setall(cpus);
  3638. /*
  3639. * When power savings policy is enabled for the parent domain, idle
  3640. * sibling can pick up load irrespective of busy siblings. In this case,
  3641. * let the state of idle sibling percolate up as IDLE, instead of
  3642. * portraying it as CPU_NOT_IDLE.
  3643. */
  3644. if (sd->flags & SD_SHARE_CPUPOWER &&
  3645. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3646. sd_idle = 1;
  3647. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3648. redo:
  3649. update_shares_locked(this_rq, sd);
  3650. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3651. &sd_idle, cpus, NULL);
  3652. if (!group) {
  3653. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3654. goto out_balanced;
  3655. }
  3656. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3657. if (!busiest) {
  3658. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3659. goto out_balanced;
  3660. }
  3661. BUG_ON(busiest == this_rq);
  3662. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3663. ld_moved = 0;
  3664. if (busiest->nr_running > 1) {
  3665. /* Attempt to move tasks */
  3666. double_lock_balance(this_rq, busiest);
  3667. /* this_rq->clock is already updated */
  3668. update_rq_clock(busiest);
  3669. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3670. imbalance, sd, CPU_NEWLY_IDLE,
  3671. &all_pinned);
  3672. double_unlock_balance(this_rq, busiest);
  3673. if (unlikely(all_pinned)) {
  3674. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3675. if (!cpumask_empty(cpus))
  3676. goto redo;
  3677. }
  3678. }
  3679. if (!ld_moved) {
  3680. int active_balance = 0;
  3681. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3682. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3683. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3684. return -1;
  3685. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3686. return -1;
  3687. if (sd->nr_balance_failed++ < 2)
  3688. return -1;
  3689. /*
  3690. * The only task running in a non-idle cpu can be moved to this
  3691. * cpu in an attempt to completely freeup the other CPU
  3692. * package. The same method used to move task in load_balance()
  3693. * have been extended for load_balance_newidle() to speedup
  3694. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3695. *
  3696. * The package power saving logic comes from
  3697. * find_busiest_group(). If there are no imbalance, then
  3698. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3699. * f_b_g() will select a group from which a running task may be
  3700. * pulled to this cpu in order to make the other package idle.
  3701. * If there is no opportunity to make a package idle and if
  3702. * there are no imbalance, then f_b_g() will return NULL and no
  3703. * action will be taken in load_balance_newidle().
  3704. *
  3705. * Under normal task pull operation due to imbalance, there
  3706. * will be more than one task in the source run queue and
  3707. * move_tasks() will succeed. ld_moved will be true and this
  3708. * active balance code will not be triggered.
  3709. */
  3710. /* Lock busiest in correct order while this_rq is held */
  3711. double_lock_balance(this_rq, busiest);
  3712. /*
  3713. * don't kick the migration_thread, if the curr
  3714. * task on busiest cpu can't be moved to this_cpu
  3715. */
  3716. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3717. double_unlock_balance(this_rq, busiest);
  3718. all_pinned = 1;
  3719. return ld_moved;
  3720. }
  3721. if (!busiest->active_balance) {
  3722. busiest->active_balance = 1;
  3723. busiest->push_cpu = this_cpu;
  3724. active_balance = 1;
  3725. }
  3726. double_unlock_balance(this_rq, busiest);
  3727. /*
  3728. * Should not call ttwu while holding a rq->lock
  3729. */
  3730. spin_unlock(&this_rq->lock);
  3731. if (active_balance)
  3732. wake_up_process(busiest->migration_thread);
  3733. spin_lock(&this_rq->lock);
  3734. } else
  3735. sd->nr_balance_failed = 0;
  3736. update_shares_locked(this_rq, sd);
  3737. return ld_moved;
  3738. out_balanced:
  3739. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3740. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3741. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3742. return -1;
  3743. sd->nr_balance_failed = 0;
  3744. return 0;
  3745. }
  3746. /*
  3747. * idle_balance is called by schedule() if this_cpu is about to become
  3748. * idle. Attempts to pull tasks from other CPUs.
  3749. */
  3750. static void idle_balance(int this_cpu, struct rq *this_rq)
  3751. {
  3752. struct sched_domain *sd;
  3753. int pulled_task = 0;
  3754. unsigned long next_balance = jiffies + HZ;
  3755. for_each_domain(this_cpu, sd) {
  3756. unsigned long interval;
  3757. if (!(sd->flags & SD_LOAD_BALANCE))
  3758. continue;
  3759. if (sd->flags & SD_BALANCE_NEWIDLE)
  3760. /* If we've pulled tasks over stop searching: */
  3761. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3762. sd);
  3763. interval = msecs_to_jiffies(sd->balance_interval);
  3764. if (time_after(next_balance, sd->last_balance + interval))
  3765. next_balance = sd->last_balance + interval;
  3766. if (pulled_task)
  3767. break;
  3768. }
  3769. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3770. /*
  3771. * We are going idle. next_balance may be set based on
  3772. * a busy processor. So reset next_balance.
  3773. */
  3774. this_rq->next_balance = next_balance;
  3775. }
  3776. }
  3777. /*
  3778. * active_load_balance is run by migration threads. It pushes running tasks
  3779. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3780. * running on each physical CPU where possible, and avoids physical /
  3781. * logical imbalances.
  3782. *
  3783. * Called with busiest_rq locked.
  3784. */
  3785. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3786. {
  3787. int target_cpu = busiest_rq->push_cpu;
  3788. struct sched_domain *sd;
  3789. struct rq *target_rq;
  3790. /* Is there any task to move? */
  3791. if (busiest_rq->nr_running <= 1)
  3792. return;
  3793. target_rq = cpu_rq(target_cpu);
  3794. /*
  3795. * This condition is "impossible", if it occurs
  3796. * we need to fix it. Originally reported by
  3797. * Bjorn Helgaas on a 128-cpu setup.
  3798. */
  3799. BUG_ON(busiest_rq == target_rq);
  3800. /* move a task from busiest_rq to target_rq */
  3801. double_lock_balance(busiest_rq, target_rq);
  3802. update_rq_clock(busiest_rq);
  3803. update_rq_clock(target_rq);
  3804. /* Search for an sd spanning us and the target CPU. */
  3805. for_each_domain(target_cpu, sd) {
  3806. if ((sd->flags & SD_LOAD_BALANCE) &&
  3807. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3808. break;
  3809. }
  3810. if (likely(sd)) {
  3811. schedstat_inc(sd, alb_count);
  3812. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3813. sd, CPU_IDLE))
  3814. schedstat_inc(sd, alb_pushed);
  3815. else
  3816. schedstat_inc(sd, alb_failed);
  3817. }
  3818. double_unlock_balance(busiest_rq, target_rq);
  3819. }
  3820. #ifdef CONFIG_NO_HZ
  3821. static struct {
  3822. atomic_t load_balancer;
  3823. cpumask_var_t cpu_mask;
  3824. cpumask_var_t ilb_grp_nohz_mask;
  3825. } nohz ____cacheline_aligned = {
  3826. .load_balancer = ATOMIC_INIT(-1),
  3827. };
  3828. int get_nohz_load_balancer(void)
  3829. {
  3830. return atomic_read(&nohz.load_balancer);
  3831. }
  3832. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3833. /**
  3834. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3835. * @cpu: The cpu whose lowest level of sched domain is to
  3836. * be returned.
  3837. * @flag: The flag to check for the lowest sched_domain
  3838. * for the given cpu.
  3839. *
  3840. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3841. */
  3842. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3843. {
  3844. struct sched_domain *sd;
  3845. for_each_domain(cpu, sd)
  3846. if (sd && (sd->flags & flag))
  3847. break;
  3848. return sd;
  3849. }
  3850. /**
  3851. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3852. * @cpu: The cpu whose domains we're iterating over.
  3853. * @sd: variable holding the value of the power_savings_sd
  3854. * for cpu.
  3855. * @flag: The flag to filter the sched_domains to be iterated.
  3856. *
  3857. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3858. * set, starting from the lowest sched_domain to the highest.
  3859. */
  3860. #define for_each_flag_domain(cpu, sd, flag) \
  3861. for (sd = lowest_flag_domain(cpu, flag); \
  3862. (sd && (sd->flags & flag)); sd = sd->parent)
  3863. /**
  3864. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3865. * @ilb_group: group to be checked for semi-idleness
  3866. *
  3867. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3868. *
  3869. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3870. * and atleast one non-idle CPU. This helper function checks if the given
  3871. * sched_group is semi-idle or not.
  3872. */
  3873. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3874. {
  3875. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3876. sched_group_cpus(ilb_group));
  3877. /*
  3878. * A sched_group is semi-idle when it has atleast one busy cpu
  3879. * and atleast one idle cpu.
  3880. */
  3881. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3882. return 0;
  3883. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3884. return 0;
  3885. return 1;
  3886. }
  3887. /**
  3888. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3889. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3890. *
  3891. * Returns: Returns the id of the idle load balancer if it exists,
  3892. * Else, returns >= nr_cpu_ids.
  3893. *
  3894. * This algorithm picks the idle load balancer such that it belongs to a
  3895. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3896. * completely idle packages/cores just for the purpose of idle load balancing
  3897. * when there are other idle cpu's which are better suited for that job.
  3898. */
  3899. static int find_new_ilb(int cpu)
  3900. {
  3901. struct sched_domain *sd;
  3902. struct sched_group *ilb_group;
  3903. /*
  3904. * Have idle load balancer selection from semi-idle packages only
  3905. * when power-aware load balancing is enabled
  3906. */
  3907. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3908. goto out_done;
  3909. /*
  3910. * Optimize for the case when we have no idle CPUs or only one
  3911. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3912. */
  3913. if (cpumask_weight(nohz.cpu_mask) < 2)
  3914. goto out_done;
  3915. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3916. ilb_group = sd->groups;
  3917. do {
  3918. if (is_semi_idle_group(ilb_group))
  3919. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3920. ilb_group = ilb_group->next;
  3921. } while (ilb_group != sd->groups);
  3922. }
  3923. out_done:
  3924. return cpumask_first(nohz.cpu_mask);
  3925. }
  3926. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3927. static inline int find_new_ilb(int call_cpu)
  3928. {
  3929. return cpumask_first(nohz.cpu_mask);
  3930. }
  3931. #endif
  3932. /*
  3933. * This routine will try to nominate the ilb (idle load balancing)
  3934. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3935. * load balancing on behalf of all those cpus. If all the cpus in the system
  3936. * go into this tickless mode, then there will be no ilb owner (as there is
  3937. * no need for one) and all the cpus will sleep till the next wakeup event
  3938. * arrives...
  3939. *
  3940. * For the ilb owner, tick is not stopped. And this tick will be used
  3941. * for idle load balancing. ilb owner will still be part of
  3942. * nohz.cpu_mask..
  3943. *
  3944. * While stopping the tick, this cpu will become the ilb owner if there
  3945. * is no other owner. And will be the owner till that cpu becomes busy
  3946. * or if all cpus in the system stop their ticks at which point
  3947. * there is no need for ilb owner.
  3948. *
  3949. * When the ilb owner becomes busy, it nominates another owner, during the
  3950. * next busy scheduler_tick()
  3951. */
  3952. int select_nohz_load_balancer(int stop_tick)
  3953. {
  3954. int cpu = smp_processor_id();
  3955. if (stop_tick) {
  3956. cpu_rq(cpu)->in_nohz_recently = 1;
  3957. if (!cpu_active(cpu)) {
  3958. if (atomic_read(&nohz.load_balancer) != cpu)
  3959. return 0;
  3960. /*
  3961. * If we are going offline and still the leader,
  3962. * give up!
  3963. */
  3964. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3965. BUG();
  3966. return 0;
  3967. }
  3968. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3969. /* time for ilb owner also to sleep */
  3970. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3971. if (atomic_read(&nohz.load_balancer) == cpu)
  3972. atomic_set(&nohz.load_balancer, -1);
  3973. return 0;
  3974. }
  3975. if (atomic_read(&nohz.load_balancer) == -1) {
  3976. /* make me the ilb owner */
  3977. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3978. return 1;
  3979. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3980. int new_ilb;
  3981. if (!(sched_smt_power_savings ||
  3982. sched_mc_power_savings))
  3983. return 1;
  3984. /*
  3985. * Check to see if there is a more power-efficient
  3986. * ilb.
  3987. */
  3988. new_ilb = find_new_ilb(cpu);
  3989. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3990. atomic_set(&nohz.load_balancer, -1);
  3991. resched_cpu(new_ilb);
  3992. return 0;
  3993. }
  3994. return 1;
  3995. }
  3996. } else {
  3997. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3998. return 0;
  3999. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4000. if (atomic_read(&nohz.load_balancer) == cpu)
  4001. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4002. BUG();
  4003. }
  4004. return 0;
  4005. }
  4006. #endif
  4007. static DEFINE_SPINLOCK(balancing);
  4008. /*
  4009. * It checks each scheduling domain to see if it is due to be balanced,
  4010. * and initiates a balancing operation if so.
  4011. *
  4012. * Balancing parameters are set up in arch_init_sched_domains.
  4013. */
  4014. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4015. {
  4016. int balance = 1;
  4017. struct rq *rq = cpu_rq(cpu);
  4018. unsigned long interval;
  4019. struct sched_domain *sd;
  4020. /* Earliest time when we have to do rebalance again */
  4021. unsigned long next_balance = jiffies + 60*HZ;
  4022. int update_next_balance = 0;
  4023. int need_serialize;
  4024. for_each_domain(cpu, sd) {
  4025. if (!(sd->flags & SD_LOAD_BALANCE))
  4026. continue;
  4027. interval = sd->balance_interval;
  4028. if (idle != CPU_IDLE)
  4029. interval *= sd->busy_factor;
  4030. /* scale ms to jiffies */
  4031. interval = msecs_to_jiffies(interval);
  4032. if (unlikely(!interval))
  4033. interval = 1;
  4034. if (interval > HZ*NR_CPUS/10)
  4035. interval = HZ*NR_CPUS/10;
  4036. need_serialize = sd->flags & SD_SERIALIZE;
  4037. if (need_serialize) {
  4038. if (!spin_trylock(&balancing))
  4039. goto out;
  4040. }
  4041. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4042. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4043. /*
  4044. * We've pulled tasks over so either we're no
  4045. * longer idle, or one of our SMT siblings is
  4046. * not idle.
  4047. */
  4048. idle = CPU_NOT_IDLE;
  4049. }
  4050. sd->last_balance = jiffies;
  4051. }
  4052. if (need_serialize)
  4053. spin_unlock(&balancing);
  4054. out:
  4055. if (time_after(next_balance, sd->last_balance + interval)) {
  4056. next_balance = sd->last_balance + interval;
  4057. update_next_balance = 1;
  4058. }
  4059. /*
  4060. * Stop the load balance at this level. There is another
  4061. * CPU in our sched group which is doing load balancing more
  4062. * actively.
  4063. */
  4064. if (!balance)
  4065. break;
  4066. }
  4067. /*
  4068. * next_balance will be updated only when there is a need.
  4069. * When the cpu is attached to null domain for ex, it will not be
  4070. * updated.
  4071. */
  4072. if (likely(update_next_balance))
  4073. rq->next_balance = next_balance;
  4074. }
  4075. /*
  4076. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4077. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4078. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4079. */
  4080. static void run_rebalance_domains(struct softirq_action *h)
  4081. {
  4082. int this_cpu = smp_processor_id();
  4083. struct rq *this_rq = cpu_rq(this_cpu);
  4084. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4085. CPU_IDLE : CPU_NOT_IDLE;
  4086. rebalance_domains(this_cpu, idle);
  4087. #ifdef CONFIG_NO_HZ
  4088. /*
  4089. * If this cpu is the owner for idle load balancing, then do the
  4090. * balancing on behalf of the other idle cpus whose ticks are
  4091. * stopped.
  4092. */
  4093. if (this_rq->idle_at_tick &&
  4094. atomic_read(&nohz.load_balancer) == this_cpu) {
  4095. struct rq *rq;
  4096. int balance_cpu;
  4097. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4098. if (balance_cpu == this_cpu)
  4099. continue;
  4100. /*
  4101. * If this cpu gets work to do, stop the load balancing
  4102. * work being done for other cpus. Next load
  4103. * balancing owner will pick it up.
  4104. */
  4105. if (need_resched())
  4106. break;
  4107. rebalance_domains(balance_cpu, CPU_IDLE);
  4108. rq = cpu_rq(balance_cpu);
  4109. if (time_after(this_rq->next_balance, rq->next_balance))
  4110. this_rq->next_balance = rq->next_balance;
  4111. }
  4112. }
  4113. #endif
  4114. }
  4115. static inline int on_null_domain(int cpu)
  4116. {
  4117. return !rcu_dereference(cpu_rq(cpu)->sd);
  4118. }
  4119. /*
  4120. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4121. *
  4122. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4123. * idle load balancing owner or decide to stop the periodic load balancing,
  4124. * if the whole system is idle.
  4125. */
  4126. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4127. {
  4128. #ifdef CONFIG_NO_HZ
  4129. /*
  4130. * If we were in the nohz mode recently and busy at the current
  4131. * scheduler tick, then check if we need to nominate new idle
  4132. * load balancer.
  4133. */
  4134. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4135. rq->in_nohz_recently = 0;
  4136. if (atomic_read(&nohz.load_balancer) == cpu) {
  4137. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4138. atomic_set(&nohz.load_balancer, -1);
  4139. }
  4140. if (atomic_read(&nohz.load_balancer) == -1) {
  4141. int ilb = find_new_ilb(cpu);
  4142. if (ilb < nr_cpu_ids)
  4143. resched_cpu(ilb);
  4144. }
  4145. }
  4146. /*
  4147. * If this cpu is idle and doing idle load balancing for all the
  4148. * cpus with ticks stopped, is it time for that to stop?
  4149. */
  4150. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4151. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4152. resched_cpu(cpu);
  4153. return;
  4154. }
  4155. /*
  4156. * If this cpu is idle and the idle load balancing is done by
  4157. * someone else, then no need raise the SCHED_SOFTIRQ
  4158. */
  4159. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4160. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4161. return;
  4162. #endif
  4163. /* Don't need to rebalance while attached to NULL domain */
  4164. if (time_after_eq(jiffies, rq->next_balance) &&
  4165. likely(!on_null_domain(cpu)))
  4166. raise_softirq(SCHED_SOFTIRQ);
  4167. }
  4168. #else /* CONFIG_SMP */
  4169. /*
  4170. * on UP we do not need to balance between CPUs:
  4171. */
  4172. static inline void idle_balance(int cpu, struct rq *rq)
  4173. {
  4174. }
  4175. #endif
  4176. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4177. EXPORT_PER_CPU_SYMBOL(kstat);
  4178. /*
  4179. * Return any ns on the sched_clock that have not yet been accounted in
  4180. * @p in case that task is currently running.
  4181. *
  4182. * Called with task_rq_lock() held on @rq.
  4183. */
  4184. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4185. {
  4186. u64 ns = 0;
  4187. if (task_current(rq, p)) {
  4188. update_rq_clock(rq);
  4189. ns = rq->clock - p->se.exec_start;
  4190. if ((s64)ns < 0)
  4191. ns = 0;
  4192. }
  4193. return ns;
  4194. }
  4195. unsigned long long task_delta_exec(struct task_struct *p)
  4196. {
  4197. unsigned long flags;
  4198. struct rq *rq;
  4199. u64 ns = 0;
  4200. rq = task_rq_lock(p, &flags);
  4201. ns = do_task_delta_exec(p, rq);
  4202. task_rq_unlock(rq, &flags);
  4203. return ns;
  4204. }
  4205. /*
  4206. * Return accounted runtime for the task.
  4207. * In case the task is currently running, return the runtime plus current's
  4208. * pending runtime that have not been accounted yet.
  4209. */
  4210. unsigned long long task_sched_runtime(struct task_struct *p)
  4211. {
  4212. unsigned long flags;
  4213. struct rq *rq;
  4214. u64 ns = 0;
  4215. rq = task_rq_lock(p, &flags);
  4216. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4217. task_rq_unlock(rq, &flags);
  4218. return ns;
  4219. }
  4220. /*
  4221. * Return sum_exec_runtime for the thread group.
  4222. * In case the task is currently running, return the sum plus current's
  4223. * pending runtime that have not been accounted yet.
  4224. *
  4225. * Note that the thread group might have other running tasks as well,
  4226. * so the return value not includes other pending runtime that other
  4227. * running tasks might have.
  4228. */
  4229. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4230. {
  4231. struct task_cputime totals;
  4232. unsigned long flags;
  4233. struct rq *rq;
  4234. u64 ns;
  4235. rq = task_rq_lock(p, &flags);
  4236. thread_group_cputime(p, &totals);
  4237. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4238. task_rq_unlock(rq, &flags);
  4239. return ns;
  4240. }
  4241. /*
  4242. * Account user cpu time to a process.
  4243. * @p: the process that the cpu time gets accounted to
  4244. * @cputime: the cpu time spent in user space since the last update
  4245. * @cputime_scaled: cputime scaled by cpu frequency
  4246. */
  4247. void account_user_time(struct task_struct *p, cputime_t cputime,
  4248. cputime_t cputime_scaled)
  4249. {
  4250. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4251. cputime64_t tmp;
  4252. /* Add user time to process. */
  4253. p->utime = cputime_add(p->utime, cputime);
  4254. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4255. account_group_user_time(p, cputime);
  4256. /* Add user time to cpustat. */
  4257. tmp = cputime_to_cputime64(cputime);
  4258. if (TASK_NICE(p) > 0)
  4259. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4260. else
  4261. cpustat->user = cputime64_add(cpustat->user, tmp);
  4262. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4263. /* Account for user time used */
  4264. acct_update_integrals(p);
  4265. }
  4266. /*
  4267. * Account guest cpu time to a process.
  4268. * @p: the process that the cpu time gets accounted to
  4269. * @cputime: the cpu time spent in virtual machine since the last update
  4270. * @cputime_scaled: cputime scaled by cpu frequency
  4271. */
  4272. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4273. cputime_t cputime_scaled)
  4274. {
  4275. cputime64_t tmp;
  4276. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4277. tmp = cputime_to_cputime64(cputime);
  4278. /* Add guest time to process. */
  4279. p->utime = cputime_add(p->utime, cputime);
  4280. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4281. account_group_user_time(p, cputime);
  4282. p->gtime = cputime_add(p->gtime, cputime);
  4283. /* Add guest time to cpustat. */
  4284. cpustat->user = cputime64_add(cpustat->user, tmp);
  4285. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4286. }
  4287. /*
  4288. * Account system cpu time to a process.
  4289. * @p: the process that the cpu time gets accounted to
  4290. * @hardirq_offset: the offset to subtract from hardirq_count()
  4291. * @cputime: the cpu time spent in kernel space since the last update
  4292. * @cputime_scaled: cputime scaled by cpu frequency
  4293. */
  4294. void account_system_time(struct task_struct *p, int hardirq_offset,
  4295. cputime_t cputime, cputime_t cputime_scaled)
  4296. {
  4297. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4298. cputime64_t tmp;
  4299. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4300. account_guest_time(p, cputime, cputime_scaled);
  4301. return;
  4302. }
  4303. /* Add system time to process. */
  4304. p->stime = cputime_add(p->stime, cputime);
  4305. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4306. account_group_system_time(p, cputime);
  4307. /* Add system time to cpustat. */
  4308. tmp = cputime_to_cputime64(cputime);
  4309. if (hardirq_count() - hardirq_offset)
  4310. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4311. else if (softirq_count())
  4312. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4313. else
  4314. cpustat->system = cputime64_add(cpustat->system, tmp);
  4315. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4316. /* Account for system time used */
  4317. acct_update_integrals(p);
  4318. }
  4319. /*
  4320. * Account for involuntary wait time.
