perf_event_intel.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742
  1. /*
  2. * Per core/cpu state
  3. *
  4. * Used to coordinate shared registers between HT threads or
  5. * among events on a single PMU.
  6. */
  7. #include <linux/stddef.h>
  8. #include <linux/types.h>
  9. #include <linux/init.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <asm/hardirq.h>
  13. #include <asm/apic.h>
  14. #include "perf_event.h"
  15. /*
  16. * Intel PerfMon, used on Core and later.
  17. */
  18. static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  19. {
  20. [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
  21. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  22. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
  23. [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
  24. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  25. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  26. [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
  27. };
  28. static struct event_constraint intel_core_event_constraints[] __read_mostly =
  29. {
  30. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  31. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  32. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  33. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  34. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  35. INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  36. EVENT_CONSTRAINT_END
  37. };
  38. static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  39. {
  40. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  41. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  42. /*
  43. * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
  44. * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
  45. * ratio between these counters.
  46. */
  47. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  48. INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  49. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  50. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  51. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  52. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  53. INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  54. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  55. INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  56. INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  57. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  58. EVENT_CONSTRAINT_END
  59. };
  60. static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  61. {
  62. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  63. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  64. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  65. INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  66. INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  67. INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  68. INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  69. INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  70. INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  71. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  72. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  73. EVENT_CONSTRAINT_END
  74. };
  75. static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  76. {
  77. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  78. EVENT_EXTRA_END
  79. };
  80. static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  81. {
  82. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  83. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  84. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  85. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  86. INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  87. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  88. INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  89. EVENT_CONSTRAINT_END
  90. };
  91. static struct event_constraint intel_snb_event_constraints[] __read_mostly =
  92. {
  93. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  94. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  95. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  96. INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
  97. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  98. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  99. EVENT_CONSTRAINT_END
  100. };
  101. static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
  102. {
  103. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  104. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
  105. EVENT_EXTRA_END
  106. };
  107. static struct event_constraint intel_v1_event_constraints[] __read_mostly =
  108. {
  109. EVENT_CONSTRAINT_END
  110. };
  111. static struct event_constraint intel_gen_event_constraints[] __read_mostly =
  112. {
  113. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  114. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  115. /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
  116. EVENT_CONSTRAINT_END
  117. };
