sched.c 180 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/kthread.h>
  55. #include <linux/seq_file.h>
  56. #include <linux/sysctl.h>
  57. #include <linux/syscalls.h>
  58. #include <linux/times.h>
  59. #include <linux/tsacct_kern.h>
  60. #include <linux/kprobes.h>
  61. #include <linux/delayacct.h>
  62. #include <linux/reciprocal_div.h>
  63. #include <linux/unistd.h>
  64. #include <linux/pagemap.h>
  65. #include <asm/tlb.h>
  66. #include <asm/irq_regs.h>
  67. /*
  68. * Scheduler clock - returns current time in nanosec units.
  69. * This is default implementation.
  70. * Architectures and sub-architectures can override this.
  71. */
  72. unsigned long long __attribute__((weak)) sched_clock(void)
  73. {
  74. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  75. }
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Some helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
  97. #define NICE_0_LOAD SCHED_LOAD_SCALE
  98. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  99. /*
  100. * These are the 'tuning knobs' of the scheduler:
  101. *
  102. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  103. * Timeslices get refilled after they expire.
  104. */
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. static inline int rt_policy(int policy)
  126. {
  127. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  128. return 1;
  129. return 0;
  130. }
  131. static inline int task_has_rt_policy(struct task_struct *p)
  132. {
  133. return rt_policy(p->policy);
  134. }
  135. /*
  136. * This is the priority-queue data structure of the RT scheduling class:
  137. */
  138. struct rt_prio_array {
  139. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  140. struct list_head queue[MAX_RT_PRIO];
  141. };
  142. #ifdef CONFIG_FAIR_GROUP_SCHED
  143. #include <linux/cgroup.h>
  144. struct cfs_rq;
  145. /* task group related information */
  146. struct task_group {
  147. #ifdef CONFIG_FAIR_CGROUP_SCHED
  148. struct cgroup_subsys_state css;
  149. #endif
  150. /* schedulable entities of this group on each cpu */
  151. struct sched_entity **se;
  152. /* runqueue "owned" by this group on each cpu */
  153. struct cfs_rq **cfs_rq;
  154. unsigned long shares;
  155. /* spinlock to serialize modification to shares */
  156. spinlock_t lock;
  157. struct rcu_head rcu;
  158. };
  159. /* Default task group's sched entity on each cpu */
  160. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  161. /* Default task group's cfs_rq on each cpu */
  162. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  163. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  164. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  165. /* Default task group.
  166. * Every task in system belong to this group at bootup.
  167. */
  168. struct task_group init_task_group = {
  169. .se = init_sched_entity_p,
  170. .cfs_rq = init_cfs_rq_p,
  171. };
  172. #ifdef CONFIG_FAIR_USER_SCHED
  173. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  174. #else
  175. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  176. #endif
  177. static int init_task_group_load = INIT_TASK_GRP_LOAD;
  178. /* return group to which a task belongs */
  179. static inline struct task_group *task_group(struct task_struct *p)
  180. {
  181. struct task_group *tg;
  182. #ifdef CONFIG_FAIR_USER_SCHED
  183. tg = p->user->tg;
  184. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  185. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  186. struct task_group, css);
  187. #else
  188. tg = &init_task_group;
  189. #endif
  190. return tg;
  191. }
  192. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  193. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
  194. {
  195. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  196. p->se.parent = task_group(p)->se[cpu];
  197. }
  198. #else
  199. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
  200. #endif /* CONFIG_FAIR_GROUP_SCHED */
  201. /* CFS-related fields in a runqueue */
  202. struct cfs_rq {
  203. struct load_weight load;
  204. unsigned long nr_running;
  205. u64 exec_clock;
  206. u64 min_vruntime;
  207. struct rb_root tasks_timeline;
  208. struct rb_node *rb_leftmost;
  209. struct rb_node *rb_load_balance_curr;
  210. /* 'curr' points to currently running entity on this cfs_rq.
  211. * It is set to NULL otherwise (i.e when none are currently running).
  212. */
  213. struct sched_entity *curr;
  214. unsigned long nr_spread_over;
  215. #ifdef CONFIG_FAIR_GROUP_SCHED
  216. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  217. /*
  218. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  219. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  220. * (like users, containers etc.)
  221. *
  222. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  223. * list is used during load balance.
  224. */
  225. struct list_head leaf_cfs_rq_list;
  226. struct task_group *tg; /* group that "owns" this runqueue */
  227. #endif
  228. };
  229. /* Real-Time classes' related field in a runqueue: */
  230. struct rt_rq {
  231. struct rt_prio_array active;
  232. int rt_load_balance_idx;
  233. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  234. };
  235. /*
  236. * This is the main, per-CPU runqueue data structure.
  237. *
  238. * Locking rule: those places that want to lock multiple runqueues
  239. * (such as the load balancing or the thread migration code), lock
  240. * acquire operations must be ordered by ascending &runqueue.
  241. */
  242. struct rq {
  243. /* runqueue lock: */
  244. spinlock_t lock;
  245. /*
  246. * nr_running and cpu_load should be in the same cacheline because
  247. * remote CPUs use both these fields when doing load calculation.
  248. */
  249. unsigned long nr_running;
  250. #define CPU_LOAD_IDX_MAX 5
  251. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  252. unsigned char idle_at_tick;
  253. #ifdef CONFIG_NO_HZ
  254. unsigned char in_nohz_recently;
  255. #endif
  256. /* capture load from *all* tasks on this cpu: */
  257. struct load_weight load;
  258. unsigned long nr_load_updates;
  259. u64 nr_switches;
  260. struct cfs_rq cfs;
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. /* list of leaf cfs_rq on this cpu: */
  263. struct list_head leaf_cfs_rq_list;
  264. #endif
  265. struct rt_rq rt;
  266. /*
  267. * This is part of a global counter where only the total sum
  268. * over all CPUs matters. A task can increase this counter on
  269. * one CPU and if it got migrated afterwards it may decrease
  270. * it on another CPU. Always updated under the runqueue lock:
  271. */
  272. unsigned long nr_uninterruptible;
  273. struct task_struct *curr, *idle;
  274. unsigned long next_balance;
  275. struct mm_struct *prev_mm;
  276. u64 clock, prev_clock_raw;
  277. s64 clock_max_delta;
  278. unsigned int clock_warps, clock_overflows;
  279. u64 idle_clock;
  280. unsigned int clock_deep_idle_events;
  281. u64 tick_timestamp;
  282. atomic_t nr_iowait;
  283. #ifdef CONFIG_SMP
  284. struct sched_domain *sd;
  285. /* For active balancing */
  286. int active_balance;
  287. int push_cpu;
  288. /* cpu of this runqueue: */
  289. int cpu;
  290. struct task_struct *migration_thread;
  291. struct list_head migration_queue;
  292. #endif
  293. #ifdef CONFIG_SCHEDSTATS
  294. /* latency stats */
  295. struct sched_info rq_sched_info;
  296. /* sys_sched_yield() stats */
  297. unsigned int yld_exp_empty;
  298. unsigned int yld_act_empty;
  299. unsigned int yld_both_empty;
  300. unsigned int yld_count;
  301. /* schedule() stats */
  302. unsigned int sched_switch;
  303. unsigned int sched_count;
  304. unsigned int sched_goidle;
  305. /* try_to_wake_up() stats */
  306. unsigned int ttwu_count;
  307. unsigned int ttwu_local;
  308. /* BKL stats */
  309. unsigned int bkl_count;
  310. #endif
  311. struct lock_class_key rq_lock_key;
  312. };
  313. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  314. static DEFINE_MUTEX(sched_hotcpu_mutex);
  315. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  316. {
  317. rq->curr->sched_class->check_preempt_curr(rq, p);
  318. }
  319. static inline int cpu_of(struct rq *rq)
  320. {
  321. #ifdef CONFIG_SMP
  322. return rq->cpu;
  323. #else
  324. return 0;
  325. #endif
  326. }
  327. /*
  328. * Update the per-runqueue clock, as finegrained as the platform can give
  329. * us, but without assuming monotonicity, etc.:
  330. */
  331. static void __update_rq_clock(struct rq *rq)
  332. {
  333. u64 prev_raw = rq->prev_clock_raw;
  334. u64 now = sched_clock();
  335. s64 delta = now - prev_raw;
  336. u64 clock = rq->clock;
  337. #ifdef CONFIG_SCHED_DEBUG
  338. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  339. #endif
  340. /*
  341. * Protect against sched_clock() occasionally going backwards:
  342. */
  343. if (unlikely(delta < 0)) {
  344. clock++;
  345. rq->clock_warps++;
  346. } else {
  347. /*
  348. * Catch too large forward jumps too:
  349. */
  350. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  351. if (clock < rq->tick_timestamp + TICK_NSEC)
  352. clock = rq->tick_timestamp + TICK_NSEC;
  353. else
  354. clock++;
  355. rq->clock_overflows++;
  356. } else {
  357. if (unlikely(delta > rq->clock_max_delta))
  358. rq->clock_max_delta = delta;
  359. clock += delta;
  360. }
  361. }
  362. rq->prev_clock_raw = now;
  363. rq->clock = clock;
  364. }
  365. static void update_rq_clock(struct rq *rq)
  366. {
  367. if (likely(smp_processor_id() == cpu_of(rq)))
  368. __update_rq_clock(rq);
  369. }
  370. /*
  371. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  372. * See detach_destroy_domains: synchronize_sched for details.
  373. *
  374. * The domain tree of any CPU may only be accessed from within
  375. * preempt-disabled sections.
  376. */
  377. #define for_each_domain(cpu, __sd) \
  378. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  379. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  380. #define this_rq() (&__get_cpu_var(runqueues))
  381. #define task_rq(p) cpu_rq(task_cpu(p))
  382. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  383. /*
  384. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  385. */
  386. #ifdef CONFIG_SCHED_DEBUG
  387. # define const_debug __read_mostly
  388. #else
  389. # define const_debug static const
  390. #endif
  391. /*
  392. * Debugging: various feature bits
  393. */
  394. enum {
  395. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  396. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  397. SCHED_FEAT_START_DEBIT = 4,
  398. SCHED_FEAT_TREE_AVG = 8,
  399. SCHED_FEAT_APPROX_AVG = 16,
  400. };
  401. const_debug unsigned int sysctl_sched_features =
  402. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  403. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  404. SCHED_FEAT_START_DEBIT * 1 |
  405. SCHED_FEAT_TREE_AVG * 0 |
  406. SCHED_FEAT_APPROX_AVG * 0;
  407. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  408. /*
  409. * Number of tasks to iterate in a single balance run.
  410. * Limited because this is done with IRQs disabled.
  411. */
  412. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  413. /*
  414. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  415. * clock constructed from sched_clock():
  416. */
  417. unsigned long long cpu_clock(int cpu)
  418. {
  419. unsigned long long now;
  420. unsigned long flags;
  421. struct rq *rq;
  422. local_irq_save(flags);
  423. rq = cpu_rq(cpu);
  424. update_rq_clock(rq);
  425. now = rq->clock;
  426. local_irq_restore(flags);
  427. return now;
  428. }
  429. EXPORT_SYMBOL_GPL(cpu_clock);
  430. #ifndef prepare_arch_switch
  431. # define prepare_arch_switch(next) do { } while (0)
  432. #endif
  433. #ifndef finish_arch_switch
  434. # define finish_arch_switch(prev) do { } while (0)
  435. #endif
  436. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  437. static inline int task_running(struct rq *rq, struct task_struct *p)
  438. {
  439. return rq->curr == p;
  440. }
  441. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  442. {
  443. }
  444. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  445. {
  446. #ifdef CONFIG_DEBUG_SPINLOCK
  447. /* this is a valid case when another task releases the spinlock */
  448. rq->lock.owner = current;
  449. #endif
  450. /*
  451. * If we are tracking spinlock dependencies then we have to
  452. * fix up the runqueue lock - which gets 'carried over' from
  453. * prev into current:
  454. */
  455. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  456. spin_unlock_irq(&rq->lock);
  457. }
  458. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  459. static inline int task_running(struct rq *rq, struct task_struct *p)
  460. {
  461. #ifdef CONFIG_SMP
  462. return p->oncpu;
  463. #else
  464. return rq->curr == p;
  465. #endif
  466. }
  467. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  468. {
  469. #ifdef CONFIG_SMP
  470. /*
  471. * We can optimise this out completely for !SMP, because the
  472. * SMP rebalancing from interrupt is the only thing that cares
  473. * here.
  474. */
  475. next->oncpu = 1;
  476. #endif
  477. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  478. spin_unlock_irq(&rq->lock);
  479. #else
  480. spin_unlock(&rq->lock);
  481. #endif
  482. }
  483. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  484. {
  485. #ifdef CONFIG_SMP
  486. /*
  487. * After ->oncpu is cleared, the task can be moved to a different CPU.
  488. * We must ensure this doesn't happen until the switch is completely
  489. * finished.
  490. */
  491. smp_wmb();
  492. prev->oncpu = 0;
  493. #endif
  494. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  495. local_irq_enable();
  496. #endif
  497. }
  498. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  499. /*
  500. * __task_rq_lock - lock the runqueue a given task resides on.
  501. * Must be called interrupts disabled.
  502. */
  503. static inline struct rq *__task_rq_lock(struct task_struct *p)
  504. __acquires(rq->lock)
  505. {
  506. for (;;) {
  507. struct rq *rq = task_rq(p);
  508. spin_lock(&rq->lock);
  509. if (likely(rq == task_rq(p)))
  510. return rq;
  511. spin_unlock(&rq->lock);
  512. }
  513. }
  514. /*
  515. * task_rq_lock - lock the runqueue a given task resides on and disable
  516. * interrupts. Note the ordering: we can safely lookup the task_rq without
  517. * explicitly disabling preemption.
  518. */
  519. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  520. __acquires(rq->lock)
  521. {
  522. struct rq *rq;
  523. for (;;) {
  524. local_irq_save(*flags);
  525. rq = task_rq(p);
  526. spin_lock(&rq->lock);
  527. if (likely(rq == task_rq(p)))
  528. return rq;
  529. spin_unlock_irqrestore(&rq->lock, *flags);
  530. }
  531. }
  532. static void __task_rq_unlock(struct rq *rq)
  533. __releases(rq->lock)
  534. {
  535. spin_unlock(&rq->lock);
  536. }
  537. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  538. __releases(rq->lock)
  539. {
  540. spin_unlock_irqrestore(&rq->lock, *flags);
  541. }
  542. /*
  543. * this_rq_lock - lock this runqueue and disable interrupts.
  544. */
  545. static struct rq *this_rq_lock(void)
  546. __acquires(rq->lock)
  547. {
  548. struct rq *rq;
  549. local_irq_disable();
  550. rq = this_rq();
  551. spin_lock(&rq->lock);
  552. return rq;
  553. }
  554. /*
  555. * We are going deep-idle (irqs are disabled):
  556. */
  557. void sched_clock_idle_sleep_event(void)
  558. {
  559. struct rq *rq = cpu_rq(smp_processor_id());
  560. spin_lock(&rq->lock);
  561. __update_rq_clock(rq);
  562. spin_unlock(&rq->lock);
  563. rq->clock_deep_idle_events++;
  564. }
  565. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  566. /*
  567. * We just idled delta nanoseconds (called with irqs disabled):
  568. */
  569. void sched_clock_idle_wakeup_event(u64 delta_ns)
  570. {
  571. struct rq *rq = cpu_rq(smp_processor_id());
  572. u64 now = sched_clock();
  573. rq->idle_clock += delta_ns;
  574. /*
  575. * Override the previous timestamp and ignore all
  576. * sched_clock() deltas that occured while we idled,
  577. * and use the PM-provided delta_ns to advance the
  578. * rq clock:
  579. */
  580. spin_lock(&rq->lock);
  581. rq->prev_clock_raw = now;
  582. rq->clock += delta_ns;
  583. spin_unlock(&rq->lock);
  584. }
  585. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  586. /*
  587. * resched_task - mark a task 'to be rescheduled now'.
  588. *
  589. * On UP this means the setting of the need_resched flag, on SMP it
  590. * might also involve a cross-CPU call to trigger the scheduler on
  591. * the target CPU.
  592. */
  593. #ifdef CONFIG_SMP
  594. #ifndef tsk_is_polling
  595. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  596. #endif
  597. static void resched_task(struct task_struct *p)
  598. {
  599. int cpu;
  600. assert_spin_locked(&task_rq(p)->lock);
  601. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  602. return;
  603. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  604. cpu = task_cpu(p);
  605. if (cpu == smp_processor_id())
  606. return;
  607. /* NEED_RESCHED must be visible before we test polling */
  608. smp_mb();
  609. if (!tsk_is_polling(p))
  610. smp_send_reschedule(cpu);
  611. }
  612. static void resched_cpu(int cpu)
  613. {
  614. struct rq *rq = cpu_rq(cpu);
  615. unsigned long flags;
  616. if (!spin_trylock_irqsave(&rq->lock, flags))
  617. return;
  618. resched_task(cpu_curr(cpu));
  619. spin_unlock_irqrestore(&rq->lock, flags);
  620. }
  621. #else
  622. static inline void resched_task(struct task_struct *p)
  623. {
  624. assert_spin_locked(&task_rq(p)->lock);
  625. set_tsk_need_resched(p);
  626. }
  627. #endif
  628. #if BITS_PER_LONG == 32
  629. # define WMULT_CONST (~0UL)
  630. #else
  631. # define WMULT_CONST (1UL << 32)
  632. #endif
  633. #define WMULT_SHIFT 32
  634. /*
  635. * Shift right and round:
  636. */
  637. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  638. static unsigned long
  639. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  640. struct load_weight *lw)
  641. {
  642. u64 tmp;
  643. if (unlikely(!lw->inv_weight))
  644. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  645. tmp = (u64)delta_exec * weight;
  646. /*
  647. * Check whether we'd overflow the 64-bit multiplication:
  648. */
  649. if (unlikely(tmp > WMULT_CONST))
  650. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  651. WMULT_SHIFT/2);
  652. else
  653. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  654. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  655. }
  656. static inline unsigned long
  657. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  658. {
  659. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  660. }
  661. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  662. {
  663. lw->weight += inc;
  664. }
  665. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  666. {
  667. lw->weight -= dec;
  668. }
  669. /*
  670. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  671. * of tasks with abnormal "nice" values across CPUs the contribution that
  672. * each task makes to its run queue's load is weighted according to its
  673. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  674. * scaled version of the new time slice allocation that they receive on time
  675. * slice expiry etc.
  676. */
  677. #define WEIGHT_IDLEPRIO 2
  678. #define WMULT_IDLEPRIO (1 << 31)
  679. /*
  680. * Nice levels are multiplicative, with a gentle 10% change for every
  681. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  682. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  683. * that remained on nice 0.
  684. *
  685. * The "10% effect" is relative and cumulative: from _any_ nice level,
  686. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  687. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  688. * If a task goes up by ~10% and another task goes down by ~10% then
  689. * the relative distance between them is ~25%.)
  690. */
  691. static const int prio_to_weight[40] = {
  692. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  693. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  694. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  695. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  696. /* 0 */ 1024, 820, 655, 526, 423,
  697. /* 5 */ 335, 272, 215, 172, 137,
  698. /* 10 */ 110, 87, 70, 56, 45,
  699. /* 15 */ 36, 29, 23, 18, 15,
  700. };
  701. /*
  702. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  703. *
  704. * In cases where the weight does not change often, we can use the
  705. * precalculated inverse to speed up arithmetics by turning divisions
  706. * into multiplications:
  707. */
  708. static const u32 prio_to_wmult[40] = {
  709. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  710. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  711. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  712. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  713. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  714. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  715. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  716. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  717. };
  718. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  719. /*
  720. * runqueue iterator, to support SMP load-balancing between different
  721. * scheduling classes, without having to expose their internal data
  722. * structures to the load-balancing proper:
  723. */
  724. struct rq_iterator {
  725. void *arg;
  726. struct task_struct *(*start)(void *);
  727. struct task_struct *(*next)(void *);
  728. };
  729. #ifdef CONFIG_SMP
  730. static unsigned long
  731. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  732. unsigned long max_load_move, struct sched_domain *sd,
  733. enum cpu_idle_type idle, int *all_pinned,
  734. int *this_best_prio, struct rq_iterator *iterator);
  735. static int
  736. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  737. struct sched_domain *sd, enum cpu_idle_type idle,
  738. struct rq_iterator *iterator);
  739. #endif
  740. #ifdef CONFIG_CGROUP_CPUACCT
  741. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  742. #else
  743. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  744. #endif
  745. #include "sched_stats.h"
  746. #include "sched_idletask.c"
  747. #include "sched_fair.c"
  748. #include "sched_rt.c"
  749. #ifdef CONFIG_SCHED_DEBUG
  750. # include "sched_debug.c"
  751. #endif
  752. #define sched_class_highest (&rt_sched_class)
  753. /*
  754. * Update delta_exec, delta_fair fields for rq.
  755. *
  756. * delta_fair clock advances at a rate inversely proportional to
  757. * total load (rq->load.weight) on the runqueue, while
  758. * delta_exec advances at the same rate as wall-clock (provided
  759. * cpu is not idle).
  760. *
  761. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  762. * runqueue over any given interval. This (smoothened) load is used
  763. * during load balance.
  764. *
  765. * This function is called /before/ updating rq->load
  766. * and when switching tasks.
  767. */
  768. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  769. {
  770. update_load_add(&rq->load, p->se.load.weight);
  771. }
  772. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  773. {
  774. update_load_sub(&rq->load, p->se.load.weight);
  775. }
  776. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  777. {
  778. rq->nr_running++;
  779. inc_load(rq, p);
  780. }
  781. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  782. {
  783. rq->nr_running--;
  784. dec_load(rq, p);
  785. }
  786. static void set_load_weight(struct task_struct *p)
  787. {
  788. if (task_has_rt_policy(p)) {
  789. p->se.load.weight = prio_to_weight[0] * 2;
  790. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  791. return;
  792. }
  793. /*
  794. * SCHED_IDLE tasks get minimal weight:
  795. */
  796. if (p->policy == SCHED_IDLE) {
  797. p->se.load.weight = WEIGHT_IDLEPRIO;
  798. p->se.load.inv_weight = WMULT_IDLEPRIO;
  799. return;
  800. }
  801. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  802. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  803. }
  804. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  805. {
  806. sched_info_queued(p);
  807. p->sched_class->enqueue_task(rq, p, wakeup);
  808. p->se.on_rq = 1;
  809. }
  810. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  811. {
  812. p->sched_class->dequeue_task(rq, p, sleep);
  813. p->se.on_rq = 0;
  814. }
  815. /*
  816. * __normal_prio - return the priority that is based on the static prio
  817. */
  818. static inline int __normal_prio(struct task_struct *p)
  819. {
  820. return p->static_prio;
  821. }
  822. /*
  823. * Calculate the expected normal priority: i.e. priority
  824. * without taking RT-inheritance into account. Might be
  825. * boosted by interactivity modifiers. Changes upon fork,
  826. * setprio syscalls, and whenever the interactivity
  827. * estimator recalculates.
  828. */
  829. static inline int normal_prio(struct task_struct *p)
  830. {
  831. int prio;
  832. if (task_has_rt_policy(p))
  833. prio = MAX_RT_PRIO-1 - p->rt_priority;
  834. else
  835. prio = __normal_prio(p);
  836. return prio;
  837. }
  838. /*
  839. * Calculate the current priority, i.e. the priority
  840. * taken into account by the scheduler. This value might
  841. * be boosted by RT tasks, or might be boosted by
  842. * interactivity modifiers. Will be RT if the task got
  843. * RT-boosted. If not then it returns p->normal_prio.
  844. */
  845. static int effective_prio(struct task_struct *p)
  846. {
  847. p->normal_prio = normal_prio(p);
  848. /*
  849. * If we are RT tasks or we were boosted to RT priority,
  850. * keep the priority unchanged. Otherwise, update priority
  851. * to the normal priority:
  852. */
  853. if (!rt_prio(p->prio))
  854. return p->normal_prio;
  855. return p->prio;
  856. }
  857. /*
  858. * activate_task - move a task to the runqueue.
  859. */
  860. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  861. {
  862. if (task_contributes_to_load(p))
  863. rq->nr_uninterruptible--;
  864. enqueue_task(rq, p, wakeup);
  865. inc_nr_running(p, rq);
  866. }
  867. /*
  868. * deactivate_task - remove a task from the runqueue.
  869. */
  870. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  871. {
  872. if (task_contributes_to_load(p))
  873. rq->nr_uninterruptible++;
  874. dequeue_task(rq, p, sleep);
  875. dec_nr_running(p, rq);
  876. }
  877. /**
  878. * task_curr - is this task currently executing on a CPU?
  879. * @p: the task in question.
  880. */
  881. inline int task_curr(const struct task_struct *p)
  882. {
  883. return cpu_curr(task_cpu(p)) == p;
  884. }
  885. /* Used instead of source_load when we know the type == 0 */
  886. unsigned long weighted_cpuload(const int cpu)
  887. {
  888. return cpu_rq(cpu)->load.weight;
  889. }
  890. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  891. {
  892. set_task_cfs_rq(p, cpu);
  893. #ifdef CONFIG_SMP
  894. /*
  895. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  896. * successfuly executed on another CPU. We must ensure that updates of
  897. * per-task data have been completed by this moment.
  898. */
  899. smp_wmb();
  900. task_thread_info(p)->cpu = cpu;
  901. #endif
  902. }
  903. #ifdef CONFIG_SMP
  904. /*
  905. * Is this task likely cache-hot:
  906. */
  907. static inline int
  908. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  909. {
  910. s64 delta;
  911. if (p->sched_class != &fair_sched_class)
  912. return 0;
  913. if (sysctl_sched_migration_cost == -1)
  914. return 1;
  915. if (sysctl_sched_migration_cost == 0)
  916. return 0;
  917. delta = now - p->se.exec_start;
  918. return delta < (s64)sysctl_sched_migration_cost;
  919. }
  920. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  921. {
  922. int old_cpu = task_cpu(p);
  923. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  924. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  925. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  926. u64 clock_offset;
  927. clock_offset = old_rq->clock - new_rq->clock;
  928. #ifdef CONFIG_SCHEDSTATS
  929. if (p->se.wait_start)
  930. p->se.wait_start -= clock_offset;
  931. if (p->se.sleep_start)
  932. p->se.sleep_start -= clock_offset;
  933. if (p->se.block_start)
  934. p->se.block_start -= clock_offset;
  935. if (old_cpu != new_cpu) {
  936. schedstat_inc(p, se.nr_migrations);
  937. if (task_hot(p, old_rq->clock, NULL))
  938. schedstat_inc(p, se.nr_forced2_migrations);
  939. }
  940. #endif
  941. p->se.vruntime -= old_cfsrq->min_vruntime -
  942. new_cfsrq->min_vruntime;
  943. __set_task_cpu(p, new_cpu);
  944. }
  945. struct migration_req {
  946. struct list_head list;
  947. struct task_struct *task;
  948. int dest_cpu;
  949. struct completion done;
  950. };
  951. /*
  952. * The task's runqueue lock must be held.
  953. * Returns true if you have to wait for migration thread.
  954. */
  955. static int
  956. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  957. {
  958. struct rq *rq = task_rq(p);
  959. /*
  960. * If the task is not on a runqueue (and not running), then
  961. * it is sufficient to simply update the task's cpu field.