  4321. * @steal: the cpu time spent in involuntary wait
  4322. */
  4323. void account_steal_time(cputime_t cputime)
  4324. {
  4325. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4326. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4327. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4328. }
  4329. /*
  4330. * Account for idle time.
  4331. * @cputime: the cpu time spent in idle wait
  4332. */
  4333. void account_idle_time(cputime_t cputime)
  4334. {
  4335. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4336. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4337. struct rq *rq = this_rq();
  4338. if (atomic_read(&rq->nr_iowait) > 0)
  4339. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4340. else
  4341. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4342. }
  4343. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4344. /*
  4345. * Account a single tick of cpu time.
  4346. * @p: the process that the cpu time gets accounted to
  4347. * @user_tick: indicates if the tick is a user or a system tick
  4348. */
  4349. void account_process_tick(struct task_struct *p, int user_tick)
  4350. {
  4351. cputime_t one_jiffy = jiffies_to_cputime(1);
  4352. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4353. struct rq *rq = this_rq();
  4354. if (user_tick)
  4355. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4356. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4357. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4358. one_jiffy_scaled);
  4359. else
  4360. account_idle_time(one_jiffy);
  4361. }
  4362. /*
  4363. * Account multiple ticks of steal time.
  4364. * @p: the process from which the cpu time has been stolen
  4365. * @ticks: number of stolen ticks
  4366. */
  4367. void account_steal_ticks(unsigned long ticks)
  4368. {
  4369. account_steal_time(jiffies_to_cputime(ticks));
  4370. }
  4371. /*
  4372. * Account multiple ticks of idle time.
  4373. * @ticks: number of stolen ticks
  4374. */
  4375. void account_idle_ticks(unsigned long ticks)
  4376. {
  4377. account_idle_time(jiffies_to_cputime(ticks));
  4378. }
  4379. #endif
  4380. /*
  4381. * Use precise platform statistics if available:
  4382. */
  4383. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4384. cputime_t task_utime(struct task_struct *p)
  4385. {
  4386. return p->utime;
  4387. }
  4388. cputime_t task_stime(struct task_struct *p)
  4389. {
  4390. return p->stime;
  4391. }
  4392. #else
  4393. cputime_t task_utime(struct task_struct *p)
  4394. {
  4395. clock_t utime = cputime_to_clock_t(p->utime),
  4396. total = utime + cputime_to_clock_t(p->stime);
  4397. u64 temp;
  4398. /*
  4399. * Use CFS's precise accounting:
  4400. */
  4401. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4402. if (total) {
  4403. temp *= utime;
  4404. do_div(temp, total);
  4405. }
  4406. utime = (clock_t)temp;
  4407. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4408. return p->prev_utime;
  4409. }
  4410. cputime_t task_stime(struct task_struct *p)
  4411. {
  4412. clock_t stime;
  4413. /*
  4414. * Use CFS's precise accounting. (we subtract utime from
  4415. * the total, to make sure the total observed by userspace
  4416. * grows monotonically - apps rely on that):
  4417. */
  4418. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4419. cputime_to_clock_t(task_utime(p));
  4420. if (stime >= 0)
  4421. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4422. return p->prev_stime;
  4423. }
  4424. #endif
  4425. inline cputime_t task_gtime(struct task_struct *p)
  4426. {
  4427. return p->gtime;
  4428. }
  4429. /*
  4430. * This function gets called by the timer code, with HZ frequency.
  4431. * We call it with interrupts disabled.
  4432. *
  4433. * It also gets called by the fork code, when changing the parent's
  4434. * timeslices.
  4435. */
  4436. void scheduler_tick(void)
  4437. {
  4438. int cpu = smp_processor_id();
  4439. struct rq *rq = cpu_rq(cpu);
  4440. struct task_struct *curr = rq->curr;
  4441. sched_clock_tick();
  4442. spin_lock(&rq->lock);
  4443. update_rq_clock(rq);
  4444. update_cpu_load(rq);
  4445. curr->sched_class->task_tick(rq, curr, 0);
  4446. spin_unlock(&rq->lock);
  4447. perf_counter_task_tick(curr, cpu);
  4448. #ifdef CONFIG_SMP
  4449. rq->idle_at_tick = idle_cpu(cpu);
  4450. trigger_load_balance(rq, cpu);
  4451. #endif
  4452. }
  4453. notrace unsigned long get_parent_ip(unsigned long addr)
  4454. {
  4455. if (in_lock_functions(addr)) {
  4456. addr = CALLER_ADDR2;
  4457. if (in_lock_functions(addr))
  4458. addr = CALLER_ADDR3;
  4459. }
  4460. return addr;
  4461. }
  4462. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4463. defined(CONFIG_PREEMPT_TRACER))
  4464. void __kprobes add_preempt_count(int val)
  4465. {
  4466. #ifdef CONFIG_DEBUG_PREEMPT
  4467. /*
  4468. * Underflow?
  4469. */
  4470. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4471. return;
  4472. #endif
  4473. preempt_count() += val;
  4474. #ifdef CONFIG_DEBUG_PREEMPT
  4475. /*
  4476. * Spinlock count overflowing soon?
  4477. */
  4478. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4479. PREEMPT_MASK - 10);
  4480. #endif
  4481. if (preempt_count() == val)
  4482. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4483. }
  4484. EXPORT_SYMBOL(add_preempt_count);
  4485. void __kprobes sub_preempt_count(int val)
  4486. {
  4487. #ifdef CONFIG_DEBUG_PREEMPT
  4488. /*
  4489. * Underflow?
  4490. */
  4491. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4492. return;
  4493. /*
  4494. * Is the spinlock portion underflowing?
  4495. */
  4496. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4497. !(preempt_count() & PREEMPT_MASK)))
  4498. return;
  4499. #endif
  4500. if (preempt_count() == val)
  4501. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4502. preempt_count() -= val;
  4503. }
  4504. EXPORT_SYMBOL(sub_preempt_count);
  4505. #endif
  4506. /*
  4507. * Print scheduling while atomic bug:
  4508. */
  4509. static noinline void __schedule_bug(struct task_struct *prev)
  4510. {
  4511. struct pt_regs *regs = get_irq_regs();
  4512. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4513. prev->comm, prev->pid, preempt_count());
  4514. debug_show_held_locks(prev);
  4515. print_modules();
  4516. if (irqs_disabled())
  4517. print_irqtrace_events(prev);
  4518. if (regs)
  4519. show_regs(regs);
  4520. else
  4521. dump_stack();
  4522. }
  4523. /*
  4524. * Various schedule()-time debugging checks and statistics:
  4525. */
  4526. static inline void schedule_debug(struct task_struct *prev)
  4527. {
  4528. /*
  4529. * Test if we are atomic. Since do_exit() needs to call into
  4530. * schedule() atomically, we ignore that path for now.
  4531. * Otherwise, whine if we are scheduling when we should not be.
  4532. */
  4533. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4534. __schedule_bug(prev);
  4535. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4536. schedstat_inc(this_rq(), sched_count);
  4537. #ifdef CONFIG_SCHEDSTATS
  4538. if (unlikely(prev->lock_depth >= 0)) {
  4539. schedstat_inc(this_rq(), bkl_count);
  4540. schedstat_inc(prev, sched_info.bkl_count);
  4541. }
  4542. #endif
  4543. }
  4544. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4545. {
  4546. if (prev->state == TASK_RUNNING) {
  4547. u64 runtime = prev->se.sum_exec_runtime;
  4548. runtime -= prev->se.prev_sum_exec_runtime;
  4549. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4550. /*
  4551. * In order to avoid avg_overlap growing stale when we are
  4552. * indeed overlapping and hence not getting put to sleep, grow
  4553. * the avg_overlap on preemption.
  4554. *
  4555. * We use the average preemption runtime because that
  4556. * correlates to the amount of cache footprint a task can
  4557. * build up.
  4558. */
  4559. update_avg(&prev->se.avg_overlap, runtime);
  4560. }
  4561. prev->sched_class->put_prev_task(rq, prev);
  4562. }
  4563. /*
  4564. * Pick up the highest-prio task:
  4565. */
  4566. static inline struct task_struct *
  4567. pick_next_task(struct rq *rq)
  4568. {
  4569. const struct sched_class *class;
  4570. struct task_struct *p;
  4571. /*
  4572. * Optimization: we know that if all tasks are in
  4573. * the fair class we can call that function directly:
  4574. */
  4575. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4576. p = fair_sched_class.pick_next_task(rq);
  4577. if (likely(p))
  4578. return p;
  4579. }
  4580. class = sched_class_highest;
  4581. for ( ; ; ) {
  4582. p = class->pick_next_task(rq);
  4583. if (p)
  4584. return p;
  4585. /*
  4586. * Will never be NULL as the idle class always
  4587. * returns a non-NULL p:
  4588. */
  4589. class = class->next;
  4590. }
  4591. }
  4592. /*
  4593. * schedule() is the main scheduler function.
  4594. */
  4595. asmlinkage void __sched schedule(void)
  4596. {
  4597. struct task_struct *prev, *next;
  4598. unsigned long *switch_count;
  4599. struct rq *rq;
  4600. int cpu;
  4601. need_resched:
  4602. preempt_disable();
  4603. cpu = smp_processor_id();
  4604. rq = cpu_rq(cpu);
  4605. rcu_qsctr_inc(cpu);
  4606. prev = rq->curr;
  4607. switch_count = &prev->nivcsw;
  4608. release_kernel_lock(prev);
  4609. need_resched_nonpreemptible:
  4610. schedule_debug(prev);
  4611. if (sched_feat(HRTICK))
  4612. hrtick_clear(rq);
  4613. spin_lock_irq(&rq->lock);
  4614. update_rq_clock(rq);
  4615. clear_tsk_need_resched(prev);
  4616. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4617. if (unlikely(signal_pending_state(prev->state, prev)))
  4618. prev->state = TASK_RUNNING;
  4619. else
  4620. deactivate_task(rq, prev, 1);
  4621. switch_count = &prev->nvcsw;
  4622. }
  4623. pre_schedule(rq, prev);
  4624. if (unlikely(!rq->nr_running))
  4625. idle_balance(cpu, rq);
  4626. put_prev_task(rq, prev);
  4627. next = pick_next_task(rq);
  4628. if (likely(prev != next)) {
  4629. sched_info_switch(prev, next);
  4630. perf_counter_task_sched_out(prev, next, cpu);
  4631. rq->nr_switches++;
  4632. rq->curr = next;
  4633. ++*switch_count;
  4634. context_switch(rq, prev, next); /* unlocks the rq */
  4635. /*
  4636. * the context switch might have flipped the stack from under
  4637. * us, hence refresh the local variables.
  4638. */
  4639. cpu = smp_processor_id();
  4640. rq = cpu_rq(cpu);
  4641. } else
  4642. spin_unlock_irq(&rq->lock);
  4643. post_schedule(rq);
  4644. if (unlikely(reacquire_kernel_lock(current) < 0))
  4645. goto need_resched_nonpreemptible;
  4646. preempt_enable_no_resched();
  4647. if (need_resched())
  4648. goto need_resched;
  4649. }
  4650. EXPORT_SYMBOL(schedule);
  4651. #ifdef CONFIG_SMP
  4652. /*
  4653. * Look out! "owner" is an entirely speculative pointer
  4654. * access and not reliable.
  4655. */
  4656. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4657. {
  4658. unsigned int cpu;
  4659. struct rq *rq;
  4660. if (!sched_feat(OWNER_SPIN))
  4661. return 0;
  4662. #ifdef CONFIG_DEBUG_PAGEALLOC
  4663. /*
  4664. * Need to access the cpu field knowing that
  4665. * DEBUG_PAGEALLOC could have unmapped it if
  4666. * the mutex owner just released it and exited.
  4667. */
  4668. if (probe_kernel_address(&owner->cpu, cpu))
  4669. goto out;
  4670. #else
  4671. cpu = owner->cpu;
  4672. #endif
  4673. /*
  4674. * Even if the access succeeded (likely case),
  4675. * the cpu field may no longer be valid.
  4676. */
  4677. if (cpu >= nr_cpumask_bits)
  4678. goto out;
  4679. /*
  4680. * We need to validate that we can do a
  4681. * get_cpu() and that we have the percpu area.
  4682. */
  4683. if (!cpu_online(cpu))
  4684. goto out;
  4685. rq = cpu_rq(cpu);
  4686. for (;;) {
  4687. /*
  4688. * Owner changed, break to re-assess state.
  4689. */
  4690. if (lock->owner != owner)
  4691. break;
  4692. /*
  4693. * Is that owner really running on that cpu?
  4694. */
  4695. if (task_thread_info(rq->curr) != owner || need_resched())
  4696. return 0;
  4697. cpu_relax();
  4698. }
  4699. out:
  4700. return 1;
  4701. }
  4702. #endif
  4703. #ifdef CONFIG_PREEMPT
  4704. /*
  4705. * this is the entry point to schedule() from in-kernel preemption
  4706. * off of preempt_enable. Kernel preemptions off return from interrupt
  4707. * occur there and call schedule directly.
  4708. */
  4709. asmlinkage void __sched preempt_schedule(void)
  4710. {
  4711. struct thread_info *ti = current_thread_info();
  4712. /*
  4713. * If there is a non-zero preempt_count or interrupts are disabled,
  4714. * we do not want to preempt the current task. Just return..
  4715. */
  4716. if (likely(ti->preempt_count || irqs_disabled()))
  4717. return;
  4718. do {
  4719. add_preempt_count(PREEMPT_ACTIVE);
  4720. schedule();
  4721. sub_preempt_count(PREEMPT_ACTIVE);
  4722. /*
  4723. * Check again in case we missed a preemption opportunity
  4724. * between schedule and now.
  4725. */
  4726. barrier();
  4727. } while (need_resched());
  4728. }
  4729. EXPORT_SYMBOL(preempt_schedule);
  4730. /*
  4731. * this is the entry point to schedule() from kernel preemption
  4732. * off of irq context.
  4733. * Note, that this is called and return with irqs disabled. This will
  4734. * protect us against recursive calling from irq.
  4735. */
  4736. asmlinkage void __sched preempt_schedule_irq(void)
  4737. {
  4738. struct thread_info *ti = current_thread_info();
  4739. /* Catch callers which need to be fixed */
  4740. BUG_ON(ti->preempt_count || !irqs_disabled());
  4741. do {
  4742. add_preempt_count(PREEMPT_ACTIVE);
  4743. local_irq_enable();
  4744. schedule();
  4745. local_irq_disable();
  4746. sub_preempt_count(PREEMPT_ACTIVE);
  4747. /*
  4748. * Check again in case we missed a preemption opportunity
  4749. * between schedule and now.
  4750. */
  4751. barrier();
  4752. } while (need_resched());
  4753. }
  4754. #endif /* CONFIG_PREEMPT */
  4755. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4756. void *key)
  4757. {
  4758. return try_to_wake_up(curr->private, mode, sync);
  4759. }
  4760. EXPORT_SYMBOL(default_wake_function);
  4761. /*
  4762. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4763. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4764. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4765. *
  4766. * There are circumstances in which we can try to wake a task which has already
  4767. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4768. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4769. */
  4770. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4771. int nr_exclusive, int sync, void *key)
  4772. {
  4773. wait_queue_t *curr, *next;
  4774. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4775. unsigned flags = curr->flags;
  4776. if (curr->func(curr, mode, sync, key) &&
  4777. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4778. break;
  4779. }
  4780. }
  4781. /**
  4782. * __wake_up - wake up threads blocked on a waitqueue.
  4783. * @q: the waitqueue
  4784. * @mode: which threads
  4785. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4786. * @key: is directly passed to the wakeup function
  4787. *
  4788. * It may be assumed that this function implies a write memory barrier before
  4789. * changing the task state if and only if any tasks are woken up.
  4790. */
  4791. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4792. int nr_exclusive, void *key)
  4793. {
  4794. unsigned long flags;
  4795. spin_lock_irqsave(&q->lock, flags);
  4796. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4797. spin_unlock_irqrestore(&q->lock, flags);
  4798. }
  4799. EXPORT_SYMBOL(__wake_up);
  4800. /*
  4801. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4802. */
  4803. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4804. {
  4805. __wake_up_common(q, mode, 1, 0, NULL);
  4806. }
  4807. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4808. {
  4809. __wake_up_common(q, mode, 1, 0, key);
  4810. }
  4811. /**
  4812. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4813. * @q: the waitqueue
  4814. * @mode: which threads
  4815. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4816. * @key: opaque value to be passed to wakeup targets
  4817. *
  4818. * The sync wakeup differs that the waker knows that it will schedule
  4819. * away soon, so while the target thread will be woken up, it will not
  4820. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4821. * with each other. This can prevent needless bouncing between CPUs.
  4822. *
  4823. * On UP it can prevent extra preemption.
  4824. *
  4825. * It may be assumed that this function implies a write memory barrier before
  4826. * changing the task state if and only if any tasks are woken up.
  4827. */
  4828. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4829. int nr_exclusive, void *key)
  4830. {
  4831. unsigned long flags;
  4832. int sync = 1;
  4833. if (unlikely(!q))
  4834. return;
  4835. if (unlikely(!nr_exclusive))
  4836. sync = 0;
  4837. spin_lock_irqsave(&q->lock, flags);
  4838. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4839. spin_unlock_irqrestore(&q->lock, flags);
  4840. }
  4841. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4842. /*
  4843. * __wake_up_sync - see __wake_up_sync_key()
  4844. */
  4845. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4846. {
  4847. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4848. }
  4849. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4850. /**
  4851. * complete: - signals a single thread waiting on this completion
  4852. * @x: holds the state of this particular completion
  4853. *
  4854. * This will wake up a single thread waiting on this completion. Threads will be
  4855. * awakened in the same order in which they were queued.
  4856. *
  4857. * See also complete_all(), wait_for_completion() and related routines.
  4858. *
  4859. * It may be assumed that this function implies a write memory barrier before
  4860. * changing the task state if and only if any tasks are woken up.
  4861. */
  4862. void complete(struct completion *x)
  4863. {
  4864. unsigned long flags;
  4865. spin_lock_irqsave(&x->wait.lock, flags);
  4866. x->done++;
  4867. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4868. spin_unlock_irqrestore(&x->wait.lock, flags);
  4869. }
  4870. EXPORT_SYMBOL(complete);
  4871. /**
  4872. * complete_all: - signals all threads waiting on this completion
  4873. * @x: holds the state of this particular completion
  4874. *
  4875. * This will wake up all threads waiting on this particular completion event.
  4876. *
  4877. * It may be assumed that this function implies a write memory barrier before
  4878. * changing the task state if and only if any tasks are woken up.
  4879. */
  4880. void complete_all(struct completion *x)
  4881. {
  4882. unsigned long flags;
  4883. spin_lock_irqsave(&x->wait.lock, flags);
  4884. x->done += UINT_MAX/2;
  4885. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4886. spin_unlock_irqrestore(&x->wait.lock, flags);
  4887. }
  4888. EXPORT_SYMBOL(complete_all);
  4889. static inline long __sched
  4890. do_wait_for_common(struct completion *x, long timeout, int state)
  4891. {
  4892. if (!x->done) {
  4893. DECLARE_WAITQUEUE(wait, current);
  4894. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4895. __add_wait_queue_tail(&x->wait, &wait);
  4896. do {
  4897. if (signal_pending_state(state, current)) {
  4898. timeout = -ERESTARTSYS;
  4899. break;
  4900. }
  4901. __set_current_state(state);
  4902. spin_unlock_irq(&x->wait.lock);
  4903. timeout = schedule_timeout(timeout);
  4904. spin_lock_irq(&x->wait.lock);
  4905. } while (!x->done && timeout);
  4906. __remove_wait_queue(&x->wait, &wait);
  4907. if (!x->done)
  4908. return timeout;
  4909. }
  4910. x->done--;
  4911. return timeout ?: 1;
  4912. }
  4913. static long __sched
  4914. wait_for_common(struct completion *x, long timeout, int state)
  4915. {
  4916. might_sleep();
  4917. spin_lock_irq(&x->wait.lock);
  4918. timeout = do_wait_for_common(x, timeout, state);
  4919. spin_unlock_irq(&x->wait.lock);
  4920. return timeout;
  4921. }
  4922. /**
  4923. * wait_for_completion: - waits for completion of a task
  4924. * @x: holds the state of this particular completion
  4925. *
  4926. * This waits to be signaled for completion of a specific task. It is NOT
  4927. * interruptible and there is no timeout.
  4928. *
  4929. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4930. * and interrupt capability. Also see complete().
  4931. */
  4932. void __sched wait_for_completion(struct completion *x)
  4933. {
  4934. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4935. }
  4936. EXPORT_SYMBOL(wait_for_completion);
  4937. /**
  4938. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4939. * @x: holds the state of this particular completion
  4940. * @timeout: timeout value in jiffies
  4941. *
  4942. * This waits for either a completion of a specific task to be signaled or for a
  4943. * specified timeout to expire. The timeout is in jiffies. It is not
  4944. * interruptible.
  4945. */
  4946. unsigned long __sched
  4947. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4948. {
  4949. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4950. }
  4951. EXPORT_SYMBOL(wait_for_completion_timeout);
  4952. /**
  4953. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4954. * @x: holds the state of this particular completion
  4955. *
  4956. * This waits for completion of a specific task to be signaled. It is
  4957. * interruptible.
  4958. */
  4959. int __sched wait_for_completion_interruptible(struct completion *x)
  4960. {
  4961. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4962. if (t == -ERESTARTSYS)
  4963. return t;
  4964. return 0;
  4965. }
  4966. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4967. /**
  4968. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4969. * @x: holds the state of this particular completion
  4970. * @timeout: timeout value in jiffies
  4971. *
  4972. * This waits for either a completion of a specific task to be signaled or for a
  4973. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4974. */
  4975. unsigned long __sched
  4976. wait_for_completion_interruptible_timeout(struct completion *x,
  4977. unsigned long timeout)
  4978. {
  4979. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4980. }
  4981. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4982. /**
  4983. * wait_for_completion_killable: - waits for completion of a task (killable)
  4984. * @x: holds the state of this particular completion
  4985. *
  4986. * This waits to be signaled for completion of a specific task. It can be
  4987. * interrupted by a kill signal.
  4988. */
  4989. int __sched wait_for_completion_killable(struct completion *x)
  4990. {
  4991. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4992. if (t == -ERESTARTSYS)
  4993. return t;
  4994. return 0;
  4995. }
  4996. EXPORT_SYMBOL(wait_for_completion_killable);
  4997. /**
  4998. * try_wait_for_completion - try to decrement a completion without blocking
  4999. * @x: completion structure
  5000. *
  5001. * Returns: 0 if a decrement cannot be done without blocking
  5002. * 1 if a decrement succeeded.
  5003. *
  5004. * If a completion is being used as a counting completion,
  5005. * attempt to decrement the counter without blocking. This
  5006. * enables us to avoid waiting if the resource the completion
  5007. * is protecting is not available.