  118. static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
  119. INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
  120. INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
  121. EVENT_EXTRA_END
  122. };
  123. static u64 intel_pmu_event_map(int hw_event)
  124. {
  125. return intel_perfmon_event_map[hw_event];
  126. }
  127. static __initconst const u64 snb_hw_cache_event_ids
  128. [PERF_COUNT_HW_CACHE_MAX]
  129. [PERF_COUNT_HW_CACHE_OP_MAX]
  130. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  131. {
  132. [ C(L1D) ] = {
  133. [ C(OP_READ) ] = {
  134. [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
  135. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
  136. },
  137. [ C(OP_WRITE) ] = {
  138. [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
  139. [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
  140. },
  141. [ C(OP_PREFETCH) ] = {
  142. [ C(RESULT_ACCESS) ] = 0x0,
  143. [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
  144. },
  145. },
  146. [ C(L1I ) ] = {
  147. [ C(OP_READ) ] = {
  148. [ C(RESULT_ACCESS) ] = 0x0,
  149. [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
  150. },
  151. [ C(OP_WRITE) ] = {
  152. [ C(RESULT_ACCESS) ] = -1,
  153. [ C(RESULT_MISS) ] = -1,
  154. },
  155. [ C(OP_PREFETCH) ] = {
  156. [ C(RESULT_ACCESS) ] = 0x0,
  157. [ C(RESULT_MISS) ] = 0x0,
  158. },
  159. },
  160. [ C(LL ) ] = {
  161. [ C(OP_READ) ] = {
  162. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  163. [ C(RESULT_ACCESS) ] = 0x01b7,
  164. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  165. [ C(RESULT_MISS) ] = 0x01b7,
  166. },
  167. [ C(OP_WRITE) ] = {
  168. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  169. [ C(RESULT_ACCESS) ] = 0x01b7,
  170. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  171. [ C(RESULT_MISS) ] = 0x01b7,
  172. },
  173. [ C(OP_PREFETCH) ] = {
  174. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  175. [ C(RESULT_ACCESS) ] = 0x01b7,
  176. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  177. [ C(RESULT_MISS) ] = 0x01b7,
  178. },
  179. },
  180. [ C(DTLB) ] = {
  181. [ C(OP_READ) ] = {
  182. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
  183. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
  184. },
  185. [ C(OP_WRITE) ] = {
  186. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
  187. [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  188. },
  189. [ C(OP_PREFETCH) ] = {
  190. [ C(RESULT_ACCESS) ] = 0x0,
  191. [ C(RESULT_MISS) ] = 0x0,
  192. },
  193. },
  194. [ C(ITLB) ] = {
  195. [ C(OP_READ) ] = {
  196. [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
  197. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
  198. },
  199. [ C(OP_WRITE) ] = {
  200. [ C(RESULT_ACCESS) ] = -1,
  201. [ C(RESULT_MISS) ] = -1,
  202. },
  203. [ C(OP_PREFETCH) ] = {
  204. [ C(RESULT_ACCESS) ] = -1,
  205. [ C(RESULT_MISS) ] = -1,
  206. },
  207. },
  208. [ C(BPU ) ] = {
  209. [ C(OP_READ) ] = {
  210. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  211. [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  212. },
  213. [ C(OP_WRITE) ] = {
  214. [ C(RESULT_ACCESS) ] = -1,
  215. [ C(RESULT_MISS) ] = -1,
  216. },
  217. [ C(OP_PREFETCH) ] = {
  218. [ C(RESULT_ACCESS) ] = -1,
  219. [ C(RESULT_MISS) ] = -1,
  220. },
  221. },
  222. [ C(NODE) ] = {
  223. [ C(OP_READ) ] = {
  224. [ C(RESULT_ACCESS) ] = -1,
  225. [ C(RESULT_MISS) ] = -1,
  226. },
  227. [ C(OP_WRITE) ] = {
  228. [ C(RESULT_ACCESS) ] = -1,
  229. [ C(RESULT_MISS) ] = -1,
  230. },
  231. [ C(OP_PREFETCH) ] = {
  232. [ C(RESULT_ACCESS) ] = -1,
  233. [ C(RESULT_MISS) ] = -1,
  234. },
  235. },
  236. };
  237. static __initconst const u64 westmere_hw_cache_event_ids
  238. [PERF_COUNT_HW_CACHE_MAX]
  239. [PERF_COUNT_HW_CACHE_OP_MAX]
  240. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  241. {
  242. [ C(L1D) ] = {
  243. [ C(OP_READ) ] = {
  244. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  245. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  246. },
  247. [ C(OP_WRITE) ] = {
  248. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  249. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  250. },
  251. [ C(OP_PREFETCH) ] = {
  252. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  253. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  254. },
  255. },
  256. [ C(L1I ) ] = {
  257. [ C(OP_READ) ] = {
  258. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  259. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  260. },
  261. [ C(OP_WRITE) ] = {
  262. [ C(RESULT_ACCESS) ] = -1,
  263. [ C(RESULT_MISS) ] = -1,
  264. },
  265. [ C(OP_PREFETCH) ] = {
  266. [ C(RESULT_ACCESS) ] = 0x0,
  267. [ C(RESULT_MISS) ] = 0x0,
  268. },
  269. },
  270. [ C(LL ) ] = {
  271. [ C(OP_READ) ] = {
  272. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  273. [ C(RESULT_ACCESS) ] = 0x01b7,
  274. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  275. [ C(RESULT_MISS) ] = 0x01b7,
  276. },
  277. /*
  278. * Use RFO, not WRITEBACK, because a write miss would typically occur
  279. * on RFO.