  962. */
  963. if (!p->se.on_rq && !task_running(rq, p)) {
  964. set_task_cpu(p, dest_cpu);
  965. return 0;
  966. }
  967. init_completion(&req->done);
  968. req->task = p;
  969. req->dest_cpu = dest_cpu;
  970. list_add(&req->list, &rq->migration_queue);
  971. return 1;
  972. }
  973. /*
  974. * wait_task_inactive - wait for a thread to unschedule.
  975. *
  976. * The caller must ensure that the task *will* unschedule sometime soon,
  977. * else this function might spin for a *long* time. This function can't
  978. * be called with interrupts off, or it may introduce deadlock with
  979. * smp_call_function() if an IPI is sent by the same process we are
  980. * waiting to become inactive.
  981. */
  982. void wait_task_inactive(struct task_struct *p)
  983. {
  984. unsigned long flags;
  985. int running, on_rq;
  986. struct rq *rq;
  987. for (;;) {
  988. /*
  989. * We do the initial early heuristics without holding
  990. * any task-queue locks at all. We'll only try to get
  991. * the runqueue lock when things look like they will
  992. * work out!
  993. */
  994. rq = task_rq(p);
  995. /*
  996. * If the task is actively running on another CPU
  997. * still, just relax and busy-wait without holding
  998. * any locks.
  999. *
  1000. * NOTE! Since we don't hold any locks, it's not
  1001. * even sure that "rq" stays as the right runqueue!
  1002. * But we don't care, since "task_running()" will
  1003. * return false if the runqueue has changed and p
  1004. * is actually now running somewhere else!
  1005. */
  1006. while (task_running(rq, p))
  1007. cpu_relax();
  1008. /*
  1009. * Ok, time to look more closely! We need the rq
  1010. * lock now, to be *sure*. If we're wrong, we'll
  1011. * just go back and repeat.
  1012. */
  1013. rq = task_rq_lock(p, &flags);
  1014. running = task_running(rq, p);
  1015. on_rq = p->se.on_rq;
  1016. task_rq_unlock(rq, &flags);
  1017. /*
  1018. * Was it really running after all now that we
  1019. * checked with the proper locks actually held?
  1020. *
  1021. * Oops. Go back and try again..
  1022. */
  1023. if (unlikely(running)) {
  1024. cpu_relax();
  1025. continue;
  1026. }
  1027. /*
  1028. * It's not enough that it's not actively running,
  1029. * it must be off the runqueue _entirely_, and not
  1030. * preempted!
  1031. *
  1032. * So if it wa still runnable (but just not actively
  1033. * running right now), it's preempted, and we should
  1034. * yield - it could be a while.
  1035. */
  1036. if (unlikely(on_rq)) {
  1037. schedule_timeout_uninterruptible(1);
  1038. continue;
  1039. }
  1040. /*
  1041. * Ahh, all good. It wasn't running, and it wasn't
  1042. * runnable, which means that it will never become
  1043. * running in the future either. We're all done!
  1044. */
  1045. break;
  1046. }
  1047. }
  1048. /***
  1049. * kick_process - kick a running thread to enter/exit the kernel
  1050. * @p: the to-be-kicked thread
  1051. *
  1052. * Cause a process which is running on another CPU to enter
  1053. * kernel-mode, without any delay. (to get signals handled.)
  1054. *
  1055. * NOTE: this function doesnt have to take the runqueue lock,
  1056. * because all it wants to ensure is that the remote task enters
  1057. * the kernel. If the IPI races and the task has been migrated
  1058. * to another CPU then no harm is done and the purpose has been
  1059. * achieved as well.
  1060. */
  1061. void kick_process(struct task_struct *p)
  1062. {
  1063. int cpu;
  1064. preempt_disable();
  1065. cpu = task_cpu(p);
  1066. if ((cpu != smp_processor_id()) && task_curr(p))
  1067. smp_send_reschedule(cpu);
  1068. preempt_enable();
  1069. }
  1070. /*
  1071. * Return a low guess at the load of a migration-source cpu weighted
  1072. * according to the scheduling class and "nice" value.
  1073. *
  1074. * We want to under-estimate the load of migration sources, to
  1075. * balance conservatively.
  1076. */
  1077. static unsigned long source_load(int cpu, int type)
  1078. {
  1079. struct rq *rq = cpu_rq(cpu);
  1080. unsigned long total = weighted_cpuload(cpu);
  1081. if (type == 0)
  1082. return total;
  1083. return min(rq->cpu_load[type-1], total);
  1084. }
  1085. /*
  1086. * Return a high guess at the load of a migration-target cpu weighted
  1087. * according to the scheduling class and "nice" value.
  1088. */
  1089. static unsigned long target_load(int cpu, int type)
  1090. {
  1091. struct rq *rq = cpu_rq(cpu);
  1092. unsigned long total = weighted_cpuload(cpu);
  1093. if (type == 0)
  1094. return total;
  1095. return max(rq->cpu_load[type-1], total);
  1096. }
  1097. /*
  1098. * Return the average load per task on the cpu's run queue
  1099. */
  1100. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1101. {
  1102. struct rq *rq = cpu_rq(cpu);
  1103. unsigned long total = weighted_cpuload(cpu);
  1104. unsigned long n = rq->nr_running;
  1105. return n ? total / n : SCHED_LOAD_SCALE;
  1106. }
  1107. /*
  1108. * find_idlest_group finds and returns the least busy CPU group within the
  1109. * domain.
  1110. */
  1111. static struct sched_group *
  1112. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1113. {
  1114. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1115. unsigned long min_load = ULONG_MAX, this_load = 0;
  1116. int load_idx = sd->forkexec_idx;
  1117. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1118. do {
  1119. unsigned long load, avg_load;
  1120. int local_group;
  1121. int i;
  1122. /* Skip over this group if it has no CPUs allowed */
  1123. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1124. continue;
  1125. local_group = cpu_isset(this_cpu, group->cpumask);
  1126. /* Tally up the load of all CPUs in the group */
  1127. avg_load = 0;
  1128. for_each_cpu_mask(i, group->cpumask) {
  1129. /* Bias balancing toward cpus of our domain */
  1130. if (local_group)
  1131. load = source_load(i, load_idx);
  1132. else
  1133. load = target_load(i, load_idx);
  1134. avg_load += load;
  1135. }
  1136. /* Adjust by relative CPU power of the group */
  1137. avg_load = sg_div_cpu_power(group,
  1138. avg_load * SCHED_LOAD_SCALE);
  1139. if (local_group) {
  1140. this_load = avg_load;
  1141. this = group;
  1142. } else if (avg_load < min_load) {
  1143. min_load = avg_load;
  1144. idlest = group;
  1145. }
  1146. } while (group = group->next, group != sd->groups);
  1147. if (!idlest || 100*this_load < imbalance*min_load)
  1148. return NULL;
  1149. return idlest;
  1150. }
  1151. /*
  1152. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1153. */
  1154. static int
  1155. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1156. {
  1157. cpumask_t tmp;
  1158. unsigned long load, min_load = ULONG_MAX;
  1159. int idlest = -1;
  1160. int i;
  1161. /* Traverse only the allowed CPUs */
  1162. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1163. for_each_cpu_mask(i, tmp) {
  1164. load = weighted_cpuload(i);
  1165. if (load < min_load || (load == min_load && i == this_cpu)) {
  1166. min_load = load;
  1167. idlest = i;
  1168. }
  1169. }
  1170. return idlest;
  1171. }
  1172. /*
  1173. * sched_balance_self: balance the current task (running on cpu) in domains
  1174. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1175. * SD_BALANCE_EXEC.
  1176. *
  1177. * Balance, ie. select the least loaded group.
  1178. *
  1179. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1180. *
  1181. * preempt must be disabled.
  1182. */
  1183. static int sched_balance_self(int cpu, int flag)
  1184. {
  1185. struct task_struct *t = current;
  1186. struct sched_domain *tmp, *sd = NULL;
  1187. for_each_domain(cpu, tmp) {
  1188. /*
  1189. * If power savings logic is enabled for a domain, stop there.
  1190. */
  1191. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1192. break;
  1193. if (tmp->flags & flag)
  1194. sd = tmp;
  1195. }
  1196. while (sd) {
  1197. cpumask_t span;
  1198. struct sched_group *group;
  1199. int new_cpu, weight;
  1200. if (!(sd->flags & flag)) {
  1201. sd = sd->child;
  1202. continue;
  1203. }
  1204. span = sd->span;
  1205. group = find_idlest_group(sd, t, cpu);
  1206. if (!group) {
  1207. sd = sd->child;
  1208. continue;
  1209. }
  1210. new_cpu = find_idlest_cpu(group, t, cpu);
  1211. if (new_cpu == -1 || new_cpu == cpu) {
  1212. /* Now try balancing at a lower domain level of cpu */
  1213. sd = sd->child;
  1214. continue;
  1215. }
  1216. /* Now try balancing at a lower domain level of new_cpu */
  1217. cpu = new_cpu;
  1218. sd = NULL;
  1219. weight = cpus_weight(span);
  1220. for_each_domain(cpu, tmp) {
  1221. if (weight <= cpus_weight(tmp->span))
  1222. break;
  1223. if (tmp->flags & flag)
  1224. sd = tmp;
  1225. }
  1226. /* while loop will break here if sd == NULL */
  1227. }
  1228. return cpu;
  1229. }
  1230. #endif /* CONFIG_SMP */
  1231. /*
  1232. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1233. * not idle and an idle cpu is available. The span of cpus to
  1234. * search starts with cpus closest then further out as needed,
  1235. * so we always favor a closer, idle cpu.
  1236. *
  1237. * Returns the CPU we should wake onto.
  1238. */
  1239. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1240. static int wake_idle(int cpu, struct task_struct *p)
  1241. {
  1242. cpumask_t tmp;
  1243. struct sched_domain *sd;
  1244. int i;
  1245. /*
  1246. * If it is idle, then it is the best cpu to run this task.
  1247. *
  1248. * This cpu is also the best, if it has more than one task already.
  1249. * Siblings must be also busy(in most cases) as they didn't already
  1250. * pickup the extra load from this cpu and hence we need not check
  1251. * sibling runqueue info. This will avoid the checks and cache miss
  1252. * penalities associated with that.
  1253. */
  1254. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1255. return cpu;
  1256. for_each_domain(cpu, sd) {
  1257. if (sd->flags & SD_WAKE_IDLE) {
  1258. cpus_and(tmp, sd->span, p->cpus_allowed);
  1259. for_each_cpu_mask(i, tmp) {
  1260. if (idle_cpu(i)) {
  1261. if (i != task_cpu(p)) {
  1262. schedstat_inc(p,
  1263. se.nr_wakeups_idle);
  1264. }
  1265. return i;
  1266. }
  1267. }
  1268. } else {
  1269. break;
  1270. }
  1271. }
  1272. return cpu;
  1273. }
  1274. #else
  1275. static inline int wake_idle(int cpu, struct task_struct *p)
  1276. {
  1277. return cpu;
  1278. }
  1279. #endif
  1280. /***
  1281. * try_to_wake_up - wake up a thread
  1282. * @p: the to-be-woken-up thread
  1283. * @state: the mask of task states that can be woken
  1284. * @sync: do a synchronous wakeup?
  1285. *
  1286. * Put it on the run-queue if it's not already there. The "current"
  1287. * thread is always on the run-queue (except when the actual
  1288. * re-schedule is in progress), and as such you're allowed to do
  1289. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1290. * runnable without the overhead of this.
  1291. *
  1292. * returns failure only if the task is already active.
  1293. */
  1294. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1295. {
  1296. int cpu, orig_cpu, this_cpu, success = 0;
  1297. unsigned long flags;
  1298. long old_state;
  1299. struct rq *rq;
  1300. #ifdef CONFIG_SMP
  1301. struct sched_domain *sd, *this_sd = NULL;
  1302. unsigned long load, this_load;
  1303. int new_cpu;
  1304. #endif
  1305. rq = task_rq_lock(p, &flags);
  1306. old_state = p->state;
  1307. if (!(old_state & state))
  1308. goto out;
  1309. if (p->se.on_rq)
  1310. goto out_running;
  1311. cpu = task_cpu(p);
  1312. orig_cpu = cpu;
  1313. this_cpu = smp_processor_id();
  1314. #ifdef CONFIG_SMP
  1315. if (unlikely(task_running(rq, p)))
  1316. goto out_activate;
  1317. new_cpu = cpu;
  1318. schedstat_inc(rq, ttwu_count);
  1319. if (cpu == this_cpu) {
  1320. schedstat_inc(rq, ttwu_local);
  1321. goto out_set_cpu;
  1322. }
  1323. for_each_domain(this_cpu, sd) {
  1324. if (cpu_isset(cpu, sd->span)) {
  1325. schedstat_inc(sd, ttwu_wake_remote);
  1326. this_sd = sd;
  1327. break;
  1328. }
  1329. }
  1330. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1331. goto out_set_cpu;
  1332. /*
  1333. * Check for affine wakeup and passive balancing possibilities.
  1334. */
  1335. if (this_sd) {
  1336. int idx = this_sd->wake_idx;
  1337. unsigned int imbalance;
  1338. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1339. load = source_load(cpu, idx);
  1340. this_load = target_load(this_cpu, idx);
  1341. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1342. if (this_sd->flags & SD_WAKE_AFFINE) {
  1343. unsigned long tl = this_load;
  1344. unsigned long tl_per_task;
  1345. /*
  1346. * Attract cache-cold tasks on sync wakeups:
  1347. */
  1348. if (sync && !task_hot(p, rq->clock, this_sd))
  1349. goto out_set_cpu;
  1350. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1351. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1352. /*
  1353. * If sync wakeup then subtract the (maximum possible)
  1354. * effect of the currently running task from the load
  1355. * of the current CPU:
  1356. */
  1357. if (sync)
  1358. tl -= current->se.load.weight;
  1359. if ((tl <= load &&
  1360. tl + target_load(cpu, idx) <= tl_per_task) ||
  1361. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1362. /*
  1363. * This domain has SD_WAKE_AFFINE and
  1364. * p is cache cold in this domain, and
  1365. * there is no bad imbalance.
  1366. */
  1367. schedstat_inc(this_sd, ttwu_move_affine);
  1368. schedstat_inc(p, se.nr_wakeups_affine);
  1369. goto out_set_cpu;
  1370. }
  1371. }
  1372. /*
  1373. * Start passive balancing when half the imbalance_pct
  1374. * limit is reached.
  1375. */
  1376. if (this_sd->flags & SD_WAKE_BALANCE) {
  1377. if (imbalance*this_load <= 100*load) {
  1378. schedstat_inc(this_sd, ttwu_move_balance);
  1379. schedstat_inc(p, se.nr_wakeups_passive);
  1380. goto out_set_cpu;
  1381. }
  1382. }
  1383. }
  1384. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1385. out_set_cpu:
  1386. new_cpu = wake_idle(new_cpu, p);
  1387. if (new_cpu != cpu) {
  1388. set_task_cpu(p, new_cpu);
  1389. task_rq_unlock(rq, &flags);
  1390. /* might preempt at this point */
  1391. rq = task_rq_lock(p, &flags);
  1392. old_state = p->state;
  1393. if (!(old_state & state))
  1394. goto out;
  1395. if (p->se.on_rq)
  1396. goto out_running;
  1397. this_cpu = smp_processor_id();
  1398. cpu = task_cpu(p);
  1399. }
  1400. out_activate:
  1401. #endif /* CONFIG_SMP */
  1402. schedstat_inc(p, se.nr_wakeups);
  1403. if (sync)
  1404. schedstat_inc(p, se.nr_wakeups_sync);
  1405. if (orig_cpu != cpu)
  1406. schedstat_inc(p, se.nr_wakeups_migrate);
  1407. if (cpu == this_cpu)
  1408. schedstat_inc(p, se.nr_wakeups_local);
  1409. else
  1410. schedstat_inc(p, se.nr_wakeups_remote);
  1411. update_rq_clock(rq);
  1412. activate_task(rq, p, 1);
  1413. check_preempt_curr(rq, p);
  1414. success = 1;
  1415. out_running:
  1416. p->state = TASK_RUNNING;
  1417. out:
  1418. task_rq_unlock(rq, &flags);
  1419. return success;
  1420. }
  1421. int fastcall wake_up_process(struct task_struct *p)
  1422. {
  1423. return try_to_wake_up(p, TASK_ALL, 0);
  1424. }
  1425. EXPORT_SYMBOL(wake_up_process);
  1426. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1427. {
  1428. return try_to_wake_up(p, state, 0);
  1429. }
  1430. /*
  1431. * Perform scheduler related setup for a newly forked process p.
  1432. * p is forked by current.
  1433. *
  1434. * __sched_fork() is basic setup used by init_idle() too:
  1435. */
  1436. static void __sched_fork(struct task_struct *p)
  1437. {
  1438. p->se.exec_start = 0;
  1439. p->se.sum_exec_runtime = 0;
  1440. p->se.prev_sum_exec_runtime = 0;
  1441. #ifdef CONFIG_SCHEDSTATS
  1442. p->se.wait_start = 0;
  1443. p->se.sum_sleep_runtime = 0;
  1444. p->se.sleep_start = 0;
  1445. p->se.block_start = 0;
  1446. p->se.sleep_max = 0;
  1447. p->se.block_max = 0;
  1448. p->se.exec_max = 0;
  1449. p->se.slice_max = 0;
  1450. p->se.wait_max = 0;
  1451. #endif
  1452. INIT_LIST_HEAD(&p->run_list);
  1453. p->se.on_rq = 0;
  1454. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1455. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1456. #endif
  1457. /*
  1458. * We mark the process as running here, but have not actually
  1459. * inserted it onto the runqueue yet. This guarantees that
  1460. * nobody will actually run it, and a signal or other external
  1461. * event cannot wake it up and insert it on the runqueue either.
  1462. */
  1463. p->state = TASK_RUNNING;
  1464. }
  1465. /*
  1466. * fork()/clone()-time setup:
  1467. */
  1468. void sched_fork(struct task_struct *p, int clone_flags)
  1469. {
  1470. int cpu = get_cpu();
  1471. __sched_fork(p);
  1472. #ifdef CONFIG_SMP
  1473. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1474. #endif
  1475. set_task_cpu(p, cpu);
  1476. /*
  1477. * Make sure we do not leak PI boosting priority to the child:
  1478. */
  1479. p->prio = current->normal_prio;
  1480. if (!rt_prio(p->prio))
  1481. p->sched_class = &fair_sched_class;
  1482. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1483. if (likely(sched_info_on()))
  1484. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1485. #endif
  1486. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1487. p->oncpu = 0;
  1488. #endif
  1489. #ifdef CONFIG_PREEMPT
  1490. /* Want to start with kernel preemption disabled. */
  1491. task_thread_info(p)->preempt_count = 1;
  1492. #endif
  1493. put_cpu();
  1494. }
  1495. /*
  1496. * wake_up_new_task - wake up a newly created task for the first time.
  1497. *
  1498. * This function will do some initial scheduler statistics housekeeping
  1499. * that must be done for every newly created context, then puts the task
  1500. * on the runqueue and wakes it.
  1501. */
  1502. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1503. {
  1504. unsigned long flags;
  1505. struct rq *rq;
  1506. rq = task_rq_lock(p, &flags);
  1507. BUG_ON(p->state != TASK_RUNNING);
  1508. update_rq_clock(rq);
  1509. p->prio = effective_prio(p);
  1510. if (!p->sched_class->task_new || !current->se.on_rq) {
  1511. activate_task(rq, p, 0);
  1512. } else {
  1513. /*
  1514. * Let the scheduling class do new task startup
  1515. * management (if any):
  1516. */
  1517. p->sched_class->task_new(rq, p);
  1518. inc_nr_running(p, rq);
  1519. }
  1520. check_preempt_curr(rq, p);
  1521. task_rq_unlock(rq, &flags);
  1522. }
  1523. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1524. /**
  1525. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1526. * @notifier: notifier struct to register
  1527. */
  1528. void preempt_notifier_register(struct preempt_notifier *notifier)
  1529. {
  1530. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1531. }
  1532. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1533. /**
  1534. * preempt_notifier_unregister - no longer interested in preemption notifications
  1535. * @notifier: notifier struct to unregister
  1536. *
  1537. * This is safe to call from within a preemption notifier.
  1538. */
  1539. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1540. {
  1541. hlist_del(&notifier->link);
  1542. }
  1543. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1544. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1545. {
  1546. struct preempt_notifier *notifier;
  1547. struct hlist_node *node;
  1548. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1549. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1550. }
  1551. static void
  1552. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1553. struct task_struct *next)
  1554. {
  1555. struct preempt_notifier *notifier;
  1556. struct hlist_node *node;
  1557. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1558. notifier->ops->sched_out(notifier, next);
  1559. }
  1560. #else
  1561. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1562. {
  1563. }
  1564. static void
  1565. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1566. struct task_struct *next)
  1567. {
  1568. }
  1569. #endif
  1570. /**
  1571. * prepare_task_switch - prepare to switch tasks
  1572. * @rq: the runqueue preparing to switch
  1573. * @prev: the current task that is being switched out
  1574. * @next: the task we are going to switch to.
  1575. *
  1576. * This is called with the rq lock held and interrupts off. It must
  1577. * be paired with a subsequent finish_task_switch after the context
  1578. * switch.
  1579. *
  1580. * prepare_task_switch sets up locking and calls architecture specific
  1581. * hooks.
  1582. */
  1583. static inline void
  1584. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1585. struct task_struct *next)
  1586. {
  1587. fire_sched_out_preempt_notifiers(prev, next);
  1588. prepare_lock_switch(rq, next);
  1589. prepare_arch_switch(next);
  1590. }
  1591. /**
  1592. * finish_task_switch - clean up after a task-switch
  1593. * @rq: runqueue associated with task-switch
  1594. * @prev: the thread we just switched away from.
  1595. *
  1596. * finish_task_switch must be called after the context switch, paired
  1597. * with a prepare_task_switch call before the context switch.
  1598. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1599. * and do any other architecture-specific cleanup actions.
  1600. *
  1601. * Note that we may have delayed dropping an mm in context_switch(). If
  1602. * so, we finish that here outside of the runqueue lock. (Doing it
  1603. * with the lock held can cause deadlocks; see schedule() for
  1604. * details.)
  1605. */
  1606. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1607. __releases(rq->lock)
  1608. {
  1609. struct mm_struct *mm = rq->prev_mm;
  1610. long prev_state;
  1611. rq->prev_mm = NULL;
  1612. /*
  1613. * A task struct has one reference for the use as "current".
  1614. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1615. * schedule one last time. The schedule call will never return, and
  1616. * the scheduled task must drop that reference.
  1617. * The test for TASK_DEAD must occur while the runqueue locks are
  1618. * still held, otherwise prev could be scheduled on another cpu, die
  1619. * there before we look at prev->state, and then the reference would
  1620. * be dropped twice.
  1621. * Manfred Spraul <manfred@colorfullife.com>
  1622. */
  1623. prev_state = prev->state;
  1624. finish_arch_switch(prev);
  1625. finish_lock_switch(rq, prev);
  1626. fire_sched_in_preempt_notifiers(current);
  1627. if (mm)
  1628. mmdrop(mm);
  1629. if (unlikely(prev_state == TASK_DEAD)) {
  1630. /*
  1631. * Remove function-return probe instances associated with this
  1632. * task and put them back on the free list.
  1633. */
  1634. kprobe_flush_task(prev);
  1635. put_task_struct(prev);
  1636. }
  1637. }
  1638. /**
  1639. * schedule_tail - first thing a freshly forked thread must call.
  1640. * @prev: the thread we just switched away from.
  1641. */
  1642. asmlinkage void schedule_tail(struct task_struct *prev)
  1643. __releases(rq->lock)
  1644. {
  1645. struct rq *rq = this_rq();
  1646. finish_task_switch(rq, prev);
  1647. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1648. /* In this case, finish_task_switch does not reenable preemption */
  1649. preempt_enable();
  1650. #endif
  1651. if (current->set_child_tid)
  1652. put_user(task_pid_vnr(current), current->set_child_tid);
  1653. }
  1654. /*
  1655. * context_switch - switch to the new MM and the new
  1656. * thread's register state.
  1657. */
  1658. static inline void
  1659. context_switch(struct rq *rq, struct task_struct *prev,
  1660. struct task_struct *next)
  1661. {
  1662. struct mm_struct *mm, *oldmm;
  1663. prepare_task_switch(rq, prev, next);
  1664. mm = next->mm;
  1665. oldmm = prev->active_mm;
  1666. /*
  1667. * For paravirt, this is coupled with an exit in switch_to to
  1668. * combine the page table reload and the switch backend into
  1669. * one hypercall.
  1670. */
  1671. arch_enter_lazy_cpu_mode();
  1672. if (unlikely(!mm)) {
  1673. next->active_mm = oldmm;
  1674. atomic_inc(&oldmm->mm_count);
  1675. enter_lazy_tlb(oldmm, next);
  1676. } else
  1677. switch_mm(oldmm, mm, next);
  1678. if (unlikely(!prev->mm)) {
  1679. prev->active_mm = NULL;
  1680. rq->prev_mm = oldmm;
  1681. }
  1682. /*
  1683. * Since the runqueue lock will be released by the next
  1684. * task (which is an invalid locking op but in the case
  1685. * of the scheduler it's an obvious special-case), so we
  1686. * do an early lockdep release here:
  1687. */
  1688. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1689. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1690. #endif
  1691. /* Here we just switch the register state and the stack. */
  1692. switch_to(prev, next, prev);
  1693. barrier();
  1694. /*
  1695. * this_rq must be evaluated again because prev may have moved
  1696. * CPUs since it called schedule(), thus the 'rq' on its stack
  1697. * frame will be invalid.
  1698. */
  1699. finish_task_switch(this_rq(), prev);
  1700. }
  1701. /*
  1702. * nr_running, nr_uninterruptible and nr_context_switches:
  1703. *
  1704. * externally visible scheduler statistics: current number of runnable
  1705. * threads, current number of uninterruptible-sleeping threads, total
  1706. * number of context switches performed since bootup.
  1707. */
  1708. unsigned long nr_running(void)
  1709. {
  1710. unsigned long i, sum = 0;
  1711. for_each_online_cpu(i)
  1712. sum += cpu_rq(i)->nr_running;
  1713. return sum;
  1714. }
  1715. unsigned long nr_uninterruptible(void)
  1716. {
  1717. unsigned long i, sum = 0;
  1718. for_each_possible_cpu(i)
  1719. sum += cpu_rq(i)->nr_uninterruptible;
  1720. /*
  1721. * Since we read the counters lockless, it might be slightly
  1722. * inaccurate. Do not allow it to go below zero though:
  1723. */
  1724. if (unlikely((long)sum < 0))
  1725. sum = 0;
  1726. return sum;
  1727. }
  1728. unsigned long long nr_context_switches(void)
  1729. {
  1730. int i;
  1731. unsigned long long sum = 0;
  1732. for_each_possible_cpu(i)
  1733. sum += cpu_rq(i)->nr_switches;
  1734. return sum;
  1735. }
  1736. unsigned long nr_iowait(void)
  1737. {
  1738. unsigned long i, sum = 0;
  1739. for_each_possible_cpu(i)
  1740. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1741. return sum;
  1742. }
  1743. unsigned long nr_active(void)
  1744. {
  1745. unsigned long i, running = 0, uninterruptible = 0;
  1746. for_each_online_cpu(i) {
  1747. running += cpu_rq(i)->nr_running;
  1748. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1749. }
  1750. if (unlikely((long)uninterruptible < 0))
  1751. uninterruptible = 0;
  1752. return running + uninterruptible;
  1753. }
  1754. /*
  1755. * Update rq->cpu_load[] statistics. This function is usually called every
  1756. * scheduler tick (TICK_NSEC).