  5008. */
  5009. bool try_wait_for_completion(struct completion *x)
  5010. {
  5011. int ret = 1;
  5012. spin_lock_irq(&x->wait.lock);
  5013. if (!x->done)
  5014. ret = 0;
  5015. else
  5016. x->done--;
  5017. spin_unlock_irq(&x->wait.lock);
  5018. return ret;
  5019. }
  5020. EXPORT_SYMBOL(try_wait_for_completion);
  5021. /**
  5022. * completion_done - Test to see if a completion has any waiters
  5023. * @x: completion structure
  5024. *
  5025. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5026. * 1 if there are no waiters.
  5027. *
  5028. */
  5029. bool completion_done(struct completion *x)
  5030. {
  5031. int ret = 1;
  5032. spin_lock_irq(&x->wait.lock);
  5033. if (!x->done)
  5034. ret = 0;
  5035. spin_unlock_irq(&x->wait.lock);
  5036. return ret;
  5037. }
  5038. EXPORT_SYMBOL(completion_done);
  5039. static long __sched
  5040. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5041. {
  5042. unsigned long flags;
  5043. wait_queue_t wait;
  5044. init_waitqueue_entry(&wait, current);
  5045. __set_current_state(state);
  5046. spin_lock_irqsave(&q->lock, flags);
  5047. __add_wait_queue(q, &wait);
  5048. spin_unlock(&q->lock);
  5049. timeout = schedule_timeout(timeout);
  5050. spin_lock_irq(&q->lock);
  5051. __remove_wait_queue(q, &wait);
  5052. spin_unlock_irqrestore(&q->lock, flags);
  5053. return timeout;
  5054. }
  5055. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5056. {
  5057. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5058. }
  5059. EXPORT_SYMBOL(interruptible_sleep_on);
  5060. long __sched
  5061. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5062. {
  5063. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5064. }
  5065. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5066. void __sched sleep_on(wait_queue_head_t *q)
  5067. {
  5068. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5069. }
  5070. EXPORT_SYMBOL(sleep_on);
  5071. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5072. {
  5073. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5074. }
  5075. EXPORT_SYMBOL(sleep_on_timeout);
  5076. #ifdef CONFIG_RT_MUTEXES
  5077. /*
  5078. * rt_mutex_setprio - set the current priority of a task
  5079. * @p: task
  5080. * @prio: prio value (kernel-internal form)
  5081. *
  5082. * This function changes the 'effective' priority of a task. It does
  5083. * not touch ->normal_prio like __setscheduler().
  5084. *
  5085. * Used by the rt_mutex code to implement priority inheritance logic.
  5086. */
  5087. void rt_mutex_setprio(struct task_struct *p, int prio)
  5088. {
  5089. unsigned long flags;
  5090. int oldprio, on_rq, running;
  5091. struct rq *rq;
  5092. const struct sched_class *prev_class = p->sched_class;
  5093. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5094. rq = task_rq_lock(p, &flags);
  5095. update_rq_clock(rq);
  5096. oldprio = p->prio;
  5097. on_rq = p->se.on_rq;
  5098. running = task_current(rq, p);
  5099. if (on_rq)
  5100. dequeue_task(rq, p, 0);
  5101. if (running)
  5102. p->sched_class->put_prev_task(rq, p);
  5103. if (rt_prio(prio))
  5104. p->sched_class = &rt_sched_class;
  5105. else
  5106. p->sched_class = &fair_sched_class;
  5107. p->prio = prio;
  5108. if (running)
  5109. p->sched_class->set_curr_task(rq);
  5110. if (on_rq) {
  5111. enqueue_task(rq, p, 0);
  5112. check_class_changed(rq, p, prev_class, oldprio, running);
  5113. }
  5114. task_rq_unlock(rq, &flags);
  5115. }
  5116. #endif
  5117. void set_user_nice(struct task_struct *p, long nice)
  5118. {
  5119. int old_prio, delta, on_rq;
  5120. unsigned long flags;
  5121. struct rq *rq;
  5122. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5123. return;
  5124. /*
  5125. * We have to be careful, if called from sys_setpriority(),
  5126. * the task might be in the middle of scheduling on another CPU.
  5127. */
  5128. rq = task_rq_lock(p, &flags);
  5129. update_rq_clock(rq);
  5130. /*
  5131. * The RT priorities are set via sched_setscheduler(), but we still
  5132. * allow the 'normal' nice value to be set - but as expected
  5133. * it wont have any effect on scheduling until the task is
  5134. * SCHED_FIFO/SCHED_RR:
  5135. */
  5136. if (task_has_rt_policy(p)) {
  5137. p->static_prio = NICE_TO_PRIO(nice);
  5138. goto out_unlock;
  5139. }
  5140. on_rq = p->se.on_rq;
  5141. if (on_rq)
  5142. dequeue_task(rq, p, 0);
  5143. p->static_prio = NICE_TO_PRIO(nice);
  5144. set_load_weight(p);
  5145. old_prio = p->prio;
  5146. p->prio = effective_prio(p);
  5147. delta = p->prio - old_prio;
  5148. if (on_rq) {
  5149. enqueue_task(rq, p, 0);
  5150. /*
  5151. * If the task increased its priority or is running and
  5152. * lowered its priority, then reschedule its CPU:
  5153. */
  5154. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5155. resched_task(rq->curr);
  5156. }
  5157. out_unlock:
  5158. task_rq_unlock(rq, &flags);
  5159. }
  5160. EXPORT_SYMBOL(set_user_nice);
  5161. /*
  5162. * can_nice - check if a task can reduce its nice value
  5163. * @p: task
  5164. * @nice: nice value
  5165. */
  5166. int can_nice(const struct task_struct *p, const int nice)
  5167. {
  5168. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5169. int nice_rlim = 20 - nice;
  5170. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5171. capable(CAP_SYS_NICE));
  5172. }
  5173. #ifdef __ARCH_WANT_SYS_NICE
  5174. /*
  5175. * sys_nice - change the priority of the current process.
  5176. * @increment: priority increment
  5177. *
  5178. * sys_setpriority is a more generic, but much slower function that
  5179. * does similar things.
  5180. */
  5181. SYSCALL_DEFINE1(nice, int, increment)
  5182. {
  5183. long nice, retval;
  5184. /*
  5185. * Setpriority might change our priority at the same moment.
  5186. * We don't have to worry. Conceptually one call occurs first
  5187. * and we have a single winner.
  5188. */
  5189. if (increment < -40)
  5190. increment = -40;
  5191. if (increment > 40)
  5192. increment = 40;
  5193. nice = TASK_NICE(current) + increment;
  5194. if (nice < -20)
  5195. nice = -20;
  5196. if (nice > 19)
  5197. nice = 19;
  5198. if (increment < 0 && !can_nice(current, nice))
  5199. return -EPERM;
  5200. retval = security_task_setnice(current, nice);
  5201. if (retval)
  5202. return retval;
  5203. set_user_nice(current, nice);
  5204. return 0;
  5205. }
  5206. #endif
  5207. /**
  5208. * task_prio - return the priority value of a given task.
  5209. * @p: the task in question.
  5210. *
  5211. * This is the priority value as seen by users in /proc.
  5212. * RT tasks are offset by -200. Normal tasks are centered
  5213. * around 0, value goes from -16 to +15.
  5214. */
  5215. int task_prio(const struct task_struct *p)
  5216. {
  5217. return p->prio - MAX_RT_PRIO;
  5218. }
  5219. /**
  5220. * task_nice - return the nice value of a given task.
  5221. * @p: the task in question.
  5222. */
  5223. int task_nice(const struct task_struct *p)
  5224. {
  5225. return TASK_NICE(p);
  5226. }
  5227. EXPORT_SYMBOL(task_nice);
  5228. /**
  5229. * idle_cpu - is a given cpu idle currently?
  5230. * @cpu: the processor in question.
  5231. */
  5232. int idle_cpu(int cpu)
  5233. {
  5234. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5235. }
  5236. /**
  5237. * idle_task - return the idle task for a given cpu.
  5238. * @cpu: the processor in question.
  5239. */
  5240. struct task_struct *idle_task(int cpu)
  5241. {
  5242. return cpu_rq(cpu)->idle;
  5243. }
  5244. /**
  5245. * find_process_by_pid - find a process with a matching PID value.
  5246. * @pid: the pid in question.
  5247. */
  5248. static struct task_struct *find_process_by_pid(pid_t pid)
  5249. {
  5250. return pid ? find_task_by_vpid(pid) : current;
  5251. }
  5252. /* Actually do priority change: must hold rq lock. */
  5253. static void
  5254. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5255. {
  5256. BUG_ON(p->se.on_rq);
  5257. p->policy = policy;
  5258. switch (p->policy) {
  5259. case SCHED_NORMAL:
  5260. case SCHED_BATCH:
  5261. case SCHED_IDLE:
  5262. p->sched_class = &fair_sched_class;
  5263. break;
  5264. case SCHED_FIFO:
  5265. case SCHED_RR:
  5266. p->sched_class = &rt_sched_class;
  5267. break;
  5268. }
  5269. p->rt_priority = prio;
  5270. p->normal_prio = normal_prio(p);
  5271. /* we are holding p->pi_lock already */
  5272. p->prio = rt_mutex_getprio(p);
  5273. set_load_weight(p);
  5274. }
  5275. /*
  5276. * check the target process has a UID that matches the current process's
  5277. */
  5278. static bool check_same_owner(struct task_struct *p)
  5279. {
  5280. const struct cred *cred = current_cred(), *pcred;
  5281. bool match;
  5282. rcu_read_lock();
  5283. pcred = __task_cred(p);
  5284. match = (cred->euid == pcred->euid ||
  5285. cred->euid == pcred->uid);
  5286. rcu_read_unlock();
  5287. return match;
  5288. }
  5289. static int __sched_setscheduler(struct task_struct *p, int policy,
  5290. struct sched_param *param, bool user)
  5291. {
  5292. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5293. unsigned long flags;
  5294. const struct sched_class *prev_class = p->sched_class;
  5295. struct rq *rq;
  5296. int reset_on_fork;
  5297. /* may grab non-irq protected spin_locks */
  5298. BUG_ON(in_interrupt());
  5299. recheck:
  5300. /* double check policy once rq lock held */
  5301. if (policy < 0) {
  5302. reset_on_fork = p->sched_reset_on_fork;
  5303. policy = oldpolicy = p->policy;
  5304. } else {
  5305. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5306. policy &= ~SCHED_RESET_ON_FORK;
  5307. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5308. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5309. policy != SCHED_IDLE)
  5310. return -EINVAL;
  5311. }
  5312. /*
  5313. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5314. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5315. * SCHED_BATCH and SCHED_IDLE is 0.
  5316. */
  5317. if (param->sched_priority < 0 ||
  5318. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5319. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5320. return -EINVAL;
  5321. if (rt_policy(policy) != (param->sched_priority != 0))
  5322. return -EINVAL;
  5323. /*
  5324. * Allow unprivileged RT tasks to decrease priority:
  5325. */
  5326. if (user && !capable(CAP_SYS_NICE)) {
  5327. if (rt_policy(policy)) {
  5328. unsigned long rlim_rtprio;
  5329. if (!lock_task_sighand(p, &flags))
  5330. return -ESRCH;
  5331. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5332. unlock_task_sighand(p, &flags);
  5333. /* can't set/change the rt policy */
  5334. if (policy != p->policy && !rlim_rtprio)
  5335. return -EPERM;
  5336. /* can't increase priority */
  5337. if (param->sched_priority > p->rt_priority &&
  5338. param->sched_priority > rlim_rtprio)
  5339. return -EPERM;
  5340. }
  5341. /*
  5342. * Like positive nice levels, dont allow tasks to
  5343. * move out of SCHED_IDLE either:
  5344. */
  5345. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5346. return -EPERM;
  5347. /* can't change other user's priorities */
  5348. if (!check_same_owner(p))
  5349. return -EPERM;
  5350. /* Normal users shall not reset the sched_reset_on_fork flag */
  5351. if (p->sched_reset_on_fork && !reset_on_fork)
  5352. return -EPERM;
  5353. }
  5354. if (user) {
  5355. #ifdef CONFIG_RT_GROUP_SCHED
  5356. /*
  5357. * Do not allow realtime tasks into groups that have no runtime
  5358. * assigned.
  5359. */
  5360. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5361. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5362. return -EPERM;
  5363. #endif
  5364. retval = security_task_setscheduler(p, policy, param);
  5365. if (retval)
  5366. return retval;
  5367. }
  5368. /*
  5369. * make sure no PI-waiters arrive (or leave) while we are
  5370. * changing the priority of the task:
  5371. */
  5372. spin_lock_irqsave(&p->pi_lock, flags);
  5373. /*
  5374. * To be able to change p->policy safely, the apropriate
  5375. * runqueue lock must be held.
  5376. */
  5377. rq = __task_rq_lock(p);
  5378. /* recheck policy now with rq lock held */
  5379. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5380. policy = oldpolicy = -1;
  5381. __task_rq_unlock(rq);
  5382. spin_unlock_irqrestore(&p->pi_lock, flags);
  5383. goto recheck;
  5384. }
  5385. update_rq_clock(rq);
  5386. on_rq = p->se.on_rq;
  5387. running = task_current(rq, p);
  5388. if (on_rq)
  5389. deactivate_task(rq, p, 0);
  5390. if (running)
  5391. p->sched_class->put_prev_task(rq, p);
  5392. p->sched_reset_on_fork = reset_on_fork;
  5393. oldprio = p->prio;
  5394. __setscheduler(rq, p, policy, param->sched_priority);
  5395. if (running)
  5396. p->sched_class->set_curr_task(rq);
  5397. if (on_rq) {
  5398. activate_task(rq, p, 0);
  5399. check_class_changed(rq, p, prev_class, oldprio, running);
  5400. }
  5401. __task_rq_unlock(rq);
  5402. spin_unlock_irqrestore(&p->pi_lock, flags);
  5403. rt_mutex_adjust_pi(p);
  5404. return 0;
  5405. }
  5406. /**
  5407. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5408. * @p: the task in question.
  5409. * @policy: new policy.
  5410. * @param: structure containing the new RT priority.
  5411. *
  5412. * NOTE that the task may be already dead.
  5413. */
  5414. int sched_setscheduler(struct task_struct *p, int policy,
  5415. struct sched_param *param)
  5416. {
  5417. return __sched_setscheduler(p, policy, param, true);
  5418. }
  5419. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5420. /**
  5421. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5422. * @p: the task in question.
  5423. * @policy: new policy.
  5424. * @param: structure containing the new RT priority.
  5425. *
  5426. * Just like sched_setscheduler, only don't bother checking if the
  5427. * current context has permission. For example, this is needed in
  5428. * stop_machine(): we create temporary high priority worker threads,
  5429. * but our caller might not have that capability.
  5430. */
  5431. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5432. struct sched_param *param)
  5433. {
  5434. return __sched_setscheduler(p, policy, param, false);
  5435. }
  5436. static int
  5437. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5438. {
  5439. struct sched_param lparam;
  5440. struct task_struct *p;
  5441. int retval;
  5442. if (!param || pid < 0)
  5443. return -EINVAL;
  5444. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5445. return -EFAULT;
  5446. rcu_read_lock();
  5447. retval = -ESRCH;
  5448. p = find_process_by_pid(pid);
  5449. if (p != NULL)
  5450. retval = sched_setscheduler(p, policy, &lparam);
  5451. rcu_read_unlock();
  5452. return retval;
  5453. }
  5454. /**
  5455. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5456. * @pid: the pid in question.
  5457. * @policy: new policy.
  5458. * @param: structure containing the new RT priority.
  5459. */
  5460. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5461. struct sched_param __user *, param)
  5462. {
  5463. /* negative values for policy are not valid */
  5464. if (policy < 0)
  5465. return -EINVAL;
  5466. return do_sched_setscheduler(pid, policy, param);
  5467. }
  5468. /**
  5469. * sys_sched_setparam - set/change the RT priority of a thread
  5470. * @pid: the pid in question.
  5471. * @param: structure containing the new RT priority.
  5472. */
  5473. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5474. {
  5475. return do_sched_setscheduler(pid, -1, param);
  5476. }
  5477. /**
  5478. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5479. * @pid: the pid in question.
  5480. */
  5481. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5482. {
  5483. struct task_struct *p;
  5484. int retval;
  5485. if (pid < 0)
  5486. return -EINVAL;
  5487. retval = -ESRCH;
  5488. read_lock(&tasklist_lock);
  5489. p = find_process_by_pid(pid);
  5490. if (p) {
  5491. retval = security_task_getscheduler(p);
  5492. if (!retval)
  5493. retval = p->policy
  5494. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5495. }
  5496. read_unlock(&tasklist_lock);
  5497. return retval;
  5498. }
  5499. /**
  5500. * sys_sched_getparam - get the RT priority of a thread
  5501. * @pid: the pid in question.
  5502. * @param: structure containing the RT priority.
  5503. */
  5504. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5505. {
  5506. struct sched_param lp;
  5507. struct task_struct *p;
  5508. int retval;
  5509. if (!param || pid < 0)
  5510. return -EINVAL;
  5511. read_lock(&tasklist_lock);
  5512. p = find_process_by_pid(pid);
  5513. retval = -ESRCH;
  5514. if (!p)
  5515. goto out_unlock;
  5516. retval = security_task_getscheduler(p);
  5517. if (retval)
  5518. goto out_unlock;
  5519. lp.sched_priority = p->rt_priority;
  5520. read_unlock(&tasklist_lock);
  5521. /*
  5522. * This one might sleep, we cannot do it with a spinlock held ...
  5523. */
  5524. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5525. return retval;
  5526. out_unlock:
  5527. read_unlock(&tasklist_lock);
  5528. return retval;
  5529. }
  5530. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5531. {
  5532. cpumask_var_t cpus_allowed, new_mask;
  5533. struct task_struct *p;
  5534. int retval;
  5535. get_online_cpus();
  5536. read_lock(&tasklist_lock);
  5537. p = find_process_by_pid(pid);
  5538. if (!p) {
  5539. read_unlock(&tasklist_lock);
  5540. put_online_cpus();
  5541. return -ESRCH;
  5542. }
  5543. /*
  5544. * It is not safe to call set_cpus_allowed with the
  5545. * tasklist_lock held. We will bump the task_struct's
  5546. * usage count and then drop tasklist_lock.
  5547. */
  5548. get_task_struct(p);
  5549. read_unlock(&tasklist_lock);
  5550. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5551. retval = -ENOMEM;
  5552. goto out_put_task;
  5553. }
  5554. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5555. retval = -ENOMEM;
  5556. goto out_free_cpus_allowed;
  5557. }
  5558. retval = -EPERM;
  5559. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5560. goto out_unlock;
  5561. retval = security_task_setscheduler(p, 0, NULL);
  5562. if (retval)
  5563. goto out_unlock;
  5564. cpuset_cpus_allowed(p, cpus_allowed);
  5565. cpumask_and(new_mask, in_mask, cpus_allowed);
  5566. again:
  5567. retval = set_cpus_allowed_ptr(p, new_mask);
  5568. if (!retval) {
  5569. cpuset_cpus_allowed(p, cpus_allowed);
  5570. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5571. /*
  5572. * We must have raced with a concurrent cpuset
  5573. * update. Just reset the cpus_allowed to the
  5574. * cpuset's cpus_allowed
  5575. */
  5576. cpumask_copy(new_mask, cpus_allowed);
  5577. goto again;
  5578. }
  5579. }
  5580. out_unlock:
  5581. free_cpumask_var(new_mask);
  5582. out_free_cpus_allowed:
  5583. free_cpumask_var(cpus_allowed);
  5584. out_put_task:
  5585. put_task_struct(p);
  5586. put_online_cpus();
  5587. return retval;
  5588. }
  5589. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5590. struct cpumask *new_mask)
  5591. {
  5592. if (len < cpumask_size())
  5593. cpumask_clear(new_mask);
  5594. else if (len > cpumask_size())
  5595. len = cpumask_size();
  5596. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5597. }
  5598. /**
  5599. * sys_sched_setaffinity - set the cpu affinity of a process
  5600. * @pid: pid of the process
  5601. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5602. * @user_mask_ptr: user-space pointer to the new cpu mask
  5603. */
  5604. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5605. unsigned long __user *, user_mask_ptr)
  5606. {
  5607. cpumask_var_t new_mask;
  5608. int retval;
  5609. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5610. return -ENOMEM;
  5611. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5612. if (retval == 0)
  5613. retval = sched_setaffinity(pid, new_mask);
  5614. free_cpumask_var(new_mask);
  5615. return retval;
  5616. }
  5617. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5618. {
  5619. struct task_struct *p;
  5620. int retval;
  5621. get_online_cpus();
  5622. read_lock(&tasklist_lock);
  5623. retval = -ESRCH;
  5624. p = find_process_by_pid(pid);
  5625. if (!p)
  5626. goto out_unlock;
  5627. retval = security_task_getscheduler(p);
  5628. if (retval)
  5629. goto out_unlock;
  5630. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5631. out_unlock:
  5632. read_unlock(&tasklist_lock);
  5633. put_online_cpus();
  5634. return retval;
  5635. }
  5636. /**
  5637. * sys_sched_getaffinity - get the cpu affinity of a process
  5638. * @pid: pid of the process
  5639. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5640. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5641. */
  5642. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5643. unsigned long __user *, user_mask_ptr)
  5644. {
  5645. int ret;
  5646. cpumask_var_t mask;
  5647. if (len < cpumask_size())
  5648. return -EINVAL;
  5649. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5650. return -ENOMEM;
  5651. ret = sched_getaffinity(pid, mask);
  5652. if (ret == 0) {
  5653. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5654. ret = -EFAULT;
  5655. else
  5656. ret = cpumask_size();
  5657. }
  5658. free_cpumask_var(mask);
  5659. return ret;
  5660. }
  5661. /**
  5662. * sys_sched_yield - yield the current processor to other threads.
  5663. *
  5664. * This function yields the current CPU to other tasks. If there are no
  5665. * other threads running on this CPU then this function will return.
  5666. */
  5667. SYSCALL_DEFINE0(sched_yield)
  5668. {
  5669. struct rq *rq = this_rq_lock();
  5670. schedstat_inc(rq, yld_count);
  5671. current->sched_class->yield_task(rq);
  5672. /*
  5673. * Since we are going to call schedule() anyway, there's
  5674. * no need to preempt or enable interrupts:
  5675. */
  5676. __release(rq->lock);
  5677. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5678. _raw_spin_unlock(&rq->lock);
  5679. preempt_enable_no_resched();
  5680. schedule();
  5681. return 0;
  5682. }
  5683. static inline int should_resched(void)
  5684. {
  5685. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5686. }
  5687. static void __cond_resched(void)
  5688. {
  5689. add_preempt_count(PREEMPT_ACTIVE);
  5690. schedule();
  5691. sub_preempt_count(PREEMPT_ACTIVE);
  5692. }
  5693. int __sched _cond_resched(void)
  5694. {
  5695. if (should_resched()) {
  5696. __cond_resched();
  5697. return 1;
  5698. }
  5699. return 0;
  5700. }
  5701. EXPORT_SYMBOL(_cond_resched);
  5702. /*
  5703. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5704. * call schedule, and on return reacquire the lock.
  5705. *
  5706. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5707. * operations here to prevent schedule() from being called twice (once via
  5708. * spin_unlock(), once by hand).