  280. */
  281. [ C(OP_WRITE) ] = {
  282. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  283. [ C(RESULT_ACCESS) ] = 0x01b7,
  284. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  285. [ C(RESULT_MISS) ] = 0x01b7,
  286. },
  287. [ C(OP_PREFETCH) ] = {
  288. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  289. [ C(RESULT_ACCESS) ] = 0x01b7,
  290. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  291. [ C(RESULT_MISS) ] = 0x01b7,
  292. },
  293. },
  294. [ C(DTLB) ] = {
  295. [ C(OP_READ) ] = {
  296. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  297. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  298. },
  299. [ C(OP_WRITE) ] = {
  300. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  301. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  302. },
  303. [ C(OP_PREFETCH) ] = {
  304. [ C(RESULT_ACCESS) ] = 0x0,
  305. [ C(RESULT_MISS) ] = 0x0,
  306. },
  307. },
  308. [ C(ITLB) ] = {
  309. [ C(OP_READ) ] = {
  310. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  311. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
  312. },
  313. [ C(OP_WRITE) ] = {
  314. [ C(RESULT_ACCESS) ] = -1,
  315. [ C(RESULT_MISS) ] = -1,
  316. },
  317. [ C(OP_PREFETCH) ] = {
  318. [ C(RESULT_ACCESS) ] = -1,
  319. [ C(RESULT_MISS) ] = -1,
  320. },
  321. },
  322. [ C(BPU ) ] = {
  323. [ C(OP_READ) ] = {
  324. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  325. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  326. },
  327. [ C(OP_WRITE) ] = {
  328. [ C(RESULT_ACCESS) ] = -1,
  329. [ C(RESULT_MISS) ] = -1,
  330. },
  331. [ C(OP_PREFETCH) ] = {
  332. [ C(RESULT_ACCESS) ] = -1,
  333. [ C(RESULT_MISS) ] = -1,
  334. },
  335. },
  336. [ C(NODE) ] = {
  337. [ C(OP_READ) ] = {
  338. [ C(RESULT_ACCESS) ] = 0x01b7,
  339. [ C(RESULT_MISS) ] = 0x01b7,
  340. },
  341. [ C(OP_WRITE) ] = {
  342. [ C(RESULT_ACCESS) ] = 0x01b7,
  343. [ C(RESULT_MISS) ] = 0x01b7,
  344. },
  345. [ C(OP_PREFETCH) ] = {
  346. [ C(RESULT_ACCESS) ] = 0x01b7,
  347. [ C(RESULT_MISS) ] = 0x01b7,
  348. },
  349. },
  350. };
  351. /*
  352. * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
  353. * See IA32 SDM Vol 3B 30.6.1.3
  354. */
  355. #define NHM_DMND_DATA_RD (1 << 0)
  356. #define NHM_DMND_RFO (1 << 1)
  357. #define NHM_DMND_IFETCH (1 << 2)
  358. #define NHM_DMND_WB (1 << 3)
  359. #define NHM_PF_DATA_RD (1 << 4)
  360. #define NHM_PF_DATA_RFO (1 << 5)
  361. #define NHM_PF_IFETCH (1 << 6)
  362. #define NHM_OFFCORE_OTHER (1 << 7)
  363. #define NHM_UNCORE_HIT (1 << 8)
  364. #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
  365. #define NHM_OTHER_CORE_HITM (1 << 10)
  366. /* reserved */
  367. #define NHM_REMOTE_CACHE_FWD (1 << 12)
  368. #define NHM_REMOTE_DRAM (1 << 13)
  369. #define NHM_LOCAL_DRAM (1 << 14)
  370. #define NHM_NON_DRAM (1 << 15)
  371. #define NHM_ALL_DRAM (NHM_REMOTE_DRAM|NHM_LOCAL_DRAM)
  372. #define NHM_DMND_READ (NHM_DMND_DATA_RD)
  373. #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
  374. #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
  375. #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
  376. #define NHM_L3_MISS (NHM_NON_DRAM|NHM_ALL_DRAM|NHM_REMOTE_CACHE_FWD)
  377. #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
  378. static __initconst const u64 nehalem_hw_cache_extra_regs
  379. [PERF_COUNT_HW_CACHE_MAX]
  380. [PERF_COUNT_HW_CACHE_OP_MAX]
  381. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  382. {
  383. [ C(LL ) ] = {
  384. [ C(OP_READ) ] = {
  385. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
  386. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
  387. },
  388. [ C(OP_WRITE) ] = {