  1757. */
  1758. static void update_cpu_load(struct rq *this_rq)
  1759. {
  1760. unsigned long this_load = this_rq->load.weight;
  1761. int i, scale;
  1762. this_rq->nr_load_updates++;
  1763. /* Update our load: */
  1764. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1765. unsigned long old_load, new_load;
  1766. /* scale is effectively 1 << i now, and >> i divides by scale */
  1767. old_load = this_rq->cpu_load[i];
  1768. new_load = this_load;
  1769. /*
  1770. * Round up the averaging division if load is increasing. This
  1771. * prevents us from getting stuck on 9 if the load is 10, for
  1772. * example.
  1773. */
  1774. if (new_load > old_load)
  1775. new_load += scale-1;
  1776. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1777. }
  1778. }
  1779. #ifdef CONFIG_SMP
  1780. /*
  1781. * double_rq_lock - safely lock two runqueues
  1782. *
  1783. * Note this does not disable interrupts like task_rq_lock,
  1784. * you need to do so manually before calling.
  1785. */
  1786. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1787. __acquires(rq1->lock)
  1788. __acquires(rq2->lock)
  1789. {
  1790. BUG_ON(!irqs_disabled());
  1791. if (rq1 == rq2) {
  1792. spin_lock(&rq1->lock);
  1793. __acquire(rq2->lock); /* Fake it out ;) */
  1794. } else {
  1795. if (rq1 < rq2) {
  1796. spin_lock(&rq1->lock);
  1797. spin_lock(&rq2->lock);
  1798. } else {
  1799. spin_lock(&rq2->lock);
  1800. spin_lock(&rq1->lock);
  1801. }
  1802. }
  1803. update_rq_clock(rq1);
  1804. update_rq_clock(rq2);
  1805. }
  1806. /*
  1807. * double_rq_unlock - safely unlock two runqueues
  1808. *
  1809. * Note this does not restore interrupts like task_rq_unlock,
  1810. * you need to do so manually after calling.
  1811. */
  1812. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1813. __releases(rq1->lock)
  1814. __releases(rq2->lock)
  1815. {
  1816. spin_unlock(&rq1->lock);
  1817. if (rq1 != rq2)
  1818. spin_unlock(&rq2->lock);
  1819. else
  1820. __release(rq2->lock);
  1821. }
  1822. /*
  1823. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1824. */
  1825. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1826. __releases(this_rq->lock)
  1827. __acquires(busiest->lock)
  1828. __acquires(this_rq->lock)
  1829. {
  1830. if (unlikely(!irqs_disabled())) {
  1831. /* printk() doesn't work good under rq->lock */
  1832. spin_unlock(&this_rq->lock);
  1833. BUG_ON(1);
  1834. }
  1835. if (unlikely(!spin_trylock(&busiest->lock))) {
  1836. if (busiest < this_rq) {
  1837. spin_unlock(&this_rq->lock);
  1838. spin_lock(&busiest->lock);
  1839. spin_lock(&this_rq->lock);
  1840. } else
  1841. spin_lock(&busiest->lock);
  1842. }
  1843. }
  1844. /*
  1845. * If dest_cpu is allowed for this process, migrate the task to it.
  1846. * This is accomplished by forcing the cpu_allowed mask to only
  1847. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1848. * the cpu_allowed mask is restored.
  1849. */
  1850. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1851. {
  1852. struct migration_req req;
  1853. unsigned long flags;
  1854. struct rq *rq;
  1855. rq = task_rq_lock(p, &flags);
  1856. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1857. || unlikely(cpu_is_offline(dest_cpu)))
  1858. goto out;
  1859. /* force the process onto the specified CPU */
  1860. if (migrate_task(p, dest_cpu, &req)) {
  1861. /* Need to wait for migration thread (might exit: take ref). */
  1862. struct task_struct *mt = rq->migration_thread;
  1863. get_task_struct(mt);
  1864. task_rq_unlock(rq, &flags);
  1865. wake_up_process(mt);
  1866. put_task_struct(mt);
  1867. wait_for_completion(&req.done);
  1868. return;
  1869. }
  1870. out:
  1871. task_rq_unlock(rq, &flags);
  1872. }
  1873. /*
  1874. * sched_exec - execve() is a valuable balancing opportunity, because at
  1875. * this point the task has the smallest effective memory and cache footprint.
  1876. */
  1877. void sched_exec(void)
  1878. {
  1879. int new_cpu, this_cpu = get_cpu();
  1880. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1881. put_cpu();
  1882. if (new_cpu != this_cpu)
  1883. sched_migrate_task(current, new_cpu);
  1884. }
  1885. /*
  1886. * pull_task - move a task from a remote runqueue to the local runqueue.
  1887. * Both runqueues must be locked.
  1888. */
  1889. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1890. struct rq *this_rq, int this_cpu)
  1891. {
  1892. deactivate_task(src_rq, p, 0);
  1893. set_task_cpu(p, this_cpu);
  1894. activate_task(this_rq, p, 0);
  1895. /*
  1896. * Note that idle threads have a prio of MAX_PRIO, for this test
  1897. * to be always true for them.
  1898. */
  1899. check_preempt_curr(this_rq, p);
  1900. }
  1901. /*
  1902. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1903. */
  1904. static
  1905. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1906. struct sched_domain *sd, enum cpu_idle_type idle,
  1907. int *all_pinned)
  1908. {
  1909. /*
  1910. * We do not migrate tasks that are:
  1911. * 1) running (obviously), or
  1912. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1913. * 3) are cache-hot on their current CPU.
  1914. */
  1915. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1916. schedstat_inc(p, se.nr_failed_migrations_affine);
  1917. return 0;
  1918. }
  1919. *all_pinned = 0;
  1920. if (task_running(rq, p)) {
  1921. schedstat_inc(p, se.nr_failed_migrations_running);
  1922. return 0;
  1923. }
  1924. /*
  1925. * Aggressive migration if:
  1926. * 1) task is cache cold, or
  1927. * 2) too many balance attempts have failed.
  1928. */
  1929. if (!task_hot(p, rq->clock, sd) ||
  1930. sd->nr_balance_failed > sd->cache_nice_tries) {
  1931. #ifdef CONFIG_SCHEDSTATS
  1932. if (task_hot(p, rq->clock, sd)) {
  1933. schedstat_inc(sd, lb_hot_gained[idle]);
  1934. schedstat_inc(p, se.nr_forced_migrations);
  1935. }
  1936. #endif
  1937. return 1;
  1938. }
  1939. if (task_hot(p, rq->clock, sd)) {
  1940. schedstat_inc(p, se.nr_failed_migrations_hot);
  1941. return 0;
  1942. }
  1943. return 1;
  1944. }
  1945. static unsigned long
  1946. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1947. unsigned long max_load_move, struct sched_domain *sd,
  1948. enum cpu_idle_type idle, int *all_pinned,
  1949. int *this_best_prio, struct rq_iterator *iterator)
  1950. {
  1951. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  1952. struct task_struct *p;
  1953. long rem_load_move = max_load_move;
  1954. if (max_load_move == 0)
  1955. goto out;
  1956. pinned = 1;
  1957. /*
  1958. * Start the load-balancing iterator:
  1959. */
  1960. p = iterator->start(iterator->arg);
  1961. next:
  1962. if (!p || loops++ > sysctl_sched_nr_migrate)
  1963. goto out;
  1964. /*
  1965. * To help distribute high priority tasks across CPUs we don't
  1966. * skip a task if it will be the highest priority task (i.e. smallest
  1967. * prio value) on its new queue regardless of its load weight
  1968. */
  1969. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1970. SCHED_LOAD_SCALE_FUZZ;
  1971. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1972. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1973. p = iterator->next(iterator->arg);
  1974. goto next;
  1975. }
  1976. pull_task(busiest, p, this_rq, this_cpu);
  1977. pulled++;
  1978. rem_load_move -= p->se.load.weight;
  1979. /*
  1980. * We only want to steal up to the prescribed amount of weighted load.
  1981. */
  1982. if (rem_load_move > 0) {
  1983. if (p->prio < *this_best_prio)
  1984. *this_best_prio = p->prio;
  1985. p = iterator->next(iterator->arg);
  1986. goto next;
  1987. }
  1988. out:
  1989. /*
  1990. * Right now, this is one of only two places pull_task() is called,
  1991. * so we can safely collect pull_task() stats here rather than
  1992. * inside pull_task().
  1993. */
  1994. schedstat_add(sd, lb_gained[idle], pulled);
  1995. if (all_pinned)
  1996. *all_pinned = pinned;
  1997. return max_load_move - rem_load_move;
  1998. }
  1999. /*
  2000. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2001. * this_rq, as part of a balancing operation within domain "sd".
  2002. * Returns 1 if successful and 0 otherwise.
  2003. *
  2004. * Called with both runqueues locked.
  2005. */
  2006. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2007. unsigned long max_load_move,
  2008. struct sched_domain *sd, enum cpu_idle_type idle,
  2009. int *all_pinned)
  2010. {
  2011. const struct sched_class *class = sched_class_highest;
  2012. unsigned long total_load_moved = 0;
  2013. int this_best_prio = this_rq->curr->prio;
  2014. do {
  2015. total_load_moved +=
  2016. class->load_balance(this_rq, this_cpu, busiest,
  2017. max_load_move - total_load_moved,
  2018. sd, idle, all_pinned, &this_best_prio);
  2019. class = class->next;
  2020. } while (class && max_load_move > total_load_moved);
  2021. return total_load_moved > 0;
  2022. }
  2023. static int
  2024. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2025. struct sched_domain *sd, enum cpu_idle_type idle,
  2026. struct rq_iterator *iterator)
  2027. {
  2028. struct task_struct *p = iterator->start(iterator->arg);
  2029. int pinned = 0;
  2030. while (p) {
  2031. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2032. pull_task(busiest, p, this_rq, this_cpu);
  2033. /*
  2034. * Right now, this is only the second place pull_task()
  2035. * is called, so we can safely collect pull_task()
  2036. * stats here rather than inside pull_task().
  2037. */
  2038. schedstat_inc(sd, lb_gained[idle]);
  2039. return 1;
  2040. }
  2041. p = iterator->next(iterator->arg);
  2042. }
  2043. return 0;
  2044. }
  2045. /*
  2046. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2047. * part of active balancing operations within "domain".
  2048. * Returns 1 if successful and 0 otherwise.
  2049. *
  2050. * Called with both runqueues locked.
  2051. */
  2052. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2053. struct sched_domain *sd, enum cpu_idle_type idle)
  2054. {
  2055. const struct sched_class *class;
  2056. for (class = sched_class_highest; class; class = class->next)
  2057. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2058. return 1;
  2059. return 0;
  2060. }
  2061. /*
  2062. * find_busiest_group finds and returns the busiest CPU group within the
  2063. * domain. It calculates and returns the amount of weighted load which
  2064. * should be moved to restore balance via the imbalance parameter.
  2065. */
  2066. static struct sched_group *
  2067. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2068. unsigned long *imbalance, enum cpu_idle_type idle,
  2069. int *sd_idle, cpumask_t *cpus, int *balance)
  2070. {
  2071. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2072. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2073. unsigned long max_pull;
  2074. unsigned long busiest_load_per_task, busiest_nr_running;
  2075. unsigned long this_load_per_task, this_nr_running;
  2076. int load_idx, group_imb = 0;
  2077. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2078. int power_savings_balance = 1;
  2079. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2080. unsigned long min_nr_running = ULONG_MAX;
  2081. struct sched_group *group_min = NULL, *group_leader = NULL;
  2082. #endif
  2083. max_load = this_load = total_load = total_pwr = 0;
  2084. busiest_load_per_task = busiest_nr_running = 0;
  2085. this_load_per_task = this_nr_running = 0;
  2086. if (idle == CPU_NOT_IDLE)
  2087. load_idx = sd->busy_idx;
  2088. else if (idle == CPU_NEWLY_IDLE)
  2089. load_idx = sd->newidle_idx;
  2090. else
  2091. load_idx = sd->idle_idx;
  2092. do {
  2093. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2094. int local_group;
  2095. int i;
  2096. int __group_imb = 0;
  2097. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2098. unsigned long sum_nr_running, sum_weighted_load;
  2099. local_group = cpu_isset(this_cpu, group->cpumask);
  2100. if (local_group)
  2101. balance_cpu = first_cpu(group->cpumask);
  2102. /* Tally up the load of all CPUs in the group */
  2103. sum_weighted_load = sum_nr_running = avg_load = 0;
  2104. max_cpu_load = 0;
  2105. min_cpu_load = ~0UL;
  2106. for_each_cpu_mask(i, group->cpumask) {
  2107. struct rq *rq;
  2108. if (!cpu_isset(i, *cpus))
  2109. continue;
  2110. rq = cpu_rq(i);
  2111. if (*sd_idle && rq->nr_running)
  2112. *sd_idle = 0;
  2113. /* Bias balancing toward cpus of our domain */
  2114. if (local_group) {
  2115. if (idle_cpu(i) && !first_idle_cpu) {
  2116. first_idle_cpu = 1;
  2117. balance_cpu = i;
  2118. }
  2119. load = target_load(i, load_idx);
  2120. } else {
  2121. load = source_load(i, load_idx);
  2122. if (load > max_cpu_load)
  2123. max_cpu_load = load;
  2124. if (min_cpu_load > load)
  2125. min_cpu_load = load;
  2126. }
  2127. avg_load += load;
  2128. sum_nr_running += rq->nr_running;
  2129. sum_weighted_load += weighted_cpuload(i);
  2130. }
  2131. /*
  2132. * First idle cpu or the first cpu(busiest) in this sched group
  2133. * is eligible for doing load balancing at this and above
  2134. * domains. In the newly idle case, we will allow all the cpu's
  2135. * to do the newly idle load balance.
  2136. */
  2137. if (idle != CPU_NEWLY_IDLE && local_group &&
  2138. balance_cpu != this_cpu && balance) {
  2139. *balance = 0;
  2140. goto ret;
  2141. }
  2142. total_load += avg_load;
  2143. total_pwr += group->__cpu_power;
  2144. /* Adjust by relative CPU power of the group */
  2145. avg_load = sg_div_cpu_power(group,
  2146. avg_load * SCHED_LOAD_SCALE);
  2147. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2148. __group_imb = 1;
  2149. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2150. if (local_group) {
  2151. this_load = avg_load;
  2152. this = group;
  2153. this_nr_running = sum_nr_running;
  2154. this_load_per_task = sum_weighted_load;
  2155. } else if (avg_load > max_load &&
  2156. (sum_nr_running > group_capacity || __group_imb)) {
  2157. max_load = avg_load;
  2158. busiest = group;
  2159. busiest_nr_running = sum_nr_running;
  2160. busiest_load_per_task = sum_weighted_load;
  2161. group_imb = __group_imb;
  2162. }
  2163. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2164. /*
  2165. * Busy processors will not participate in power savings
  2166. * balance.
  2167. */
  2168. if (idle == CPU_NOT_IDLE ||
  2169. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2170. goto group_next;
  2171. /*
  2172. * If the local group is idle or completely loaded
  2173. * no need to do power savings balance at this domain
  2174. */
  2175. if (local_group && (this_nr_running >= group_capacity ||
  2176. !this_nr_running))
  2177. power_savings_balance = 0;
  2178. /*
  2179. * If a group is already running at full capacity or idle,
  2180. * don't include that group in power savings calculations
  2181. */
  2182. if (!power_savings_balance || sum_nr_running >= group_capacity
  2183. || !sum_nr_running)
  2184. goto group_next;
  2185. /*
  2186. * Calculate the group which has the least non-idle load.
  2187. * This is the group from where we need to pick up the load
  2188. * for saving power
  2189. */
  2190. if ((sum_nr_running < min_nr_running) ||
  2191. (sum_nr_running == min_nr_running &&
  2192. first_cpu(group->cpumask) <
  2193. first_cpu(group_min->cpumask))) {
  2194. group_min = group;
  2195. min_nr_running = sum_nr_running;
  2196. min_load_per_task = sum_weighted_load /
  2197. sum_nr_running;
  2198. }
  2199. /*
  2200. * Calculate the group which is almost near its
  2201. * capacity but still has some space to pick up some load
  2202. * from other group and save more power
  2203. */
  2204. if (sum_nr_running <= group_capacity - 1) {
  2205. if (sum_nr_running > leader_nr_running ||
  2206. (sum_nr_running == leader_nr_running &&
  2207. first_cpu(group->cpumask) >
  2208. first_cpu(group_leader->cpumask))) {
  2209. group_leader = group;
  2210. leader_nr_running = sum_nr_running;
  2211. }
  2212. }
  2213. group_next:
  2214. #endif
  2215. group = group->next;
  2216. } while (group != sd->groups);
  2217. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2218. goto out_balanced;
  2219. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2220. if (this_load >= avg_load ||
  2221. 100*max_load <= sd->imbalance_pct*this_load)
  2222. goto out_balanced;
  2223. busiest_load_per_task /= busiest_nr_running;
  2224. if (group_imb)
  2225. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2226. /*
  2227. * We're trying to get all the cpus to the average_load, so we don't
  2228. * want to push ourselves above the average load, nor do we wish to
  2229. * reduce the max loaded cpu below the average load, as either of these
  2230. * actions would just result in more rebalancing later, and ping-pong
  2231. * tasks around. Thus we look for the minimum possible imbalance.
  2232. * Negative imbalances (*we* are more loaded than anyone else) will
  2233. * be counted as no imbalance for these purposes -- we can't fix that
  2234. * by pulling tasks to us. Be careful of negative numbers as they'll
  2235. * appear as very large values with unsigned longs.
  2236. */
  2237. if (max_load <= busiest_load_per_task)
  2238. goto out_balanced;
  2239. /*
  2240. * In the presence of smp nice balancing, certain scenarios can have
  2241. * max load less than avg load(as we skip the groups at or below
  2242. * its cpu_power, while calculating max_load..)
  2243. */
  2244. if (max_load < avg_load) {
  2245. *imbalance = 0;
  2246. goto small_imbalance;
  2247. }
  2248. /* Don't want to pull so many tasks that a group would go idle */
  2249. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2250. /* How much load to actually move to equalise the imbalance */
  2251. *imbalance = min(max_pull * busiest->__cpu_power,
  2252. (avg_load - this_load) * this->__cpu_power)
  2253. / SCHED_LOAD_SCALE;
  2254. /*
  2255. * if *imbalance is less than the average load per runnable task
  2256. * there is no gaurantee that any tasks will be moved so we'll have
  2257. * a think about bumping its value to force at least one task to be
  2258. * moved
  2259. */
  2260. if (*imbalance < busiest_load_per_task) {
  2261. unsigned long tmp, pwr_now, pwr_move;
  2262. unsigned int imbn;
  2263. small_imbalance:
  2264. pwr_move = pwr_now = 0;
  2265. imbn = 2;
  2266. if (this_nr_running) {
  2267. this_load_per_task /= this_nr_running;
  2268. if (busiest_load_per_task > this_load_per_task)
  2269. imbn = 1;
  2270. } else
  2271. this_load_per_task = SCHED_LOAD_SCALE;
  2272. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2273. busiest_load_per_task * imbn) {
  2274. *imbalance = busiest_load_per_task;
  2275. return busiest;
  2276. }
  2277. /*
  2278. * OK, we don't have enough imbalance to justify moving tasks,
  2279. * however we may be able to increase total CPU power used by
  2280. * moving them.
  2281. */
  2282. pwr_now += busiest->__cpu_power *
  2283. min(busiest_load_per_task, max_load);
  2284. pwr_now += this->__cpu_power *
  2285. min(this_load_per_task, this_load);
  2286. pwr_now /= SCHED_LOAD_SCALE;
  2287. /* Amount of load we'd subtract */
  2288. tmp = sg_div_cpu_power(busiest,
  2289. busiest_load_per_task * SCHED_LOAD_SCALE);
  2290. if (max_load > tmp)
  2291. pwr_move += busiest->__cpu_power *
  2292. min(busiest_load_per_task, max_load - tmp);
  2293. /* Amount of load we'd add */
  2294. if (max_load * busiest->__cpu_power <
  2295. busiest_load_per_task * SCHED_LOAD_SCALE)
  2296. tmp = sg_div_cpu_power(this,
  2297. max_load * busiest->__cpu_power);
  2298. else
  2299. tmp = sg_div_cpu_power(this,
  2300. busiest_load_per_task * SCHED_LOAD_SCALE);
  2301. pwr_move += this->__cpu_power *
  2302. min(this_load_per_task, this_load + tmp);
  2303. pwr_move /= SCHED_LOAD_SCALE;
  2304. /* Move if we gain throughput */
  2305. if (pwr_move > pwr_now)
  2306. *imbalance = busiest_load_per_task;
  2307. }
  2308. return busiest;
  2309. out_balanced:
  2310. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2311. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2312. goto ret;
  2313. if (this == group_leader && group_leader != group_min) {
  2314. *imbalance = min_load_per_task;
  2315. return group_min;
  2316. }
  2317. #endif
  2318. ret:
  2319. *imbalance = 0;
  2320. return NULL;
  2321. }
  2322. /*
  2323. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2324. */
  2325. static struct rq *
  2326. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2327. unsigned long imbalance, cpumask_t *cpus)
  2328. {
  2329. struct rq *busiest = NULL, *rq;
  2330. unsigned long max_load = 0;
  2331. int i;
  2332. for_each_cpu_mask(i, group->cpumask) {
  2333. unsigned long wl;
  2334. if (!cpu_isset(i, *cpus))
  2335. continue;
  2336. rq = cpu_rq(i);
  2337. wl = weighted_cpuload(i);
  2338. if (rq->nr_running == 1 && wl > imbalance)
  2339. continue;
  2340. if (wl > max_load) {
  2341. max_load = wl;
  2342. busiest = rq;
  2343. }
  2344. }
  2345. return busiest;
  2346. }
  2347. /*
  2348. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2349. * so long as it is large enough.
  2350. */
  2351. #define MAX_PINNED_INTERVAL 512
  2352. /*
  2353. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2354. * tasks if there is an imbalance.
  2355. */
  2356. static int load_balance(int this_cpu, struct rq *this_rq,
  2357. struct sched_domain *sd, enum cpu_idle_type idle,
  2358. int *balance)
  2359. {
  2360. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2361. struct sched_group *group;
  2362. unsigned long imbalance;
  2363. struct rq *busiest;
  2364. cpumask_t cpus = CPU_MASK_ALL;
  2365. unsigned long flags;
  2366. /*
  2367. * When power savings policy is enabled for the parent domain, idle
  2368. * sibling can pick up load irrespective of busy siblings. In this case,
  2369. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2370. * portraying it as CPU_NOT_IDLE.
  2371. */
  2372. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2373. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2374. sd_idle = 1;
  2375. schedstat_inc(sd, lb_count[idle]);
  2376. redo:
  2377. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2378. &cpus, balance);
  2379. if (*balance == 0)
  2380. goto out_balanced;
  2381. if (!group) {
  2382. schedstat_inc(sd, lb_nobusyg[idle]);
  2383. goto out_balanced;
  2384. }
  2385. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2386. if (!busiest) {
  2387. schedstat_inc(sd, lb_nobusyq[idle]);
  2388. goto out_balanced;
  2389. }
  2390. BUG_ON(busiest == this_rq);
  2391. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2392. ld_moved = 0;
  2393. if (busiest->nr_running > 1) {
  2394. /*
  2395. * Attempt to move tasks. If find_busiest_group has found
  2396. * an imbalance but busiest->nr_running <= 1, the group is
  2397. * still unbalanced. ld_moved simply stays zero, so it is
  2398. * correctly treated as an imbalance.
  2399. */
  2400. local_irq_save(flags);
  2401. double_rq_lock(this_rq, busiest);
  2402. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2403. imbalance, sd, idle, &all_pinned);
  2404. double_rq_unlock(this_rq, busiest);
  2405. local_irq_restore(flags);
  2406. /*
  2407. * some other cpu did the load balance for us.
  2408. */
  2409. if (ld_moved && this_cpu != smp_processor_id())
  2410. resched_cpu(this_cpu);
  2411. /* All tasks on this runqueue were pinned by CPU affinity */
  2412. if (unlikely(all_pinned)) {
  2413. cpu_clear(cpu_of(busiest), cpus);
  2414. if (!cpus_empty(cpus))
  2415. goto redo;
  2416. goto out_balanced;
  2417. }
  2418. }
  2419. if (!ld_moved) {
  2420. schedstat_inc(sd, lb_failed[idle]);
  2421. sd->nr_balance_failed++;
  2422. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2423. spin_lock_irqsave(&busiest->lock, flags);
  2424. /* don't kick the migration_thread, if the curr
  2425. * task on busiest cpu can't be moved to this_cpu
  2426. */
  2427. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2428. spin_unlock_irqrestore(&busiest->lock, flags);
  2429. all_pinned = 1;
  2430. goto out_one_pinned;
  2431. }
  2432. if (!busiest->active_balance) {
  2433. busiest->active_balance = 1;
  2434. busiest->push_cpu = this_cpu;
  2435. active_balance = 1;
  2436. }
  2437. spin_unlock_irqrestore(&busiest->lock, flags);
  2438. if (active_balance)
  2439. wake_up_process(busiest->migration_thread);
  2440. /*
  2441. * We've kicked active balancing, reset the failure
  2442. * counter.
  2443. */
  2444. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2445. }
  2446. } else
  2447. sd->nr_balance_failed = 0;
  2448. if (likely(!active_balance)) {
  2449. /* We were unbalanced, so reset the balancing interval */
  2450. sd->balance_interval = sd->min_interval;
  2451. } else {
  2452. /*
  2453. * If we've begun active balancing, start to back off. This
  2454. * case may not be covered by the all_pinned logic if there
  2455. * is only 1 task on the busy runqueue (because we don't call
  2456. * move_tasks).
  2457. */
  2458. if (sd->balance_interval < sd->max_interval)
  2459. sd->balance_interval *= 2;
  2460. }
  2461. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2462. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2463. return -1;
  2464. return ld_moved;
  2465. out_balanced:
  2466. schedstat_inc(sd, lb_balanced[idle]);
  2467. sd->nr_balance_failed = 0;
  2468. out_one_pinned:
  2469. /* tune up the balancing interval */
  2470. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2471. (sd->balance_interval < sd->max_interval))
  2472. sd->balance_interval *= 2;
  2473. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2474. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2475. return -1;
  2476. return 0;
  2477. }
  2478. /*
  2479. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2480. * tasks if there is an imbalance.
  2481. *
  2482. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2483. * this_rq is locked.