  5709. */
  5710. int __cond_resched_lock(spinlock_t *lock)
  5711. {
  5712. int resched = should_resched();
  5713. int ret = 0;
  5714. if (spin_needbreak(lock) || resched) {
  5715. spin_unlock(lock);
  5716. if (resched)
  5717. __cond_resched();
  5718. else
  5719. cpu_relax();
  5720. ret = 1;
  5721. spin_lock(lock);
  5722. }
  5723. return ret;
  5724. }
  5725. EXPORT_SYMBOL(__cond_resched_lock);
  5726. int __sched __cond_resched_softirq(void)
  5727. {
  5728. BUG_ON(!in_softirq());
  5729. if (should_resched()) {
  5730. local_bh_enable();
  5731. __cond_resched();
  5732. local_bh_disable();
  5733. return 1;
  5734. }
  5735. return 0;
  5736. }
  5737. EXPORT_SYMBOL(__cond_resched_softirq);
  5738. /**
  5739. * yield - yield the current processor to other threads.
  5740. *
  5741. * This is a shortcut for kernel-space yielding - it marks the
  5742. * thread runnable and calls sys_sched_yield().
  5743. */
  5744. void __sched yield(void)
  5745. {
  5746. set_current_state(TASK_RUNNING);
  5747. sys_sched_yield();
  5748. }
  5749. EXPORT_SYMBOL(yield);
  5750. /*
  5751. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5752. * that process accounting knows that this is a task in IO wait state.
  5753. *
  5754. * But don't do that if it is a deliberate, throttling IO wait (this task
  5755. * has set its backing_dev_info: the queue against which it should throttle)
  5756. */
  5757. void __sched io_schedule(void)
  5758. {
  5759. struct rq *rq = raw_rq();
  5760. delayacct_blkio_start();
  5761. atomic_inc(&rq->nr_iowait);
  5762. schedule();
  5763. atomic_dec(&rq->nr_iowait);
  5764. delayacct_blkio_end();
  5765. }
  5766. EXPORT_SYMBOL(io_schedule);
  5767. long __sched io_schedule_timeout(long timeout)
  5768. {
  5769. struct rq *rq = raw_rq();
  5770. long ret;
  5771. delayacct_blkio_start();
  5772. atomic_inc(&rq->nr_iowait);
  5773. ret = schedule_timeout(timeout);
  5774. atomic_dec(&rq->nr_iowait);
  5775. delayacct_blkio_end();
  5776. return ret;
  5777. }
  5778. /**
  5779. * sys_sched_get_priority_max - return maximum RT priority.
  5780. * @policy: scheduling class.
  5781. *
  5782. * this syscall returns the maximum rt_priority that can be used
  5783. * by a given scheduling class.
  5784. */
  5785. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5786. {
  5787. int ret = -EINVAL;
  5788. switch (policy) {
  5789. case SCHED_FIFO:
  5790. case SCHED_RR:
  5791. ret = MAX_USER_RT_PRIO-1;
  5792. break;
  5793. case SCHED_NORMAL:
  5794. case SCHED_BATCH:
  5795. case SCHED_IDLE:
  5796. ret = 0;
  5797. break;
  5798. }
  5799. return ret;
  5800. }
  5801. /**
  5802. * sys_sched_get_priority_min - return minimum RT priority.
  5803. * @policy: scheduling class.
  5804. *
  5805. * this syscall returns the minimum rt_priority that can be used
  5806. * by a given scheduling class.
  5807. */
  5808. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5809. {
  5810. int ret = -EINVAL;
  5811. switch (policy) {
  5812. case SCHED_FIFO:
  5813. case SCHED_RR:
  5814. ret = 1;
  5815. break;
  5816. case SCHED_NORMAL:
  5817. case SCHED_BATCH:
  5818. case SCHED_IDLE:
  5819. ret = 0;
  5820. }
  5821. return ret;
  5822. }
  5823. /**
  5824. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5825. * @pid: pid of the process.
  5826. * @interval: userspace pointer to the timeslice value.
  5827. *
  5828. * this syscall writes the default timeslice value of a given process
  5829. * into the user-space timespec buffer. A value of '0' means infinity.
  5830. */
  5831. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5832. struct timespec __user *, interval)
  5833. {
  5834. struct task_struct *p;
  5835. unsigned int time_slice;
  5836. int retval;
  5837. struct timespec t;
  5838. if (pid < 0)
  5839. return -EINVAL;
  5840. retval = -ESRCH;
  5841. read_lock(&tasklist_lock);
  5842. p = find_process_by_pid(pid);
  5843. if (!p)
  5844. goto out_unlock;
  5845. retval = security_task_getscheduler(p);
  5846. if (retval)
  5847. goto out_unlock;
  5848. /*
  5849. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5850. * tasks that are on an otherwise idle runqueue:
  5851. */
  5852. time_slice = 0;
  5853. if (p->policy == SCHED_RR) {
  5854. time_slice = DEF_TIMESLICE;
  5855. } else if (p->policy != SCHED_FIFO) {
  5856. struct sched_entity *se = &p->se;
  5857. unsigned long flags;
  5858. struct rq *rq;
  5859. rq = task_rq_lock(p, &flags);
  5860. if (rq->cfs.load.weight)
  5861. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5862. task_rq_unlock(rq, &flags);
  5863. }
  5864. read_unlock(&tasklist_lock);
  5865. jiffies_to_timespec(time_slice, &t);
  5866. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5867. return retval;
  5868. out_unlock:
  5869. read_unlock(&tasklist_lock);
  5870. return retval;
  5871. }
  5872. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5873. void sched_show_task(struct task_struct *p)
  5874. {
  5875. unsigned long free = 0;
  5876. unsigned state;
  5877. state = p->state ? __ffs(p->state) + 1 : 0;
  5878. printk(KERN_INFO "%-13.13s %c", p->comm,
  5879. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5880. #if BITS_PER_LONG == 32
  5881. if (state == TASK_RUNNING)
  5882. printk(KERN_CONT " running ");
  5883. else
  5884. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5885. #else
  5886. if (state == TASK_RUNNING)
  5887. printk(KERN_CONT " running task ");
  5888. else
  5889. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5890. #endif
  5891. #ifdef CONFIG_DEBUG_STACK_USAGE
  5892. free = stack_not_used(p);
  5893. #endif
  5894. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5895. task_pid_nr(p), task_pid_nr(p->real_parent),
  5896. (unsigned long)task_thread_info(p)->flags);
  5897. show_stack(p, NULL);
  5898. }
  5899. void show_state_filter(unsigned long state_filter)
  5900. {
  5901. struct task_struct *g, *p;
  5902. #if BITS_PER_LONG == 32
  5903. printk(KERN_INFO
  5904. " task PC stack pid father\n");
  5905. #else
  5906. printk(KERN_INFO
  5907. " task PC stack pid father\n");
  5908. #endif
  5909. read_lock(&tasklist_lock);
  5910. do_each_thread(g, p) {
  5911. /*
  5912. * reset the NMI-timeout, listing all files on a slow
  5913. * console might take alot of time:
  5914. */
  5915. touch_nmi_watchdog();
  5916. if (!state_filter || (p->state & state_filter))
  5917. sched_show_task(p);
  5918. } while_each_thread(g, p);
  5919. touch_all_softlockup_watchdogs();
  5920. #ifdef CONFIG_SCHED_DEBUG
  5921. sysrq_sched_debug_show();
  5922. #endif
  5923. read_unlock(&tasklist_lock);
  5924. /*
  5925. * Only show locks if all tasks are dumped:
  5926. */
  5927. if (state_filter == -1)
  5928. debug_show_all_locks();
  5929. }
  5930. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5931. {
  5932. idle->sched_class = &idle_sched_class;
  5933. }
  5934. /**
  5935. * init_idle - set up an idle thread for a given CPU
  5936. * @idle: task in question
  5937. * @cpu: cpu the idle task belongs to
  5938. *
  5939. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5940. * flag, to make booting more robust.
  5941. */
  5942. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5943. {
  5944. struct rq *rq = cpu_rq(cpu);
  5945. unsigned long flags;
  5946. spin_lock_irqsave(&rq->lock, flags);
  5947. __sched_fork(idle);
  5948. idle->se.exec_start = sched_clock();
  5949. idle->prio = idle->normal_prio = MAX_PRIO;
  5950. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5951. __set_task_cpu(idle, cpu);
  5952. rq->curr = rq->idle = idle;
  5953. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5954. idle->oncpu = 1;
  5955. #endif
  5956. spin_unlock_irqrestore(&rq->lock, flags);
  5957. /* Set the preempt count _outside_ the spinlocks! */
  5958. #if defined(CONFIG_PREEMPT)
  5959. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5960. #else
  5961. task_thread_info(idle)->preempt_count = 0;
  5962. #endif
  5963. /*
  5964. * The idle tasks have their own, simple scheduling class:
  5965. */
  5966. idle->sched_class = &idle_sched_class;
  5967. ftrace_graph_init_task(idle);
  5968. }
  5969. /*
  5970. * In a system that switches off the HZ timer nohz_cpu_mask
  5971. * indicates which cpus entered this state. This is used
  5972. * in the rcu update to wait only for active cpus. For system
  5973. * which do not switch off the HZ timer nohz_cpu_mask should
  5974. * always be CPU_BITS_NONE.
  5975. */
  5976. cpumask_var_t nohz_cpu_mask;
  5977. /*
  5978. * Increase the granularity value when there are more CPUs,
  5979. * because with more CPUs the 'effective latency' as visible
  5980. * to users decreases. But the relationship is not linear,
  5981. * so pick a second-best guess by going with the log2 of the
  5982. * number of CPUs.
  5983. *
  5984. * This idea comes from the SD scheduler of Con Kolivas:
  5985. */
  5986. static inline void sched_init_granularity(void)
  5987. {
  5988. unsigned int factor = 1 + ilog2(num_online_cpus());
  5989. const unsigned long limit = 200000000;
  5990. sysctl_sched_min_granularity *= factor;
  5991. if (sysctl_sched_min_granularity > limit)
  5992. sysctl_sched_min_granularity = limit;
  5993. sysctl_sched_latency *= factor;
  5994. if (sysctl_sched_latency > limit)
  5995. sysctl_sched_latency = limit;
  5996. sysctl_sched_wakeup_granularity *= factor;
  5997. sysctl_sched_shares_ratelimit *= factor;
  5998. }
  5999. #ifdef CONFIG_SMP
  6000. /*
  6001. * This is how migration works:
  6002. *
  6003. * 1) we queue a struct migration_req structure in the source CPU's
  6004. * runqueue and wake up that CPU's migration thread.
  6005. * 2) we down() the locked semaphore => thread blocks.
  6006. * 3) migration thread wakes up (implicitly it forces the migrated
  6007. * thread off the CPU)
  6008. * 4) it gets the migration request and checks whether the migrated
  6009. * task is still in the wrong runqueue.
  6010. * 5) if it's in the wrong runqueue then the migration thread removes
  6011. * it and puts it into the right queue.
  6012. * 6) migration thread up()s the semaphore.
  6013. * 7) we wake up and the migration is done.
  6014. */
  6015. /*
  6016. * Change a given task's CPU affinity. Migrate the thread to a
  6017. * proper CPU and schedule it away if the CPU it's executing on
  6018. * is removed from the allowed bitmask.
  6019. *
  6020. * NOTE: the caller must have a valid reference to the task, the
  6021. * task must not exit() & deallocate itself prematurely. The
  6022. * call is not atomic; no spinlocks may be held.
  6023. */
  6024. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6025. {
  6026. struct migration_req req;
  6027. unsigned long flags;
  6028. struct rq *rq;
  6029. int ret = 0;
  6030. rq = task_rq_lock(p, &flags);
  6031. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  6032. ret = -EINVAL;
  6033. goto out;
  6034. }
  6035. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6036. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6037. ret = -EINVAL;
  6038. goto out;
  6039. }
  6040. if (p->sched_class->set_cpus_allowed)
  6041. p->sched_class->set_cpus_allowed(p, new_mask);
  6042. else {
  6043. cpumask_copy(&p->cpus_allowed, new_mask);
  6044. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6045. }
  6046. /* Can the task run on the task's current CPU? If so, we're done */
  6047. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6048. goto out;
  6049. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  6050. /* Need help from migration thread: drop lock and wait. */
  6051. task_rq_unlock(rq, &flags);
  6052. wake_up_process(rq->migration_thread);
  6053. wait_for_completion(&req.done);
  6054. tlb_migrate_finish(p->mm);
  6055. return 0;
  6056. }
  6057. out:
  6058. task_rq_unlock(rq, &flags);
  6059. return ret;
  6060. }
  6061. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6062. /*
  6063. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6064. * this because either it can't run here any more (set_cpus_allowed()
  6065. * away from this CPU, or CPU going down), or because we're
  6066. * attempting to rebalance this task on exec (sched_exec).
  6067. *
  6068. * So we race with normal scheduler movements, but that's OK, as long
  6069. * as the task is no longer on this CPU.
  6070. *
  6071. * Returns non-zero if task was successfully migrated.
  6072. */
  6073. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6074. {
  6075. struct rq *rq_dest, *rq_src;
  6076. int ret = 0, on_rq;
  6077. if (unlikely(!cpu_active(dest_cpu)))
  6078. return ret;
  6079. rq_src = cpu_rq(src_cpu);
  6080. rq_dest = cpu_rq(dest_cpu);
  6081. double_rq_lock(rq_src, rq_dest);
  6082. /* Already moved. */
  6083. if (task_cpu(p) != src_cpu)
  6084. goto done;
  6085. /* Affinity changed (again). */
  6086. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6087. goto fail;
  6088. on_rq = p->se.on_rq;
  6089. if (on_rq)
  6090. deactivate_task(rq_src, p, 0);
  6091. set_task_cpu(p, dest_cpu);
  6092. if (on_rq) {
  6093. activate_task(rq_dest, p, 0);
  6094. check_preempt_curr(rq_dest, p, 0);
  6095. }
  6096. done:
  6097. ret = 1;
  6098. fail:
  6099. double_rq_unlock(rq_src, rq_dest);
  6100. return ret;
  6101. }
  6102. /*
  6103. * migration_thread - this is a highprio system thread that performs
  6104. * thread migration by bumping thread off CPU then 'pushing' onto
  6105. * another runqueue.
  6106. */
  6107. static int migration_thread(void *data)
  6108. {
  6109. int cpu = (long)data;
  6110. struct rq *rq;
  6111. rq = cpu_rq(cpu);
  6112. BUG_ON(rq->migration_thread != current);
  6113. set_current_state(TASK_INTERRUPTIBLE);
  6114. while (!kthread_should_stop()) {
  6115. struct migration_req *req;
  6116. struct list_head *head;
  6117. spin_lock_irq(&rq->lock);
  6118. if (cpu_is_offline(cpu)) {
  6119. spin_unlock_irq(&rq->lock);
  6120. break;
  6121. }
  6122. if (rq->active_balance) {
  6123. active_load_balance(rq, cpu);
  6124. rq->active_balance = 0;
  6125. }
  6126. head = &rq->migration_queue;
  6127. if (list_empty(head)) {
  6128. spin_unlock_irq(&rq->lock);
  6129. schedule();
  6130. set_current_state(TASK_INTERRUPTIBLE);
  6131. continue;
  6132. }
  6133. req = list_entry(head->next, struct migration_req, list);
  6134. list_del_init(head->next);
  6135. spin_unlock(&rq->lock);
  6136. __migrate_task(req->task, cpu, req->dest_cpu);
  6137. local_irq_enable();
  6138. complete(&req->done);
  6139. }
  6140. __set_current_state(TASK_RUNNING);
  6141. return 0;
  6142. }
  6143. #ifdef CONFIG_HOTPLUG_CPU
  6144. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6145. {
  6146. int ret;
  6147. local_irq_disable();
  6148. ret = __migrate_task(p, src_cpu, dest_cpu);
  6149. local_irq_enable();
  6150. return ret;
  6151. }
  6152. /*
  6153. * Figure out where task on dead CPU should go, use force if necessary.
  6154. */
  6155. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6156. {
  6157. int dest_cpu;
  6158. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6159. again:
  6160. /* Look for allowed, online CPU in same node. */
  6161. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6162. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6163. goto move;
  6164. /* Any allowed, online CPU? */
  6165. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6166. if (dest_cpu < nr_cpu_ids)
  6167. goto move;
  6168. /* No more Mr. Nice Guy. */
  6169. if (dest_cpu >= nr_cpu_ids) {
  6170. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6171. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6172. /*
  6173. * Don't tell them about moving exiting tasks or
  6174. * kernel threads (both mm NULL), since they never
  6175. * leave kernel.
  6176. */
  6177. if (p->mm && printk_ratelimit()) {
  6178. printk(KERN_INFO "process %d (%s) no "
  6179. "longer affine to cpu%d\n",
  6180. task_pid_nr(p), p->comm, dead_cpu);
  6181. }
  6182. }
  6183. move:
  6184. /* It can have affinity changed while we were choosing. */
  6185. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6186. goto again;
  6187. }
  6188. /*
  6189. * While a dead CPU has no uninterruptible tasks queued at this point,
  6190. * it might still have a nonzero ->nr_uninterruptible counter, because
  6191. * for performance reasons the counter is not stricly tracking tasks to
  6192. * their home CPUs. So we just add the counter to another CPU's counter,
  6193. * to keep the global sum constant after CPU-down:
  6194. */
  6195. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6196. {
  6197. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6198. unsigned long flags;
  6199. local_irq_save(flags);
  6200. double_rq_lock(rq_src, rq_dest);
  6201. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6202. rq_src->nr_uninterruptible = 0;
  6203. double_rq_unlock(rq_src, rq_dest);
  6204. local_irq_restore(flags);
  6205. }
  6206. /* Run through task list and migrate tasks from the dead cpu. */
  6207. static void migrate_live_tasks(int src_cpu)
  6208. {
  6209. struct task_struct *p, *t;
  6210. read_lock(&tasklist_lock);
  6211. do_each_thread(t, p) {
  6212. if (p == current)
  6213. continue;
  6214. if (task_cpu(p) == src_cpu)
  6215. move_task_off_dead_cpu(src_cpu, p);
  6216. } while_each_thread(t, p);
  6217. read_unlock(&tasklist_lock);
  6218. }
  6219. /*
  6220. * Schedules idle task to be the next runnable task on current CPU.
  6221. * It does so by boosting its priority to highest possible.
  6222. * Used by CPU offline code.
  6223. */
  6224. void sched_idle_next(void)
  6225. {
  6226. int this_cpu = smp_processor_id();
  6227. struct rq *rq = cpu_rq(this_cpu);
  6228. struct task_struct *p = rq->idle;
  6229. unsigned long flags;
  6230. /* cpu has to be offline */
  6231. BUG_ON(cpu_online(this_cpu));
  6232. /*
  6233. * Strictly not necessary since rest of the CPUs are stopped by now
  6234. * and interrupts disabled on the current cpu.
  6235. */
  6236. spin_lock_irqsave(&rq->lock, flags);
  6237. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6238. update_rq_clock(rq);
  6239. activate_task(rq, p, 0);
  6240. spin_unlock_irqrestore(&rq->lock, flags);
  6241. }
  6242. /*
  6243. * Ensures that the idle task is using init_mm right before its cpu goes
  6244. * offline.
  6245. */
  6246. void idle_task_exit(void)
  6247. {
  6248. struct mm_struct *mm = current->active_mm;
  6249. BUG_ON(cpu_online(smp_processor_id()));
  6250. if (mm != &init_mm)
  6251. switch_mm(mm, &init_mm, current);
  6252. mmdrop(mm);
  6253. }
  6254. /* called under rq->lock with disabled interrupts */
  6255. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6256. {
  6257. struct rq *rq = cpu_rq(dead_cpu);
  6258. /* Must be exiting, otherwise would be on tasklist. */
  6259. BUG_ON(!p->exit_state);
  6260. /* Cannot have done final schedule yet: would have vanished. */
  6261. BUG_ON(p->state == TASK_DEAD);
  6262. get_task_struct(p);
  6263. /*
  6264. * Drop lock around migration; if someone else moves it,
  6265. * that's OK. No task can be added to this CPU, so iteration is
  6266. * fine.
  6267. */
  6268. spin_unlock_irq(&rq->lock);
  6269. move_task_off_dead_cpu(dead_cpu, p);
  6270. spin_lock_irq(&rq->lock);
  6271. put_task_struct(p);
  6272. }
  6273. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6274. static void migrate_dead_tasks(unsigned int dead_cpu)
  6275. {
  6276. struct rq *rq = cpu_rq(dead_cpu);
  6277. struct task_struct *next;
  6278. for ( ; ; ) {
  6279. if (!rq->nr_running)
  6280. break;
  6281. update_rq_clock(rq);
  6282. next = pick_next_task(rq);
  6283. if (!next)
  6284. break;
  6285. next->sched_class->put_prev_task(rq, next);
  6286. migrate_dead(dead_cpu, next);
  6287. }
  6288. }
  6289. /*
  6290. * remove the tasks which were accounted by rq from calc_load_tasks.
  6291. */
  6292. static void calc_global_load_remove(struct rq *rq)
  6293. {
  6294. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6295. rq->calc_load_active = 0;
  6296. }
  6297. #endif /* CONFIG_HOTPLUG_CPU */
  6298. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6299. static struct ctl_table sd_ctl_dir[] = {
  6300. {
  6301. .procname = "sched_domain",
  6302. .mode = 0555,
  6303. },
  6304. {0, },
  6305. };
  6306. static struct ctl_table sd_ctl_root[] = {
  6307. {
  6308. .ctl_name = CTL_KERN,
  6309. .procname = "kernel",
  6310. .mode = 0555,
  6311. .child = sd_ctl_dir,
  6312. },
  6313. {0, },
  6314. };
  6315. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6316. {
  6317. struct ctl_table *entry =
  6318. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6319. return entry;
  6320. }
  6321. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6322. {
  6323. struct ctl_table *entry;
  6324. /*
  6325. * In the intermediate directories, both the child directory and
  6326. * procname are dynamically allocated and could fail but the mode
  6327. * will always be set. In the lowest directory the names are
  6328. * static strings and all have proc handlers.