  389. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
  390. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
  391. },
  392. [ C(OP_PREFETCH) ] = {
  393. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
  394. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
  395. },
  396. },
  397. [ C(NODE) ] = {
  398. [ C(OP_READ) ] = {
  399. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_ALL_DRAM,
  400. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE_DRAM,
  401. },
  402. [ C(OP_WRITE) ] = {
  403. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_ALL_DRAM,
  404. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE_DRAM,
  405. },
  406. [ C(OP_PREFETCH) ] = {
  407. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_ALL_DRAM,
  408. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE_DRAM,
  409. },
  410. },
  411. };
  412. static __initconst const u64 nehalem_hw_cache_event_ids
  413. [PERF_COUNT_HW_CACHE_MAX]
  414. [PERF_COUNT_HW_CACHE_OP_MAX]
  415. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  416. {
  417. [ C(L1D) ] = {
  418. [ C(OP_READ) ] = {
  419. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  420. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  421. },
  422. [ C(OP_WRITE) ] = {
  423. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  424. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  425. },
  426. [ C(OP_PREFETCH) ] = {
  427. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  428. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  429. },
  430. },
  431. [ C(L1I ) ] = {
  432. [ C(OP_READ) ] = {
  433. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  434. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  435. },
  436. [ C(OP_WRITE) ] = {
  437. [ C(RESULT_ACCESS) ] = -1,
  438. [ C(RESULT_MISS) ] = -1,
  439. },
  440. [ C(OP_PREFETCH) ] = {
  441. [ C(RESULT_ACCESS) ] = 0x0,
  442. [ C(RESULT_MISS) ] = 0x0,
  443. },
  444. },
  445. [ C(LL ) ] = {
  446. [ C(OP_READ) ] = {
  447. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  448. [ C(RESULT_ACCESS) ] = 0x01b7,
  449. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  450. [ C(RESULT_MISS) ] = 0x01b7,
  451. },
  452. /*
  453. * Use RFO, not WRITEBACK, because a write miss would typically occur
  454. * on RFO.
  455. */
  456. [ C(OP_WRITE) ] = {
  457. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  458. [ C(RESULT_ACCESS) ] = 0x01b7,
  459. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  460. [ C(RESULT_MISS) ] = 0x01b7,
  461. },
  462. [ C(OP_PREFETCH) ] = {
  463. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  464. [ C(RESULT_ACCESS) ] = 0x01b7,
  465. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  466. [ C(RESULT_MISS) ] = 0x01b7,
  467. },
  468. },
  469. [ C(DTLB) ] = {
  470. [ C(OP_READ) ] = {
  471. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  472. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  473. },
  474. [ C(OP_WRITE) ] = {
  475. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  476. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  477. },
  478. [ C(OP_PREFETCH) ] = {
  479. [ C(RESULT_ACCESS) ] = 0x0,
  480. [ C(RESULT_MISS) ] = 0x0,
  481. },
  482. },
  483. [ C(ITLB) ] = {
  484. [ C(OP_READ) ] = {
  485. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  486. [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
  487. },
  488. [ C(OP_WRITE) ] = {
  489. [ C(RESULT_ACCESS) ] = -1,
  490. [ C(RESULT_MISS) ] = -1,
  491. },
  492. [ C(OP_PREFETCH) ] = {
  493. [ C(RESULT_ACCESS) ] = -1,
  494. [ C(RESULT_MISS) ] = -1,
  495. },
  496. },
  497. [ C(BPU ) ] = {
  498. [ C(OP_READ) ] = {