  2484. */
  2485. static int
  2486. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2487. {
  2488. struct sched_group *group;
  2489. struct rq *busiest = NULL;
  2490. unsigned long imbalance;
  2491. int ld_moved = 0;
  2492. int sd_idle = 0;
  2493. int all_pinned = 0;
  2494. cpumask_t cpus = CPU_MASK_ALL;
  2495. /*
  2496. * When power savings policy is enabled for the parent domain, idle
  2497. * sibling can pick up load irrespective of busy siblings. In this case,
  2498. * let the state of idle sibling percolate up as IDLE, instead of
  2499. * portraying it as CPU_NOT_IDLE.
  2500. */
  2501. if (sd->flags & SD_SHARE_CPUPOWER &&
  2502. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2503. sd_idle = 1;
  2504. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2505. redo:
  2506. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2507. &sd_idle, &cpus, NULL);
  2508. if (!group) {
  2509. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2510. goto out_balanced;
  2511. }
  2512. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2513. &cpus);
  2514. if (!busiest) {
  2515. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2516. goto out_balanced;
  2517. }
  2518. BUG_ON(busiest == this_rq);
  2519. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2520. ld_moved = 0;
  2521. if (busiest->nr_running > 1) {
  2522. /* Attempt to move tasks */
  2523. double_lock_balance(this_rq, busiest);
  2524. /* this_rq->clock is already updated */
  2525. update_rq_clock(busiest);
  2526. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2527. imbalance, sd, CPU_NEWLY_IDLE,
  2528. &all_pinned);
  2529. spin_unlock(&busiest->lock);
  2530. if (unlikely(all_pinned)) {
  2531. cpu_clear(cpu_of(busiest), cpus);
  2532. if (!cpus_empty(cpus))
  2533. goto redo;
  2534. }
  2535. }
  2536. if (!ld_moved) {
  2537. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2538. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2539. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2540. return -1;
  2541. } else
  2542. sd->nr_balance_failed = 0;
  2543. return ld_moved;
  2544. out_balanced:
  2545. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2546. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2547. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2548. return -1;
  2549. sd->nr_balance_failed = 0;
  2550. return 0;
  2551. }
  2552. /*
  2553. * idle_balance is called by schedule() if this_cpu is about to become
  2554. * idle. Attempts to pull tasks from other CPUs.
  2555. */
  2556. static void idle_balance(int this_cpu, struct rq *this_rq)
  2557. {
  2558. struct sched_domain *sd;
  2559. int pulled_task = -1;
  2560. unsigned long next_balance = jiffies + HZ;
  2561. for_each_domain(this_cpu, sd) {
  2562. unsigned long interval;
  2563. if (!(sd->flags & SD_LOAD_BALANCE))
  2564. continue;
  2565. if (sd->flags & SD_BALANCE_NEWIDLE)
  2566. /* If we've pulled tasks over stop searching: */
  2567. pulled_task = load_balance_newidle(this_cpu,
  2568. this_rq, sd);
  2569. interval = msecs_to_jiffies(sd->balance_interval);
  2570. if (time_after(next_balance, sd->last_balance + interval))
  2571. next_balance = sd->last_balance + interval;
  2572. if (pulled_task)
  2573. break;
  2574. }
  2575. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2576. /*
  2577. * We are going idle. next_balance may be set based on
  2578. * a busy processor. So reset next_balance.
  2579. */
  2580. this_rq->next_balance = next_balance;
  2581. }
  2582. }
  2583. /*
  2584. * active_load_balance is run by migration threads. It pushes running tasks
  2585. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2586. * running on each physical CPU where possible, and avoids physical /
  2587. * logical imbalances.
  2588. *
  2589. * Called with busiest_rq locked.
  2590. */
  2591. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2592. {
  2593. int target_cpu = busiest_rq->push_cpu;
  2594. struct sched_domain *sd;
  2595. struct rq *target_rq;
  2596. /* Is there any task to move? */
  2597. if (busiest_rq->nr_running <= 1)
  2598. return;
  2599. target_rq = cpu_rq(target_cpu);
  2600. /*
  2601. * This condition is "impossible", if it occurs
  2602. * we need to fix it. Originally reported by
  2603. * Bjorn Helgaas on a 128-cpu setup.
  2604. */
  2605. BUG_ON(busiest_rq == target_rq);
  2606. /* move a task from busiest_rq to target_rq */
  2607. double_lock_balance(busiest_rq, target_rq);
  2608. update_rq_clock(busiest_rq);
  2609. update_rq_clock(target_rq);
  2610. /* Search for an sd spanning us and the target CPU. */
  2611. for_each_domain(target_cpu, sd) {
  2612. if ((sd->flags & SD_LOAD_BALANCE) &&
  2613. cpu_isset(busiest_cpu, sd->span))
  2614. break;
  2615. }
  2616. if (likely(sd)) {
  2617. schedstat_inc(sd, alb_count);
  2618. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2619. sd, CPU_IDLE))
  2620. schedstat_inc(sd, alb_pushed);
  2621. else
  2622. schedstat_inc(sd, alb_failed);
  2623. }
  2624. spin_unlock(&target_rq->lock);
  2625. }
  2626. #ifdef CONFIG_NO_HZ
  2627. static struct {
  2628. atomic_t load_balancer;
  2629. cpumask_t cpu_mask;
  2630. } nohz ____cacheline_aligned = {
  2631. .load_balancer = ATOMIC_INIT(-1),
  2632. .cpu_mask = CPU_MASK_NONE,
  2633. };
  2634. /*
  2635. * This routine will try to nominate the ilb (idle load balancing)
  2636. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2637. * load balancing on behalf of all those cpus. If all the cpus in the system
  2638. * go into this tickless mode, then there will be no ilb owner (as there is
  2639. * no need for one) and all the cpus will sleep till the next wakeup event
  2640. * arrives...
  2641. *
  2642. * For the ilb owner, tick is not stopped. And this tick will be used
  2643. * for idle load balancing. ilb owner will still be part of
  2644. * nohz.cpu_mask..
  2645. *
  2646. * While stopping the tick, this cpu will become the ilb owner if there
  2647. * is no other owner. And will be the owner till that cpu becomes busy
  2648. * or if all cpus in the system stop their ticks at which point
  2649. * there is no need for ilb owner.
  2650. *
  2651. * When the ilb owner becomes busy, it nominates another owner, during the
  2652. * next busy scheduler_tick()
  2653. */
  2654. int select_nohz_load_balancer(int stop_tick)
  2655. {
  2656. int cpu = smp_processor_id();
  2657. if (stop_tick) {
  2658. cpu_set(cpu, nohz.cpu_mask);
  2659. cpu_rq(cpu)->in_nohz_recently = 1;
  2660. /*
  2661. * If we are going offline and still the leader, give up!
  2662. */
  2663. if (cpu_is_offline(cpu) &&
  2664. atomic_read(&nohz.load_balancer) == cpu) {
  2665. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2666. BUG();
  2667. return 0;
  2668. }
  2669. /* time for ilb owner also to sleep */
  2670. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2671. if (atomic_read(&nohz.load_balancer) == cpu)
  2672. atomic_set(&nohz.load_balancer, -1);
  2673. return 0;
  2674. }
  2675. if (atomic_read(&nohz.load_balancer) == -1) {
  2676. /* make me the ilb owner */
  2677. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2678. return 1;
  2679. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2680. return 1;
  2681. } else {
  2682. if (!cpu_isset(cpu, nohz.cpu_mask))
  2683. return 0;
  2684. cpu_clear(cpu, nohz.cpu_mask);
  2685. if (atomic_read(&nohz.load_balancer) == cpu)
  2686. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2687. BUG();
  2688. }
  2689. return 0;
  2690. }
  2691. #endif
  2692. static DEFINE_SPINLOCK(balancing);
  2693. /*
  2694. * It checks each scheduling domain to see if it is due to be balanced,
  2695. * and initiates a balancing operation if so.
  2696. *
  2697. * Balancing parameters are set up in arch_init_sched_domains.
  2698. */
  2699. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2700. {
  2701. int balance = 1;
  2702. struct rq *rq = cpu_rq(cpu);
  2703. unsigned long interval;
  2704. struct sched_domain *sd;
  2705. /* Earliest time when we have to do rebalance again */
  2706. unsigned long next_balance = jiffies + 60*HZ;
  2707. int update_next_balance = 0;
  2708. for_each_domain(cpu, sd) {
  2709. if (!(sd->flags & SD_LOAD_BALANCE))
  2710. continue;
  2711. interval = sd->balance_interval;
  2712. if (idle != CPU_IDLE)
  2713. interval *= sd->busy_factor;
  2714. /* scale ms to jiffies */
  2715. interval = msecs_to_jiffies(interval);
  2716. if (unlikely(!interval))
  2717. interval = 1;
  2718. if (interval > HZ*NR_CPUS/10)
  2719. interval = HZ*NR_CPUS/10;
  2720. if (sd->flags & SD_SERIALIZE) {
  2721. if (!spin_trylock(&balancing))
  2722. goto out;
  2723. }
  2724. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2725. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2726. /*
  2727. * We've pulled tasks over so either we're no
  2728. * longer idle, or one of our SMT siblings is
  2729. * not idle.
  2730. */
  2731. idle = CPU_NOT_IDLE;
  2732. }
  2733. sd->last_balance = jiffies;
  2734. }
  2735. if (sd->flags & SD_SERIALIZE)
  2736. spin_unlock(&balancing);
  2737. out:
  2738. if (time_after(next_balance, sd->last_balance + interval)) {
  2739. next_balance = sd->last_balance + interval;
  2740. update_next_balance = 1;
  2741. }
  2742. /*
  2743. * Stop the load balance at this level. There is another
  2744. * CPU in our sched group which is doing load balancing more
  2745. * actively.
  2746. */
  2747. if (!balance)
  2748. break;
  2749. }
  2750. /*
  2751. * next_balance will be updated only when there is a need.
  2752. * When the cpu is attached to null domain for ex, it will not be
  2753. * updated.
  2754. */
  2755. if (likely(update_next_balance))
  2756. rq->next_balance = next_balance;
  2757. }
  2758. /*
  2759. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2760. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2761. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2762. */
  2763. static void run_rebalance_domains(struct softirq_action *h)
  2764. {
  2765. int this_cpu = smp_processor_id();
  2766. struct rq *this_rq = cpu_rq(this_cpu);
  2767. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2768. CPU_IDLE : CPU_NOT_IDLE;
  2769. rebalance_domains(this_cpu, idle);
  2770. #ifdef CONFIG_NO_HZ
  2771. /*
  2772. * If this cpu is the owner for idle load balancing, then do the
  2773. * balancing on behalf of the other idle cpus whose ticks are
  2774. * stopped.
  2775. */
  2776. if (this_rq->idle_at_tick &&
  2777. atomic_read(&nohz.load_balancer) == this_cpu) {
  2778. cpumask_t cpus = nohz.cpu_mask;
  2779. struct rq *rq;
  2780. int balance_cpu;
  2781. cpu_clear(this_cpu, cpus);
  2782. for_each_cpu_mask(balance_cpu, cpus) {
  2783. /*
  2784. * If this cpu gets work to do, stop the load balancing
  2785. * work being done for other cpus. Next load
  2786. * balancing owner will pick it up.
  2787. */
  2788. if (need_resched())
  2789. break;
  2790. rebalance_domains(balance_cpu, CPU_IDLE);
  2791. rq = cpu_rq(balance_cpu);
  2792. if (time_after(this_rq->next_balance, rq->next_balance))
  2793. this_rq->next_balance = rq->next_balance;
  2794. }
  2795. }
  2796. #endif
  2797. }
  2798. /*
  2799. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2800. *
  2801. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2802. * idle load balancing owner or decide to stop the periodic load balancing,
  2803. * if the whole system is idle.
  2804. */
  2805. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2806. {
  2807. #ifdef CONFIG_NO_HZ
  2808. /*
  2809. * If we were in the nohz mode recently and busy at the current
  2810. * scheduler tick, then check if we need to nominate new idle
  2811. * load balancer.
  2812. */
  2813. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2814. rq->in_nohz_recently = 0;
  2815. if (atomic_read(&nohz.load_balancer) == cpu) {
  2816. cpu_clear(cpu, nohz.cpu_mask);
  2817. atomic_set(&nohz.load_balancer, -1);
  2818. }
  2819. if (atomic_read(&nohz.load_balancer) == -1) {
  2820. /*
  2821. * simple selection for now: Nominate the
  2822. * first cpu in the nohz list to be the next
  2823. * ilb owner.
  2824. *
  2825. * TBD: Traverse the sched domains and nominate
  2826. * the nearest cpu in the nohz.cpu_mask.
  2827. */
  2828. int ilb = first_cpu(nohz.cpu_mask);
  2829. if (ilb != NR_CPUS)
  2830. resched_cpu(ilb);
  2831. }
  2832. }
  2833. /*
  2834. * If this cpu is idle and doing idle load balancing for all the
  2835. * cpus with ticks stopped, is it time for that to stop?
  2836. */
  2837. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2838. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2839. resched_cpu(cpu);
  2840. return;
  2841. }
  2842. /*
  2843. * If this cpu is idle and the idle load balancing is done by
  2844. * someone else, then no need raise the SCHED_SOFTIRQ
  2845. */
  2846. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2847. cpu_isset(cpu, nohz.cpu_mask))
  2848. return;
  2849. #endif
  2850. if (time_after_eq(jiffies, rq->next_balance))
  2851. raise_softirq(SCHED_SOFTIRQ);
  2852. }
  2853. #else /* CONFIG_SMP */
  2854. /*
  2855. * on UP we do not need to balance between CPUs:
  2856. */
  2857. static inline void idle_balance(int cpu, struct rq *rq)
  2858. {
  2859. }
  2860. #endif
  2861. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2862. EXPORT_PER_CPU_SYMBOL(kstat);
  2863. /*
  2864. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2865. * that have not yet been banked in case the task is currently running.
  2866. */
  2867. unsigned long long task_sched_runtime(struct task_struct *p)
  2868. {
  2869. unsigned long flags;
  2870. u64 ns, delta_exec;
  2871. struct rq *rq;
  2872. rq = task_rq_lock(p, &flags);
  2873. ns = p->se.sum_exec_runtime;
  2874. if (rq->curr == p) {
  2875. update_rq_clock(rq);
  2876. delta_exec = rq->clock - p->se.exec_start;
  2877. if ((s64)delta_exec > 0)
  2878. ns += delta_exec;
  2879. }
  2880. task_rq_unlock(rq, &flags);
  2881. return ns;
  2882. }
  2883. /*
  2884. * Account user cpu time to a process.
  2885. * @p: the process that the cpu time gets accounted to
  2886. * @cputime: the cpu time spent in user space since the last update
  2887. */
  2888. void account_user_time(struct task_struct *p, cputime_t cputime)
  2889. {
  2890. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2891. cputime64_t tmp;
  2892. p->utime = cputime_add(p->utime, cputime);
  2893. /* Add user time to cpustat. */
  2894. tmp = cputime_to_cputime64(cputime);
  2895. if (TASK_NICE(p) > 0)
  2896. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2897. else
  2898. cpustat->user = cputime64_add(cpustat->user, tmp);
  2899. }
  2900. /*
  2901. * Account guest cpu time to a process.
  2902. * @p: the process that the cpu time gets accounted to
  2903. * @cputime: the cpu time spent in virtual machine since the last update
  2904. */
  2905. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2906. {
  2907. cputime64_t tmp;
  2908. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2909. tmp = cputime_to_cputime64(cputime);
  2910. p->utime = cputime_add(p->utime, cputime);
  2911. p->gtime = cputime_add(p->gtime, cputime);
  2912. cpustat->user = cputime64_add(cpustat->user, tmp);
  2913. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2914. }
  2915. /*
  2916. * Account scaled user cpu time to a process.
  2917. * @p: the process that the cpu time gets accounted to
  2918. * @cputime: the cpu time spent in user space since the last update
  2919. */
  2920. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2921. {
  2922. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2923. }
  2924. /*
  2925. * Account system cpu time to a process.
  2926. * @p: the process that the cpu time gets accounted to
  2927. * @hardirq_offset: the offset to subtract from hardirq_count()
  2928. * @cputime: the cpu time spent in kernel space since the last update
  2929. */
  2930. void account_system_time(struct task_struct *p, int hardirq_offset,
  2931. cputime_t cputime)
  2932. {
  2933. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2934. struct rq *rq = this_rq();
  2935. cputime64_t tmp;
  2936. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  2937. return account_guest_time(p, cputime);
  2938. p->stime = cputime_add(p->stime, cputime);
  2939. /* Add system time to cpustat. */
  2940. tmp = cputime_to_cputime64(cputime);
  2941. if (hardirq_count() - hardirq_offset)
  2942. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2943. else if (softirq_count())
  2944. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2945. else if (p != rq->idle)
  2946. cpustat->system = cputime64_add(cpustat->system, tmp);
  2947. else if (atomic_read(&rq->nr_iowait) > 0)
  2948. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2949. else
  2950. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2951. /* Account for system time used */
  2952. acct_update_integrals(p);
  2953. }
  2954. /*
  2955. * Account scaled system cpu time to a process.
  2956. * @p: the process that the cpu time gets accounted to
  2957. * @hardirq_offset: the offset to subtract from hardirq_count()
  2958. * @cputime: the cpu time spent in kernel space since the last update
  2959. */
  2960. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2961. {
  2962. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2963. }
  2964. /*
  2965. * Account for involuntary wait time.
  2966. * @p: the process from which the cpu time has been stolen
  2967. * @steal: the cpu time spent in involuntary wait
  2968. */
  2969. void account_steal_time(struct task_struct *p, cputime_t steal)
  2970. {
  2971. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2972. cputime64_t tmp = cputime_to_cputime64(steal);
  2973. struct rq *rq = this_rq();
  2974. if (p == rq->idle) {
  2975. p->stime = cputime_add(p->stime, steal);
  2976. if (atomic_read(&rq->nr_iowait) > 0)
  2977. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2978. else
  2979. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2980. } else
  2981. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2982. }
  2983. /*
  2984. * This function gets called by the timer code, with HZ frequency.
  2985. * We call it with interrupts disabled.
  2986. *
  2987. * It also gets called by the fork code, when changing the parent's
  2988. * timeslices.
  2989. */
  2990. void scheduler_tick(void)
  2991. {
  2992. int cpu = smp_processor_id();
  2993. struct rq *rq = cpu_rq(cpu);
  2994. struct task_struct *curr = rq->curr;
  2995. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2996. spin_lock(&rq->lock);
  2997. __update_rq_clock(rq);
  2998. /*
  2999. * Let rq->clock advance by at least TICK_NSEC:
  3000. */
  3001. if (unlikely(rq->clock < next_tick))
  3002. rq->clock = next_tick;
  3003. rq->tick_timestamp = rq->clock;
  3004. update_cpu_load(rq);
  3005. if (curr != rq->idle) /* FIXME: needed? */
  3006. curr->sched_class->task_tick(rq, curr);
  3007. spin_unlock(&rq->lock);
  3008. #ifdef CONFIG_SMP
  3009. rq->idle_at_tick = idle_cpu(cpu);
  3010. trigger_load_balance(rq, cpu);
  3011. #endif
  3012. }
  3013. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3014. void fastcall add_preempt_count(int val)
  3015. {
  3016. /*
  3017. * Underflow?
  3018. */
  3019. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3020. return;
  3021. preempt_count() += val;
  3022. /*
  3023. * Spinlock count overflowing soon?
  3024. */
  3025. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3026. PREEMPT_MASK - 10);
  3027. }
  3028. EXPORT_SYMBOL(add_preempt_count);
  3029. void fastcall sub_preempt_count(int val)
  3030. {
  3031. /*
  3032. * Underflow?
  3033. */
  3034. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3035. return;
  3036. /*
  3037. * Is the spinlock portion underflowing?
  3038. */
  3039. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3040. !(preempt_count() & PREEMPT_MASK)))
  3041. return;
  3042. preempt_count() -= val;
  3043. }
  3044. EXPORT_SYMBOL(sub_preempt_count);
  3045. #endif
  3046. /*
  3047. * Print scheduling while atomic bug:
  3048. */
  3049. static noinline void __schedule_bug(struct task_struct *prev)
  3050. {
  3051. struct pt_regs *regs = get_irq_regs();
  3052. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3053. prev->comm, prev->pid, preempt_count());
  3054. debug_show_held_locks(prev);
  3055. if (irqs_disabled())
  3056. print_irqtrace_events(prev);
  3057. if (regs)
  3058. show_regs(regs);
  3059. else
  3060. dump_stack();
  3061. }
  3062. /*
  3063. * Various schedule()-time debugging checks and statistics:
  3064. */
  3065. static inline void schedule_debug(struct task_struct *prev)
  3066. {
  3067. /*
  3068. * Test if we are atomic. Since do_exit() needs to call into
  3069. * schedule() atomically, we ignore that path for now.
  3070. * Otherwise, whine if we are scheduling when we should not be.
  3071. */
  3072. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3073. __schedule_bug(prev);
  3074. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3075. schedstat_inc(this_rq(), sched_count);
  3076. #ifdef CONFIG_SCHEDSTATS
  3077. if (unlikely(prev->lock_depth >= 0)) {
  3078. schedstat_inc(this_rq(), bkl_count);
  3079. schedstat_inc(prev, sched_info.bkl_count);
  3080. }
  3081. #endif
  3082. }
  3083. /*
  3084. * Pick up the highest-prio task:
  3085. */
  3086. static inline struct task_struct *
  3087. pick_next_task(struct rq *rq, struct task_struct *prev)
  3088. {
  3089. const struct sched_class *class;
  3090. struct task_struct *p;
  3091. /*
  3092. * Optimization: we know that if all tasks are in
  3093. * the fair class we can call that function directly:
  3094. */
  3095. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3096. p = fair_sched_class.pick_next_task(rq);
  3097. if (likely(p))
  3098. return p;
  3099. }
  3100. class = sched_class_highest;
  3101. for ( ; ; ) {
  3102. p = class->pick_next_task(rq);
  3103. if (p)
  3104. return p;
  3105. /*
  3106. * Will never be NULL as the idle class always
  3107. * returns a non-NULL p:
  3108. */
  3109. class = class->next;
  3110. }
  3111. }
  3112. /*
  3113. * schedule() is the main scheduler function.
  3114. */
  3115. asmlinkage void __sched schedule(void)
  3116. {
  3117. struct task_struct *prev, *next;
  3118. long *switch_count;
  3119. struct rq *rq;
  3120. int cpu;
  3121. need_resched:
  3122. preempt_disable();
  3123. cpu = smp_processor_id();
  3124. rq = cpu_rq(cpu);
  3125. rcu_qsctr_inc(cpu);
  3126. prev = rq->curr;
  3127. switch_count = &prev->nivcsw;
  3128. release_kernel_lock(prev);
  3129. need_resched_nonpreemptible:
  3130. schedule_debug(prev);
  3131. /*
  3132. * Do the rq-clock update outside the rq lock:
  3133. */
  3134. local_irq_disable();
  3135. __update_rq_clock(rq);
  3136. spin_lock(&rq->lock);
  3137. clear_tsk_need_resched(prev);
  3138. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3139. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3140. unlikely(signal_pending(prev)))) {
  3141. prev->state = TASK_RUNNING;
  3142. } else {
  3143. deactivate_task(rq, prev, 1);
  3144. }
  3145. switch_count = &prev->nvcsw;
  3146. }
  3147. if (unlikely(!rq->nr_running))
  3148. idle_balance(cpu, rq);
  3149. prev->sched_class->put_prev_task(rq, prev);
  3150. next = pick_next_task(rq, prev);
  3151. sched_info_switch(prev, next);
  3152. if (likely(prev != next)) {
  3153. rq->nr_switches++;
  3154. rq->curr = next;
  3155. ++*switch_count;
  3156. context_switch(rq, prev, next); /* unlocks the rq */
  3157. } else
  3158. spin_unlock_irq(&rq->lock);
  3159. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3160. cpu = smp_processor_id();
  3161. rq = cpu_rq(cpu);
  3162. goto need_resched_nonpreemptible;
  3163. }
  3164. preempt_enable_no_resched();
  3165. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3166. goto need_resched;
  3167. }
  3168. EXPORT_SYMBOL(schedule);
  3169. #ifdef CONFIG_PREEMPT
  3170. /*
  3171. * this is the entry point to schedule() from in-kernel preemption
  3172. * off of preempt_enable. Kernel preemptions off return from interrupt
  3173. * occur there and call schedule directly.
  3174. */
  3175. asmlinkage void __sched preempt_schedule(void)
  3176. {
  3177. struct thread_info *ti = current_thread_info();
  3178. #ifdef CONFIG_PREEMPT_BKL
  3179. struct task_struct *task = current;
  3180. int saved_lock_depth;
  3181. #endif
  3182. /*
  3183. * If there is a non-zero preempt_count or interrupts are disabled,
  3184. * we do not want to preempt the current task. Just return..
  3185. */
  3186. if (likely(ti->preempt_count || irqs_disabled()))
  3187. return;
  3188. do {
  3189. add_preempt_count(PREEMPT_ACTIVE);
  3190. /*
  3191. * We keep the big kernel semaphore locked, but we
  3192. * clear ->lock_depth so that schedule() doesnt
  3193. * auto-release the semaphore:
  3194. */
  3195. #ifdef CONFIG_PREEMPT_BKL
  3196. saved_lock_depth = task->lock_depth;
  3197. task->lock_depth = -1;
  3198. #endif
  3199. schedule();
  3200. #ifdef CONFIG_PREEMPT_BKL
  3201. task->lock_depth = saved_lock_depth;
  3202. #endif
  3203. sub_preempt_count(PREEMPT_ACTIVE);
  3204. /*
  3205. * Check again in case we missed a preemption opportunity
  3206. * between schedule and now.
  3207. */
  3208. barrier();
  3209. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3210. }
  3211. EXPORT_SYMBOL(preempt_schedule);
  3212. /*
  3213. * this is the entry point to schedule() from kernel preemption
  3214. * off of irq context.
  3215. * Note, that this is called and return with irqs disabled. This will
  3216. * protect us against recursive calling from irq.
  3217. */
  3218. asmlinkage void __sched preempt_schedule_irq(void)
  3219. {
  3220. struct thread_info *ti = current_thread_info();
  3221. #ifdef CONFIG_PREEMPT_BKL
  3222. struct task_struct *task = current;
  3223. int saved_lock_depth;
  3224. #endif
  3225. /* Catch callers which need to be fixed */
  3226. BUG_ON(ti->preempt_count || !irqs_disabled());
  3227. do {
  3228. add_preempt_count(PREEMPT_ACTIVE);
  3229. /*
  3230. * We keep the big kernel semaphore locked, but we
  3231. * clear ->lock_depth so that schedule() doesnt
  3232. * auto-release the semaphore:
  3233. */
  3234. #ifdef CONFIG_PREEMPT_BKL
  3235. saved_lock_depth = task->lock_depth;
  3236. task->lock_depth = -1;
  3237. #endif
  3238. local_irq_enable();
  3239. schedule();
  3240. local_irq_disable();
  3241. #ifdef CONFIG_PREEMPT_BKL
  3242. task->lock_depth = saved_lock_depth;
  3243. #endif
  3244. sub_preempt_count(PREEMPT_ACTIVE);
  3245. /*
  3246. * Check again in case we missed a preemption opportunity
  3247. * between schedule and now.