  6329. */
  6330. for (entry = *tablep; entry->mode; entry++) {
  6331. if (entry->child)
  6332. sd_free_ctl_entry(&entry->child);
  6333. if (entry->proc_handler == NULL)
  6334. kfree(entry->procname);
  6335. }
  6336. kfree(*tablep);
  6337. *tablep = NULL;
  6338. }
  6339. static void
  6340. set_table_entry(struct ctl_table *entry,
  6341. const char *procname, void *data, int maxlen,
  6342. mode_t mode, proc_handler *proc_handler)
  6343. {
  6344. entry->procname = procname;
  6345. entry->data = data;
  6346. entry->maxlen = maxlen;
  6347. entry->mode = mode;
  6348. entry->proc_handler = proc_handler;
  6349. }
  6350. static struct ctl_table *
  6351. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6352. {
  6353. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6354. if (table == NULL)
  6355. return NULL;
  6356. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6357. sizeof(long), 0644, proc_doulongvec_minmax);
  6358. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6359. sizeof(long), 0644, proc_doulongvec_minmax);
  6360. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6361. sizeof(int), 0644, proc_dointvec_minmax);
  6362. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6363. sizeof(int), 0644, proc_dointvec_minmax);
  6364. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6365. sizeof(int), 0644, proc_dointvec_minmax);
  6366. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6367. sizeof(int), 0644, proc_dointvec_minmax);
  6368. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6369. sizeof(int), 0644, proc_dointvec_minmax);
  6370. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6371. sizeof(int), 0644, proc_dointvec_minmax);
  6372. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6373. sizeof(int), 0644, proc_dointvec_minmax);
  6374. set_table_entry(&table[9], "cache_nice_tries",
  6375. &sd->cache_nice_tries,
  6376. sizeof(int), 0644, proc_dointvec_minmax);
  6377. set_table_entry(&table[10], "flags", &sd->flags,
  6378. sizeof(int), 0644, proc_dointvec_minmax);
  6379. set_table_entry(&table[11], "name", sd->name,
  6380. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6381. /* &table[12] is terminator */
  6382. return table;
  6383. }
  6384. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6385. {
  6386. struct ctl_table *entry, *table;
  6387. struct sched_domain *sd;
  6388. int domain_num = 0, i;
  6389. char buf[32];
  6390. for_each_domain(cpu, sd)
  6391. domain_num++;
  6392. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6393. if (table == NULL)
  6394. return NULL;
  6395. i = 0;
  6396. for_each_domain(cpu, sd) {
  6397. snprintf(buf, 32, "domain%d", i);
  6398. entry->procname = kstrdup(buf, GFP_KERNEL);
  6399. entry->mode = 0555;
  6400. entry->child = sd_alloc_ctl_domain_table(sd);
  6401. entry++;
  6402. i++;
  6403. }
  6404. return table;
  6405. }
  6406. static struct ctl_table_header *sd_sysctl_header;
  6407. static void register_sched_domain_sysctl(void)
  6408. {
  6409. int i, cpu_num = num_online_cpus();
  6410. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6411. char buf[32];
  6412. WARN_ON(sd_ctl_dir[0].child);
  6413. sd_ctl_dir[0].child = entry;
  6414. if (entry == NULL)
  6415. return;
  6416. for_each_online_cpu(i) {
  6417. snprintf(buf, 32, "cpu%d", i);
  6418. entry->procname = kstrdup(buf, GFP_KERNEL);
  6419. entry->mode = 0555;
  6420. entry->child = sd_alloc_ctl_cpu_table(i);
  6421. entry++;
  6422. }
  6423. WARN_ON(sd_sysctl_header);
  6424. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6425. }
  6426. /* may be called multiple times per register */
  6427. static void unregister_sched_domain_sysctl(void)
  6428. {
  6429. if (sd_sysctl_header)
  6430. unregister_sysctl_table(sd_sysctl_header);
  6431. sd_sysctl_header = NULL;
  6432. if (sd_ctl_dir[0].child)
  6433. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6434. }
  6435. #else
  6436. static void register_sched_domain_sysctl(void)
  6437. {
  6438. }
  6439. static void unregister_sched_domain_sysctl(void)
  6440. {
  6441. }
  6442. #endif
  6443. static void set_rq_online(struct rq *rq)
  6444. {
  6445. if (!rq->online) {
  6446. const struct sched_class *class;
  6447. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6448. rq->online = 1;
  6449. for_each_class(class) {
  6450. if (class->rq_online)
  6451. class->rq_online(rq);
  6452. }
  6453. }
  6454. }
  6455. static void set_rq_offline(struct rq *rq)
  6456. {
  6457. if (rq->online) {
  6458. const struct sched_class *class;
  6459. for_each_class(class) {
  6460. if (class->rq_offline)
  6461. class->rq_offline(rq);
  6462. }
  6463. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6464. rq->online = 0;
  6465. }
  6466. }
  6467. /*
  6468. * migration_call - callback that gets triggered when a CPU is added.
  6469. * Here we can start up the necessary migration thread for the new CPU.
  6470. */
  6471. static int __cpuinit
  6472. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6473. {
  6474. struct task_struct *p;
  6475. int cpu = (long)hcpu;
  6476. unsigned long flags;
  6477. struct rq *rq;
  6478. switch (action) {
  6479. case CPU_UP_PREPARE:
  6480. case CPU_UP_PREPARE_FROZEN:
  6481. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6482. if (IS_ERR(p))
  6483. return NOTIFY_BAD;
  6484. kthread_bind(p, cpu);
  6485. /* Must be high prio: stop_machine expects to yield to it. */
  6486. rq = task_rq_lock(p, &flags);
  6487. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6488. task_rq_unlock(rq, &flags);
  6489. get_task_struct(p);
  6490. cpu_rq(cpu)->migration_thread = p;
  6491. rq->calc_load_update = calc_load_update;
  6492. break;
  6493. case CPU_ONLINE:
  6494. case CPU_ONLINE_FROZEN:
  6495. /* Strictly unnecessary, as first user will wake it. */
  6496. wake_up_process(cpu_rq(cpu)->migration_thread);
  6497. /* Update our root-domain */
  6498. rq = cpu_rq(cpu);
  6499. spin_lock_irqsave(&rq->lock, flags);
  6500. if (rq->rd) {
  6501. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6502. set_rq_online(rq);
  6503. }
  6504. spin_unlock_irqrestore(&rq->lock, flags);
  6505. break;
  6506. #ifdef CONFIG_HOTPLUG_CPU
  6507. case CPU_UP_CANCELED:
  6508. case CPU_UP_CANCELED_FROZEN:
  6509. if (!cpu_rq(cpu)->migration_thread)
  6510. break;
  6511. /* Unbind it from offline cpu so it can run. Fall thru. */
  6512. kthread_bind(cpu_rq(cpu)->migration_thread,
  6513. cpumask_any(cpu_online_mask));
  6514. kthread_stop(cpu_rq(cpu)->migration_thread);
  6515. put_task_struct(cpu_rq(cpu)->migration_thread);
  6516. cpu_rq(cpu)->migration_thread = NULL;
  6517. break;
  6518. case CPU_DEAD:
  6519. case CPU_DEAD_FROZEN:
  6520. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6521. migrate_live_tasks(cpu);
  6522. rq = cpu_rq(cpu);
  6523. kthread_stop(rq->migration_thread);
  6524. put_task_struct(rq->migration_thread);
  6525. rq->migration_thread = NULL;
  6526. /* Idle task back to normal (off runqueue, low prio) */
  6527. spin_lock_irq(&rq->lock);
  6528. update_rq_clock(rq);
  6529. deactivate_task(rq, rq->idle, 0);
  6530. rq->idle->static_prio = MAX_PRIO;
  6531. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6532. rq->idle->sched_class = &idle_sched_class;
  6533. migrate_dead_tasks(cpu);
  6534. spin_unlock_irq(&rq->lock);
  6535. cpuset_unlock();
  6536. migrate_nr_uninterruptible(rq);
  6537. BUG_ON(rq->nr_running != 0);
  6538. calc_global_load_remove(rq);
  6539. /*
  6540. * No need to migrate the tasks: it was best-effort if
  6541. * they didn't take sched_hotcpu_mutex. Just wake up
  6542. * the requestors.
  6543. */
  6544. spin_lock_irq(&rq->lock);
  6545. while (!list_empty(&rq->migration_queue)) {
  6546. struct migration_req *req;
  6547. req = list_entry(rq->migration_queue.next,
  6548. struct migration_req, list);
  6549. list_del_init(&req->list);
  6550. spin_unlock_irq(&rq->lock);
  6551. complete(&req->done);
  6552. spin_lock_irq(&rq->lock);
  6553. }
  6554. spin_unlock_irq(&rq->lock);
  6555. break;
  6556. case CPU_DYING:
  6557. case CPU_DYING_FROZEN:
  6558. /* Update our root-domain */
  6559. rq = cpu_rq(cpu);
  6560. spin_lock_irqsave(&rq->lock, flags);
  6561. if (rq->rd) {
  6562. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6563. set_rq_offline(rq);
  6564. }
  6565. spin_unlock_irqrestore(&rq->lock, flags);
  6566. break;
  6567. #endif
  6568. }
  6569. return NOTIFY_OK;
  6570. }
  6571. /*
  6572. * Register at high priority so that task migration (migrate_all_tasks)
  6573. * happens before everything else. This has to be lower priority than
  6574. * the notifier in the perf_counter subsystem, though.
  6575. */
  6576. static struct notifier_block __cpuinitdata migration_notifier = {
  6577. .notifier_call = migration_call,
  6578. .priority = 10
  6579. };
  6580. static int __init migration_init(void)
  6581. {
  6582. void *cpu = (void *)(long)smp_processor_id();
  6583. int err;
  6584. /* Start one for the boot CPU: */
  6585. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6586. BUG_ON(err == NOTIFY_BAD);
  6587. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6588. register_cpu_notifier(&migration_notifier);
  6589. return 0;
  6590. }
  6591. early_initcall(migration_init);
  6592. #endif
  6593. #ifdef CONFIG_SMP
  6594. #ifdef CONFIG_SCHED_DEBUG
  6595. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6596. struct cpumask *groupmask)
  6597. {
  6598. struct sched_group *group = sd->groups;
  6599. char str[256];
  6600. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6601. cpumask_clear(groupmask);
  6602. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6603. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6604. printk("does not load-balance\n");
  6605. if (sd->parent)
  6606. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6607. " has parent");
  6608. return -1;
  6609. }
  6610. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6611. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6612. printk(KERN_ERR "ERROR: domain->span does not contain "
  6613. "CPU%d\n", cpu);
  6614. }
  6615. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6616. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6617. " CPU%d\n", cpu);
  6618. }
  6619. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6620. do {
  6621. if (!group) {
  6622. printk("\n");
  6623. printk(KERN_ERR "ERROR: group is NULL\n");
  6624. break;
  6625. }
  6626. if (!group->__cpu_power) {
  6627. printk(KERN_CONT "\n");
  6628. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6629. "set\n");
  6630. break;
  6631. }
  6632. if (!cpumask_weight(sched_group_cpus(group))) {
  6633. printk(KERN_CONT "\n");
  6634. printk(KERN_ERR "ERROR: empty group\n");
  6635. break;
  6636. }
  6637. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6638. printk(KERN_CONT "\n");
  6639. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6640. break;
  6641. }
  6642. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6643. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6644. printk(KERN_CONT " %s", str);
  6645. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6646. printk(KERN_CONT " (__cpu_power = %d)",
  6647. group->__cpu_power);
  6648. }
  6649. group = group->next;
  6650. } while (group != sd->groups);
  6651. printk(KERN_CONT "\n");
  6652. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6653. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6654. if (sd->parent &&
  6655. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6656. printk(KERN_ERR "ERROR: parent span is not a superset "
  6657. "of domain->span\n");
  6658. return 0;
  6659. }
  6660. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6661. {
  6662. cpumask_var_t groupmask;
  6663. int level = 0;
  6664. if (!sd) {
  6665. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6666. return;
  6667. }
  6668. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6669. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6670. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6671. return;
  6672. }
  6673. for (;;) {
  6674. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6675. break;
  6676. level++;
  6677. sd = sd->parent;
  6678. if (!sd)
  6679. break;
  6680. }
  6681. free_cpumask_var(groupmask);
  6682. }
  6683. #else /* !CONFIG_SCHED_DEBUG */
  6684. # define sched_domain_debug(sd, cpu) do { } while (0)
  6685. #endif /* CONFIG_SCHED_DEBUG */
  6686. static int sd_degenerate(struct sched_domain *sd)
  6687. {
  6688. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6689. return 1;
  6690. /* Following flags need at least 2 groups */
  6691. if (sd->flags & (SD_LOAD_BALANCE |
  6692. SD_BALANCE_NEWIDLE |
  6693. SD_BALANCE_FORK |
  6694. SD_BALANCE_EXEC |
  6695. SD_SHARE_CPUPOWER |
  6696. SD_SHARE_PKG_RESOURCES)) {
  6697. if (sd->groups != sd->groups->next)
  6698. return 0;
  6699. }
  6700. /* Following flags don't use groups */
  6701. if (sd->flags & (SD_WAKE_IDLE |
  6702. SD_WAKE_AFFINE |
  6703. SD_WAKE_BALANCE))
  6704. return 0;
  6705. return 1;
  6706. }
  6707. static int
  6708. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6709. {
  6710. unsigned long cflags = sd->flags, pflags = parent->flags;
  6711. if (sd_degenerate(parent))
  6712. return 1;
  6713. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6714. return 0;
  6715. /* Does parent contain flags not in child? */
  6716. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6717. if (cflags & SD_WAKE_AFFINE)
  6718. pflags &= ~SD_WAKE_BALANCE;
  6719. /* Flags needing groups don't count if only 1 group in parent */
  6720. if (parent->groups == parent->groups->next) {
  6721. pflags &= ~(SD_LOAD_BALANCE |
  6722. SD_BALANCE_NEWIDLE |
  6723. SD_BALANCE_FORK |
  6724. SD_BALANCE_EXEC |
  6725. SD_SHARE_CPUPOWER |
  6726. SD_SHARE_PKG_RESOURCES);
  6727. if (nr_node_ids == 1)
  6728. pflags &= ~SD_SERIALIZE;
  6729. }
  6730. if (~cflags & pflags)
  6731. return 0;
  6732. return 1;
  6733. }
  6734. static void free_rootdomain(struct root_domain *rd)
  6735. {
  6736. cpupri_cleanup(&rd->cpupri);
  6737. free_cpumask_var(rd->rto_mask);
  6738. free_cpumask_var(rd->online);
  6739. free_cpumask_var(rd->span);
  6740. kfree(rd);
  6741. }
  6742. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6743. {
  6744. struct root_domain *old_rd = NULL;
  6745. unsigned long flags;
  6746. spin_lock_irqsave(&rq->lock, flags);
  6747. if (rq->rd) {
  6748. old_rd = rq->rd;
  6749. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6750. set_rq_offline(rq);
  6751. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6752. /*
  6753. * If we dont want to free the old_rt yet then
  6754. * set old_rd to NULL to skip the freeing later
  6755. * in this function:
  6756. */
  6757. if (!atomic_dec_and_test(&old_rd->refcount))
  6758. old_rd = NULL;
  6759. }
  6760. atomic_inc(&rd->refcount);
  6761. rq->rd = rd;
  6762. cpumask_set_cpu(rq->cpu, rd->span);
  6763. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6764. set_rq_online(rq);
  6765. spin_unlock_irqrestore(&rq->lock, flags);
  6766. if (old_rd)
  6767. free_rootdomain(old_rd);
  6768. }
  6769. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6770. {
  6771. gfp_t gfp = GFP_KERNEL;
  6772. memset(rd, 0, sizeof(*rd));
  6773. if (bootmem)
  6774. gfp = GFP_NOWAIT;
  6775. if (!alloc_cpumask_var(&rd->span, gfp))
  6776. goto out;
  6777. if (!alloc_cpumask_var(&rd->online, gfp))
  6778. goto free_span;
  6779. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6780. goto free_online;
  6781. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6782. goto free_rto_mask;
  6783. return 0;
  6784. free_rto_mask:
  6785. free_cpumask_var(rd->rto_mask);
  6786. free_online:
  6787. free_cpumask_var(rd->online);
  6788. free_span:
  6789. free_cpumask_var(rd->span);
  6790. out:
  6791. return -ENOMEM;
  6792. }
  6793. static void init_defrootdomain(void)
  6794. {
  6795. init_rootdomain(&def_root_domain, true);
  6796. atomic_set(&def_root_domain.refcount, 1);
  6797. }
  6798. static struct root_domain *alloc_rootdomain(void)
  6799. {
  6800. struct root_domain *rd;
  6801. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6802. if (!rd)
  6803. return NULL;
  6804. if (init_rootdomain(rd, false) != 0) {
  6805. kfree(rd);
  6806. return NULL;
  6807. }
  6808. return rd;
  6809. }
  6810. /*
  6811. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6812. * hold the hotplug lock.
  6813. */
  6814. static void
  6815. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6816. {
  6817. struct rq *rq = cpu_rq(cpu);
  6818. struct sched_domain *tmp;
  6819. /* Remove the sched domains which do not contribute to scheduling. */
  6820. for (tmp = sd; tmp; ) {
  6821. struct sched_domain *parent = tmp->parent;
  6822. if (!parent)
  6823. break;
  6824. if (sd_parent_degenerate(tmp, parent)) {
  6825. tmp->parent = parent->parent;
  6826. if (parent->parent)
  6827. parent->parent->child = tmp;
  6828. } else
  6829. tmp = tmp->parent;
  6830. }
  6831. if (sd && sd_degenerate(sd)) {
  6832. sd = sd->parent;
  6833. if (sd)
  6834. sd->child = NULL;
  6835. }
  6836. sched_domain_debug(sd, cpu);
  6837. rq_attach_root(rq, rd);
  6838. rcu_assign_pointer(rq->sd, sd);
  6839. }
  6840. /* cpus with isolated domains */
  6841. static cpumask_var_t cpu_isolated_map;
  6842. /* Setup the mask of cpus configured for isolated domains */
  6843. static int __init isolated_cpu_setup(char *str)
  6844. {
  6845. cpulist_parse(str, cpu_isolated_map);
  6846. return 1;
  6847. }
  6848. __setup("isolcpus=", isolated_cpu_setup);
  6849. /*
  6850. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6851. * to a function which identifies what group(along with sched group) a CPU
  6852. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6853. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6854. *
  6855. * init_sched_build_groups will build a circular linked list of the groups
  6856. * covered by the given span, and will set each group's ->cpumask correctly,
  6857. * and ->cpu_power to 0.
  6858. */
  6859. static void
  6860. init_sched_build_groups(const struct cpumask *span,
  6861. const struct cpumask *cpu_map,
  6862. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6863. struct sched_group **sg,
  6864. struct cpumask *tmpmask),
  6865. struct cpumask *covered, struct cpumask *tmpmask)
  6866. {
  6867. struct sched_group *first = NULL, *last = NULL;
  6868. int i;
  6869. cpumask_clear(covered);
  6870. for_each_cpu(i, span) {
  6871. struct sched_group *sg;
  6872. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6873. int j;
  6874. if (cpumask_test_cpu(i, covered))
  6875. continue;
  6876. cpumask_clear(sched_group_cpus(sg));
  6877. sg->__cpu_power = 0;
  6878. for_each_cpu(j, span) {
  6879. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6880. continue;
  6881. cpumask_set_cpu(j, covered);
  6882. cpumask_set_cpu(j, sched_group_cpus(sg));
  6883. }
  6884. if (!first)
  6885. first = sg;
  6886. if (last)
  6887. last->next = sg;
  6888. last = sg;
  6889. }
  6890. last->next = first;
  6891. }
  6892. #define SD_NODES_PER_DOMAIN 16
  6893. #ifdef CONFIG_NUMA
  6894. /**
  6895. * find_next_best_node - find the next node to include in a sched_domain
  6896. * @node: node whose sched_domain we're building
  6897. * @used_nodes: nodes already in the sched_domain
  6898. *
  6899. * Find the next node to include in a given scheduling domain. Simply
  6900. * finds the closest node not already in the @used_nodes map.
  6901. *
  6902. * Should use nodemask_t.
  6903. */
  6904. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6905. {
  6906. int i, n, val, min_val, best_node = 0;
  6907. min_val = INT_MAX;
  6908. for (i = 0; i < nr_node_ids; i++) {
  6909. /* Start at @node */
  6910. n = (node + i) % nr_node_ids;
  6911. if (!nr_cpus_node(n))
  6912. continue;
  6913. /* Skip already used nodes */
  6914. if (node_isset(n, *used_nodes))
  6915. continue;
  6916. /* Simple min distance search */
  6917. val = node_distance(node, n);
  6918. if (val < min_val) {
  6919. min_val = val;
  6920. best_node = n;
  6921. }
  6922. }
  6923. node_set(best_node, *used_nodes);
  6924. return best_node;
  6925. }
  6926. /**
  6927. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6928. * @node: node whose cpumask we're constructing
  6929. * @span: resulting cpumask
  6930. *
  6931. * Given a node, construct a good cpumask for its sched_domain to span. It
  6932. * should be one that prevents unnecessary balancing, but also spreads tasks
  6933. * out optimally.
  6934. */
  6935. static void sched_domain_node_span(int node, struct cpumask *span)
  6936. {
  6937. nodemask_t used_nodes;
  6938. int i;
  6939. cpumask_clear(span);
  6940. nodes_clear(used_nodes);
  6941. cpumask_or(span, span, cpumask_of_node(node));
  6942. node_set(node, used_nodes);
  6943. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6944. int next_node = find_next_best_node(node, &used_nodes);
  6945. cpumask_or(span, span, cpumask_of_node(next_node));
  6946. }
  6947. }
  6948. #endif /* CONFIG_NUMA */
  6949. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6950. /*
  6951. * The cpus mask in sched_group and sched_domain hangs off the end.
  6952. *
  6953. * ( See the the comments in include/linux/sched.h:struct sched_group
  6954. * and struct sched_domain. )
  6955. */
  6956. struct static_sched_group {
  6957. struct sched_group sg;
  6958. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6959. };
  6960. struct static_sched_domain {
  6961. struct sched_domain sd;
  6962. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6963. };
  6964. /*
  6965. * SMT sched-domains:
  6966. */
  6967. #ifdef CONFIG_SCHED_SMT
  6968. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6969. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6970. static int
  6971. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6972. struct sched_group **sg, struct cpumask *unused)
  6973. {
  6974. if (sg)
  6975. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6976. return cpu;
  6977. }
  6978. #endif /* CONFIG_SCHED_SMT */
  6979. /*
  6980. * multi-core sched-domains:
  6981. */
  6982. #ifdef CONFIG_SCHED_MC
  6983. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6984. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6985. #endif /* CONFIG_SCHED_MC */
  6986. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6987. static int
  6988. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6989. struct sched_group **sg, struct cpumask *mask)
  6990. {
  6991. int group;
  6992. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6993. group = cpumask_first(mask);
  6994. if (sg)
  6995. *sg = &per_cpu(sched_group_core, group).sg;
  6996. return group;
  6997. }
  6998. #elif defined(CONFIG_SCHED_MC)
  6999. static int
  7000. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7001. struct sched_group **sg, struct cpumask *unused)
  7002. {
  7003. if (sg)
  7004. *sg = &per_cpu(sched_group_core, cpu).sg;
  7005. return cpu;
  7006. }
  7007. #endif
  7008. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7009. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7010. static int
  7011. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7012. struct sched_group **sg, struct cpumask *mask)
  7013. {
  7014. int group;
  7015. #ifdef CONFIG_SCHED_MC
  7016. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7017. group = cpumask_first(mask);
  7018. #elif defined(CONFIG_SCHED_SMT)
  7019. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7020. group = cpumask_first(mask);
  7021. #else
  7022. group = cpu;
  7023. #endif
  7024. if (sg)
  7025. *sg = &per_cpu(sched_group_phys, group).sg;
  7026. return group;
  7027. }
  7028. #ifdef CONFIG_NUMA
  7029. /*
  7030. * The init_sched_build_groups can't handle what we want to do with node
  7031. * groups, so roll our own. Now each node has its own list of groups which
  7032. * gets dynamically allocated.
  7033. */
  7034. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7035. static struct sched_group ***sched_group_nodes_bycpu;
  7036. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7037. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7038. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7039. struct sched_group **sg,
  7040. struct cpumask *nodemask)
  7041. {
  7042. int group;
  7043. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7044. group = cpumask_first(nodemask);
  7045. if (sg)
  7046. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7047. return group;
  7048. }
  7049. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7050. {
  7051. struct sched_group *sg = group_head;
  7052. int j;
  7053. if (!sg)
  7054. return;
  7055. do {
  7056. for_each_cpu(j, sched_group_cpus(sg)) {
  7057. struct sched_domain *sd;
  7058. sd = &per_cpu(phys_domains, j).sd;
  7059. if (j != group_first_cpu(sd->groups)) {
  7060. /*
  7061. * Only add "power" once for each
  7062. * physical package.