  499. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  500. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  501. },
  502. [ C(OP_WRITE) ] = {
  503. [ C(RESULT_ACCESS) ] = -1,
  504. [ C(RESULT_MISS) ] = -1,
  505. },
  506. [ C(OP_PREFETCH) ] = {
  507. [ C(RESULT_ACCESS) ] = -1,
  508. [ C(RESULT_MISS) ] = -1,
  509. },
  510. },
  511. [ C(NODE) ] = {
  512. [ C(OP_READ) ] = {
  513. [ C(RESULT_ACCESS) ] = 0x01b7,
  514. [ C(RESULT_MISS) ] = 0x01b7,
  515. },
  516. [ C(OP_WRITE) ] = {
  517. [ C(RESULT_ACCESS) ] = 0x01b7,
  518. [ C(RESULT_MISS) ] = 0x01b7,
  519. },
  520. [ C(OP_PREFETCH) ] = {
  521. [ C(RESULT_ACCESS) ] = 0x01b7,
  522. [ C(RESULT_MISS) ] = 0x01b7,
  523. },
  524. },
  525. };
  526. static __initconst const u64 core2_hw_cache_event_ids
  527. [PERF_COUNT_HW_CACHE_MAX]
  528. [PERF_COUNT_HW_CACHE_OP_MAX]
  529. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  530. {
  531. [ C(L1D) ] = {
  532. [ C(OP_READ) ] = {
  533. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  534. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  535. },
  536. [ C(OP_WRITE) ] = {
  537. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  538. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  539. },
  540. [ C(OP_PREFETCH) ] = {
  541. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  542. [ C(RESULT_MISS) ] = 0,
  543. },
  544. },
  545. [ C(L1I ) ] = {
  546. [ C(OP_READ) ] = {
  547. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  548. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  549. },
  550. [ C(OP_WRITE) ] = {
  551. [ C(RESULT_ACCESS) ] = -1,
  552. [ C(RESULT_MISS) ] = -1,
  553. },
  554. [ C(OP_PREFETCH) ] = {
  555. [ C(RESULT_ACCESS) ] = 0,
  556. [ C(RESULT_MISS) ] = 0,
  557. },
  558. },
  559. [ C(LL ) ] = {
  560. [ C(OP_READ) ] = {
  561. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  562. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  563. },
  564. [ C(OP_WRITE) ] = {
  565. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  566. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  567. },
  568. [ C(OP_PREFETCH) ] = {
  569. [ C(RESULT_ACCESS) ] = 0,
  570. [ C(RESULT_MISS) ] = 0,
  571. },
  572. },
  573. [ C(DTLB) ] = {
  574. [ C(OP_READ) ] = {
  575. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  576. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  577. },
  578. [ C(OP_WRITE) ] = {
  579. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  580. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  581. },
  582. [ C(OP_PREFETCH) ] = {
  583. [ C(RESULT_ACCESS) ] = 0,
  584. [ C(RESULT_MISS) ] = 0,
  585. },
  586. },
  587. [ C(ITLB) ] = {
  588. [ C(OP_READ) ] = {
  589. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  590. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  591. },
  592. [ C(OP_WRITE) ] = {
  593. [ C(RESULT_ACCESS) ] = -1,
  594. [ C(RESULT_MISS) ] = -1,
  595. },
  596. [ C(OP_PREFETCH) ] = {
  597. [ C(RESULT_ACCESS) ] = -1,
  598. [ C(RESULT_MISS) ] = -1,
  599. },
  600. },
  601. [ C(BPU ) ] = {
  602. [ C(OP_READ) ] = {
  603. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  604. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  605. },
  606. [ C(OP_WRITE) ] = {
  607. [ C(RESULT_ACCESS) ] = -1,
  608. [ C(RESULT_MISS) ] = -1,
  609. },
  610. [ C(OP_PREFETCH) ] = {
  611. [ C(RESULT_ACCESS) ] = -1,
  612. [ C(RESULT_MISS) ] = -1,
  613. },
  614. },
  615. };
  616. static __initconst const u64 atom_hw_cache_event_ids
  617. [PERF_COUNT_HW_CACHE_MAX]
  618. [PERF_COUNT_HW_CACHE_OP_MAX]
  619. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  620. {
  621. [ C(L1D) ] = {
  622. [ C(OP_READ) ] = {