  3248. */
  3249. barrier();
  3250. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3251. }
  3252. #endif /* CONFIG_PREEMPT */
  3253. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3254. void *key)
  3255. {
  3256. return try_to_wake_up(curr->private, mode, sync);
  3257. }
  3258. EXPORT_SYMBOL(default_wake_function);
  3259. /*
  3260. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3261. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3262. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3263. *
  3264. * There are circumstances in which we can try to wake a task which has already
  3265. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3266. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3267. */
  3268. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3269. int nr_exclusive, int sync, void *key)
  3270. {
  3271. wait_queue_t *curr, *next;
  3272. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3273. unsigned flags = curr->flags;
  3274. if (curr->func(curr, mode, sync, key) &&
  3275. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3276. break;
  3277. }
  3278. }
  3279. /**
  3280. * __wake_up - wake up threads blocked on a waitqueue.
  3281. * @q: the waitqueue
  3282. * @mode: which threads
  3283. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3284. * @key: is directly passed to the wakeup function
  3285. */
  3286. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3287. int nr_exclusive, void *key)
  3288. {
  3289. unsigned long flags;
  3290. spin_lock_irqsave(&q->lock, flags);
  3291. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3292. spin_unlock_irqrestore(&q->lock, flags);
  3293. }
  3294. EXPORT_SYMBOL(__wake_up);
  3295. /*
  3296. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3297. */
  3298. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3299. {
  3300. __wake_up_common(q, mode, 1, 0, NULL);
  3301. }
  3302. /**
  3303. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3304. * @q: the waitqueue
  3305. * @mode: which threads
  3306. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3307. *
  3308. * The sync wakeup differs that the waker knows that it will schedule
  3309. * away soon, so while the target thread will be woken up, it will not
  3310. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3311. * with each other. This can prevent needless bouncing between CPUs.
  3312. *
  3313. * On UP it can prevent extra preemption.
  3314. */
  3315. void fastcall
  3316. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3317. {
  3318. unsigned long flags;
  3319. int sync = 1;
  3320. if (unlikely(!q))
  3321. return;
  3322. if (unlikely(!nr_exclusive))
  3323. sync = 0;
  3324. spin_lock_irqsave(&q->lock, flags);
  3325. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3326. spin_unlock_irqrestore(&q->lock, flags);
  3327. }
  3328. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3329. void complete(struct completion *x)
  3330. {
  3331. unsigned long flags;
  3332. spin_lock_irqsave(&x->wait.lock, flags);
  3333. x->done++;
  3334. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3335. spin_unlock_irqrestore(&x->wait.lock, flags);
  3336. }
  3337. EXPORT_SYMBOL(complete);
  3338. void complete_all(struct completion *x)
  3339. {
  3340. unsigned long flags;
  3341. spin_lock_irqsave(&x->wait.lock, flags);
  3342. x->done += UINT_MAX/2;
  3343. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3344. spin_unlock_irqrestore(&x->wait.lock, flags);
  3345. }
  3346. EXPORT_SYMBOL(complete_all);
  3347. static inline long __sched
  3348. do_wait_for_common(struct completion *x, long timeout, int state)
  3349. {
  3350. if (!x->done) {
  3351. DECLARE_WAITQUEUE(wait, current);
  3352. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3353. __add_wait_queue_tail(&x->wait, &wait);
  3354. do {
  3355. if ((state == TASK_INTERRUPTIBLE &&
  3356. signal_pending(current)) ||
  3357. (state == TASK_KILLABLE &&
  3358. fatal_signal_pending(current))) {
  3359. __remove_wait_queue(&x->wait, &wait);
  3360. return -ERESTARTSYS;
  3361. }
  3362. __set_current_state(state);
  3363. spin_unlock_irq(&x->wait.lock);
  3364. timeout = schedule_timeout(timeout);
  3365. spin_lock_irq(&x->wait.lock);
  3366. if (!timeout) {
  3367. __remove_wait_queue(&x->wait, &wait);
  3368. return timeout;
  3369. }
  3370. } while (!x->done);
  3371. __remove_wait_queue(&x->wait, &wait);
  3372. }
  3373. x->done--;
  3374. return timeout;
  3375. }
  3376. static long __sched
  3377. wait_for_common(struct completion *x, long timeout, int state)
  3378. {
  3379. might_sleep();
  3380. spin_lock_irq(&x->wait.lock);
  3381. timeout = do_wait_for_common(x, timeout, state);
  3382. spin_unlock_irq(&x->wait.lock);
  3383. return timeout;
  3384. }
  3385. void __sched wait_for_completion(struct completion *x)
  3386. {
  3387. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3388. }
  3389. EXPORT_SYMBOL(wait_for_completion);
  3390. unsigned long __sched
  3391. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3392. {
  3393. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3394. }
  3395. EXPORT_SYMBOL(wait_for_completion_timeout);
  3396. int __sched wait_for_completion_interruptible(struct completion *x)
  3397. {
  3398. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3399. if (t == -ERESTARTSYS)
  3400. return t;
  3401. return 0;
  3402. }
  3403. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3404. unsigned long __sched
  3405. wait_for_completion_interruptible_timeout(struct completion *x,
  3406. unsigned long timeout)
  3407. {
  3408. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3409. }
  3410. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3411. int __sched wait_for_completion_killable(struct completion *x)
  3412. {
  3413. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3414. if (t == -ERESTARTSYS)
  3415. return t;
  3416. return 0;
  3417. }
  3418. EXPORT_SYMBOL(wait_for_completion_killable);
  3419. static long __sched
  3420. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3421. {
  3422. unsigned long flags;
  3423. wait_queue_t wait;
  3424. init_waitqueue_entry(&wait, current);
  3425. __set_current_state(state);
  3426. spin_lock_irqsave(&q->lock, flags);
  3427. __add_wait_queue(q, &wait);
  3428. spin_unlock(&q->lock);
  3429. timeout = schedule_timeout(timeout);
  3430. spin_lock_irq(&q->lock);
  3431. __remove_wait_queue(q, &wait);
  3432. spin_unlock_irqrestore(&q->lock, flags);
  3433. return timeout;
  3434. }
  3435. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3436. {
  3437. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3438. }
  3439. EXPORT_SYMBOL(interruptible_sleep_on);
  3440. long __sched
  3441. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3442. {
  3443. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3444. }
  3445. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3446. void __sched sleep_on(wait_queue_head_t *q)
  3447. {
  3448. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3449. }
  3450. EXPORT_SYMBOL(sleep_on);
  3451. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3452. {
  3453. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3454. }
  3455. EXPORT_SYMBOL(sleep_on_timeout);
  3456. #ifdef CONFIG_RT_MUTEXES
  3457. /*
  3458. * rt_mutex_setprio - set the current priority of a task
  3459. * @p: task
  3460. * @prio: prio value (kernel-internal form)
  3461. *
  3462. * This function changes the 'effective' priority of a task. It does
  3463. * not touch ->normal_prio like __setscheduler().
  3464. *
  3465. * Used by the rt_mutex code to implement priority inheritance logic.
  3466. */
  3467. void rt_mutex_setprio(struct task_struct *p, int prio)
  3468. {
  3469. unsigned long flags;
  3470. int oldprio, on_rq, running;
  3471. struct rq *rq;
  3472. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3473. rq = task_rq_lock(p, &flags);
  3474. update_rq_clock(rq);
  3475. oldprio = p->prio;
  3476. on_rq = p->se.on_rq;
  3477. running = task_running(rq, p);
  3478. if (on_rq) {
  3479. dequeue_task(rq, p, 0);
  3480. if (running)
  3481. p->sched_class->put_prev_task(rq, p);
  3482. }
  3483. if (rt_prio(prio))
  3484. p->sched_class = &rt_sched_class;
  3485. else
  3486. p->sched_class = &fair_sched_class;
  3487. p->prio = prio;
  3488. if (on_rq) {
  3489. if (running)
  3490. p->sched_class->set_curr_task(rq);
  3491. enqueue_task(rq, p, 0);
  3492. /*
  3493. * Reschedule if we are currently running on this runqueue and
  3494. * our priority decreased, or if we are not currently running on
  3495. * this runqueue and our priority is higher than the current's
  3496. */
  3497. if (running) {
  3498. if (p->prio > oldprio)
  3499. resched_task(rq->curr);
  3500. } else {
  3501. check_preempt_curr(rq, p);
  3502. }
  3503. }
  3504. task_rq_unlock(rq, &flags);
  3505. }
  3506. #endif
  3507. void set_user_nice(struct task_struct *p, long nice)
  3508. {
  3509. int old_prio, delta, on_rq;
  3510. unsigned long flags;
  3511. struct rq *rq;
  3512. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3513. return;
  3514. /*
  3515. * We have to be careful, if called from sys_setpriority(),
  3516. * the task might be in the middle of scheduling on another CPU.
  3517. */
  3518. rq = task_rq_lock(p, &flags);
  3519. update_rq_clock(rq);
  3520. /*
  3521. * The RT priorities are set via sched_setscheduler(), but we still
  3522. * allow the 'normal' nice value to be set - but as expected
  3523. * it wont have any effect on scheduling until the task is
  3524. * SCHED_FIFO/SCHED_RR:
  3525. */
  3526. if (task_has_rt_policy(p)) {
  3527. p->static_prio = NICE_TO_PRIO(nice);
  3528. goto out_unlock;
  3529. }
  3530. on_rq = p->se.on_rq;
  3531. if (on_rq) {
  3532. dequeue_task(rq, p, 0);
  3533. dec_load(rq, p);
  3534. }
  3535. p->static_prio = NICE_TO_PRIO(nice);
  3536. set_load_weight(p);
  3537. old_prio = p->prio;
  3538. p->prio = effective_prio(p);
  3539. delta = p->prio - old_prio;
  3540. if (on_rq) {
  3541. enqueue_task(rq, p, 0);
  3542. inc_load(rq, p);
  3543. /*
  3544. * If the task increased its priority or is running and
  3545. * lowered its priority, then reschedule its CPU:
  3546. */
  3547. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3548. resched_task(rq->curr);
  3549. }
  3550. out_unlock:
  3551. task_rq_unlock(rq, &flags);
  3552. }
  3553. EXPORT_SYMBOL(set_user_nice);
  3554. /*
  3555. * can_nice - check if a task can reduce its nice value
  3556. * @p: task
  3557. * @nice: nice value
  3558. */
  3559. int can_nice(const struct task_struct *p, const int nice)
  3560. {
  3561. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3562. int nice_rlim = 20 - nice;
  3563. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3564. capable(CAP_SYS_NICE));
  3565. }
  3566. #ifdef __ARCH_WANT_SYS_NICE
  3567. /*
  3568. * sys_nice - change the priority of the current process.
  3569. * @increment: priority increment
  3570. *
  3571. * sys_setpriority is a more generic, but much slower function that
  3572. * does similar things.
  3573. */
  3574. asmlinkage long sys_nice(int increment)
  3575. {
  3576. long nice, retval;
  3577. /*
  3578. * Setpriority might change our priority at the same moment.
  3579. * We don't have to worry. Conceptually one call occurs first
  3580. * and we have a single winner.
  3581. */
  3582. if (increment < -40)
  3583. increment = -40;
  3584. if (increment > 40)
  3585. increment = 40;
  3586. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3587. if (nice < -20)
  3588. nice = -20;
  3589. if (nice > 19)
  3590. nice = 19;
  3591. if (increment < 0 && !can_nice(current, nice))
  3592. return -EPERM;
  3593. retval = security_task_setnice(current, nice);
  3594. if (retval)
  3595. return retval;
  3596. set_user_nice(current, nice);
  3597. return 0;
  3598. }
  3599. #endif
  3600. /**
  3601. * task_prio - return the priority value of a given task.
  3602. * @p: the task in question.
  3603. *
  3604. * This is the priority value as seen by users in /proc.
  3605. * RT tasks are offset by -200. Normal tasks are centered
  3606. * around 0, value goes from -16 to +15.
  3607. */
  3608. int task_prio(const struct task_struct *p)
  3609. {
  3610. return p->prio - MAX_RT_PRIO;
  3611. }
  3612. /**
  3613. * task_nice - return the nice value of a given task.
  3614. * @p: the task in question.
  3615. */
  3616. int task_nice(const struct task_struct *p)
  3617. {
  3618. return TASK_NICE(p);
  3619. }
  3620. EXPORT_SYMBOL_GPL(task_nice);
  3621. /**
  3622. * idle_cpu - is a given cpu idle currently?
  3623. * @cpu: the processor in question.
  3624. */
  3625. int idle_cpu(int cpu)
  3626. {
  3627. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3628. }
  3629. /**
  3630. * idle_task - return the idle task for a given cpu.
  3631. * @cpu: the processor in question.
  3632. */
  3633. struct task_struct *idle_task(int cpu)
  3634. {
  3635. return cpu_rq(cpu)->idle;
  3636. }
  3637. /**
  3638. * find_process_by_pid - find a process with a matching PID value.
  3639. * @pid: the pid in question.
  3640. */
  3641. static struct task_struct *find_process_by_pid(pid_t pid)
  3642. {
  3643. return pid ? find_task_by_vpid(pid) : current;
  3644. }
  3645. /* Actually do priority change: must hold rq lock. */
  3646. static void
  3647. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3648. {
  3649. BUG_ON(p->se.on_rq);
  3650. p->policy = policy;
  3651. switch (p->policy) {
  3652. case SCHED_NORMAL:
  3653. case SCHED_BATCH:
  3654. case SCHED_IDLE:
  3655. p->sched_class = &fair_sched_class;
  3656. break;
  3657. case SCHED_FIFO:
  3658. case SCHED_RR:
  3659. p->sched_class = &rt_sched_class;
  3660. break;
  3661. }
  3662. p->rt_priority = prio;
  3663. p->normal_prio = normal_prio(p);
  3664. /* we are holding p->pi_lock already */
  3665. p->prio = rt_mutex_getprio(p);
  3666. set_load_weight(p);
  3667. }
  3668. /**
  3669. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3670. * @p: the task in question.
  3671. * @policy: new policy.
  3672. * @param: structure containing the new RT priority.
  3673. *
  3674. * NOTE that the task may be already dead.
  3675. */
  3676. int sched_setscheduler(struct task_struct *p, int policy,
  3677. struct sched_param *param)
  3678. {
  3679. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3680. unsigned long flags;
  3681. struct rq *rq;
  3682. /* may grab non-irq protected spin_locks */
  3683. BUG_ON(in_interrupt());
  3684. recheck:
  3685. /* double check policy once rq lock held */
  3686. if (policy < 0)
  3687. policy = oldpolicy = p->policy;
  3688. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3689. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3690. policy != SCHED_IDLE)
  3691. return -EINVAL;
  3692. /*
  3693. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3694. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3695. * SCHED_BATCH and SCHED_IDLE is 0.
  3696. */
  3697. if (param->sched_priority < 0 ||
  3698. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3699. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3700. return -EINVAL;
  3701. if (rt_policy(policy) != (param->sched_priority != 0))
  3702. return -EINVAL;
  3703. /*
  3704. * Allow unprivileged RT tasks to decrease priority:
  3705. */
  3706. if (!capable(CAP_SYS_NICE)) {
  3707. if (rt_policy(policy)) {
  3708. unsigned long rlim_rtprio;
  3709. if (!lock_task_sighand(p, &flags))
  3710. return -ESRCH;
  3711. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3712. unlock_task_sighand(p, &flags);
  3713. /* can't set/change the rt policy */
  3714. if (policy != p->policy && !rlim_rtprio)
  3715. return -EPERM;
  3716. /* can't increase priority */
  3717. if (param->sched_priority > p->rt_priority &&
  3718. param->sched_priority > rlim_rtprio)
  3719. return -EPERM;
  3720. }
  3721. /*
  3722. * Like positive nice levels, dont allow tasks to
  3723. * move out of SCHED_IDLE either:
  3724. */
  3725. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3726. return -EPERM;
  3727. /* can't change other user's priorities */
  3728. if ((current->euid != p->euid) &&
  3729. (current->euid != p->uid))
  3730. return -EPERM;
  3731. }
  3732. retval = security_task_setscheduler(p, policy, param);
  3733. if (retval)
  3734. return retval;
  3735. /*
  3736. * make sure no PI-waiters arrive (or leave) while we are
  3737. * changing the priority of the task:
  3738. */
  3739. spin_lock_irqsave(&p->pi_lock, flags);
  3740. /*
  3741. * To be able to change p->policy safely, the apropriate
  3742. * runqueue lock must be held.
  3743. */
  3744. rq = __task_rq_lock(p);
  3745. /* recheck policy now with rq lock held */
  3746. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3747. policy = oldpolicy = -1;
  3748. __task_rq_unlock(rq);
  3749. spin_unlock_irqrestore(&p->pi_lock, flags);
  3750. goto recheck;
  3751. }
  3752. update_rq_clock(rq);
  3753. on_rq = p->se.on_rq;
  3754. running = task_running(rq, p);
  3755. if (on_rq) {
  3756. deactivate_task(rq, p, 0);
  3757. if (running)
  3758. p->sched_class->put_prev_task(rq, p);
  3759. }
  3760. oldprio = p->prio;
  3761. __setscheduler(rq, p, policy, param->sched_priority);
  3762. if (on_rq) {
  3763. if (running)
  3764. p->sched_class->set_curr_task(rq);
  3765. activate_task(rq, p, 0);
  3766. /*
  3767. * Reschedule if we are currently running on this runqueue and
  3768. * our priority decreased, or if we are not currently running on
  3769. * this runqueue and our priority is higher than the current's
  3770. */
  3771. if (running) {
  3772. if (p->prio > oldprio)
  3773. resched_task(rq->curr);
  3774. } else {
  3775. check_preempt_curr(rq, p);
  3776. }
  3777. }
  3778. __task_rq_unlock(rq);
  3779. spin_unlock_irqrestore(&p->pi_lock, flags);
  3780. rt_mutex_adjust_pi(p);
  3781. return 0;
  3782. }
  3783. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3784. static int
  3785. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3786. {
  3787. struct sched_param lparam;
  3788. struct task_struct *p;
  3789. int retval;
  3790. if (!param || pid < 0)
  3791. return -EINVAL;
  3792. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3793. return -EFAULT;
  3794. rcu_read_lock();
  3795. retval = -ESRCH;
  3796. p = find_process_by_pid(pid);
  3797. if (p != NULL)
  3798. retval = sched_setscheduler(p, policy, &lparam);
  3799. rcu_read_unlock();
  3800. return retval;
  3801. }
  3802. /**
  3803. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3804. * @pid: the pid in question.
  3805. * @policy: new policy.
  3806. * @param: structure containing the new RT priority.
  3807. */
  3808. asmlinkage long
  3809. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3810. {
  3811. /* negative values for policy are not valid */
  3812. if (policy < 0)
  3813. return -EINVAL;
  3814. return do_sched_setscheduler(pid, policy, param);
  3815. }
  3816. /**
  3817. * sys_sched_setparam - set/change the RT priority of a thread
  3818. * @pid: the pid in question.
  3819. * @param: structure containing the new RT priority.
  3820. */
  3821. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3822. {
  3823. return do_sched_setscheduler(pid, -1, param);
  3824. }
  3825. /**
  3826. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3827. * @pid: the pid in question.
  3828. */
  3829. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3830. {
  3831. struct task_struct *p;
  3832. int retval;
  3833. if (pid < 0)
  3834. return -EINVAL;
  3835. retval = -ESRCH;
  3836. read_lock(&tasklist_lock);
  3837. p = find_process_by_pid(pid);
  3838. if (p) {
  3839. retval = security_task_getscheduler(p);
  3840. if (!retval)
  3841. retval = p->policy;
  3842. }
  3843. read_unlock(&tasklist_lock);
  3844. return retval;
  3845. }
  3846. /**
  3847. * sys_sched_getscheduler - get the RT priority of a thread
  3848. * @pid: the pid in question.
  3849. * @param: structure containing the RT priority.
  3850. */
  3851. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3852. {
  3853. struct sched_param lp;
  3854. struct task_struct *p;
  3855. int retval;
  3856. if (!param || pid < 0)
  3857. return -EINVAL;
  3858. read_lock(&tasklist_lock);
  3859. p = find_process_by_pid(pid);
  3860. retval = -ESRCH;
  3861. if (!p)
  3862. goto out_unlock;
  3863. retval = security_task_getscheduler(p);
  3864. if (retval)
  3865. goto out_unlock;
  3866. lp.sched_priority = p->rt_priority;
  3867. read_unlock(&tasklist_lock);
  3868. /*
  3869. * This one might sleep, we cannot do it with a spinlock held ...
  3870. */
  3871. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3872. return retval;
  3873. out_unlock:
  3874. read_unlock(&tasklist_lock);
  3875. return retval;
  3876. }
  3877. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3878. {
  3879. cpumask_t cpus_allowed;
  3880. struct task_struct *p;
  3881. int retval;
  3882. mutex_lock(&sched_hotcpu_mutex);
  3883. read_lock(&tasklist_lock);
  3884. p = find_process_by_pid(pid);
  3885. if (!p) {
  3886. read_unlock(&tasklist_lock);
  3887. mutex_unlock(&sched_hotcpu_mutex);
  3888. return -ESRCH;
  3889. }
  3890. /*
  3891. * It is not safe to call set_cpus_allowed with the
  3892. * tasklist_lock held. We will bump the task_struct's
  3893. * usage count and then drop tasklist_lock.
  3894. */
  3895. get_task_struct(p);
  3896. read_unlock(&tasklist_lock);
  3897. retval = -EPERM;
  3898. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3899. !capable(CAP_SYS_NICE))
  3900. goto out_unlock;
  3901. retval = security_task_setscheduler(p, 0, NULL);
  3902. if (retval)
  3903. goto out_unlock;
  3904. cpus_allowed = cpuset_cpus_allowed(p);
  3905. cpus_and(new_mask, new_mask, cpus_allowed);
  3906. again:
  3907. retval = set_cpus_allowed(p, new_mask);
  3908. if (!retval) {
  3909. cpus_allowed = cpuset_cpus_allowed(p);
  3910. if (!cpus_subset(new_mask, cpus_allowed)) {
  3911. /*
  3912. * We must have raced with a concurrent cpuset
  3913. * update. Just reset the cpus_allowed to the
  3914. * cpuset's cpus_allowed
  3915. */
  3916. new_mask = cpus_allowed;
  3917. goto again;
  3918. }
  3919. }
  3920. out_unlock:
  3921. put_task_struct(p);
  3922. mutex_unlock(&sched_hotcpu_mutex);
  3923. return retval;
  3924. }
  3925. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3926. cpumask_t *new_mask)
  3927. {
  3928. if (len < sizeof(cpumask_t)) {
  3929. memset(new_mask, 0, sizeof(cpumask_t));
  3930. } else if (len > sizeof(cpumask_t)) {
  3931. len = sizeof(cpumask_t);
  3932. }
  3933. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3934. }
  3935. /**
  3936. * sys_sched_setaffinity - set the cpu affinity of a process
  3937. * @pid: pid of the process
  3938. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3939. * @user_mask_ptr: user-space pointer to the new cpu mask
  3940. */
  3941. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3942. unsigned long __user *user_mask_ptr)
  3943. {
  3944. cpumask_t new_mask;
  3945. int retval;
  3946. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3947. if (retval)
  3948. return retval;
  3949. return sched_setaffinity(pid, new_mask);
  3950. }
  3951. /*
  3952. * Represents all cpu's present in the system
  3953. * In systems capable of hotplug, this map could dynamically grow
  3954. * as new cpu's are detected in the system via any platform specific
  3955. * method, such as ACPI for e.g.
  3956. */
  3957. cpumask_t cpu_present_map __read_mostly;
  3958. EXPORT_SYMBOL(cpu_present_map);
  3959. #ifndef CONFIG_SMP
  3960. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3961. EXPORT_SYMBOL(cpu_online_map);
  3962. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3963. EXPORT_SYMBOL(cpu_possible_map);
  3964. #endif
  3965. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3966. {
  3967. struct task_struct *p;
  3968. int retval;
  3969. mutex_lock(&sched_hotcpu_mutex);
  3970. read_lock(&tasklist_lock);
  3971. retval = -ESRCH;
  3972. p = find_process_by_pid(pid);
  3973. if (!p)
  3974. goto out_unlock;
  3975. retval = security_task_getscheduler(p);
  3976. if (retval)
  3977. goto out_unlock;
  3978. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3979. out_unlock:
  3980. read_unlock(&tasklist_lock);
  3981. mutex_unlock(&sched_hotcpu_mutex);
  3982. return retval;
  3983. }
  3984. /**
  3985. * sys_sched_getaffinity - get the cpu affinity of a process
  3986. * @pid: pid of the process
  3987. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3988. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3989. */
  3990. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3991. unsigned long __user *user_mask_ptr)
  3992. {
  3993. int ret;
  3994. cpumask_t mask;
  3995. if (len < sizeof(cpumask_t))
  3996. return -EINVAL;
  3997. ret = sched_getaffinity(pid, &mask);
  3998. if (ret < 0)
  3999. return ret;
  4000. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4001. return -EFAULT;
  4002. return sizeof(cpumask_t);
  4003. }
  4004. /**
  4005. * sys_sched_yield - yield the current processor to other threads.
  4006. *
  4007. * This function yields the current CPU to other tasks. If there are no
  4008. * other threads running on this CPU then this function will return.
  4009. */
  4010. asmlinkage long sys_sched_yield(void)
  4011. {
  4012. struct rq *rq = this_rq_lock();
  4013. schedstat_inc(rq, yld_count);
  4014. current->sched_class->yield_task(rq);
  4015. /*
  4016. * Since we are going to call schedule() anyway, there's
  4017. * no need to preempt or enable interrupts:
  4018. */
  4019. __release(rq->lock);
  4020. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4021. _raw_spin_unlock(&rq->lock);
  4022. preempt_enable_no_resched();
  4023. schedule();
  4024. return 0;
  4025. }
  4026. static void __cond_resched(void)
  4027. {
  4028. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4029. __might_sleep(__FILE__, __LINE__);
  4030. #endif
  4031. /*
  4032. * The BKS might be reacquired before we have dropped
  4033. * PREEMPT_ACTIVE, which could trigger a second
  4034. * cond_resched() call.
  4035. */
  4036. do {
  4037. add_preempt_count(PREEMPT_ACTIVE);
  4038. schedule();
  4039. sub_preempt_count(PREEMPT_ACTIVE);
  4040. } while (need_resched());
  4041. }
  4042. int __sched cond_resched(void)
  4043. {
  4044. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4045. system_state == SYSTEM_RUNNING) {
  4046. __cond_resched();
  4047. return 1;
  4048. }
  4049. return 0;
  4050. }
  4051. EXPORT_SYMBOL(cond_resched);
  4052. /*
  4053. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4054. * call schedule, and on return reacquire the lock.
  4055. *
  4056. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4057. * operations here to prevent schedule() from being called twice (once via
  4058. * spin_unlock(), once by hand).