  7063. */
  7064. continue;
  7065. }
  7066. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  7067. }
  7068. sg = sg->next;
  7069. } while (sg != group_head);
  7070. }
  7071. #endif /* CONFIG_NUMA */
  7072. #ifdef CONFIG_NUMA
  7073. /* Free memory allocated for various sched_group structures */
  7074. static void free_sched_groups(const struct cpumask *cpu_map,
  7075. struct cpumask *nodemask)
  7076. {
  7077. int cpu, i;
  7078. for_each_cpu(cpu, cpu_map) {
  7079. struct sched_group **sched_group_nodes
  7080. = sched_group_nodes_bycpu[cpu];
  7081. if (!sched_group_nodes)
  7082. continue;
  7083. for (i = 0; i < nr_node_ids; i++) {
  7084. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7085. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7086. if (cpumask_empty(nodemask))
  7087. continue;
  7088. if (sg == NULL)
  7089. continue;
  7090. sg = sg->next;
  7091. next_sg:
  7092. oldsg = sg;
  7093. sg = sg->next;
  7094. kfree(oldsg);
  7095. if (oldsg != sched_group_nodes[i])
  7096. goto next_sg;
  7097. }
  7098. kfree(sched_group_nodes);
  7099. sched_group_nodes_bycpu[cpu] = NULL;
  7100. }
  7101. }
  7102. #else /* !CONFIG_NUMA */
  7103. static void free_sched_groups(const struct cpumask *cpu_map,
  7104. struct cpumask *nodemask)
  7105. {
  7106. }
  7107. #endif /* CONFIG_NUMA */
  7108. /*
  7109. * Initialize sched groups cpu_power.
  7110. *
  7111. * cpu_power indicates the capacity of sched group, which is used while
  7112. * distributing the load between different sched groups in a sched domain.
  7113. * Typically cpu_power for all the groups in a sched domain will be same unless
  7114. * there are asymmetries in the topology. If there are asymmetries, group
  7115. * having more cpu_power will pickup more load compared to the group having
  7116. * less cpu_power.
  7117. *
  7118. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  7119. * the maximum number of tasks a group can handle in the presence of other idle
  7120. * or lightly loaded groups in the same sched domain.
  7121. */
  7122. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7123. {
  7124. struct sched_domain *child;
  7125. struct sched_group *group;
  7126. WARN_ON(!sd || !sd->groups);
  7127. if (cpu != group_first_cpu(sd->groups))
  7128. return;
  7129. child = sd->child;
  7130. sd->groups->__cpu_power = 0;
  7131. /*
  7132. * For perf policy, if the groups in child domain share resources
  7133. * (for example cores sharing some portions of the cache hierarchy
  7134. * or SMT), then set this domain groups cpu_power such that each group
  7135. * can handle only one task, when there are other idle groups in the
  7136. * same sched domain.
  7137. */
  7138. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  7139. (child->flags &
  7140. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  7141. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  7142. return;
  7143. }
  7144. /*
  7145. * add cpu_power of each child group to this groups cpu_power
  7146. */
  7147. group = child->groups;
  7148. do {
  7149. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  7150. group = group->next;
  7151. } while (group != child->groups);
  7152. }
  7153. /*
  7154. * Initializers for schedule domains
  7155. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7156. */
  7157. #ifdef CONFIG_SCHED_DEBUG
  7158. # define SD_INIT_NAME(sd, type) sd->name = #type
  7159. #else
  7160. # define SD_INIT_NAME(sd, type) do { } while (0)
  7161. #endif
  7162. #define SD_INIT(sd, type) sd_init_##type(sd)
  7163. #define SD_INIT_FUNC(type) \
  7164. static noinline void sd_init_##type(struct sched_domain *sd) \
  7165. { \
  7166. memset(sd, 0, sizeof(*sd)); \
  7167. *sd = SD_##type##_INIT; \
  7168. sd->level = SD_LV_##type; \
  7169. SD_INIT_NAME(sd, type); \
  7170. }
  7171. SD_INIT_FUNC(CPU)
  7172. #ifdef CONFIG_NUMA
  7173. SD_INIT_FUNC(ALLNODES)
  7174. SD_INIT_FUNC(NODE)
  7175. #endif
  7176. #ifdef CONFIG_SCHED_SMT
  7177. SD_INIT_FUNC(SIBLING)
  7178. #endif
  7179. #ifdef CONFIG_SCHED_MC
  7180. SD_INIT_FUNC(MC)
  7181. #endif
  7182. static int default_relax_domain_level = -1;
  7183. static int __init setup_relax_domain_level(char *str)
  7184. {
  7185. unsigned long val;
  7186. val = simple_strtoul(str, NULL, 0);
  7187. if (val < SD_LV_MAX)
  7188. default_relax_domain_level = val;
  7189. return 1;
  7190. }
  7191. __setup("relax_domain_level=", setup_relax_domain_level);
  7192. static void set_domain_attribute(struct sched_domain *sd,
  7193. struct sched_domain_attr *attr)
  7194. {
  7195. int request;
  7196. if (!attr || attr->relax_domain_level < 0) {
  7197. if (default_relax_domain_level < 0)
  7198. return;
  7199. else
  7200. request = default_relax_domain_level;
  7201. } else
  7202. request = attr->relax_domain_level;
  7203. if (request < sd->level) {
  7204. /* turn off idle balance on this domain */
  7205. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  7206. } else {
  7207. /* turn on idle balance on this domain */
  7208. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  7209. }
  7210. }
  7211. /*
  7212. * Build sched domains for a given set of cpus and attach the sched domains
  7213. * to the individual cpus
  7214. */
  7215. static int __build_sched_domains(const struct cpumask *cpu_map,
  7216. struct sched_domain_attr *attr)
  7217. {
  7218. int i, err = -ENOMEM;
  7219. struct root_domain *rd;
  7220. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  7221. tmpmask;
  7222. #ifdef CONFIG_NUMA
  7223. cpumask_var_t domainspan, covered, notcovered;
  7224. struct sched_group **sched_group_nodes = NULL;
  7225. int sd_allnodes = 0;
  7226. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  7227. goto out;
  7228. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  7229. goto free_domainspan;
  7230. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  7231. goto free_covered;
  7232. #endif
  7233. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  7234. goto free_notcovered;
  7235. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  7236. goto free_nodemask;
  7237. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  7238. goto free_this_sibling_map;
  7239. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  7240. goto free_this_core_map;
  7241. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  7242. goto free_send_covered;
  7243. #ifdef CONFIG_NUMA
  7244. /*
  7245. * Allocate the per-node list of sched groups
  7246. */
  7247. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  7248. GFP_KERNEL);
  7249. if (!sched_group_nodes) {
  7250. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7251. goto free_tmpmask;
  7252. }
  7253. #endif
  7254. rd = alloc_rootdomain();
  7255. if (!rd) {
  7256. printk(KERN_WARNING "Cannot alloc root domain\n");
  7257. goto free_sched_groups;
  7258. }
  7259. #ifdef CONFIG_NUMA
  7260. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  7261. #endif
  7262. /*
  7263. * Set up domains for cpus specified by the cpu_map.
  7264. */
  7265. for_each_cpu(i, cpu_map) {
  7266. struct sched_domain *sd = NULL, *p;
  7267. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  7268. #ifdef CONFIG_NUMA
  7269. if (cpumask_weight(cpu_map) >
  7270. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  7271. sd = &per_cpu(allnodes_domains, i).sd;
  7272. SD_INIT(sd, ALLNODES);
  7273. set_domain_attribute(sd, attr);
  7274. cpumask_copy(sched_domain_span(sd), cpu_map);
  7275. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  7276. p = sd;
  7277. sd_allnodes = 1;
  7278. } else
  7279. p = NULL;
  7280. sd = &per_cpu(node_domains, i).sd;
  7281. SD_INIT(sd, NODE);
  7282. set_domain_attribute(sd, attr);
  7283. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7284. sd->parent = p;
  7285. if (p)
  7286. p->child = sd;
  7287. cpumask_and(sched_domain_span(sd),
  7288. sched_domain_span(sd), cpu_map);
  7289. #endif
  7290. p = sd;
  7291. sd = &per_cpu(phys_domains, i).sd;
  7292. SD_INIT(sd, CPU);
  7293. set_domain_attribute(sd, attr);
  7294. cpumask_copy(sched_domain_span(sd), nodemask);
  7295. sd->parent = p;
  7296. if (p)
  7297. p->child = sd;
  7298. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  7299. #ifdef CONFIG_SCHED_MC
  7300. p = sd;
  7301. sd = &per_cpu(core_domains, i).sd;
  7302. SD_INIT(sd, MC);
  7303. set_domain_attribute(sd, attr);
  7304. cpumask_and(sched_domain_span(sd), cpu_map,
  7305. cpu_coregroup_mask(i));
  7306. sd->parent = p;
  7307. p->child = sd;
  7308. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  7309. #endif
  7310. #ifdef CONFIG_SCHED_SMT
  7311. p = sd;
  7312. sd = &per_cpu(cpu_domains, i).sd;
  7313. SD_INIT(sd, SIBLING);
  7314. set_domain_attribute(sd, attr);
  7315. cpumask_and(sched_domain_span(sd),
  7316. topology_thread_cpumask(i), cpu_map);
  7317. sd->parent = p;
  7318. p->child = sd;
  7319. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  7320. #endif
  7321. }
  7322. #ifdef CONFIG_SCHED_SMT
  7323. /* Set up CPU (sibling) groups */
  7324. for_each_cpu(i, cpu_map) {
  7325. cpumask_and(this_sibling_map,
  7326. topology_thread_cpumask(i), cpu_map);
  7327. if (i != cpumask_first(this_sibling_map))
  7328. continue;
  7329. init_sched_build_groups(this_sibling_map, cpu_map,
  7330. &cpu_to_cpu_group,
  7331. send_covered, tmpmask);
  7332. }
  7333. #endif
  7334. #ifdef CONFIG_SCHED_MC
  7335. /* Set up multi-core groups */
  7336. for_each_cpu(i, cpu_map) {
  7337. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  7338. if (i != cpumask_first(this_core_map))
  7339. continue;
  7340. init_sched_build_groups(this_core_map, cpu_map,
  7341. &cpu_to_core_group,
  7342. send_covered, tmpmask);
  7343. }
  7344. #endif
  7345. /* Set up physical groups */
  7346. for (i = 0; i < nr_node_ids; i++) {
  7347. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7348. if (cpumask_empty(nodemask))
  7349. continue;
  7350. init_sched_build_groups(nodemask, cpu_map,
  7351. &cpu_to_phys_group,
  7352. send_covered, tmpmask);
  7353. }
  7354. #ifdef CONFIG_NUMA
  7355. /* Set up node groups */
  7356. if (sd_allnodes) {
  7357. init_sched_build_groups(cpu_map, cpu_map,
  7358. &cpu_to_allnodes_group,
  7359. send_covered, tmpmask);
  7360. }
  7361. for (i = 0; i < nr_node_ids; i++) {
  7362. /* Set up node groups */
  7363. struct sched_group *sg, *prev;
  7364. int j;
  7365. cpumask_clear(covered);
  7366. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7367. if (cpumask_empty(nodemask)) {
  7368. sched_group_nodes[i] = NULL;
  7369. continue;
  7370. }
  7371. sched_domain_node_span(i, domainspan);
  7372. cpumask_and(domainspan, domainspan, cpu_map);
  7373. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7374. GFP_KERNEL, i);
  7375. if (!sg) {
  7376. printk(KERN_WARNING "Can not alloc domain group for "
  7377. "node %d\n", i);
  7378. goto error;
  7379. }
  7380. sched_group_nodes[i] = sg;
  7381. for_each_cpu(j, nodemask) {
  7382. struct sched_domain *sd;
  7383. sd = &per_cpu(node_domains, j).sd;
  7384. sd->groups = sg;
  7385. }
  7386. sg->__cpu_power = 0;
  7387. cpumask_copy(sched_group_cpus(sg), nodemask);
  7388. sg->next = sg;
  7389. cpumask_or(covered, covered, nodemask);
  7390. prev = sg;
  7391. for (j = 0; j < nr_node_ids; j++) {
  7392. int n = (i + j) % nr_node_ids;
  7393. cpumask_complement(notcovered, covered);
  7394. cpumask_and(tmpmask, notcovered, cpu_map);
  7395. cpumask_and(tmpmask, tmpmask, domainspan);
  7396. if (cpumask_empty(tmpmask))
  7397. break;
  7398. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7399. if (cpumask_empty(tmpmask))
  7400. continue;
  7401. sg = kmalloc_node(sizeof(struct sched_group) +
  7402. cpumask_size(),
  7403. GFP_KERNEL, i);
  7404. if (!sg) {
  7405. printk(KERN_WARNING
  7406. "Can not alloc domain group for node %d\n", j);
  7407. goto error;
  7408. }
  7409. sg->__cpu_power = 0;
  7410. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7411. sg->next = prev->next;
  7412. cpumask_or(covered, covered, tmpmask);
  7413. prev->next = sg;
  7414. prev = sg;
  7415. }
  7416. }
  7417. #endif
  7418. /* Calculate CPU power for physical packages and nodes */
  7419. #ifdef CONFIG_SCHED_SMT
  7420. for_each_cpu(i, cpu_map) {
  7421. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7422. init_sched_groups_power(i, sd);
  7423. }
  7424. #endif
  7425. #ifdef CONFIG_SCHED_MC
  7426. for_each_cpu(i, cpu_map) {
  7427. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7428. init_sched_groups_power(i, sd);
  7429. }
  7430. #endif
  7431. for_each_cpu(i, cpu_map) {
  7432. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7433. init_sched_groups_power(i, sd);
  7434. }
  7435. #ifdef CONFIG_NUMA
  7436. for (i = 0; i < nr_node_ids; i++)
  7437. init_numa_sched_groups_power(sched_group_nodes[i]);
  7438. if (sd_allnodes) {
  7439. struct sched_group *sg;
  7440. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7441. tmpmask);
  7442. init_numa_sched_groups_power(sg);
  7443. }
  7444. #endif
  7445. /* Attach the domains */
  7446. for_each_cpu(i, cpu_map) {
  7447. struct sched_domain *sd;
  7448. #ifdef CONFIG_SCHED_SMT
  7449. sd = &per_cpu(cpu_domains, i).sd;
  7450. #elif defined(CONFIG_SCHED_MC)
  7451. sd = &per_cpu(core_domains, i).sd;
  7452. #else
  7453. sd = &per_cpu(phys_domains, i).sd;
  7454. #endif
  7455. cpu_attach_domain(sd, rd, i);
  7456. }
  7457. err = 0;
  7458. free_tmpmask:
  7459. free_cpumask_var(tmpmask);
  7460. free_send_covered:
  7461. free_cpumask_var(send_covered);
  7462. free_this_core_map:
  7463. free_cpumask_var(this_core_map);
  7464. free_this_sibling_map:
  7465. free_cpumask_var(this_sibling_map);
  7466. free_nodemask:
  7467. free_cpumask_var(nodemask);
  7468. free_notcovered:
  7469. #ifdef CONFIG_NUMA
  7470. free_cpumask_var(notcovered);
  7471. free_covered:
  7472. free_cpumask_var(covered);
  7473. free_domainspan:
  7474. free_cpumask_var(domainspan);
  7475. out:
  7476. #endif
  7477. return err;
  7478. free_sched_groups:
  7479. #ifdef CONFIG_NUMA
  7480. kfree(sched_group_nodes);
  7481. #endif
  7482. goto free_tmpmask;
  7483. #ifdef CONFIG_NUMA
  7484. error:
  7485. free_sched_groups(cpu_map, tmpmask);
  7486. free_rootdomain(rd);
  7487. goto free_tmpmask;
  7488. #endif
  7489. }
  7490. static int build_sched_domains(const struct cpumask *cpu_map)
  7491. {
  7492. return __build_sched_domains(cpu_map, NULL);
  7493. }
  7494. static struct cpumask *doms_cur; /* current sched domains */
  7495. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7496. static struct sched_domain_attr *dattr_cur;
  7497. /* attribues of custom domains in 'doms_cur' */
  7498. /*
  7499. * Special case: If a kmalloc of a doms_cur partition (array of
  7500. * cpumask) fails, then fallback to a single sched domain,
  7501. * as determined by the single cpumask fallback_doms.
  7502. */
  7503. static cpumask_var_t fallback_doms;
  7504. /*
  7505. * arch_update_cpu_topology lets virtualized architectures update the
  7506. * cpu core maps. It is supposed to return 1 if the topology changed
  7507. * or 0 if it stayed the same.
  7508. */
  7509. int __attribute__((weak)) arch_update_cpu_topology(void)
  7510. {
  7511. return 0;
  7512. }
  7513. /*
  7514. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7515. * For now this just excludes isolated cpus, but could be used to
  7516. * exclude other special cases in the future.
  7517. */
  7518. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7519. {
  7520. int err;
  7521. arch_update_cpu_topology();
  7522. ndoms_cur = 1;
  7523. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7524. if (!doms_cur)
  7525. doms_cur = fallback_doms;
  7526. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7527. dattr_cur = NULL;
  7528. err = build_sched_domains(doms_cur);
  7529. register_sched_domain_sysctl();
  7530. return err;
  7531. }
  7532. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7533. struct cpumask *tmpmask)
  7534. {
  7535. free_sched_groups(cpu_map, tmpmask);
  7536. }
  7537. /*
  7538. * Detach sched domains from a group of cpus specified in cpu_map
  7539. * These cpus will now be attached to the NULL domain
  7540. */
  7541. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7542. {
  7543. /* Save because hotplug lock held. */
  7544. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7545. int i;
  7546. for_each_cpu(i, cpu_map)
  7547. cpu_attach_domain(NULL, &def_root_domain, i);
  7548. synchronize_sched();
  7549. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7550. }
  7551. /* handle null as "default" */
  7552. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7553. struct sched_domain_attr *new, int idx_new)
  7554. {
  7555. struct sched_domain_attr tmp;
  7556. /* fast path */
  7557. if (!new && !cur)
  7558. return 1;
  7559. tmp = SD_ATTR_INIT;
  7560. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7561. new ? (new + idx_new) : &tmp,
  7562. sizeof(struct sched_domain_attr));
  7563. }
  7564. /*
  7565. * Partition sched domains as specified by the 'ndoms_new'
  7566. * cpumasks in the array doms_new[] of cpumasks. This compares
  7567. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7568. * It destroys each deleted domain and builds each new domain.
  7569. *
  7570. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7571. * The masks don't intersect (don't overlap.) We should setup one
  7572. * sched domain for each mask. CPUs not in any of the cpumasks will
  7573. * not be load balanced. If the same cpumask appears both in the
  7574. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7575. * it as it is.
  7576. *
  7577. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7578. * ownership of it and will kfree it when done with it. If the caller
  7579. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7580. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7581. * the single partition 'fallback_doms', it also forces the domains
  7582. * to be rebuilt.
  7583. *
  7584. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7585. * ndoms_new == 0 is a special case for destroying existing domains,
  7586. * and it will not create the default domain.
  7587. *
  7588. * Call with hotplug lock held
  7589. */
  7590. /* FIXME: Change to struct cpumask *doms_new[] */
  7591. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7592. struct sched_domain_attr *dattr_new)
  7593. {
  7594. int i, j, n;
  7595. int new_topology;
  7596. mutex_lock(&sched_domains_mutex);
  7597. /* always unregister in case we don't destroy any domains */
  7598. unregister_sched_domain_sysctl();
  7599. /* Let architecture update cpu core mappings. */
  7600. new_topology = arch_update_cpu_topology();
  7601. n = doms_new ? ndoms_new : 0;
  7602. /* Destroy deleted domains */
  7603. for (i = 0; i < ndoms_cur; i++) {
  7604. for (j = 0; j < n && !new_topology; j++) {
  7605. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7606. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7607. goto match1;
  7608. }
  7609. /* no match - a current sched domain not in new doms_new[] */
  7610. detach_destroy_domains(doms_cur + i);
  7611. match1:
  7612. ;
  7613. }
  7614. if (doms_new == NULL) {
  7615. ndoms_cur = 0;
  7616. doms_new = fallback_doms;
  7617. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7618. WARN_ON_ONCE(dattr_new);
  7619. }
  7620. /* Build new domains */
  7621. for (i = 0; i < ndoms_new; i++) {
  7622. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7623. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7624. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7625. goto match2;
  7626. }
  7627. /* no match - add a new doms_new */
  7628. __build_sched_domains(doms_new + i,
  7629. dattr_new ? dattr_new + i : NULL);
  7630. match2:
  7631. ;
  7632. }
  7633. /* Remember the new sched domains */
  7634. if (doms_cur != fallback_doms)
  7635. kfree(doms_cur);
  7636. kfree(dattr_cur); /* kfree(NULL) is safe */
  7637. doms_cur = doms_new;
  7638. dattr_cur = dattr_new;
  7639. ndoms_cur = ndoms_new;
  7640. register_sched_domain_sysctl();
  7641. mutex_unlock(&sched_domains_mutex);
  7642. }
  7643. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7644. static void arch_reinit_sched_domains(void)
  7645. {
  7646. get_online_cpus();
  7647. /* Destroy domains first to force the rebuild */
  7648. partition_sched_domains(0, NULL, NULL);
  7649. rebuild_sched_domains();
  7650. put_online_cpus();
  7651. }
  7652. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7653. {
  7654. unsigned int level = 0;
  7655. if (sscanf(buf, "%u", &level) != 1)
  7656. return -EINVAL;
  7657. /*
  7658. * level is always be positive so don't check for
  7659. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7660. * What happens on 0 or 1 byte write,
  7661. * need to check for count as well?
  7662. */
  7663. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7664. return -EINVAL;
  7665. if (smt)
  7666. sched_smt_power_savings = level;
  7667. else
  7668. sched_mc_power_savings = level;
  7669. arch_reinit_sched_domains();
  7670. return count;
  7671. }
  7672. #ifdef CONFIG_SCHED_MC
  7673. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7674. char *page)
  7675. {
  7676. return sprintf(page, "%u\n", sched_mc_power_savings);
  7677. }
  7678. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7679. const char *buf, size_t count)
  7680. {
  7681. return sched_power_savings_store(buf, count, 0);
  7682. }
  7683. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7684. sched_mc_power_savings_show,
  7685. sched_mc_power_savings_store);
  7686. #endif
  7687. #ifdef CONFIG_SCHED_SMT
  7688. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7689. char *page)
  7690. {
  7691. return sprintf(page, "%u\n", sched_smt_power_savings);
  7692. }
  7693. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7694. const char *buf, size_t count)
  7695. {
  7696. return sched_power_savings_store(buf, count, 1);
  7697. }
  7698. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7699. sched_smt_power_savings_show,
  7700. sched_smt_power_savings_store);
  7701. #endif
  7702. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7703. {
  7704. int err = 0;
  7705. #ifdef CONFIG_SCHED_SMT
  7706. if (smt_capable())
  7707. err = sysfs_create_file(&cls->kset.kobj,
  7708. &attr_sched_smt_power_savings.attr);
  7709. #endif
  7710. #ifdef CONFIG_SCHED_MC
  7711. if (!err && mc_capable())
  7712. err = sysfs_create_file(&cls->kset.kobj,
  7713. &attr_sched_mc_power_savings.attr);
  7714. #endif
  7715. return err;
  7716. }
  7717. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7718. #ifndef CONFIG_CPUSETS
  7719. /*
  7720. * Add online and remove offline CPUs from the scheduler domains.