  623. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  624. [ C(RESULT_MISS) ] = 0,
  625. },
  626. [ C(OP_WRITE) ] = {
  627. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
  628. [ C(RESULT_MISS) ] = 0,
  629. },
  630. [ C(OP_PREFETCH) ] = {
  631. [ C(RESULT_ACCESS) ] = 0x0,
  632. [ C(RESULT_MISS) ] = 0,
  633. },
  634. },
  635. [ C(L1I ) ] = {
  636. [ C(OP_READ) ] = {
  637. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  638. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  639. },
  640. [ C(OP_WRITE) ] = {
  641. [ C(RESULT_ACCESS) ] = -1,
  642. [ C(RESULT_MISS) ] = -1,
  643. },
  644. [ C(OP_PREFETCH) ] = {
  645. [ C(RESULT_ACCESS) ] = 0,
  646. [ C(RESULT_MISS) ] = 0,
  647. },
  648. },
  649. [ C(LL ) ] = {
  650. [ C(OP_READ) ] = {
  651. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  652. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  653. },
  654. [ C(OP_WRITE) ] = {
  655. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  656. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  657. },
  658. [ C(OP_PREFETCH) ] = {
  659. [ C(RESULT_ACCESS) ] = 0,
  660. [ C(RESULT_MISS) ] = 0,
  661. },
  662. },
  663. [ C(DTLB) ] = {
  664. [ C(OP_READ) ] = {
  665. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
  666. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  667. },
  668. [ C(OP_WRITE) ] = {
  669. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
  670. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  671. },
  672. [ C(OP_PREFETCH) ] = {
  673. [ C(RESULT_ACCESS) ] = 0,
  674. [ C(RESULT_MISS) ] = 0,
  675. },
  676. },
  677. [ C(ITLB) ] = {
  678. [ C(OP_READ) ] = {
  679. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  680. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  681. },
  682. [ C(OP_WRITE) ] = {
  683. [ C(RESULT_ACCESS) ] = -1,
  684. [ C(RESULT_MISS) ] = -1,
  685. },
  686. [ C(OP_PREFETCH) ] = {
  687. [ C(RESULT_ACCESS) ] = -1,
  688. [ C(RESULT_MISS) ] = -1,
  689. },
  690. },
  691. [ C(BPU ) ] = {
  692. [ C(OP_READ) ] = {
  693. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  694. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  695. },
  696. [ C(OP_WRITE) ] = {
  697. [ C(RESULT_ACCESS) ] = -1,
  698. [ C(RESULT_MISS) ] = -1,
  699. },
  700. [ C(OP_PREFETCH) ] = {
  701. [ C(RESULT_ACCESS) ] = -1,
  702. [ C(RESULT_MISS) ] = -1,
  703. },
  704. },
  705. };
  706. static void intel_pmu_disable_all(void)
  707. {
  708. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  709. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  710. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
  711. intel_pmu_disable_bts();
  712. intel_pmu_pebs_disable_all();
  713. intel_pmu_lbr_disable_all();
  714. }
  715. static void intel_pmu_enable_all(int added)
  716. {
  717. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  718. intel_pmu_pebs_enable_all();
  719. intel_pmu_lbr_enable_all();
  720. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
  721. x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
  722. if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
  723. struct perf_event *event =
  724. cpuc->events[X86_PMC_IDX_FIXED_BTS];
  725. if (WARN_ON_ONCE(!event))
  726. return;
  727. intel_pmu_enable_bts(event->hw.config);
  728. }
  729. }
  730. /*
  731. * Workaround for:
  732. * Intel Errata AAK100 (model 26)
  733. * Intel Errata AAP53 (model 30)
  734. * Intel Errata BD53 (model 44)
  735. *
  736. * The official story:
  737. * These chips need to be 'reset' when adding counters by programming the
  738. * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
  739. * in sequence on the same PMC or on different PMCs.