  4059. */
  4060. int cond_resched_lock(spinlock_t *lock)
  4061. {
  4062. int ret = 0;
  4063. if (need_lockbreak(lock)) {
  4064. spin_unlock(lock);
  4065. cpu_relax();
  4066. ret = 1;
  4067. spin_lock(lock);
  4068. }
  4069. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4070. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4071. _raw_spin_unlock(lock);
  4072. preempt_enable_no_resched();
  4073. __cond_resched();
  4074. ret = 1;
  4075. spin_lock(lock);
  4076. }
  4077. return ret;
  4078. }
  4079. EXPORT_SYMBOL(cond_resched_lock);
  4080. int __sched cond_resched_softirq(void)
  4081. {
  4082. BUG_ON(!in_softirq());
  4083. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4084. local_bh_enable();
  4085. __cond_resched();
  4086. local_bh_disable();
  4087. return 1;
  4088. }
  4089. return 0;
  4090. }
  4091. EXPORT_SYMBOL(cond_resched_softirq);
  4092. /**
  4093. * yield - yield the current processor to other threads.
  4094. *
  4095. * This is a shortcut for kernel-space yielding - it marks the
  4096. * thread runnable and calls sys_sched_yield().
  4097. */
  4098. void __sched yield(void)
  4099. {
  4100. set_current_state(TASK_RUNNING);
  4101. sys_sched_yield();
  4102. }
  4103. EXPORT_SYMBOL(yield);
  4104. /*
  4105. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4106. * that process accounting knows that this is a task in IO wait state.
  4107. *
  4108. * But don't do that if it is a deliberate, throttling IO wait (this task
  4109. * has set its backing_dev_info: the queue against which it should throttle)
  4110. */
  4111. void __sched io_schedule(void)
  4112. {
  4113. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4114. delayacct_blkio_start();
  4115. atomic_inc(&rq->nr_iowait);
  4116. schedule();
  4117. atomic_dec(&rq->nr_iowait);
  4118. delayacct_blkio_end();
  4119. }
  4120. EXPORT_SYMBOL(io_schedule);
  4121. long __sched io_schedule_timeout(long timeout)
  4122. {
  4123. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4124. long ret;
  4125. delayacct_blkio_start();
  4126. atomic_inc(&rq->nr_iowait);
  4127. ret = schedule_timeout(timeout);
  4128. atomic_dec(&rq->nr_iowait);
  4129. delayacct_blkio_end();
  4130. return ret;
  4131. }
  4132. /**
  4133. * sys_sched_get_priority_max - return maximum RT priority.
  4134. * @policy: scheduling class.
  4135. *
  4136. * this syscall returns the maximum rt_priority that can be used
  4137. * by a given scheduling class.
  4138. */
  4139. asmlinkage long sys_sched_get_priority_max(int policy)
  4140. {
  4141. int ret = -EINVAL;
  4142. switch (policy) {
  4143. case SCHED_FIFO:
  4144. case SCHED_RR:
  4145. ret = MAX_USER_RT_PRIO-1;
  4146. break;
  4147. case SCHED_NORMAL:
  4148. case SCHED_BATCH:
  4149. case SCHED_IDLE:
  4150. ret = 0;
  4151. break;
  4152. }
  4153. return ret;
  4154. }
  4155. /**
  4156. * sys_sched_get_priority_min - return minimum RT priority.
  4157. * @policy: scheduling class.
  4158. *
  4159. * this syscall returns the minimum rt_priority that can be used
  4160. * by a given scheduling class.
  4161. */
  4162. asmlinkage long sys_sched_get_priority_min(int policy)
  4163. {
  4164. int ret = -EINVAL;
  4165. switch (policy) {
  4166. case SCHED_FIFO:
  4167. case SCHED_RR:
  4168. ret = 1;
  4169. break;
  4170. case SCHED_NORMAL:
  4171. case SCHED_BATCH:
  4172. case SCHED_IDLE:
  4173. ret = 0;
  4174. }
  4175. return ret;
  4176. }
  4177. /**
  4178. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4179. * @pid: pid of the process.
  4180. * @interval: userspace pointer to the timeslice value.
  4181. *
  4182. * this syscall writes the default timeslice value of a given process
  4183. * into the user-space timespec buffer. A value of '0' means infinity.
  4184. */
  4185. asmlinkage
  4186. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4187. {
  4188. struct task_struct *p;
  4189. unsigned int time_slice;
  4190. int retval;
  4191. struct timespec t;
  4192. if (pid < 0)
  4193. return -EINVAL;
  4194. retval = -ESRCH;
  4195. read_lock(&tasklist_lock);
  4196. p = find_process_by_pid(pid);
  4197. if (!p)
  4198. goto out_unlock;
  4199. retval = security_task_getscheduler(p);
  4200. if (retval)
  4201. goto out_unlock;
  4202. /*
  4203. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4204. * tasks that are on an otherwise idle runqueue:
  4205. */
  4206. time_slice = 0;
  4207. if (p->policy == SCHED_RR) {
  4208. time_slice = DEF_TIMESLICE;
  4209. } else {
  4210. struct sched_entity *se = &p->se;
  4211. unsigned long flags;
  4212. struct rq *rq;
  4213. rq = task_rq_lock(p, &flags);
  4214. if (rq->cfs.load.weight)
  4215. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4216. task_rq_unlock(rq, &flags);
  4217. }
  4218. read_unlock(&tasklist_lock);
  4219. jiffies_to_timespec(time_slice, &t);
  4220. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4221. return retval;
  4222. out_unlock:
  4223. read_unlock(&tasklist_lock);
  4224. return retval;
  4225. }
  4226. static const char stat_nam[] = "RSDTtZX";
  4227. static void show_task(struct task_struct *p)
  4228. {
  4229. unsigned long free = 0;
  4230. unsigned state;
  4231. state = p->state ? __ffs(p->state) + 1 : 0;
  4232. printk(KERN_INFO "%-13.13s %c", p->comm,
  4233. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4234. #if BITS_PER_LONG == 32
  4235. if (state == TASK_RUNNING)
  4236. printk(KERN_CONT " running ");
  4237. else
  4238. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4239. #else
  4240. if (state == TASK_RUNNING)
  4241. printk(KERN_CONT " running task ");
  4242. else
  4243. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4244. #endif
  4245. #ifdef CONFIG_DEBUG_STACK_USAGE
  4246. {
  4247. unsigned long *n = end_of_stack(p);
  4248. while (!*n)
  4249. n++;
  4250. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4251. }
  4252. #endif
  4253. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4254. task_pid_nr(p), task_pid_nr(p->parent));
  4255. if (state != TASK_RUNNING)
  4256. show_stack(p, NULL);
  4257. }
  4258. void show_state_filter(unsigned long state_filter)
  4259. {
  4260. struct task_struct *g, *p;
  4261. #if BITS_PER_LONG == 32
  4262. printk(KERN_INFO
  4263. " task PC stack pid father\n");
  4264. #else
  4265. printk(KERN_INFO
  4266. " task PC stack pid father\n");
  4267. #endif
  4268. read_lock(&tasklist_lock);
  4269. do_each_thread(g, p) {
  4270. /*
  4271. * reset the NMI-timeout, listing all files on a slow
  4272. * console might take alot of time:
  4273. */
  4274. touch_nmi_watchdog();
  4275. if (!state_filter || (p->state & state_filter))
  4276. show_task(p);
  4277. } while_each_thread(g, p);
  4278. touch_all_softlockup_watchdogs();
  4279. #ifdef CONFIG_SCHED_DEBUG
  4280. sysrq_sched_debug_show();
  4281. #endif
  4282. read_unlock(&tasklist_lock);
  4283. /*
  4284. * Only show locks if all tasks are dumped:
  4285. */
  4286. if (state_filter == -1)
  4287. debug_show_all_locks();
  4288. }
  4289. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4290. {
  4291. idle->sched_class = &idle_sched_class;
  4292. }
  4293. /**
  4294. * init_idle - set up an idle thread for a given CPU
  4295. * @idle: task in question
  4296. * @cpu: cpu the idle task belongs to
  4297. *
  4298. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4299. * flag, to make booting more robust.
  4300. */
  4301. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4302. {
  4303. struct rq *rq = cpu_rq(cpu);
  4304. unsigned long flags;
  4305. __sched_fork(idle);
  4306. idle->se.exec_start = sched_clock();
  4307. idle->prio = idle->normal_prio = MAX_PRIO;
  4308. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4309. __set_task_cpu(idle, cpu);
  4310. spin_lock_irqsave(&rq->lock, flags);
  4311. rq->curr = rq->idle = idle;
  4312. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4313. idle->oncpu = 1;
  4314. #endif
  4315. spin_unlock_irqrestore(&rq->lock, flags);
  4316. /* Set the preempt count _outside_ the spinlocks! */
  4317. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4318. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4319. #else
  4320. task_thread_info(idle)->preempt_count = 0;
  4321. #endif
  4322. /*
  4323. * The idle tasks have their own, simple scheduling class:
  4324. */
  4325. idle->sched_class = &idle_sched_class;
  4326. }
  4327. /*
  4328. * In a system that switches off the HZ timer nohz_cpu_mask
  4329. * indicates which cpus entered this state. This is used
  4330. * in the rcu update to wait only for active cpus. For system
  4331. * which do not switch off the HZ timer nohz_cpu_mask should
  4332. * always be CPU_MASK_NONE.
  4333. */
  4334. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4335. /*
  4336. * Increase the granularity value when there are more CPUs,
  4337. * because with more CPUs the 'effective latency' as visible
  4338. * to users decreases. But the relationship is not linear,
  4339. * so pick a second-best guess by going with the log2 of the
  4340. * number of CPUs.
  4341. *
  4342. * This idea comes from the SD scheduler of Con Kolivas:
  4343. */
  4344. static inline void sched_init_granularity(void)
  4345. {
  4346. unsigned int factor = 1 + ilog2(num_online_cpus());
  4347. const unsigned long limit = 200000000;
  4348. sysctl_sched_min_granularity *= factor;
  4349. if (sysctl_sched_min_granularity > limit)
  4350. sysctl_sched_min_granularity = limit;
  4351. sysctl_sched_latency *= factor;
  4352. if (sysctl_sched_latency > limit)
  4353. sysctl_sched_latency = limit;
  4354. sysctl_sched_wakeup_granularity *= factor;
  4355. sysctl_sched_batch_wakeup_granularity *= factor;
  4356. }
  4357. #ifdef CONFIG_SMP
  4358. /*
  4359. * This is how migration works:
  4360. *
  4361. * 1) we queue a struct migration_req structure in the source CPU's
  4362. * runqueue and wake up that CPU's migration thread.
  4363. * 2) we down() the locked semaphore => thread blocks.
  4364. * 3) migration thread wakes up (implicitly it forces the migrated
  4365. * thread off the CPU)
  4366. * 4) it gets the migration request and checks whether the migrated
  4367. * task is still in the wrong runqueue.
  4368. * 5) if it's in the wrong runqueue then the migration thread removes
  4369. * it and puts it into the right queue.
  4370. * 6) migration thread up()s the semaphore.
  4371. * 7) we wake up and the migration is done.
  4372. */
  4373. /*
  4374. * Change a given task's CPU affinity. Migrate the thread to a
  4375. * proper CPU and schedule it away if the CPU it's executing on
  4376. * is removed from the allowed bitmask.
  4377. *
  4378. * NOTE: the caller must have a valid reference to the task, the
  4379. * task must not exit() & deallocate itself prematurely. The
  4380. * call is not atomic; no spinlocks may be held.
  4381. */
  4382. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4383. {
  4384. struct migration_req req;
  4385. unsigned long flags;
  4386. struct rq *rq;
  4387. int ret = 0;
  4388. rq = task_rq_lock(p, &flags);
  4389. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4390. ret = -EINVAL;
  4391. goto out;
  4392. }
  4393. p->cpus_allowed = new_mask;
  4394. /* Can the task run on the task's current CPU? If so, we're done */
  4395. if (cpu_isset(task_cpu(p), new_mask))
  4396. goto out;
  4397. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4398. /* Need help from migration thread: drop lock and wait. */
  4399. task_rq_unlock(rq, &flags);
  4400. wake_up_process(rq->migration_thread);
  4401. wait_for_completion(&req.done);
  4402. tlb_migrate_finish(p->mm);
  4403. return 0;
  4404. }
  4405. out:
  4406. task_rq_unlock(rq, &flags);
  4407. return ret;
  4408. }
  4409. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4410. /*
  4411. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4412. * this because either it can't run here any more (set_cpus_allowed()
  4413. * away from this CPU, or CPU going down), or because we're
  4414. * attempting to rebalance this task on exec (sched_exec).
  4415. *
  4416. * So we race with normal scheduler movements, but that's OK, as long
  4417. * as the task is no longer on this CPU.
  4418. *
  4419. * Returns non-zero if task was successfully migrated.
  4420. */
  4421. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4422. {
  4423. struct rq *rq_dest, *rq_src;
  4424. int ret = 0, on_rq;
  4425. if (unlikely(cpu_is_offline(dest_cpu)))
  4426. return ret;
  4427. rq_src = cpu_rq(src_cpu);
  4428. rq_dest = cpu_rq(dest_cpu);
  4429. double_rq_lock(rq_src, rq_dest);
  4430. /* Already moved. */
  4431. if (task_cpu(p) != src_cpu)
  4432. goto out;
  4433. /* Affinity changed (again). */
  4434. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4435. goto out;
  4436. on_rq = p->se.on_rq;
  4437. if (on_rq)
  4438. deactivate_task(rq_src, p, 0);
  4439. set_task_cpu(p, dest_cpu);
  4440. if (on_rq) {
  4441. activate_task(rq_dest, p, 0);
  4442. check_preempt_curr(rq_dest, p);
  4443. }
  4444. ret = 1;
  4445. out:
  4446. double_rq_unlock(rq_src, rq_dest);
  4447. return ret;
  4448. }
  4449. /*
  4450. * migration_thread - this is a highprio system thread that performs
  4451. * thread migration by bumping thread off CPU then 'pushing' onto
  4452. * another runqueue.
  4453. */
  4454. static int migration_thread(void *data)
  4455. {
  4456. int cpu = (long)data;
  4457. struct rq *rq;
  4458. rq = cpu_rq(cpu);
  4459. BUG_ON(rq->migration_thread != current);
  4460. set_current_state(TASK_INTERRUPTIBLE);
  4461. while (!kthread_should_stop()) {
  4462. struct migration_req *req;
  4463. struct list_head *head;
  4464. spin_lock_irq(&rq->lock);
  4465. if (cpu_is_offline(cpu)) {
  4466. spin_unlock_irq(&rq->lock);
  4467. goto wait_to_die;
  4468. }
  4469. if (rq->active_balance) {
  4470. active_load_balance(rq, cpu);
  4471. rq->active_balance = 0;
  4472. }
  4473. head = &rq->migration_queue;
  4474. if (list_empty(head)) {
  4475. spin_unlock_irq(&rq->lock);
  4476. schedule();
  4477. set_current_state(TASK_INTERRUPTIBLE);
  4478. continue;
  4479. }
  4480. req = list_entry(head->next, struct migration_req, list);
  4481. list_del_init(head->next);
  4482. spin_unlock(&rq->lock);
  4483. __migrate_task(req->task, cpu, req->dest_cpu);
  4484. local_irq_enable();
  4485. complete(&req->done);
  4486. }
  4487. __set_current_state(TASK_RUNNING);
  4488. return 0;
  4489. wait_to_die:
  4490. /* Wait for kthread_stop */
  4491. set_current_state(TASK_INTERRUPTIBLE);
  4492. while (!kthread_should_stop()) {
  4493. schedule();
  4494. set_current_state(TASK_INTERRUPTIBLE);
  4495. }
  4496. __set_current_state(TASK_RUNNING);
  4497. return 0;
  4498. }
  4499. #ifdef CONFIG_HOTPLUG_CPU
  4500. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4501. {
  4502. int ret;
  4503. local_irq_disable();
  4504. ret = __migrate_task(p, src_cpu, dest_cpu);
  4505. local_irq_enable();
  4506. return ret;
  4507. }
  4508. /*
  4509. * Figure out where task on dead CPU should go, use force if necessary.
  4510. * NOTE: interrupts should be disabled by the caller
  4511. */
  4512. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4513. {
  4514. unsigned long flags;
  4515. cpumask_t mask;
  4516. struct rq *rq;
  4517. int dest_cpu;
  4518. do {
  4519. /* On same node? */
  4520. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4521. cpus_and(mask, mask, p->cpus_allowed);
  4522. dest_cpu = any_online_cpu(mask);
  4523. /* On any allowed CPU? */
  4524. if (dest_cpu == NR_CPUS)
  4525. dest_cpu = any_online_cpu(p->cpus_allowed);
  4526. /* No more Mr. Nice Guy. */
  4527. if (dest_cpu == NR_CPUS) {
  4528. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4529. /*
  4530. * Try to stay on the same cpuset, where the
  4531. * current cpuset may be a subset of all cpus.
  4532. * The cpuset_cpus_allowed_locked() variant of
  4533. * cpuset_cpus_allowed() will not block. It must be
  4534. * called within calls to cpuset_lock/cpuset_unlock.
  4535. */
  4536. rq = task_rq_lock(p, &flags);
  4537. p->cpus_allowed = cpus_allowed;
  4538. dest_cpu = any_online_cpu(p->cpus_allowed);
  4539. task_rq_unlock(rq, &flags);
  4540. /*
  4541. * Don't tell them about moving exiting tasks or
  4542. * kernel threads (both mm NULL), since they never
  4543. * leave kernel.
  4544. */
  4545. if (p->mm && printk_ratelimit()) {
  4546. printk(KERN_INFO "process %d (%s) no "
  4547. "longer affine to cpu%d\n",
  4548. task_pid_nr(p), p->comm, dead_cpu);
  4549. }
  4550. }
  4551. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4552. }
  4553. /*
  4554. * While a dead CPU has no uninterruptible tasks queued at this point,
  4555. * it might still have a nonzero ->nr_uninterruptible counter, because
  4556. * for performance reasons the counter is not stricly tracking tasks to
  4557. * their home CPUs. So we just add the counter to another CPU's counter,
  4558. * to keep the global sum constant after CPU-down:
  4559. */
  4560. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4561. {
  4562. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4563. unsigned long flags;
  4564. local_irq_save(flags);
  4565. double_rq_lock(rq_src, rq_dest);
  4566. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4567. rq_src->nr_uninterruptible = 0;
  4568. double_rq_unlock(rq_src, rq_dest);
  4569. local_irq_restore(flags);
  4570. }
  4571. /* Run through task list and migrate tasks from the dead cpu. */
  4572. static void migrate_live_tasks(int src_cpu)
  4573. {
  4574. struct task_struct *p, *t;
  4575. read_lock(&tasklist_lock);
  4576. do_each_thread(t, p) {
  4577. if (p == current)
  4578. continue;
  4579. if (task_cpu(p) == src_cpu)
  4580. move_task_off_dead_cpu(src_cpu, p);
  4581. } while_each_thread(t, p);
  4582. read_unlock(&tasklist_lock);
  4583. }
  4584. /*
  4585. * Schedules idle task to be the next runnable task on current CPU.
  4586. * It does so by boosting its priority to highest possible.
  4587. * Used by CPU offline code.
  4588. */
  4589. void sched_idle_next(void)
  4590. {
  4591. int this_cpu = smp_processor_id();
  4592. struct rq *rq = cpu_rq(this_cpu);
  4593. struct task_struct *p = rq->idle;
  4594. unsigned long flags;
  4595. /* cpu has to be offline */
  4596. BUG_ON(cpu_online(this_cpu));
  4597. /*
  4598. * Strictly not necessary since rest of the CPUs are stopped by now
  4599. * and interrupts disabled on the current cpu.
  4600. */
  4601. spin_lock_irqsave(&rq->lock, flags);
  4602. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4603. update_rq_clock(rq);
  4604. activate_task(rq, p, 0);
  4605. spin_unlock_irqrestore(&rq->lock, flags);
  4606. }
  4607. /*
  4608. * Ensures that the idle task is using init_mm right before its cpu goes
  4609. * offline.
  4610. */
  4611. void idle_task_exit(void)
  4612. {
  4613. struct mm_struct *mm = current->active_mm;
  4614. BUG_ON(cpu_online(smp_processor_id()));
  4615. if (mm != &init_mm)
  4616. switch_mm(mm, &init_mm, current);
  4617. mmdrop(mm);
  4618. }
  4619. /* called under rq->lock with disabled interrupts */
  4620. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4621. {
  4622. struct rq *rq = cpu_rq(dead_cpu);
  4623. /* Must be exiting, otherwise would be on tasklist. */
  4624. BUG_ON(!p->exit_state);
  4625. /* Cannot have done final schedule yet: would have vanished. */
  4626. BUG_ON(p->state == TASK_DEAD);
  4627. get_task_struct(p);
  4628. /*
  4629. * Drop lock around migration; if someone else moves it,
  4630. * that's OK. No task can be added to this CPU, so iteration is
  4631. * fine.
  4632. */
  4633. spin_unlock_irq(&rq->lock);
  4634. move_task_off_dead_cpu(dead_cpu, p);
  4635. spin_lock_irq(&rq->lock);
  4636. put_task_struct(p);
  4637. }
  4638. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4639. static void migrate_dead_tasks(unsigned int dead_cpu)
  4640. {
  4641. struct rq *rq = cpu_rq(dead_cpu);
  4642. struct task_struct *next;
  4643. for ( ; ; ) {
  4644. if (!rq->nr_running)
  4645. break;
  4646. update_rq_clock(rq);
  4647. next = pick_next_task(rq, rq->curr);
  4648. if (!next)
  4649. break;
  4650. migrate_dead(dead_cpu, next);
  4651. }
  4652. }
  4653. #endif /* CONFIG_HOTPLUG_CPU */
  4654. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4655. static struct ctl_table sd_ctl_dir[] = {
  4656. {
  4657. .procname = "sched_domain",
  4658. .mode = 0555,
  4659. },
  4660. {0, },
  4661. };
  4662. static struct ctl_table sd_ctl_root[] = {
  4663. {
  4664. .ctl_name = CTL_KERN,
  4665. .procname = "kernel",
  4666. .mode = 0555,
  4667. .child = sd_ctl_dir,
  4668. },
  4669. {0, },
  4670. };
  4671. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4672. {
  4673. struct ctl_table *entry =
  4674. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4675. return entry;
  4676. }
  4677. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4678. {
  4679. struct ctl_table *entry;
  4680. /*
  4681. * In the intermediate directories, both the child directory and
  4682. * procname are dynamically allocated and could fail but the mode
  4683. * will always be set. In the lowest directory the names are
  4684. * static strings and all have proc handlers.
  4685. */
  4686. for (entry = *tablep; entry->mode; entry++) {
  4687. if (entry->child)
  4688. sd_free_ctl_entry(&entry->child);
  4689. if (entry->proc_handler == NULL)
  4690. kfree(entry->procname);
  4691. }
  4692. kfree(*tablep);
  4693. *tablep = NULL;
  4694. }
  4695. static void
  4696. set_table_entry(struct ctl_table *entry,
  4697. const char *procname, void *data, int maxlen,
  4698. mode_t mode, proc_handler *proc_handler)
  4699. {
  4700. entry->procname = procname;
  4701. entry->data = data;
  4702. entry->maxlen = maxlen;
  4703. entry->mode = mode;
  4704. entry->proc_handler = proc_handler;
  4705. }
  4706. static struct ctl_table *
  4707. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4708. {
  4709. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4710. if (table == NULL)
  4711. return NULL;
  4712. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4713. sizeof(long), 0644, proc_doulongvec_minmax);
  4714. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4715. sizeof(long), 0644, proc_doulongvec_minmax);
  4716. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4717. sizeof(int), 0644, proc_dointvec_minmax);
  4718. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4719. sizeof(int), 0644, proc_dointvec_minmax);
  4720. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4721. sizeof(int), 0644, proc_dointvec_minmax);
  4722. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4723. sizeof(int), 0644, proc_dointvec_minmax);
  4724. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4725. sizeof(int), 0644, proc_dointvec_minmax);
  4726. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4727. sizeof(int), 0644, proc_dointvec_minmax);
  4728. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4729. sizeof(int), 0644, proc_dointvec_minmax);
  4730. set_table_entry(&table[9], "cache_nice_tries",
  4731. &sd->cache_nice_tries,
  4732. sizeof(int), 0644, proc_dointvec_minmax);
  4733. set_table_entry(&table[10], "flags", &sd->flags,
  4734. sizeof(int), 0644, proc_dointvec_minmax);
  4735. /* &table[11] is terminator */
  4736. return table;
  4737. }
  4738. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4739. {
  4740. struct ctl_table *entry, *table;
  4741. struct sched_domain *sd;
  4742. int domain_num = 0, i;
  4743. char buf[32];
  4744. for_each_domain(cpu, sd)
  4745. domain_num++;
  4746. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4747. if (table == NULL)
  4748. return NULL;
  4749. i = 0;
  4750. for_each_domain(cpu, sd) {
  4751. snprintf(buf, 32, "domain%d", i);
  4752. entry->procname = kstrdup(buf, GFP_KERNEL);
  4753. entry->mode = 0555;
  4754. entry->child = sd_alloc_ctl_domain_table(sd);
  4755. entry++;
  4756. i++;
  4757. }
  4758. return table;
  4759. }
  4760. static struct ctl_table_header *sd_sysctl_header;
  4761. static void register_sched_domain_sysctl(void)
  4762. {
  4763. int i, cpu_num = num_online_cpus();
  4764. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4765. char buf[32];
  4766. WARN_ON(sd_ctl_dir[0].child);
  4767. sd_ctl_dir[0].child = entry;
  4768. if (entry == NULL)
  4769. return;
  4770. for_each_online_cpu(i) {
  4771. snprintf(buf, 32, "cpu%d", i);
  4772. entry->procname = kstrdup(buf, GFP_KERNEL);
  4773. entry->mode = 0555;
  4774. entry->child = sd_alloc_ctl_cpu_table(i);
  4775. entry++;
  4776. }
  4777. WARN_ON(sd_sysctl_header);
  4778. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4779. }
  4780. /* may be called multiple times per register */
  4781. static void unregister_sched_domain_sysctl(void)
  4782. {
  4783. if (sd_sysctl_header)
  4784. unregister_sysctl_table(sd_sysctl_header);
  4785. sd_sysctl_header = NULL;
  4786. if (sd_ctl_dir[0].child)
  4787. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4788. }
  4789. #else
  4790. static void register_sched_domain_sysctl(void)
  4791. {
  4792. }
  4793. static void unregister_sched_domain_sysctl(void)
  4794. {
  4795. }
  4796. #endif
  4797. /*
  4798. * migration_call - callback that gets triggered when a CPU is added.
  4799. * Here we can start up the necessary migration thread for the new CPU.