  7721. * When cpusets are enabled they take over this function.
  7722. */
  7723. static int update_sched_domains(struct notifier_block *nfb,
  7724. unsigned long action, void *hcpu)
  7725. {
  7726. switch (action) {
  7727. case CPU_ONLINE:
  7728. case CPU_ONLINE_FROZEN:
  7729. case CPU_DEAD:
  7730. case CPU_DEAD_FROZEN:
  7731. partition_sched_domains(1, NULL, NULL);
  7732. return NOTIFY_OK;
  7733. default:
  7734. return NOTIFY_DONE;
  7735. }
  7736. }
  7737. #endif
  7738. static int update_runtime(struct notifier_block *nfb,
  7739. unsigned long action, void *hcpu)
  7740. {
  7741. int cpu = (int)(long)hcpu;
  7742. switch (action) {
  7743. case CPU_DOWN_PREPARE:
  7744. case CPU_DOWN_PREPARE_FROZEN:
  7745. disable_runtime(cpu_rq(cpu));
  7746. return NOTIFY_OK;
  7747. case CPU_DOWN_FAILED:
  7748. case CPU_DOWN_FAILED_FROZEN:
  7749. case CPU_ONLINE:
  7750. case CPU_ONLINE_FROZEN:
  7751. enable_runtime(cpu_rq(cpu));
  7752. return NOTIFY_OK;
  7753. default:
  7754. return NOTIFY_DONE;
  7755. }
  7756. }
  7757. void __init sched_init_smp(void)
  7758. {
  7759. cpumask_var_t non_isolated_cpus;
  7760. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7761. #if defined(CONFIG_NUMA)
  7762. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7763. GFP_KERNEL);
  7764. BUG_ON(sched_group_nodes_bycpu == NULL);
  7765. #endif
  7766. get_online_cpus();
  7767. mutex_lock(&sched_domains_mutex);
  7768. arch_init_sched_domains(cpu_online_mask);
  7769. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7770. if (cpumask_empty(non_isolated_cpus))
  7771. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7772. mutex_unlock(&sched_domains_mutex);
  7773. put_online_cpus();
  7774. #ifndef CONFIG_CPUSETS
  7775. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7776. hotcpu_notifier(update_sched_domains, 0);
  7777. #endif
  7778. /* RT runtime code needs to handle some hotplug events */
  7779. hotcpu_notifier(update_runtime, 0);
  7780. init_hrtick();
  7781. /* Move init over to a non-isolated CPU */
  7782. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7783. BUG();
  7784. sched_init_granularity();
  7785. free_cpumask_var(non_isolated_cpus);
  7786. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7787. init_sched_rt_class();
  7788. }
  7789. #else
  7790. void __init sched_init_smp(void)
  7791. {
  7792. sched_init_granularity();
  7793. }
  7794. #endif /* CONFIG_SMP */
  7795. const_debug unsigned int sysctl_timer_migration = 1;
  7796. int in_sched_functions(unsigned long addr)
  7797. {
  7798. return in_lock_functions(addr) ||
  7799. (addr >= (unsigned long)__sched_text_start
  7800. && addr < (unsigned long)__sched_text_end);
  7801. }
  7802. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7803. {
  7804. cfs_rq->tasks_timeline = RB_ROOT;
  7805. INIT_LIST_HEAD(&cfs_rq->tasks);
  7806. #ifdef CONFIG_FAIR_GROUP_SCHED
  7807. cfs_rq->rq = rq;
  7808. #endif
  7809. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7810. }
  7811. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7812. {
  7813. struct rt_prio_array *array;
  7814. int i;
  7815. array = &rt_rq->active;
  7816. for (i = 0; i < MAX_RT_PRIO; i++) {
  7817. INIT_LIST_HEAD(array->queue + i);
  7818. __clear_bit(i, array->bitmap);
  7819. }
  7820. /* delimiter for bitsearch: */
  7821. __set_bit(MAX_RT_PRIO, array->bitmap);
  7822. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7823. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7824. #ifdef CONFIG_SMP
  7825. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7826. #endif
  7827. #endif
  7828. #ifdef CONFIG_SMP
  7829. rt_rq->rt_nr_migratory = 0;
  7830. rt_rq->overloaded = 0;
  7831. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  7832. #endif
  7833. rt_rq->rt_time = 0;
  7834. rt_rq->rt_throttled = 0;
  7835. rt_rq->rt_runtime = 0;
  7836. spin_lock_init(&rt_rq->rt_runtime_lock);
  7837. #ifdef CONFIG_RT_GROUP_SCHED
  7838. rt_rq->rt_nr_boosted = 0;
  7839. rt_rq->rq = rq;
  7840. #endif
  7841. }
  7842. #ifdef CONFIG_FAIR_GROUP_SCHED
  7843. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7844. struct sched_entity *se, int cpu, int add,
  7845. struct sched_entity *parent)
  7846. {
  7847. struct rq *rq = cpu_rq(cpu);
  7848. tg->cfs_rq[cpu] = cfs_rq;
  7849. init_cfs_rq(cfs_rq, rq);
  7850. cfs_rq->tg = tg;
  7851. if (add)
  7852. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7853. tg->se[cpu] = se;
  7854. /* se could be NULL for init_task_group */
  7855. if (!se)
  7856. return;
  7857. if (!parent)
  7858. se->cfs_rq = &rq->cfs;
  7859. else
  7860. se->cfs_rq = parent->my_q;
  7861. se->my_q = cfs_rq;
  7862. se->load.weight = tg->shares;
  7863. se->load.inv_weight = 0;
  7864. se->parent = parent;
  7865. }
  7866. #endif
  7867. #ifdef CONFIG_RT_GROUP_SCHED
  7868. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7869. struct sched_rt_entity *rt_se, int cpu, int add,
  7870. struct sched_rt_entity *parent)
  7871. {
  7872. struct rq *rq = cpu_rq(cpu);
  7873. tg->rt_rq[cpu] = rt_rq;
  7874. init_rt_rq(rt_rq, rq);
  7875. rt_rq->tg = tg;
  7876. rt_rq->rt_se = rt_se;
  7877. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7878. if (add)
  7879. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7880. tg->rt_se[cpu] = rt_se;
  7881. if (!rt_se)
  7882. return;
  7883. if (!parent)
  7884. rt_se->rt_rq = &rq->rt;
  7885. else
  7886. rt_se->rt_rq = parent->my_q;
  7887. rt_se->my_q = rt_rq;
  7888. rt_se->parent = parent;
  7889. INIT_LIST_HEAD(&rt_se->run_list);
  7890. }
  7891. #endif
  7892. void __init sched_init(void)
  7893. {
  7894. int i, j;
  7895. unsigned long alloc_size = 0, ptr;
  7896. #ifdef CONFIG_FAIR_GROUP_SCHED
  7897. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7898. #endif
  7899. #ifdef CONFIG_RT_GROUP_SCHED
  7900. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7901. #endif
  7902. #ifdef CONFIG_USER_SCHED
  7903. alloc_size *= 2;
  7904. #endif
  7905. #ifdef CONFIG_CPUMASK_OFFSTACK
  7906. alloc_size += num_possible_cpus() * cpumask_size();
  7907. #endif
  7908. /*
  7909. * As sched_init() is called before page_alloc is setup,
  7910. * we use alloc_bootmem().
  7911. */
  7912. if (alloc_size) {
  7913. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  7914. #ifdef CONFIG_FAIR_GROUP_SCHED
  7915. init_task_group.se = (struct sched_entity **)ptr;
  7916. ptr += nr_cpu_ids * sizeof(void **);
  7917. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7918. ptr += nr_cpu_ids * sizeof(void **);
  7919. #ifdef CONFIG_USER_SCHED
  7920. root_task_group.se = (struct sched_entity **)ptr;
  7921. ptr += nr_cpu_ids * sizeof(void **);
  7922. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7923. ptr += nr_cpu_ids * sizeof(void **);
  7924. #endif /* CONFIG_USER_SCHED */
  7925. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7926. #ifdef CONFIG_RT_GROUP_SCHED
  7927. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7928. ptr += nr_cpu_ids * sizeof(void **);
  7929. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7930. ptr += nr_cpu_ids * sizeof(void **);
  7931. #ifdef CONFIG_USER_SCHED
  7932. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7933. ptr += nr_cpu_ids * sizeof(void **);
  7934. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7935. ptr += nr_cpu_ids * sizeof(void **);
  7936. #endif /* CONFIG_USER_SCHED */
  7937. #endif /* CONFIG_RT_GROUP_SCHED */
  7938. #ifdef CONFIG_CPUMASK_OFFSTACK
  7939. for_each_possible_cpu(i) {
  7940. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7941. ptr += cpumask_size();
  7942. }
  7943. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7944. }
  7945. #ifdef CONFIG_SMP
  7946. init_defrootdomain();
  7947. #endif
  7948. init_rt_bandwidth(&def_rt_bandwidth,
  7949. global_rt_period(), global_rt_runtime());
  7950. #ifdef CONFIG_RT_GROUP_SCHED
  7951. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7952. global_rt_period(), global_rt_runtime());
  7953. #ifdef CONFIG_USER_SCHED
  7954. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7955. global_rt_period(), RUNTIME_INF);
  7956. #endif /* CONFIG_USER_SCHED */
  7957. #endif /* CONFIG_RT_GROUP_SCHED */
  7958. #ifdef CONFIG_GROUP_SCHED
  7959. list_add(&init_task_group.list, &task_groups);
  7960. INIT_LIST_HEAD(&init_task_group.children);
  7961. #ifdef CONFIG_USER_SCHED
  7962. INIT_LIST_HEAD(&root_task_group.children);
  7963. init_task_group.parent = &root_task_group;
  7964. list_add(&init_task_group.siblings, &root_task_group.children);
  7965. #endif /* CONFIG_USER_SCHED */
  7966. #endif /* CONFIG_GROUP_SCHED */
  7967. for_each_possible_cpu(i) {
  7968. struct rq *rq;
  7969. rq = cpu_rq(i);
  7970. spin_lock_init(&rq->lock);
  7971. rq->nr_running = 0;
  7972. rq->calc_load_active = 0;
  7973. rq->calc_load_update = jiffies + LOAD_FREQ;
  7974. init_cfs_rq(&rq->cfs, rq);
  7975. init_rt_rq(&rq->rt, rq);
  7976. #ifdef CONFIG_FAIR_GROUP_SCHED
  7977. init_task_group.shares = init_task_group_load;
  7978. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7979. #ifdef CONFIG_CGROUP_SCHED
  7980. /*
  7981. * How much cpu bandwidth does init_task_group get?
  7982. *
  7983. * In case of task-groups formed thr' the cgroup filesystem, it
  7984. * gets 100% of the cpu resources in the system. This overall
  7985. * system cpu resource is divided among the tasks of
  7986. * init_task_group and its child task-groups in a fair manner,
  7987. * based on each entity's (task or task-group's) weight
  7988. * (se->load.weight).
  7989. *
  7990. * In other words, if init_task_group has 10 tasks of weight
  7991. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7992. * then A0's share of the cpu resource is:
  7993. *
  7994. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7995. *
  7996. * We achieve this by letting init_task_group's tasks sit
  7997. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7998. */
  7999. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8000. #elif defined CONFIG_USER_SCHED
  8001. root_task_group.shares = NICE_0_LOAD;
  8002. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8003. /*
  8004. * In case of task-groups formed thr' the user id of tasks,
  8005. * init_task_group represents tasks belonging to root user.
  8006. * Hence it forms a sibling of all subsequent groups formed.
  8007. * In this case, init_task_group gets only a fraction of overall
  8008. * system cpu resource, based on the weight assigned to root
  8009. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8010. * by letting tasks of init_task_group sit in a separate cfs_rq
  8011. * (init_cfs_rq) and having one entity represent this group of
  8012. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8013. */
  8014. init_tg_cfs_entry(&init_task_group,
  8015. &per_cpu(init_cfs_rq, i),
  8016. &per_cpu(init_sched_entity, i), i, 1,
  8017. root_task_group.se[i]);
  8018. #endif
  8019. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8020. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8021. #ifdef CONFIG_RT_GROUP_SCHED
  8022. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8023. #ifdef CONFIG_CGROUP_SCHED
  8024. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8025. #elif defined CONFIG_USER_SCHED
  8026. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8027. init_tg_rt_entry(&init_task_group,
  8028. &per_cpu(init_rt_rq, i),
  8029. &per_cpu(init_sched_rt_entity, i), i, 1,
  8030. root_task_group.rt_se[i]);
  8031. #endif
  8032. #endif
  8033. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8034. rq->cpu_load[j] = 0;
  8035. #ifdef CONFIG_SMP
  8036. rq->sd = NULL;
  8037. rq->rd = NULL;
  8038. rq->post_schedule = 0;
  8039. rq->active_balance = 0;
  8040. rq->next_balance = jiffies;
  8041. rq->push_cpu = 0;
  8042. rq->cpu = i;
  8043. rq->online = 0;
  8044. rq->migration_thread = NULL;
  8045. INIT_LIST_HEAD(&rq->migration_queue);
  8046. rq_attach_root(rq, &def_root_domain);
  8047. #endif
  8048. init_rq_hrtick(rq);
  8049. atomic_set(&rq->nr_iowait, 0);
  8050. }
  8051. set_load_weight(&init_task);
  8052. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8053. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8054. #endif
  8055. #ifdef CONFIG_SMP
  8056. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8057. #endif
  8058. #ifdef CONFIG_RT_MUTEXES
  8059. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8060. #endif
  8061. /*
  8062. * The boot idle thread does lazy MMU switching as well:
  8063. */
  8064. atomic_inc(&init_mm.mm_count);
  8065. enter_lazy_tlb(&init_mm, current);
  8066. /*
  8067. * Make us the idle thread. Technically, schedule() should not be
  8068. * called from this thread, however somewhere below it might be,
  8069. * but because we are the idle thread, we just pick up running again
  8070. * when this runqueue becomes "idle".
  8071. */
  8072. init_idle(current, smp_processor_id());
  8073. calc_load_update = jiffies + LOAD_FREQ;
  8074. /*
  8075. * During early bootup we pretend to be a normal task:
  8076. */
  8077. current->sched_class = &fair_sched_class;
  8078. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8079. alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8080. #ifdef CONFIG_SMP
  8081. #ifdef CONFIG_NO_HZ
  8082. alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8083. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8084. #endif
  8085. alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8086. #endif /* SMP */
  8087. perf_counter_init();
  8088. scheduler_running = 1;
  8089. }
  8090. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8091. static inline int preempt_count_equals(int preempt_offset)
  8092. {
  8093. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8094. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8095. }
  8096. void __might_sleep(char *file, int line, int preempt_offset)
  8097. {
  8098. #ifdef in_atomic
  8099. static unsigned long prev_jiffy; /* ratelimiting */
  8100. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8101. system_state != SYSTEM_RUNNING || oops_in_progress)
  8102. return;
  8103. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8104. return;
  8105. prev_jiffy = jiffies;
  8106. printk(KERN_ERR
  8107. "BUG: sleeping function called from invalid context at %s:%d\n",
  8108. file, line);
  8109. printk(KERN_ERR
  8110. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8111. in_atomic(), irqs_disabled(),
  8112. current->pid, current->comm);
  8113. debug_show_held_locks(current);
  8114. if (irqs_disabled())
  8115. print_irqtrace_events(current);
  8116. dump_stack();
  8117. #endif
  8118. }
  8119. EXPORT_SYMBOL(__might_sleep);
  8120. #endif
  8121. #ifdef CONFIG_MAGIC_SYSRQ
  8122. static void normalize_task(struct rq *rq, struct task_struct *p)
  8123. {
  8124. int on_rq;
  8125. update_rq_clock(rq);
  8126. on_rq = p->se.on_rq;
  8127. if (on_rq)
  8128. deactivate_task(rq, p, 0);
  8129. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8130. if (on_rq) {
  8131. activate_task(rq, p, 0);
  8132. resched_task(rq->curr);
  8133. }
  8134. }
  8135. void normalize_rt_tasks(void)
  8136. {
  8137. struct task_struct *g, *p;
  8138. unsigned long flags;
  8139. struct rq *rq;
  8140. read_lock_irqsave(&tasklist_lock, flags);
  8141. do_each_thread(g, p) {
  8142. /*
  8143. * Only normalize user tasks:
  8144. */
  8145. if (!p->mm)
  8146. continue;
  8147. p->se.exec_start = 0;
  8148. #ifdef CONFIG_SCHEDSTATS
  8149. p->se.wait_start = 0;
  8150. p->se.sleep_start = 0;
  8151. p->se.block_start = 0;
  8152. #endif
  8153. if (!rt_task(p)) {
  8154. /*
  8155. * Renice negative nice level userspace
  8156. * tasks back to 0:
  8157. */
  8158. if (TASK_NICE(p) < 0 && p->mm)
  8159. set_user_nice(p, 0);
  8160. continue;
  8161. }
  8162. spin_lock(&p->pi_lock);
  8163. rq = __task_rq_lock(p);
  8164. normalize_task(rq, p);
  8165. __task_rq_unlock(rq);
  8166. spin_unlock(&p->pi_lock);
  8167. } while_each_thread(g, p);
  8168. read_unlock_irqrestore(&tasklist_lock, flags);
  8169. }
  8170. #endif /* CONFIG_MAGIC_SYSRQ */
  8171. #ifdef CONFIG_IA64
  8172. /*
  8173. * These functions are only useful for the IA64 MCA handling.
  8174. *
  8175. * They can only be called when the whole system has been
  8176. * stopped - every CPU needs to be quiescent, and no scheduling
  8177. * activity can take place. Using them for anything else would
  8178. * be a serious bug, and as a result, they aren't even visible
  8179. * under any other configuration.
  8180. */
  8181. /**
  8182. * curr_task - return the current task for a given cpu.
  8183. * @cpu: the processor in question.
  8184. *
  8185. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8186. */
  8187. struct task_struct *curr_task(int cpu)
  8188. {
  8189. return cpu_curr(cpu);
  8190. }
  8191. /**
  8192. * set_curr_task - set the current task for a given cpu.
  8193. * @cpu: the processor in question.
  8194. * @p: the task pointer to set.
  8195. *
  8196. * Description: This function must only be used when non-maskable interrupts
  8197. * are serviced on a separate stack. It allows the architecture to switch the
  8198. * notion of the current task on a cpu in a non-blocking manner. This function
  8199. * must be called with all CPU's synchronized, and interrupts disabled, the
  8200. * and caller must save the original value of the current task (see
  8201. * curr_task() above) and restore that value before reenabling interrupts and
  8202. * re-starting the system.
  8203. *
  8204. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8205. */
  8206. void set_curr_task(int cpu, struct task_struct *p)
  8207. {
  8208. cpu_curr(cpu) = p;
  8209. }
  8210. #endif
  8211. #ifdef CONFIG_FAIR_GROUP_SCHED
  8212. static void free_fair_sched_group(struct task_group *tg)
  8213. {
  8214. int i;
  8215. for_each_possible_cpu(i) {
  8216. if (tg->cfs_rq)
  8217. kfree(tg->cfs_rq[i]);
  8218. if (tg->se)
  8219. kfree(tg->se[i]);
  8220. }
  8221. kfree(tg->cfs_rq);
  8222. kfree(tg->se);
  8223. }
  8224. static
  8225. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8226. {
  8227. struct cfs_rq *cfs_rq;
  8228. struct sched_entity *se;
  8229. struct rq *rq;
  8230. int i;
  8231. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8232. if (!tg->cfs_rq)
  8233. goto err;
  8234. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8235. if (!tg->se)
  8236. goto err;
  8237. tg->shares = NICE_0_LOAD;
  8238. for_each_possible_cpu(i) {
  8239. rq = cpu_rq(i);
  8240. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8241. GFP_KERNEL, cpu_to_node(i));
  8242. if (!cfs_rq)
  8243. goto err;
  8244. se = kzalloc_node(sizeof(struct sched_entity),
  8245. GFP_KERNEL, cpu_to_node(i));
  8246. if (!se)
  8247. goto err;
  8248. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8249. }
  8250. return 1;
  8251. err:
  8252. return 0;
  8253. }
  8254. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8255. {
  8256. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8257. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8258. }
  8259. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8260. {
  8261. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8262. }
  8263. #else /* !CONFG_FAIR_GROUP_SCHED */
  8264. static inline void free_fair_sched_group(struct task_group *tg)
  8265. {
  8266. }
  8267. static inline
  8268. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8269. {
  8270. return 1;
  8271. }
  8272. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8273. {
  8274. }
  8275. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8276. {
  8277. }
  8278. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8279. #ifdef CONFIG_RT_GROUP_SCHED
  8280. static void free_rt_sched_group(struct task_group *tg)
  8281. {
  8282. int i;
  8283. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8284. for_each_possible_cpu(i) {
  8285. if (tg->rt_rq)
  8286. kfree(tg->rt_rq[i]);
  8287. if (tg->rt_se)
  8288. kfree(tg->rt_se[i]);
  8289. }
  8290. kfree(tg->rt_rq);
  8291. kfree(tg->rt_se);
  8292. }
  8293. static
  8294. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8295. {
  8296. struct rt_rq *rt_rq;
  8297. struct sched_rt_entity *rt_se;
  8298. struct rq *rq;
  8299. int i;
  8300. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8301. if (!tg->rt_rq)
  8302. goto err;
  8303. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8304. if (!tg->rt_se)
  8305. goto err;
  8306. init_rt_bandwidth(&tg->rt_bandwidth,
  8307. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8308. for_each_possible_cpu(i) {
  8309. rq = cpu_rq(i);
  8310. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8311. GFP_KERNEL, cpu_to_node(i));
  8312. if (!rt_rq)
  8313. goto err;
  8314. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8315. GFP_KERNEL, cpu_to_node(i));
  8316. if (!rt_se)
  8317. goto err;
  8318. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8319. }
  8320. return 1;
  8321. err:
  8322. return 0;
  8323. }
  8324. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8325. {
  8326. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8327. &cpu_rq(cpu)->leaf_rt_rq_list);
  8328. }
  8329. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8330. {
  8331. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8332. }
  8333. #else /* !CONFIG_RT_GROUP_SCHED */
  8334. static inline void free_rt_sched_group(struct task_group *tg)
  8335. {
  8336. }
  8337. static inline
  8338. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8339. {
  8340. return 1;
  8341. }
  8342. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8343. {
  8344. }
  8345. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8346. {
  8347. }
  8348. #endif /* CONFIG_RT_GROUP_SCHED */
  8349. #ifdef CONFIG_GROUP_SCHED
  8350. static void free_sched_group(struct task_group *tg)
  8351. {
  8352. free_fair_sched_group(tg);
  8353. free_rt_sched_group(tg);
  8354. kfree(tg);
  8355. }
  8356. /* allocate runqueue etc for a new task group */
  8357. struct task_group *sched_create_group(struct task_group *parent)
  8358. {
  8359. struct task_group *tg;
  8360. unsigned long flags;
  8361. int i;
  8362. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8363. if (!tg)
  8364. return ERR_PTR(-ENOMEM);
  8365. if (!alloc_fair_sched_group(tg, parent))
  8366. goto err;
  8367. if (!alloc_rt_sched_group(tg, parent))
  8368. goto err;
  8369. spin_lock_irqsave(&task_group_lock, flags);
  8370. for_each_possible_cpu(i) {
  8371. register_fair_sched_group(tg, i);
  8372. register_rt_sched_group(tg, i);
  8373. }
  8374. list_add_rcu(&tg->list, &task_groups);
  8375. WARN_ON(!parent); /* root should already exist */
  8376. tg->parent = parent;
  8377. INIT_LIST_HEAD(&tg->children);
  8378. list_add_rcu(&tg->siblings, &parent->children);
  8379. spin_unlock_irqrestore(&task_group_lock, flags);
  8380. return tg;
  8381. err:
  8382. free_sched_group(tg);
  8383. return ERR_PTR(-ENOMEM);
  8384. }
  8385. /* rcu callback to free various structures associated with a task group */
  8386. static void free_sched_group_rcu(struct rcu_head *rhp)
  8387. {
  8388. /* now it should be safe to free those cfs_rqs */
  8389. free_sched_group(container_of(rhp, struct task_group, rcu));
  8390. }
  8391. /* Destroy runqueue etc associated with a task group */
  8392. void sched_destroy_group(struct task_group *tg)
  8393. {
  8394. unsigned long flags;
  8395. int i;
  8396. spin_lock_irqsave(&task_group_lock, flags);
  8397. for_each_possible_cpu(i) {
  8398. unregister_fair_sched_group(tg, i);
  8399. unregister_rt_sched_group(tg, i);
  8400. }
  8401. list_del_rcu(&tg->list);
  8402. list_del_rcu(&tg->siblings);
  8403. spin_unlock_irqrestore(&task_group_lock, flags);
  8404. /* wait for possible concurrent references to cfs_rqs complete */
  8405. call_rcu(&tg->rcu, free_sched_group_rcu);
  8406. }
  8407. /* change task's runqueue when it moves between groups.