  4800. */
  4801. static int __cpuinit
  4802. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4803. {
  4804. struct task_struct *p;
  4805. int cpu = (long)hcpu;
  4806. unsigned long flags;
  4807. struct rq *rq;
  4808. switch (action) {
  4809. case CPU_LOCK_ACQUIRE:
  4810. mutex_lock(&sched_hotcpu_mutex);
  4811. break;
  4812. case CPU_UP_PREPARE:
  4813. case CPU_UP_PREPARE_FROZEN:
  4814. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4815. if (IS_ERR(p))
  4816. return NOTIFY_BAD;
  4817. kthread_bind(p, cpu);
  4818. /* Must be high prio: stop_machine expects to yield to it. */
  4819. rq = task_rq_lock(p, &flags);
  4820. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4821. task_rq_unlock(rq, &flags);
  4822. cpu_rq(cpu)->migration_thread = p;
  4823. break;
  4824. case CPU_ONLINE:
  4825. case CPU_ONLINE_FROZEN:
  4826. /* Strictly unnecessary, as first user will wake it. */
  4827. wake_up_process(cpu_rq(cpu)->migration_thread);
  4828. break;
  4829. #ifdef CONFIG_HOTPLUG_CPU
  4830. case CPU_UP_CANCELED:
  4831. case CPU_UP_CANCELED_FROZEN:
  4832. if (!cpu_rq(cpu)->migration_thread)
  4833. break;
  4834. /* Unbind it from offline cpu so it can run. Fall thru. */
  4835. kthread_bind(cpu_rq(cpu)->migration_thread,
  4836. any_online_cpu(cpu_online_map));
  4837. kthread_stop(cpu_rq(cpu)->migration_thread);
  4838. cpu_rq(cpu)->migration_thread = NULL;
  4839. break;
  4840. case CPU_DEAD:
  4841. case CPU_DEAD_FROZEN:
  4842. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4843. migrate_live_tasks(cpu);
  4844. rq = cpu_rq(cpu);
  4845. kthread_stop(rq->migration_thread);
  4846. rq->migration_thread = NULL;
  4847. /* Idle task back to normal (off runqueue, low prio) */
  4848. spin_lock_irq(&rq->lock);
  4849. update_rq_clock(rq);
  4850. deactivate_task(rq, rq->idle, 0);
  4851. rq->idle->static_prio = MAX_PRIO;
  4852. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4853. rq->idle->sched_class = &idle_sched_class;
  4854. migrate_dead_tasks(cpu);
  4855. spin_unlock_irq(&rq->lock);
  4856. cpuset_unlock();
  4857. migrate_nr_uninterruptible(rq);
  4858. BUG_ON(rq->nr_running != 0);
  4859. /*
  4860. * No need to migrate the tasks: it was best-effort if
  4861. * they didn't take sched_hotcpu_mutex. Just wake up
  4862. * the requestors.
  4863. */
  4864. spin_lock_irq(&rq->lock);
  4865. while (!list_empty(&rq->migration_queue)) {
  4866. struct migration_req *req;
  4867. req = list_entry(rq->migration_queue.next,
  4868. struct migration_req, list);
  4869. list_del_init(&req->list);
  4870. complete(&req->done);
  4871. }
  4872. spin_unlock_irq(&rq->lock);
  4873. break;
  4874. #endif
  4875. case CPU_LOCK_RELEASE:
  4876. mutex_unlock(&sched_hotcpu_mutex);
  4877. break;
  4878. }
  4879. return NOTIFY_OK;
  4880. }
  4881. /* Register at highest priority so that task migration (migrate_all_tasks)
  4882. * happens before everything else.
  4883. */
  4884. static struct notifier_block __cpuinitdata migration_notifier = {
  4885. .notifier_call = migration_call,
  4886. .priority = 10
  4887. };
  4888. void __init migration_init(void)
  4889. {
  4890. void *cpu = (void *)(long)smp_processor_id();
  4891. int err;
  4892. /* Start one for the boot CPU: */
  4893. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4894. BUG_ON(err == NOTIFY_BAD);
  4895. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4896. register_cpu_notifier(&migration_notifier);
  4897. }
  4898. #endif
  4899. #ifdef CONFIG_SMP
  4900. /* Number of possible processor ids */
  4901. int nr_cpu_ids __read_mostly = NR_CPUS;
  4902. EXPORT_SYMBOL(nr_cpu_ids);
  4903. #ifdef CONFIG_SCHED_DEBUG
  4904. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4905. {
  4906. struct sched_group *group = sd->groups;
  4907. cpumask_t groupmask;
  4908. char str[NR_CPUS];
  4909. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4910. cpus_clear(groupmask);
  4911. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4912. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4913. printk("does not load-balance\n");
  4914. if (sd->parent)
  4915. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4916. " has parent");
  4917. return -1;
  4918. }
  4919. printk(KERN_CONT "span %s\n", str);
  4920. if (!cpu_isset(cpu, sd->span)) {
  4921. printk(KERN_ERR "ERROR: domain->span does not contain "
  4922. "CPU%d\n", cpu);
  4923. }
  4924. if (!cpu_isset(cpu, group->cpumask)) {
  4925. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4926. " CPU%d\n", cpu);
  4927. }
  4928. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4929. do {
  4930. if (!group) {
  4931. printk("\n");
  4932. printk(KERN_ERR "ERROR: group is NULL\n");
  4933. break;
  4934. }
  4935. if (!group->__cpu_power) {
  4936. printk(KERN_CONT "\n");
  4937. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4938. "set\n");
  4939. break;
  4940. }
  4941. if (!cpus_weight(group->cpumask)) {
  4942. printk(KERN_CONT "\n");
  4943. printk(KERN_ERR "ERROR: empty group\n");
  4944. break;
  4945. }
  4946. if (cpus_intersects(groupmask, group->cpumask)) {
  4947. printk(KERN_CONT "\n");
  4948. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4949. break;
  4950. }
  4951. cpus_or(groupmask, groupmask, group->cpumask);
  4952. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4953. printk(KERN_CONT " %s", str);
  4954. group = group->next;
  4955. } while (group != sd->groups);
  4956. printk(KERN_CONT "\n");
  4957. if (!cpus_equal(sd->span, groupmask))
  4958. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4959. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4960. printk(KERN_ERR "ERROR: parent span is not a superset "
  4961. "of domain->span\n");
  4962. return 0;
  4963. }
  4964. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4965. {
  4966. int level = 0;
  4967. if (!sd) {
  4968. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4969. return;
  4970. }
  4971. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4972. for (;;) {
  4973. if (sched_domain_debug_one(sd, cpu, level))
  4974. break;
  4975. level++;
  4976. sd = sd->parent;
  4977. if (!sd)
  4978. break;
  4979. }
  4980. }
  4981. #else
  4982. # define sched_domain_debug(sd, cpu) do { } while (0)
  4983. #endif
  4984. static int sd_degenerate(struct sched_domain *sd)
  4985. {
  4986. if (cpus_weight(sd->span) == 1)
  4987. return 1;
  4988. /* Following flags need at least 2 groups */
  4989. if (sd->flags & (SD_LOAD_BALANCE |
  4990. SD_BALANCE_NEWIDLE |
  4991. SD_BALANCE_FORK |
  4992. SD_BALANCE_EXEC |
  4993. SD_SHARE_CPUPOWER |
  4994. SD_SHARE_PKG_RESOURCES)) {
  4995. if (sd->groups != sd->groups->next)
  4996. return 0;
  4997. }
  4998. /* Following flags don't use groups */
  4999. if (sd->flags & (SD_WAKE_IDLE |
  5000. SD_WAKE_AFFINE |
  5001. SD_WAKE_BALANCE))
  5002. return 0;
  5003. return 1;
  5004. }
  5005. static int
  5006. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5007. {
  5008. unsigned long cflags = sd->flags, pflags = parent->flags;
  5009. if (sd_degenerate(parent))
  5010. return 1;
  5011. if (!cpus_equal(sd->span, parent->span))
  5012. return 0;
  5013. /* Does parent contain flags not in child? */
  5014. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5015. if (cflags & SD_WAKE_AFFINE)
  5016. pflags &= ~SD_WAKE_BALANCE;
  5017. /* Flags needing groups don't count if only 1 group in parent */
  5018. if (parent->groups == parent->groups->next) {
  5019. pflags &= ~(SD_LOAD_BALANCE |
  5020. SD_BALANCE_NEWIDLE |
  5021. SD_BALANCE_FORK |
  5022. SD_BALANCE_EXEC |
  5023. SD_SHARE_CPUPOWER |
  5024. SD_SHARE_PKG_RESOURCES);
  5025. }
  5026. if (~cflags & pflags)
  5027. return 0;
  5028. return 1;
  5029. }
  5030. /*
  5031. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5032. * hold the hotplug lock.
  5033. */
  5034. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  5035. {
  5036. struct rq *rq = cpu_rq(cpu);
  5037. struct sched_domain *tmp;
  5038. /* Remove the sched domains which do not contribute to scheduling. */
  5039. for (tmp = sd; tmp; tmp = tmp->parent) {
  5040. struct sched_domain *parent = tmp->parent;
  5041. if (!parent)
  5042. break;
  5043. if (sd_parent_degenerate(tmp, parent)) {
  5044. tmp->parent = parent->parent;
  5045. if (parent->parent)
  5046. parent->parent->child = tmp;
  5047. }
  5048. }
  5049. if (sd && sd_degenerate(sd)) {
  5050. sd = sd->parent;
  5051. if (sd)
  5052. sd->child = NULL;
  5053. }
  5054. sched_domain_debug(sd, cpu);
  5055. rcu_assign_pointer(rq->sd, sd);
  5056. }
  5057. /* cpus with isolated domains */
  5058. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5059. /* Setup the mask of cpus configured for isolated domains */
  5060. static int __init isolated_cpu_setup(char *str)
  5061. {
  5062. int ints[NR_CPUS], i;
  5063. str = get_options(str, ARRAY_SIZE(ints), ints);
  5064. cpus_clear(cpu_isolated_map);
  5065. for (i = 1; i <= ints[0]; i++)
  5066. if (ints[i] < NR_CPUS)
  5067. cpu_set(ints[i], cpu_isolated_map);
  5068. return 1;
  5069. }
  5070. __setup("isolcpus=", isolated_cpu_setup);
  5071. /*
  5072. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5073. * to a function which identifies what group(along with sched group) a CPU
  5074. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5075. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5076. *
  5077. * init_sched_build_groups will build a circular linked list of the groups
  5078. * covered by the given span, and will set each group's ->cpumask correctly,
  5079. * and ->cpu_power to 0.
  5080. */
  5081. static void
  5082. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5083. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5084. struct sched_group **sg))
  5085. {
  5086. struct sched_group *first = NULL, *last = NULL;
  5087. cpumask_t covered = CPU_MASK_NONE;
  5088. int i;
  5089. for_each_cpu_mask(i, span) {
  5090. struct sched_group *sg;
  5091. int group = group_fn(i, cpu_map, &sg);
  5092. int j;
  5093. if (cpu_isset(i, covered))
  5094. continue;
  5095. sg->cpumask = CPU_MASK_NONE;
  5096. sg->__cpu_power = 0;
  5097. for_each_cpu_mask(j, span) {
  5098. if (group_fn(j, cpu_map, NULL) != group)
  5099. continue;
  5100. cpu_set(j, covered);
  5101. cpu_set(j, sg->cpumask);
  5102. }
  5103. if (!first)
  5104. first = sg;
  5105. if (last)
  5106. last->next = sg;
  5107. last = sg;
  5108. }
  5109. last->next = first;
  5110. }
  5111. #define SD_NODES_PER_DOMAIN 16
  5112. #ifdef CONFIG_NUMA
  5113. /**
  5114. * find_next_best_node - find the next node to include in a sched_domain
  5115. * @node: node whose sched_domain we're building
  5116. * @used_nodes: nodes already in the sched_domain
  5117. *
  5118. * Find the next node to include in a given scheduling domain. Simply
  5119. * finds the closest node not already in the @used_nodes map.
  5120. *
  5121. * Should use nodemask_t.
  5122. */
  5123. static int find_next_best_node(int node, unsigned long *used_nodes)
  5124. {
  5125. int i, n, val, min_val, best_node = 0;
  5126. min_val = INT_MAX;
  5127. for (i = 0; i < MAX_NUMNODES; i++) {
  5128. /* Start at @node */
  5129. n = (node + i) % MAX_NUMNODES;
  5130. if (!nr_cpus_node(n))
  5131. continue;
  5132. /* Skip already used nodes */
  5133. if (test_bit(n, used_nodes))
  5134. continue;
  5135. /* Simple min distance search */
  5136. val = node_distance(node, n);
  5137. if (val < min_val) {
  5138. min_val = val;
  5139. best_node = n;
  5140. }
  5141. }
  5142. set_bit(best_node, used_nodes);
  5143. return best_node;
  5144. }
  5145. /**
  5146. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5147. * @node: node whose cpumask we're constructing
  5148. * @size: number of nodes to include in this span
  5149. *
  5150. * Given a node, construct a good cpumask for its sched_domain to span. It
  5151. * should be one that prevents unnecessary balancing, but also spreads tasks
  5152. * out optimally.
  5153. */
  5154. static cpumask_t sched_domain_node_span(int node)
  5155. {
  5156. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5157. cpumask_t span, nodemask;
  5158. int i;
  5159. cpus_clear(span);
  5160. bitmap_zero(used_nodes, MAX_NUMNODES);
  5161. nodemask = node_to_cpumask(node);
  5162. cpus_or(span, span, nodemask);
  5163. set_bit(node, used_nodes);
  5164. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5165. int next_node = find_next_best_node(node, used_nodes);
  5166. nodemask = node_to_cpumask(next_node);
  5167. cpus_or(span, span, nodemask);
  5168. }
  5169. return span;
  5170. }
  5171. #endif
  5172. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5173. /*
  5174. * SMT sched-domains:
  5175. */
  5176. #ifdef CONFIG_SCHED_SMT
  5177. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5178. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5179. static int
  5180. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5181. {
  5182. if (sg)
  5183. *sg = &per_cpu(sched_group_cpus, cpu);
  5184. return cpu;
  5185. }
  5186. #endif
  5187. /*
  5188. * multi-core sched-domains:
  5189. */
  5190. #ifdef CONFIG_SCHED_MC
  5191. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5192. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5193. #endif
  5194. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5195. static int
  5196. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5197. {
  5198. int group;
  5199. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5200. cpus_and(mask, mask, *cpu_map);
  5201. group = first_cpu(mask);
  5202. if (sg)
  5203. *sg = &per_cpu(sched_group_core, group);
  5204. return group;
  5205. }
  5206. #elif defined(CONFIG_SCHED_MC)
  5207. static int
  5208. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5209. {
  5210. if (sg)
  5211. *sg = &per_cpu(sched_group_core, cpu);
  5212. return cpu;
  5213. }
  5214. #endif
  5215. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5216. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5217. static int
  5218. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5219. {
  5220. int group;
  5221. #ifdef CONFIG_SCHED_MC
  5222. cpumask_t mask = cpu_coregroup_map(cpu);
  5223. cpus_and(mask, mask, *cpu_map);
  5224. group = first_cpu(mask);
  5225. #elif defined(CONFIG_SCHED_SMT)
  5226. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5227. cpus_and(mask, mask, *cpu_map);
  5228. group = first_cpu(mask);
  5229. #else
  5230. group = cpu;
  5231. #endif
  5232. if (sg)
  5233. *sg = &per_cpu(sched_group_phys, group);
  5234. return group;
  5235. }
  5236. #ifdef CONFIG_NUMA
  5237. /*
  5238. * The init_sched_build_groups can't handle what we want to do with node
  5239. * groups, so roll our own. Now each node has its own list of groups which
  5240. * gets dynamically allocated.
  5241. */
  5242. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5243. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5244. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5245. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5246. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5247. struct sched_group **sg)
  5248. {
  5249. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5250. int group;
  5251. cpus_and(nodemask, nodemask, *cpu_map);
  5252. group = first_cpu(nodemask);
  5253. if (sg)
  5254. *sg = &per_cpu(sched_group_allnodes, group);
  5255. return group;
  5256. }
  5257. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5258. {
  5259. struct sched_group *sg = group_head;
  5260. int j;
  5261. if (!sg)
  5262. return;
  5263. do {
  5264. for_each_cpu_mask(j, sg->cpumask) {
  5265. struct sched_domain *sd;
  5266. sd = &per_cpu(phys_domains, j);
  5267. if (j != first_cpu(sd->groups->cpumask)) {
  5268. /*
  5269. * Only add "power" once for each
  5270. * physical package.
  5271. */
  5272. continue;
  5273. }
  5274. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5275. }
  5276. sg = sg->next;
  5277. } while (sg != group_head);
  5278. }
  5279. #endif
  5280. #ifdef CONFIG_NUMA
  5281. /* Free memory allocated for various sched_group structures */
  5282. static void free_sched_groups(const cpumask_t *cpu_map)
  5283. {
  5284. int cpu, i;
  5285. for_each_cpu_mask(cpu, *cpu_map) {
  5286. struct sched_group **sched_group_nodes
  5287. = sched_group_nodes_bycpu[cpu];
  5288. if (!sched_group_nodes)
  5289. continue;
  5290. for (i = 0; i < MAX_NUMNODES; i++) {
  5291. cpumask_t nodemask = node_to_cpumask(i);
  5292. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5293. cpus_and(nodemask, nodemask, *cpu_map);
  5294. if (cpus_empty(nodemask))
  5295. continue;
  5296. if (sg == NULL)
  5297. continue;
  5298. sg = sg->next;
  5299. next_sg:
  5300. oldsg = sg;
  5301. sg = sg->next;
  5302. kfree(oldsg);
  5303. if (oldsg != sched_group_nodes[i])
  5304. goto next_sg;
  5305. }
  5306. kfree(sched_group_nodes);
  5307. sched_group_nodes_bycpu[cpu] = NULL;
  5308. }
  5309. }
  5310. #else
  5311. static void free_sched_groups(const cpumask_t *cpu_map)
  5312. {
  5313. }
  5314. #endif
  5315. /*
  5316. * Initialize sched groups cpu_power.
  5317. *
  5318. * cpu_power indicates the capacity of sched group, which is used while
  5319. * distributing the load between different sched groups in a sched domain.
  5320. * Typically cpu_power for all the groups in a sched domain will be same unless
  5321. * there are asymmetries in the topology. If there are asymmetries, group
  5322. * having more cpu_power will pickup more load compared to the group having
  5323. * less cpu_power.
  5324. *
  5325. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5326. * the maximum number of tasks a group can handle in the presence of other idle
  5327. * or lightly loaded groups in the same sched domain.
  5328. */
  5329. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5330. {
  5331. struct sched_domain *child;
  5332. struct sched_group *group;
  5333. WARN_ON(!sd || !sd->groups);
  5334. if (cpu != first_cpu(sd->groups->cpumask))
  5335. return;
  5336. child = sd->child;
  5337. sd->groups->__cpu_power = 0;
  5338. /*
  5339. * For perf policy, if the groups in child domain share resources
  5340. * (for example cores sharing some portions of the cache hierarchy
  5341. * or SMT), then set this domain groups cpu_power such that each group
  5342. * can handle only one task, when there are other idle groups in the
  5343. * same sched domain.
  5344. */
  5345. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5346. (child->flags &
  5347. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5348. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5349. return;
  5350. }
  5351. /*
  5352. * add cpu_power of each child group to this groups cpu_power
  5353. */
  5354. group = child->groups;
  5355. do {
  5356. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5357. group = group->next;
  5358. } while (group != child->groups);
  5359. }
  5360. /*
  5361. * Build sched domains for a given set of cpus and attach the sched domains
  5362. * to the individual cpus
  5363. */
  5364. static int build_sched_domains(const cpumask_t *cpu_map)
  5365. {
  5366. int i;
  5367. #ifdef CONFIG_NUMA
  5368. struct sched_group **sched_group_nodes = NULL;
  5369. int sd_allnodes = 0;
  5370. /*
  5371. * Allocate the per-node list of sched groups
  5372. */
  5373. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5374. GFP_KERNEL);
  5375. if (!sched_group_nodes) {
  5376. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5377. return -ENOMEM;
  5378. }
  5379. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5380. #endif
  5381. /*
  5382. * Set up domains for cpus specified by the cpu_map.
  5383. */
  5384. for_each_cpu_mask(i, *cpu_map) {
  5385. struct sched_domain *sd = NULL, *p;
  5386. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5387. cpus_and(nodemask, nodemask, *cpu_map);
  5388. #ifdef CONFIG_NUMA
  5389. if (cpus_weight(*cpu_map) >
  5390. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5391. sd = &per_cpu(allnodes_domains, i);
  5392. *sd = SD_ALLNODES_INIT;
  5393. sd->span = *cpu_map;
  5394. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5395. p = sd;
  5396. sd_allnodes = 1;
  5397. } else
  5398. p = NULL;
  5399. sd = &per_cpu(node_domains, i);
  5400. *sd = SD_NODE_INIT;
  5401. sd->span = sched_domain_node_span(cpu_to_node(i));
  5402. sd->parent = p;
  5403. if (p)
  5404. p->child = sd;
  5405. cpus_and(sd->span, sd->span, *cpu_map);
  5406. #endif
  5407. p = sd;
  5408. sd = &per_cpu(phys_domains, i);
  5409. *sd = SD_CPU_INIT;
  5410. sd->span = nodemask;
  5411. sd->parent = p;
  5412. if (p)
  5413. p->child = sd;
  5414. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5415. #ifdef CONFIG_SCHED_MC
  5416. p = sd;
  5417. sd = &per_cpu(core_domains, i);
  5418. *sd = SD_MC_INIT;
  5419. sd->span = cpu_coregroup_map(i);
  5420. cpus_and(sd->span, sd->span, *cpu_map);
  5421. sd->parent = p;
  5422. p->child = sd;
  5423. cpu_to_core_group(i, cpu_map, &sd->groups);
  5424. #endif
  5425. #ifdef CONFIG_SCHED_SMT
  5426. p = sd;
  5427. sd = &per_cpu(cpu_domains, i);
  5428. *sd = SD_SIBLING_INIT;
  5429. sd->span = per_cpu(cpu_sibling_map, i);
  5430. cpus_and(sd->span, sd->span, *cpu_map);
  5431. sd->parent = p;
  5432. p->child = sd;
  5433. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5434. #endif
  5435. }
  5436. #ifdef CONFIG_SCHED_SMT
  5437. /* Set up CPU (sibling) groups */
  5438. for_each_cpu_mask(i, *cpu_map) {
  5439. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5440. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5441. if (i != first_cpu(this_sibling_map))
  5442. continue;
  5443. init_sched_build_groups(this_sibling_map, cpu_map,
  5444. &cpu_to_cpu_group);
  5445. }
  5446. #endif
  5447. #ifdef CONFIG_SCHED_MC
  5448. /* Set up multi-core groups */
  5449. for_each_cpu_mask(i, *cpu_map) {
  5450. cpumask_t this_core_map = cpu_coregroup_map(i);
  5451. cpus_and(this_core_map, this_core_map, *cpu_map);
  5452. if (i != first_cpu(this_core_map))
  5453. continue;
  5454. init_sched_build_groups(this_core_map, cpu_map,
  5455. &cpu_to_core_group);
  5456. }
  5457. #endif
  5458. /* Set up physical groups */
  5459. for (i = 0; i < MAX_NUMNODES; i++) {
  5460. cpumask_t nodemask = node_to_cpumask(i);
  5461. cpus_and(nodemask, nodemask, *cpu_map);
  5462. if (cpus_empty(nodemask))
  5463. continue;
  5464. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5465. }
  5466. #ifdef CONFIG_NUMA
  5467. /* Set up node groups */
  5468. if (sd_allnodes)
  5469. init_sched_build_groups(*cpu_map, cpu_map,
  5470. &cpu_to_allnodes_group);
  5471. for (i = 0; i < MAX_NUMNODES; i++) {
  5472. /* Set up node groups */
  5473. struct sched_group *sg, *prev;
  5474. cpumask_t nodemask = node_to_cpumask(i);
  5475. cpumask_t domainspan;
  5476. cpumask_t covered = CPU_MASK_NONE;
  5477. int j;
  5478. cpus_and(nodemask, nodemask, *cpu_map);
  5479. if (cpus_empty(nodemask)) {
  5480. sched_group_nodes[i] = NULL;
  5481. continue;
  5482. }
  5483. domainspan = sched_domain_node_span(i);
  5484. cpus_and(domainspan, domainspan, *cpu_map);
  5485. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5486. if (!sg) {
  5487. printk(KERN_WARNING "Can not alloc domain group for "
  5488. "node %d\n", i);
  5489. goto error;
  5490. }
  5491. sched_group_nodes[i] = sg;
  5492. for_each_cpu_mask(j, nodemask) {
  5493. struct sched_domain *sd;
  5494. sd = &per_cpu(node_domains, j);
  5495. sd->groups = sg;
  5496. }
  5497. sg->__cpu_power = 0;
  5498. sg->cpumask = nodemask;
  5499. sg->next = sg;
  5500. cpus_or(covered, covered, nodemask);
  5501. prev = sg;
  5502. for (j = 0; j < MAX_NUMNODES; j++) {
  5503. cpumask_t tmp, notcovered;
  5504. int n = (i + j) % MAX_NUMNODES;
  5505. cpus_complement(notcovered, covered);
  5506. cpus_and(tmp, notcovered, *cpu_map);
  5507. cpus_and(tmp, tmp, domainspan);
  5508. if (cpus_empty(tmp))
  5509. break;
  5510. nodemask = node_to_cpumask(n);
  5511. cpus_and(tmp, tmp, nodemask);
  5512. if (cpus_empty(tmp))
  5513. continue;
  5514. sg = kmalloc_node(sizeof(struct sched_group),
  5515. GFP_KERNEL, i);
  5516. if (!sg) {
  5517. printk(KERN_WARNING
  5518. "Can not alloc domain group for node %d\n", j);
  5519. goto error;
  5520. }
  5521. sg->__cpu_power = 0;
  5522. sg->cpumask = tmp;
  5523. sg->next = prev->next;
  5524. cpus_or(covered, covered, tmp);
  5525. prev->next = sg;
  5526. prev = sg;
  5527. }
  5528. }
  5529. #endif
  5530. /* Calculate CPU power for physical packages and nodes */
  5531. #ifdef CONFIG_SCHED_SMT
  5532. for_each_cpu_mask(i, *cpu_map) {
  5533. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5534. init_sched_groups_power(i, sd);
  5535. }
  5536. #endif
  5537. #ifdef CONFIG_SCHED_MC
  5538. for_each_cpu_mask(i, *cpu_map) {
  5539. struct sched_domain *sd = &per_cpu(core_domains, i);
  5540. init_sched_groups_power(i, sd);
  5541. }
  5542. #endif
  5543. for_each_cpu_mask(i, *cpu_map) {
  5544. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5545. init_sched_groups_power(i, sd);
  5546. }
  5547. #ifdef CONFIG_NUMA
  5548. for (i = 0; i < MAX_NUMNODES; i++)
  5549. init_numa_sched_groups_power(sched_group_nodes[i]);
  5550. if (sd_allnodes) {
  5551. struct sched_group *sg;
  5552. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5553. init_numa_sched_groups_power(sg);
  5554. }
  5555. #endif
  5556. /* Attach the domains */
  5557. for_each_cpu_mask(i, *cpu_map) {
  5558. struct sched_domain *sd;
  5559. #ifdef CONFIG_SCHED_SMT
  5560. sd = &per_cpu(cpu_domains, i);
  5561. #elif defined(CONFIG_SCHED_MC)
  5562. sd = &per_cpu(core_domains, i);
  5563. #else
  5564. sd = &per_cpu(phys_domains, i);
  5565. #endif
  5566. cpu_attach_domain(sd, i);
  5567. }
  5568. return 0;
  5569. #ifdef CONFIG_NUMA
  5570. error:
  5571. free_sched_groups(cpu_map);
  5572. return -ENOMEM;
  5573. #endif
  5574. }
  5575. static cpumask_t *doms_cur; /* current sched domains */
  5576. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5577. /*
  5578. * Special case: If a kmalloc of a doms_cur partition (array of
  5579. * cpumask_t) fails, then fallback to a single sched domain,
  5580. * as determined by the single cpumask_t fallback_doms.