  8408. * The caller of this function should have put the task in its new group
  8409. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8410. * reflect its new group.
  8411. */
  8412. void sched_move_task(struct task_struct *tsk)
  8413. {
  8414. int on_rq, running;
  8415. unsigned long flags;
  8416. struct rq *rq;
  8417. rq = task_rq_lock(tsk, &flags);
  8418. update_rq_clock(rq);
  8419. running = task_current(rq, tsk);
  8420. on_rq = tsk->se.on_rq;
  8421. if (on_rq)
  8422. dequeue_task(rq, tsk, 0);
  8423. if (unlikely(running))
  8424. tsk->sched_class->put_prev_task(rq, tsk);
  8425. set_task_rq(tsk, task_cpu(tsk));
  8426. #ifdef CONFIG_FAIR_GROUP_SCHED
  8427. if (tsk->sched_class->moved_group)
  8428. tsk->sched_class->moved_group(tsk);
  8429. #endif
  8430. if (unlikely(running))
  8431. tsk->sched_class->set_curr_task(rq);
  8432. if (on_rq)
  8433. enqueue_task(rq, tsk, 0);
  8434. task_rq_unlock(rq, &flags);
  8435. }
  8436. #endif /* CONFIG_GROUP_SCHED */
  8437. #ifdef CONFIG_FAIR_GROUP_SCHED
  8438. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8439. {
  8440. struct cfs_rq *cfs_rq = se->cfs_rq;
  8441. int on_rq;
  8442. on_rq = se->on_rq;
  8443. if (on_rq)
  8444. dequeue_entity(cfs_rq, se, 0);
  8445. se->load.weight = shares;
  8446. se->load.inv_weight = 0;
  8447. if (on_rq)
  8448. enqueue_entity(cfs_rq, se, 0);
  8449. }
  8450. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8451. {
  8452. struct cfs_rq *cfs_rq = se->cfs_rq;
  8453. struct rq *rq = cfs_rq->rq;
  8454. unsigned long flags;
  8455. spin_lock_irqsave(&rq->lock, flags);
  8456. __set_se_shares(se, shares);
  8457. spin_unlock_irqrestore(&rq->lock, flags);
  8458. }
  8459. static DEFINE_MUTEX(shares_mutex);
  8460. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8461. {
  8462. int i;
  8463. unsigned long flags;
  8464. /*
  8465. * We can't change the weight of the root cgroup.
  8466. */
  8467. if (!tg->se[0])
  8468. return -EINVAL;
  8469. if (shares < MIN_SHARES)
  8470. shares = MIN_SHARES;
  8471. else if (shares > MAX_SHARES)
  8472. shares = MAX_SHARES;
  8473. mutex_lock(&shares_mutex);
  8474. if (tg->shares == shares)
  8475. goto done;
  8476. spin_lock_irqsave(&task_group_lock, flags);
  8477. for_each_possible_cpu(i)
  8478. unregister_fair_sched_group(tg, i);
  8479. list_del_rcu(&tg->siblings);
  8480. spin_unlock_irqrestore(&task_group_lock, flags);
  8481. /* wait for any ongoing reference to this group to finish */
  8482. synchronize_sched();
  8483. /*
  8484. * Now we are free to modify the group's share on each cpu
  8485. * w/o tripping rebalance_share or load_balance_fair.
  8486. */
  8487. tg->shares = shares;
  8488. for_each_possible_cpu(i) {
  8489. /*
  8490. * force a rebalance
  8491. */
  8492. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8493. set_se_shares(tg->se[i], shares);
  8494. }
  8495. /*
  8496. * Enable load balance activity on this group, by inserting it back on
  8497. * each cpu's rq->leaf_cfs_rq_list.
  8498. */
  8499. spin_lock_irqsave(&task_group_lock, flags);
  8500. for_each_possible_cpu(i)
  8501. register_fair_sched_group(tg, i);
  8502. list_add_rcu(&tg->siblings, &tg->parent->children);
  8503. spin_unlock_irqrestore(&task_group_lock, flags);
  8504. done:
  8505. mutex_unlock(&shares_mutex);
  8506. return 0;
  8507. }
  8508. unsigned long sched_group_shares(struct task_group *tg)
  8509. {
  8510. return tg->shares;
  8511. }
  8512. #endif
  8513. #ifdef CONFIG_RT_GROUP_SCHED
  8514. /*
  8515. * Ensure that the real time constraints are schedulable.
  8516. */
  8517. static DEFINE_MUTEX(rt_constraints_mutex);
  8518. static unsigned long to_ratio(u64 period, u64 runtime)
  8519. {
  8520. if (runtime == RUNTIME_INF)
  8521. return 1ULL << 20;
  8522. return div64_u64(runtime << 20, period);
  8523. }
  8524. /* Must be called with tasklist_lock held */
  8525. static inline int tg_has_rt_tasks(struct task_group *tg)
  8526. {
  8527. struct task_struct *g, *p;
  8528. do_each_thread(g, p) {
  8529. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8530. return 1;
  8531. } while_each_thread(g, p);
  8532. return 0;
  8533. }
  8534. struct rt_schedulable_data {
  8535. struct task_group *tg;
  8536. u64 rt_period;
  8537. u64 rt_runtime;
  8538. };
  8539. static int tg_schedulable(struct task_group *tg, void *data)
  8540. {
  8541. struct rt_schedulable_data *d = data;
  8542. struct task_group *child;
  8543. unsigned long total, sum = 0;
  8544. u64 period, runtime;
  8545. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8546. runtime = tg->rt_bandwidth.rt_runtime;
  8547. if (tg == d->tg) {
  8548. period = d->rt_period;
  8549. runtime = d->rt_runtime;
  8550. }
  8551. #ifdef CONFIG_USER_SCHED
  8552. if (tg == &root_task_group) {
  8553. period = global_rt_period();
  8554. runtime = global_rt_runtime();
  8555. }
  8556. #endif
  8557. /*
  8558. * Cannot have more runtime than the period.
  8559. */
  8560. if (runtime > period && runtime != RUNTIME_INF)
  8561. return -EINVAL;
  8562. /*
  8563. * Ensure we don't starve existing RT tasks.
  8564. */
  8565. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8566. return -EBUSY;
  8567. total = to_ratio(period, runtime);
  8568. /*
  8569. * Nobody can have more than the global setting allows.
  8570. */
  8571. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8572. return -EINVAL;
  8573. /*
  8574. * The sum of our children's runtime should not exceed our own.
  8575. */
  8576. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8577. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8578. runtime = child->rt_bandwidth.rt_runtime;
  8579. if (child == d->tg) {
  8580. period = d->rt_period;
  8581. runtime = d->rt_runtime;
  8582. }
  8583. sum += to_ratio(period, runtime);
  8584. }
  8585. if (sum > total)
  8586. return -EINVAL;
  8587. return 0;
  8588. }
  8589. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8590. {
  8591. struct rt_schedulable_data data = {
  8592. .tg = tg,
  8593. .rt_period = period,
  8594. .rt_runtime = runtime,
  8595. };
  8596. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8597. }
  8598. static int tg_set_bandwidth(struct task_group *tg,
  8599. u64 rt_period, u64 rt_runtime)
  8600. {
  8601. int i, err = 0;
  8602. mutex_lock(&rt_constraints_mutex);
  8603. read_lock(&tasklist_lock);
  8604. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8605. if (err)
  8606. goto unlock;
  8607. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8608. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8609. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8610. for_each_possible_cpu(i) {
  8611. struct rt_rq *rt_rq = tg->rt_rq[i];
  8612. spin_lock(&rt_rq->rt_runtime_lock);
  8613. rt_rq->rt_runtime = rt_runtime;
  8614. spin_unlock(&rt_rq->rt_runtime_lock);
  8615. }
  8616. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8617. unlock:
  8618. read_unlock(&tasklist_lock);
  8619. mutex_unlock(&rt_constraints_mutex);
  8620. return err;
  8621. }
  8622. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8623. {
  8624. u64 rt_runtime, rt_period;
  8625. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8626. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8627. if (rt_runtime_us < 0)
  8628. rt_runtime = RUNTIME_INF;
  8629. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8630. }
  8631. long sched_group_rt_runtime(struct task_group *tg)
  8632. {
  8633. u64 rt_runtime_us;
  8634. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8635. return -1;
  8636. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8637. do_div(rt_runtime_us, NSEC_PER_USEC);
  8638. return rt_runtime_us;
  8639. }
  8640. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8641. {
  8642. u64 rt_runtime, rt_period;
  8643. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8644. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8645. if (rt_period == 0)
  8646. return -EINVAL;
  8647. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8648. }
  8649. long sched_group_rt_period(struct task_group *tg)
  8650. {
  8651. u64 rt_period_us;
  8652. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8653. do_div(rt_period_us, NSEC_PER_USEC);
  8654. return rt_period_us;
  8655. }
  8656. static int sched_rt_global_constraints(void)
  8657. {
  8658. u64 runtime, period;
  8659. int ret = 0;
  8660. if (sysctl_sched_rt_period <= 0)
  8661. return -EINVAL;
  8662. runtime = global_rt_runtime();
  8663. period = global_rt_period();
  8664. /*
  8665. * Sanity check on the sysctl variables.
  8666. */
  8667. if (runtime > period && runtime != RUNTIME_INF)
  8668. return -EINVAL;
  8669. mutex_lock(&rt_constraints_mutex);
  8670. read_lock(&tasklist_lock);
  8671. ret = __rt_schedulable(NULL, 0, 0);
  8672. read_unlock(&tasklist_lock);
  8673. mutex_unlock(&rt_constraints_mutex);
  8674. return ret;
  8675. }
  8676. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8677. {
  8678. /* Don't accept realtime tasks when there is no way for them to run */
  8679. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8680. return 0;
  8681. return 1;
  8682. }
  8683. #else /* !CONFIG_RT_GROUP_SCHED */
  8684. static int sched_rt_global_constraints(void)
  8685. {
  8686. unsigned long flags;
  8687. int i;
  8688. if (sysctl_sched_rt_period <= 0)
  8689. return -EINVAL;
  8690. /*
  8691. * There's always some RT tasks in the root group
  8692. * -- migration, kstopmachine etc..
  8693. */
  8694. if (sysctl_sched_rt_runtime == 0)
  8695. return -EBUSY;
  8696. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8697. for_each_possible_cpu(i) {
  8698. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8699. spin_lock(&rt_rq->rt_runtime_lock);
  8700. rt_rq->rt_runtime = global_rt_runtime();
  8701. spin_unlock(&rt_rq->rt_runtime_lock);
  8702. }
  8703. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8704. return 0;
  8705. }
  8706. #endif /* CONFIG_RT_GROUP_SCHED */
  8707. int sched_rt_handler(struct ctl_table *table, int write,
  8708. struct file *filp, void __user *buffer, size_t *lenp,
  8709. loff_t *ppos)
  8710. {
  8711. int ret;
  8712. int old_period, old_runtime;
  8713. static DEFINE_MUTEX(mutex);
  8714. mutex_lock(&mutex);
  8715. old_period = sysctl_sched_rt_period;
  8716. old_runtime = sysctl_sched_rt_runtime;
  8717. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8718. if (!ret && write) {
  8719. ret = sched_rt_global_constraints();
  8720. if (ret) {
  8721. sysctl_sched_rt_period = old_period;
  8722. sysctl_sched_rt_runtime = old_runtime;
  8723. } else {
  8724. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8725. def_rt_bandwidth.rt_period =
  8726. ns_to_ktime(global_rt_period());
  8727. }
  8728. }
  8729. mutex_unlock(&mutex);
  8730. return ret;
  8731. }
  8732. #ifdef CONFIG_CGROUP_SCHED
  8733. /* return corresponding task_group object of a cgroup */
  8734. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8735. {
  8736. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8737. struct task_group, css);
  8738. }
  8739. static struct cgroup_subsys_state *
  8740. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8741. {
  8742. struct task_group *tg, *parent;
  8743. if (!cgrp->parent) {
  8744. /* This is early initialization for the top cgroup */
  8745. return &init_task_group.css;
  8746. }
  8747. parent = cgroup_tg(cgrp->parent);
  8748. tg = sched_create_group(parent);
  8749. if (IS_ERR(tg))
  8750. return ERR_PTR(-ENOMEM);
  8751. return &tg->css;
  8752. }
  8753. static void
  8754. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8755. {
  8756. struct task_group *tg = cgroup_tg(cgrp);
  8757. sched_destroy_group(tg);
  8758. }
  8759. static int
  8760. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8761. struct task_struct *tsk)
  8762. {
  8763. #ifdef CONFIG_RT_GROUP_SCHED
  8764. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8765. return -EINVAL;
  8766. #else
  8767. /* We don't support RT-tasks being in separate groups */
  8768. if (tsk->sched_class != &fair_sched_class)
  8769. return -EINVAL;
  8770. #endif
  8771. return 0;
  8772. }
  8773. static void
  8774. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8775. struct cgroup *old_cont, struct task_struct *tsk)
  8776. {
  8777. sched_move_task(tsk);
  8778. }
  8779. #ifdef CONFIG_FAIR_GROUP_SCHED
  8780. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8781. u64 shareval)
  8782. {
  8783. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8784. }
  8785. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8786. {
  8787. struct task_group *tg = cgroup_tg(cgrp);
  8788. return (u64) tg->shares;
  8789. }
  8790. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8791. #ifdef CONFIG_RT_GROUP_SCHED
  8792. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8793. s64 val)
  8794. {
  8795. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8796. }
  8797. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8798. {
  8799. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8800. }
  8801. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8802. u64 rt_period_us)
  8803. {
  8804. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8805. }
  8806. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8807. {
  8808. return sched_group_rt_period(cgroup_tg(cgrp));
  8809. }
  8810. #endif /* CONFIG_RT_GROUP_SCHED */
  8811. static struct cftype cpu_files[] = {
  8812. #ifdef CONFIG_FAIR_GROUP_SCHED
  8813. {
  8814. .name = "shares",
  8815. .read_u64 = cpu_shares_read_u64,
  8816. .write_u64 = cpu_shares_write_u64,
  8817. },
  8818. #endif
  8819. #ifdef CONFIG_RT_GROUP_SCHED
  8820. {
  8821. .name = "rt_runtime_us",
  8822. .read_s64 = cpu_rt_runtime_read,
  8823. .write_s64 = cpu_rt_runtime_write,
  8824. },
  8825. {
  8826. .name = "rt_period_us",
  8827. .read_u64 = cpu_rt_period_read_uint,
  8828. .write_u64 = cpu_rt_period_write_uint,
  8829. },
  8830. #endif
  8831. };
  8832. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8833. {
  8834. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8835. }
  8836. struct cgroup_subsys cpu_cgroup_subsys = {
  8837. .name = "cpu",
  8838. .create = cpu_cgroup_create,
  8839. .destroy = cpu_cgroup_destroy,
  8840. .can_attach = cpu_cgroup_can_attach,
  8841. .attach = cpu_cgroup_attach,
  8842. .populate = cpu_cgroup_populate,
  8843. .subsys_id = cpu_cgroup_subsys_id,
  8844. .early_init = 1,
  8845. };
  8846. #endif /* CONFIG_CGROUP_SCHED */
  8847. #ifdef CONFIG_CGROUP_CPUACCT
  8848. /*
  8849. * CPU accounting code for task groups.
  8850. *
  8851. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8852. * (balbir@in.ibm.com).
  8853. */
  8854. /* track cpu usage of a group of tasks and its child groups */
  8855. struct cpuacct {
  8856. struct cgroup_subsys_state css;
  8857. /* cpuusage holds pointer to a u64-type object on every cpu */
  8858. u64 *cpuusage;
  8859. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8860. struct cpuacct *parent;
  8861. };
  8862. struct cgroup_subsys cpuacct_subsys;
  8863. /* return cpu accounting group corresponding to this container */
  8864. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8865. {
  8866. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8867. struct cpuacct, css);
  8868. }
  8869. /* return cpu accounting group to which this task belongs */
  8870. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8871. {
  8872. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8873. struct cpuacct, css);
  8874. }
  8875. /* create a new cpu accounting group */
  8876. static struct cgroup_subsys_state *cpuacct_create(
  8877. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8878. {
  8879. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8880. int i;
  8881. if (!ca)
  8882. goto out;
  8883. ca->cpuusage = alloc_percpu(u64);
  8884. if (!ca->cpuusage)
  8885. goto out_free_ca;
  8886. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8887. if (percpu_counter_init(&ca->cpustat[i], 0))
  8888. goto out_free_counters;
  8889. if (cgrp->parent)
  8890. ca->parent = cgroup_ca(cgrp->parent);
  8891. return &ca->css;
  8892. out_free_counters:
  8893. while (--i >= 0)
  8894. percpu_counter_destroy(&ca->cpustat[i]);
  8895. free_percpu(ca->cpuusage);
  8896. out_free_ca:
  8897. kfree(ca);
  8898. out:
  8899. return ERR_PTR(-ENOMEM);
  8900. }
  8901. /* destroy an existing cpu accounting group */
  8902. static void
  8903. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8904. {
  8905. struct cpuacct *ca = cgroup_ca(cgrp);
  8906. int i;
  8907. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8908. percpu_counter_destroy(&ca->cpustat[i]);
  8909. free_percpu(ca->cpuusage);
  8910. kfree(ca);
  8911. }
  8912. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8913. {
  8914. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8915. u64 data;
  8916. #ifndef CONFIG_64BIT
  8917. /*
  8918. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8919. */
  8920. spin_lock_irq(&cpu_rq(cpu)->lock);
  8921. data = *cpuusage;
  8922. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8923. #else
  8924. data = *cpuusage;
  8925. #endif
  8926. return data;
  8927. }
  8928. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8929. {
  8930. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8931. #ifndef CONFIG_64BIT
  8932. /*
  8933. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8934. */
  8935. spin_lock_irq(&cpu_rq(cpu)->lock);
  8936. *cpuusage = val;
  8937. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8938. #else
  8939. *cpuusage = val;
  8940. #endif
  8941. }
  8942. /* return total cpu usage (in nanoseconds) of a group */
  8943. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8944. {
  8945. struct cpuacct *ca = cgroup_ca(cgrp);
  8946. u64 totalcpuusage = 0;
  8947. int i;
  8948. for_each_present_cpu(i)
  8949. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8950. return totalcpuusage;
  8951. }
  8952. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8953. u64 reset)
  8954. {
  8955. struct cpuacct *ca = cgroup_ca(cgrp);
  8956. int err = 0;
  8957. int i;
  8958. if (reset) {
  8959. err = -EINVAL;
  8960. goto out;
  8961. }
  8962. for_each_present_cpu(i)
  8963. cpuacct_cpuusage_write(ca, i, 0);
  8964. out:
  8965. return err;
  8966. }
  8967. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8968. struct seq_file *m)
  8969. {
  8970. struct cpuacct *ca = cgroup_ca(cgroup);
  8971. u64 percpu;
  8972. int i;
  8973. for_each_present_cpu(i) {
  8974. percpu = cpuacct_cpuusage_read(ca, i);
  8975. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8976. }
  8977. seq_printf(m, "\n");
  8978. return 0;
  8979. }
  8980. static const char *cpuacct_stat_desc[] = {
  8981. [CPUACCT_STAT_USER] = "user",
  8982. [CPUACCT_STAT_SYSTEM] = "system",
  8983. };
  8984. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8985. struct cgroup_map_cb *cb)
  8986. {
  8987. struct cpuacct *ca = cgroup_ca(cgrp);
  8988. int i;
  8989. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8990. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8991. val = cputime64_to_clock_t(val);
  8992. cb->fill(cb, cpuacct_stat_desc[i], val);
  8993. }
  8994. return 0;
  8995. }
  8996. static struct cftype files[] = {
  8997. {
  8998. .name = "usage",
  8999. .read_u64 = cpuusage_read,
  9000. .write_u64 = cpuusage_write,
  9001. },
  9002. {
  9003. .name = "usage_percpu",
  9004. .read_seq_string = cpuacct_percpu_seq_read,
  9005. },
  9006. {
  9007. .name = "stat",
  9008. .read_map = cpuacct_stats_show,
  9009. },
  9010. };
  9011. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9012. {
  9013. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9014. }
  9015. /*
  9016. * charge this task's execution time to its accounting group.
  9017. *
  9018. * called with rq->lock held.
  9019. */
  9020. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9021. {
  9022. struct cpuacct *ca;
  9023. int cpu;
  9024. if (unlikely(!cpuacct_subsys.active))
  9025. return;
  9026. cpu = task_cpu(tsk);
  9027. rcu_read_lock();
  9028. ca = task_ca(tsk);
  9029. for (; ca; ca = ca->parent) {
  9030. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9031. *cpuusage += cputime;
  9032. }
  9033. rcu_read_unlock();
  9034. }
  9035. /*
  9036. * Charge the system/user time to the task's accounting group.
  9037. */
  9038. static void cpuacct_update_stats(struct task_struct *tsk,
  9039. enum cpuacct_stat_index idx, cputime_t val)
  9040. {
  9041. struct cpuacct *ca;
  9042. if (unlikely(!cpuacct_subsys.active))
  9043. return;
  9044. rcu_read_lock();
  9045. ca = task_ca(tsk);
  9046. do {
  9047. percpu_counter_add(&ca->cpustat[idx], val);
  9048. ca = ca->parent;
  9049. } while (ca);
  9050. rcu_read_unlock();
  9051. }
  9052. struct cgroup_subsys cpuacct_subsys = {
  9053. .name = "cpuacct",
  9054. .create = cpuacct_create,
  9055. .destroy = cpuacct_destroy,
  9056. .populate = cpuacct_populate,
  9057. .subsys_id = cpuacct_subsys_id,
  9058. };
  9059. #endif /* CONFIG_CGROUP_CPUACCT */