  5581. */
  5582. static cpumask_t fallback_doms;
  5583. /*
  5584. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5585. * For now this just excludes isolated cpus, but could be used to
  5586. * exclude other special cases in the future.
  5587. */
  5588. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5589. {
  5590. int err;
  5591. ndoms_cur = 1;
  5592. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5593. if (!doms_cur)
  5594. doms_cur = &fallback_doms;
  5595. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5596. err = build_sched_domains(doms_cur);
  5597. register_sched_domain_sysctl();
  5598. return err;
  5599. }
  5600. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5601. {
  5602. free_sched_groups(cpu_map);
  5603. }
  5604. /*
  5605. * Detach sched domains from a group of cpus specified in cpu_map
  5606. * These cpus will now be attached to the NULL domain
  5607. */
  5608. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5609. {
  5610. int i;
  5611. unregister_sched_domain_sysctl();
  5612. for_each_cpu_mask(i, *cpu_map)
  5613. cpu_attach_domain(NULL, i);
  5614. synchronize_sched();
  5615. arch_destroy_sched_domains(cpu_map);
  5616. }
  5617. /*
  5618. * Partition sched domains as specified by the 'ndoms_new'
  5619. * cpumasks in the array doms_new[] of cpumasks. This compares
  5620. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5621. * It destroys each deleted domain and builds each new domain.
  5622. *
  5623. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5624. * The masks don't intersect (don't overlap.) We should setup one
  5625. * sched domain for each mask. CPUs not in any of the cpumasks will
  5626. * not be load balanced. If the same cpumask appears both in the
  5627. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5628. * it as it is.
  5629. *
  5630. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5631. * ownership of it and will kfree it when done with it. If the caller
  5632. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5633. * and partition_sched_domains() will fallback to the single partition
  5634. * 'fallback_doms'.
  5635. *
  5636. * Call with hotplug lock held
  5637. */
  5638. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5639. {
  5640. int i, j;
  5641. /* always unregister in case we don't destroy any domains */
  5642. unregister_sched_domain_sysctl();
  5643. if (doms_new == NULL) {
  5644. ndoms_new = 1;
  5645. doms_new = &fallback_doms;
  5646. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5647. }
  5648. /* Destroy deleted domains */
  5649. for (i = 0; i < ndoms_cur; i++) {
  5650. for (j = 0; j < ndoms_new; j++) {
  5651. if (cpus_equal(doms_cur[i], doms_new[j]))
  5652. goto match1;
  5653. }
  5654. /* no match - a current sched domain not in new doms_new[] */
  5655. detach_destroy_domains(doms_cur + i);
  5656. match1:
  5657. ;
  5658. }
  5659. /* Build new domains */
  5660. for (i = 0; i < ndoms_new; i++) {
  5661. for (j = 0; j < ndoms_cur; j++) {
  5662. if (cpus_equal(doms_new[i], doms_cur[j]))
  5663. goto match2;
  5664. }
  5665. /* no match - add a new doms_new */
  5666. build_sched_domains(doms_new + i);
  5667. match2:
  5668. ;
  5669. }
  5670. /* Remember the new sched domains */
  5671. if (doms_cur != &fallback_doms)
  5672. kfree(doms_cur);
  5673. doms_cur = doms_new;
  5674. ndoms_cur = ndoms_new;
  5675. register_sched_domain_sysctl();
  5676. }
  5677. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5678. static int arch_reinit_sched_domains(void)
  5679. {
  5680. int err;
  5681. mutex_lock(&sched_hotcpu_mutex);
  5682. detach_destroy_domains(&cpu_online_map);
  5683. err = arch_init_sched_domains(&cpu_online_map);
  5684. mutex_unlock(&sched_hotcpu_mutex);
  5685. return err;
  5686. }
  5687. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5688. {
  5689. int ret;
  5690. if (buf[0] != '0' && buf[0] != '1')
  5691. return -EINVAL;
  5692. if (smt)
  5693. sched_smt_power_savings = (buf[0] == '1');
  5694. else
  5695. sched_mc_power_savings = (buf[0] == '1');
  5696. ret = arch_reinit_sched_domains();
  5697. return ret ? ret : count;
  5698. }
  5699. #ifdef CONFIG_SCHED_MC
  5700. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5701. {
  5702. return sprintf(page, "%u\n", sched_mc_power_savings);
  5703. }
  5704. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5705. const char *buf, size_t count)
  5706. {
  5707. return sched_power_savings_store(buf, count, 0);
  5708. }
  5709. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5710. sched_mc_power_savings_store);
  5711. #endif
  5712. #ifdef CONFIG_SCHED_SMT
  5713. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5714. {
  5715. return sprintf(page, "%u\n", sched_smt_power_savings);
  5716. }
  5717. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5718. const char *buf, size_t count)
  5719. {
  5720. return sched_power_savings_store(buf, count, 1);
  5721. }
  5722. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5723. sched_smt_power_savings_store);
  5724. #endif
  5725. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5726. {
  5727. int err = 0;
  5728. #ifdef CONFIG_SCHED_SMT
  5729. if (smt_capable())
  5730. err = sysfs_create_file(&cls->kset.kobj,
  5731. &attr_sched_smt_power_savings.attr);
  5732. #endif
  5733. #ifdef CONFIG_SCHED_MC
  5734. if (!err && mc_capable())
  5735. err = sysfs_create_file(&cls->kset.kobj,
  5736. &attr_sched_mc_power_savings.attr);
  5737. #endif
  5738. return err;
  5739. }
  5740. #endif
  5741. /*
  5742. * Force a reinitialization of the sched domains hierarchy. The domains
  5743. * and groups cannot be updated in place without racing with the balancing
  5744. * code, so we temporarily attach all running cpus to the NULL domain
  5745. * which will prevent rebalancing while the sched domains are recalculated.
  5746. */
  5747. static int update_sched_domains(struct notifier_block *nfb,
  5748. unsigned long action, void *hcpu)
  5749. {
  5750. switch (action) {
  5751. case CPU_UP_PREPARE:
  5752. case CPU_UP_PREPARE_FROZEN:
  5753. case CPU_DOWN_PREPARE:
  5754. case CPU_DOWN_PREPARE_FROZEN:
  5755. detach_destroy_domains(&cpu_online_map);
  5756. return NOTIFY_OK;
  5757. case CPU_UP_CANCELED:
  5758. case CPU_UP_CANCELED_FROZEN:
  5759. case CPU_DOWN_FAILED:
  5760. case CPU_DOWN_FAILED_FROZEN:
  5761. case CPU_ONLINE:
  5762. case CPU_ONLINE_FROZEN:
  5763. case CPU_DEAD:
  5764. case CPU_DEAD_FROZEN:
  5765. /*
  5766. * Fall through and re-initialise the domains.
  5767. */
  5768. break;
  5769. default:
  5770. return NOTIFY_DONE;
  5771. }
  5772. /* The hotplug lock is already held by cpu_up/cpu_down */
  5773. arch_init_sched_domains(&cpu_online_map);
  5774. return NOTIFY_OK;
  5775. }
  5776. void __init sched_init_smp(void)
  5777. {
  5778. cpumask_t non_isolated_cpus;
  5779. mutex_lock(&sched_hotcpu_mutex);
  5780. arch_init_sched_domains(&cpu_online_map);
  5781. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5782. if (cpus_empty(non_isolated_cpus))
  5783. cpu_set(smp_processor_id(), non_isolated_cpus);
  5784. mutex_unlock(&sched_hotcpu_mutex);
  5785. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5786. hotcpu_notifier(update_sched_domains, 0);
  5787. /* Move init over to a non-isolated CPU */
  5788. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5789. BUG();
  5790. sched_init_granularity();
  5791. }
  5792. #else
  5793. void __init sched_init_smp(void)
  5794. {
  5795. sched_init_granularity();
  5796. }
  5797. #endif /* CONFIG_SMP */
  5798. int in_sched_functions(unsigned long addr)
  5799. {
  5800. return in_lock_functions(addr) ||
  5801. (addr >= (unsigned long)__sched_text_start
  5802. && addr < (unsigned long)__sched_text_end);
  5803. }
  5804. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5805. {
  5806. cfs_rq->tasks_timeline = RB_ROOT;
  5807. #ifdef CONFIG_FAIR_GROUP_SCHED
  5808. cfs_rq->rq = rq;
  5809. #endif
  5810. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5811. }
  5812. void __init sched_init(void)
  5813. {
  5814. int highest_cpu = 0;
  5815. int i, j;
  5816. for_each_possible_cpu(i) {
  5817. struct rt_prio_array *array;
  5818. struct rq *rq;
  5819. rq = cpu_rq(i);
  5820. spin_lock_init(&rq->lock);
  5821. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5822. rq->nr_running = 0;
  5823. rq->clock = 1;
  5824. init_cfs_rq(&rq->cfs, rq);
  5825. #ifdef CONFIG_FAIR_GROUP_SCHED
  5826. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5827. {
  5828. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5829. struct sched_entity *se =
  5830. &per_cpu(init_sched_entity, i);
  5831. init_cfs_rq_p[i] = cfs_rq;
  5832. init_cfs_rq(cfs_rq, rq);
  5833. cfs_rq->tg = &init_task_group;
  5834. list_add(&cfs_rq->leaf_cfs_rq_list,
  5835. &rq->leaf_cfs_rq_list);
  5836. init_sched_entity_p[i] = se;
  5837. se->cfs_rq = &rq->cfs;
  5838. se->my_q = cfs_rq;
  5839. se->load.weight = init_task_group_load;
  5840. se->load.inv_weight =
  5841. div64_64(1ULL<<32, init_task_group_load);
  5842. se->parent = NULL;
  5843. }
  5844. init_task_group.shares = init_task_group_load;
  5845. spin_lock_init(&init_task_group.lock);
  5846. #endif
  5847. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5848. rq->cpu_load[j] = 0;
  5849. #ifdef CONFIG_SMP
  5850. rq->sd = NULL;
  5851. rq->active_balance = 0;
  5852. rq->next_balance = jiffies;
  5853. rq->push_cpu = 0;
  5854. rq->cpu = i;
  5855. rq->migration_thread = NULL;
  5856. INIT_LIST_HEAD(&rq->migration_queue);
  5857. #endif
  5858. atomic_set(&rq->nr_iowait, 0);
  5859. array = &rq->rt.active;
  5860. for (j = 0; j < MAX_RT_PRIO; j++) {
  5861. INIT_LIST_HEAD(array->queue + j);
  5862. __clear_bit(j, array->bitmap);
  5863. }
  5864. highest_cpu = i;
  5865. /* delimiter for bitsearch: */
  5866. __set_bit(MAX_RT_PRIO, array->bitmap);
  5867. }
  5868. set_load_weight(&init_task);
  5869. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5870. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5871. #endif
  5872. #ifdef CONFIG_SMP
  5873. nr_cpu_ids = highest_cpu + 1;
  5874. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5875. #endif
  5876. #ifdef CONFIG_RT_MUTEXES
  5877. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5878. #endif
  5879. /*
  5880. * The boot idle thread does lazy MMU switching as well:
  5881. */
  5882. atomic_inc(&init_mm.mm_count);
  5883. enter_lazy_tlb(&init_mm, current);
  5884. /*
  5885. * Make us the idle thread. Technically, schedule() should not be
  5886. * called from this thread, however somewhere below it might be,
  5887. * but because we are the idle thread, we just pick up running again
  5888. * when this runqueue becomes "idle".
  5889. */
  5890. init_idle(current, smp_processor_id());
  5891. /*
  5892. * During early bootup we pretend to be a normal task:
  5893. */
  5894. current->sched_class = &fair_sched_class;
  5895. }
  5896. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5897. void __might_sleep(char *file, int line)
  5898. {
  5899. #ifdef in_atomic
  5900. static unsigned long prev_jiffy; /* ratelimiting */
  5901. if ((in_atomic() || irqs_disabled()) &&
  5902. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5903. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5904. return;
  5905. prev_jiffy = jiffies;
  5906. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5907. " context at %s:%d\n", file, line);
  5908. printk("in_atomic():%d, irqs_disabled():%d\n",
  5909. in_atomic(), irqs_disabled());
  5910. debug_show_held_locks(current);
  5911. if (irqs_disabled())
  5912. print_irqtrace_events(current);
  5913. dump_stack();
  5914. }
  5915. #endif
  5916. }
  5917. EXPORT_SYMBOL(__might_sleep);
  5918. #endif
  5919. #ifdef CONFIG_MAGIC_SYSRQ
  5920. static void normalize_task(struct rq *rq, struct task_struct *p)
  5921. {
  5922. int on_rq;
  5923. update_rq_clock(rq);
  5924. on_rq = p->se.on_rq;
  5925. if (on_rq)
  5926. deactivate_task(rq, p, 0);
  5927. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5928. if (on_rq) {
  5929. activate_task(rq, p, 0);
  5930. resched_task(rq->curr);
  5931. }
  5932. }
  5933. void normalize_rt_tasks(void)
  5934. {
  5935. struct task_struct *g, *p;
  5936. unsigned long flags;
  5937. struct rq *rq;
  5938. read_lock_irq(&tasklist_lock);
  5939. do_each_thread(g, p) {
  5940. /*
  5941. * Only normalize user tasks:
  5942. */
  5943. if (!p->mm)
  5944. continue;
  5945. p->se.exec_start = 0;
  5946. #ifdef CONFIG_SCHEDSTATS
  5947. p->se.wait_start = 0;
  5948. p->se.sleep_start = 0;
  5949. p->se.block_start = 0;
  5950. #endif
  5951. task_rq(p)->clock = 0;
  5952. if (!rt_task(p)) {
  5953. /*
  5954. * Renice negative nice level userspace
  5955. * tasks back to 0:
  5956. */
  5957. if (TASK_NICE(p) < 0 && p->mm)
  5958. set_user_nice(p, 0);
  5959. continue;
  5960. }
  5961. spin_lock_irqsave(&p->pi_lock, flags);
  5962. rq = __task_rq_lock(p);
  5963. normalize_task(rq, p);
  5964. __task_rq_unlock(rq);
  5965. spin_unlock_irqrestore(&p->pi_lock, flags);
  5966. } while_each_thread(g, p);
  5967. read_unlock_irq(&tasklist_lock);
  5968. }
  5969. #endif /* CONFIG_MAGIC_SYSRQ */
  5970. #ifdef CONFIG_IA64
  5971. /*
  5972. * These functions are only useful for the IA64 MCA handling.
  5973. *
  5974. * They can only be called when the whole system has been
  5975. * stopped - every CPU needs to be quiescent, and no scheduling
  5976. * activity can take place. Using them for anything else would
  5977. * be a serious bug, and as a result, they aren't even visible
  5978. * under any other configuration.
  5979. */
  5980. /**
  5981. * curr_task - return the current task for a given cpu.
  5982. * @cpu: the processor in question.
  5983. *
  5984. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5985. */
  5986. struct task_struct *curr_task(int cpu)
  5987. {
  5988. return cpu_curr(cpu);
  5989. }
  5990. /**
  5991. * set_curr_task - set the current task for a given cpu.
  5992. * @cpu: the processor in question.
  5993. * @p: the task pointer to set.
  5994. *
  5995. * Description: This function must only be used when non-maskable interrupts
  5996. * are serviced on a separate stack. It allows the architecture to switch the
  5997. * notion of the current task on a cpu in a non-blocking manner. This function
  5998. * must be called with all CPU's synchronized, and interrupts disabled, the
  5999. * and caller must save the original value of the current task (see
  6000. * curr_task() above) and restore that value before reenabling interrupts and
  6001. * re-starting the system.
  6002. *
  6003. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6004. */
  6005. void set_curr_task(int cpu, struct task_struct *p)
  6006. {
  6007. cpu_curr(cpu) = p;
  6008. }
  6009. #endif
  6010. #ifdef CONFIG_FAIR_GROUP_SCHED
  6011. /* allocate runqueue etc for a new task group */
  6012. struct task_group *sched_create_group(void)
  6013. {
  6014. struct task_group *tg;
  6015. struct cfs_rq *cfs_rq;
  6016. struct sched_entity *se;
  6017. struct rq *rq;
  6018. int i;
  6019. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6020. if (!tg)
  6021. return ERR_PTR(-ENOMEM);
  6022. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6023. if (!tg->cfs_rq)
  6024. goto err;
  6025. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6026. if (!tg->se)
  6027. goto err;
  6028. for_each_possible_cpu(i) {
  6029. rq = cpu_rq(i);
  6030. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6031. cpu_to_node(i));
  6032. if (!cfs_rq)
  6033. goto err;
  6034. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6035. cpu_to_node(i));
  6036. if (!se)
  6037. goto err;
  6038. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6039. memset(se, 0, sizeof(struct sched_entity));
  6040. tg->cfs_rq[i] = cfs_rq;
  6041. init_cfs_rq(cfs_rq, rq);
  6042. cfs_rq->tg = tg;
  6043. tg->se[i] = se;
  6044. se->cfs_rq = &rq->cfs;
  6045. se->my_q = cfs_rq;
  6046. se->load.weight = NICE_0_LOAD;
  6047. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6048. se->parent = NULL;
  6049. }
  6050. for_each_possible_cpu(i) {
  6051. rq = cpu_rq(i);
  6052. cfs_rq = tg->cfs_rq[i];
  6053. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6054. }
  6055. tg->shares = NICE_0_LOAD;
  6056. spin_lock_init(&tg->lock);
  6057. return tg;
  6058. err:
  6059. for_each_possible_cpu(i) {
  6060. if (tg->cfs_rq)
  6061. kfree(tg->cfs_rq[i]);
  6062. if (tg->se)
  6063. kfree(tg->se[i]);
  6064. }
  6065. kfree(tg->cfs_rq);
  6066. kfree(tg->se);
  6067. kfree(tg);
  6068. return ERR_PTR(-ENOMEM);
  6069. }
  6070. /* rcu callback to free various structures associated with a task group */
  6071. static void free_sched_group(struct rcu_head *rhp)
  6072. {
  6073. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6074. struct cfs_rq *cfs_rq;
  6075. struct sched_entity *se;
  6076. int i;
  6077. /* now it should be safe to free those cfs_rqs */
  6078. for_each_possible_cpu(i) {
  6079. cfs_rq = tg->cfs_rq[i];
  6080. kfree(cfs_rq);
  6081. se = tg->se[i];
  6082. kfree(se);
  6083. }
  6084. kfree(tg->cfs_rq);
  6085. kfree(tg->se);
  6086. kfree(tg);
  6087. }
  6088. /* Destroy runqueue etc associated with a task group */
  6089. void sched_destroy_group(struct task_group *tg)
  6090. {
  6091. struct cfs_rq *cfs_rq = NULL;
  6092. int i;
  6093. for_each_possible_cpu(i) {
  6094. cfs_rq = tg->cfs_rq[i];
  6095. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6096. }
  6097. BUG_ON(!cfs_rq);
  6098. /* wait for possible concurrent references to cfs_rqs complete */
  6099. call_rcu(&tg->rcu, free_sched_group);
  6100. }
  6101. /* change task's runqueue when it moves between groups.
  6102. * The caller of this function should have put the task in its new group
  6103. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6104. * reflect its new group.
  6105. */
  6106. void sched_move_task(struct task_struct *tsk)
  6107. {
  6108. int on_rq, running;
  6109. unsigned long flags;
  6110. struct rq *rq;
  6111. rq = task_rq_lock(tsk, &flags);
  6112. if (tsk->sched_class != &fair_sched_class) {
  6113. set_task_cfs_rq(tsk, task_cpu(tsk));
  6114. goto done;
  6115. }
  6116. update_rq_clock(rq);
  6117. running = task_running(rq, tsk);
  6118. on_rq = tsk->se.on_rq;
  6119. if (on_rq) {
  6120. dequeue_task(rq, tsk, 0);
  6121. if (unlikely(running))
  6122. tsk->sched_class->put_prev_task(rq, tsk);
  6123. }
  6124. set_task_cfs_rq(tsk, task_cpu(tsk));
  6125. if (on_rq) {
  6126. if (unlikely(running))
  6127. tsk->sched_class->set_curr_task(rq);
  6128. enqueue_task(rq, tsk, 0);
  6129. }
  6130. done:
  6131. task_rq_unlock(rq, &flags);
  6132. }
  6133. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6134. {
  6135. struct cfs_rq *cfs_rq = se->cfs_rq;
  6136. struct rq *rq = cfs_rq->rq;
  6137. int on_rq;
  6138. spin_lock_irq(&rq->lock);
  6139. on_rq = se->on_rq;
  6140. if (on_rq)
  6141. dequeue_entity(cfs_rq, se, 0);
  6142. se->load.weight = shares;
  6143. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6144. if (on_rq)
  6145. enqueue_entity(cfs_rq, se, 0);
  6146. spin_unlock_irq(&rq->lock);
  6147. }
  6148. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6149. {
  6150. int i;
  6151. spin_lock(&tg->lock);
  6152. if (tg->shares == shares)
  6153. goto done;
  6154. tg->shares = shares;
  6155. for_each_possible_cpu(i)
  6156. set_se_shares(tg->se[i], shares);
  6157. done:
  6158. spin_unlock(&tg->lock);
  6159. return 0;
  6160. }
  6161. unsigned long sched_group_shares(struct task_group *tg)
  6162. {
  6163. return tg->shares;
  6164. }
  6165. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6166. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6167. /* return corresponding task_group object of a cgroup */
  6168. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6169. {
  6170. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6171. struct task_group, css);
  6172. }
  6173. static struct cgroup_subsys_state *
  6174. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6175. {
  6176. struct task_group *tg;
  6177. if (!cgrp->parent) {
  6178. /* This is early initialization for the top cgroup */
  6179. init_task_group.css.cgroup = cgrp;
  6180. return &init_task_group.css;
  6181. }
  6182. /* we support only 1-level deep hierarchical scheduler atm */
  6183. if (cgrp->parent->parent)
  6184. return ERR_PTR(-EINVAL);
  6185. tg = sched_create_group();
  6186. if (IS_ERR(tg))
  6187. return ERR_PTR(-ENOMEM);
  6188. /* Bind the cgroup to task_group object we just created */
  6189. tg->css.cgroup = cgrp;
  6190. return &tg->css;
  6191. }
  6192. static void
  6193. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6194. {
  6195. struct task_group *tg = cgroup_tg(cgrp);
  6196. sched_destroy_group(tg);
  6197. }
  6198. static int
  6199. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6200. struct task_struct *tsk)
  6201. {
  6202. /* We don't support RT-tasks being in separate groups */
  6203. if (tsk->sched_class != &fair_sched_class)
  6204. return -EINVAL;
  6205. return 0;
  6206. }
  6207. static void
  6208. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6209. struct cgroup *old_cont, struct task_struct *tsk)
  6210. {
  6211. sched_move_task(tsk);
  6212. }
  6213. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6214. u64 shareval)
  6215. {
  6216. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6217. }
  6218. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6219. {
  6220. struct task_group *tg = cgroup_tg(cgrp);
  6221. return (u64) tg->shares;
  6222. }
  6223. static struct cftype cpu_files[] = {
  6224. {
  6225. .name = "shares",
  6226. .read_uint = cpu_shares_read_uint,
  6227. .write_uint = cpu_shares_write_uint,
  6228. },
  6229. };
  6230. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6231. {
  6232. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6233. }
  6234. struct cgroup_subsys cpu_cgroup_subsys = {
  6235. .name = "cpu",
  6236. .create = cpu_cgroup_create,
  6237. .destroy = cpu_cgroup_destroy,
  6238. .can_attach = cpu_cgroup_can_attach,
  6239. .attach = cpu_cgroup_attach,
  6240. .populate = cpu_cgroup_populate,
  6241. .subsys_id = cpu_cgroup_subsys_id,
  6242. .early_init = 1,
  6243. };
  6244. #endif /* CONFIG_FAIR_CGROUP_SCHED */
  6245. #ifdef CONFIG_CGROUP_CPUACCT
  6246. /*
  6247. * CPU accounting code for task groups.
  6248. *
  6249. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6250. * (balbir@in.ibm.com).
  6251. */
  6252. /* track cpu usage of a group of tasks */
  6253. struct cpuacct {
  6254. struct cgroup_subsys_state css;
  6255. /* cpuusage holds pointer to a u64-type object on every cpu */
  6256. u64 *cpuusage;
  6257. };
  6258. struct cgroup_subsys cpuacct_subsys;
  6259. /* return cpu accounting group corresponding to this container */
  6260. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6261. {
  6262. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6263. struct cpuacct, css);
  6264. }
  6265. /* return cpu accounting group to which this task belongs */
  6266. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6267. {
  6268. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6269. struct cpuacct, css);
  6270. }
  6271. /* create a new cpu accounting group */
  6272. static struct cgroup_subsys_state *cpuacct_create(
  6273. struct cgroup_subsys *ss, struct cgroup *cont)
  6274. {
  6275. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6276. if (!ca)
  6277. return ERR_PTR(-ENOMEM);
  6278. ca->cpuusage = alloc_percpu(u64);
  6279. if (!ca->cpuusage) {
  6280. kfree(ca);
  6281. return ERR_PTR(-ENOMEM);
  6282. }
  6283. return &ca->css;
  6284. }
  6285. /* destroy an existing cpu accounting group */
  6286. static void
  6287. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6288. {
  6289. struct cpuacct *ca = cgroup_ca(cont);
  6290. free_percpu(ca->cpuusage);
  6291. kfree(ca);
  6292. }
  6293. /* return total cpu usage (in nanoseconds) of a group */
  6294. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6295. {
  6296. struct cpuacct *ca = cgroup_ca(cont);
  6297. u64 totalcpuusage = 0;
  6298. int i;
  6299. for_each_possible_cpu(i) {
  6300. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6301. /*
  6302. * Take rq->lock to make 64-bit addition safe on 32-bit
  6303. * platforms.
  6304. */
  6305. spin_lock_irq(&cpu_rq(i)->lock);
  6306. totalcpuusage += *cpuusage;
  6307. spin_unlock_irq(&cpu_rq(i)->lock);
  6308. }
  6309. return totalcpuusage;
  6310. }
  6311. static struct cftype files[] = {
  6312. {
  6313. .name = "usage",
  6314. .read_uint = cpuusage_read,
  6315. },
  6316. };
  6317. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6318. {
  6319. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6320. }
  6321. /*
  6322. * charge this task's execution time to its accounting group.
  6323. *
  6324. * called with rq->lock held.
  6325. */
  6326. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6327. {
  6328. struct cpuacct *ca;
  6329. if (!cpuacct_subsys.active)
  6330. return;
  6331. ca = task_ca(tsk);
  6332. if (ca) {
  6333. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6334. *cpuusage += cputime;
  6335. }
  6336. }
  6337. struct cgroup_subsys cpuacct_subsys = {
  6338. .name = "cpuacct",
  6339. .create = cpuacct_create,
  6340. .destroy = cpuacct_destroy,
  6341. .populate = cpuacct_populate,
  6342. .subsys_id = cpuacct_subsys_id,
  6343. };
  6344. #endif /* CONFIG_CGROUP_CPUACCT */