  740. *
  741. * In practise it appears some of these events do in fact count, and
  742. * we need to programm all 4 events.
  743. */
  744. static void intel_pmu_nhm_workaround(void)
  745. {
  746. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  747. static const unsigned long nhm_magic[4] = {
  748. 0x4300B5,
  749. 0x4300D2,
  750. 0x4300B1,
  751. 0x4300B1
  752. };
  753. struct perf_event *event;
  754. int i;
  755. /*
  756. * The Errata requires below steps:
  757. * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
  758. * 2) Configure 4 PERFEVTSELx with the magic events and clear
  759. * the corresponding PMCx;
  760. * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
  761. * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
  762. * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
  763. */
  764. /*
  765. * The real steps we choose are a little different from above.
  766. * A) To reduce MSR operations, we don't run step 1) as they
  767. * are already cleared before this function is called;
  768. * B) Call x86_perf_event_update to save PMCx before configuring
  769. * PERFEVTSELx with magic number;
  770. * C) With step 5), we do clear only when the PERFEVTSELx is
  771. * not used currently.
  772. * D) Call x86_perf_event_set_period to restore PMCx;
  773. */
  774. /* We always operate 4 pairs of PERF Counters */
  775. for (i = 0; i < 4; i++) {
  776. event = cpuc->events[i];
  777. if (event)
  778. x86_perf_event_update(event);
  779. }
  780. for (i = 0; i < 4; i++) {
  781. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
  782. wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
  783. }
  784. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
  785. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
  786. for (i = 0; i < 4; i++) {
  787. event = cpuc->events[i];
  788. if (event) {
  789. x86_perf_event_set_period(event);
  790. __x86_pmu_enable_event(&event->hw,
  791. ARCH_PERFMON_EVENTSEL_ENABLE);
  792. } else
  793. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
  794. }
  795. }
  796. static void intel_pmu_nhm_enable_all(int added)
  797. {
  798. if (added)
  799. intel_pmu_nhm_workaround();
  800. intel_pmu_enable_all(added);
  801. }
  802. static inline u64 intel_pmu_get_status(void)
  803. {
  804. u64 status;
  805. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  806. return status;
  807. }
  808. static inline void intel_pmu_ack_status(u64 ack)
  809. {
  810. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  811. }
  812. static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
  813. {
  814. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  815. u64 ctrl_val, mask;
  816. mask = 0xfULL << (idx * 4);
  817. rdmsrl(hwc->config_base, ctrl_val);
  818. ctrl_val &= ~mask;
  819. wrmsrl(hwc->config_base, ctrl_val);
  820. }
  821. static void intel_pmu_disable_event(struct perf_event *event)
  822. {
  823. struct hw_perf_event *hwc = &event->hw;
  824. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  825. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  826. intel_pmu_disable_bts();
  827. intel_pmu_drain_bts_buffer();
  828. return;
  829. }
  830. cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
  831. cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
  832. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  833. intel_pmu_disable_fixed(hwc);
  834. return;
  835. }
  836. x86_pmu_disable_event(event);
  837. if (unlikely(event->attr.precise_ip))
  838. intel_pmu_pebs_disable(event);
  839. }
  840. static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
  841. {
  842. int idx = hwc->idx - X86_PMC_IDX_FIXED;
  843. u64 ctrl_val, bits, mask;
  844. /*
  845. * Enable IRQ generation (0x8),
  846. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  847. * if requested:
  848. */
  849. bits = 0x8ULL;
  850. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  851. bits |= 0x2;
  852. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  853. bits |= 0x1;
  854. /*
  855. * ANY bit is supported in v3 and up
  856. */
  857. if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
  858. bits |= 0x4;
  859. bits <<= (idx * 4);
  860. mask = 0xfULL << (idx * 4);
  861. rdmsrl(hwc->config_base, ctrl_val);
  862. ctrl_val &= ~mask;
  863. ctrl_val |= bits;
  864. wrmsrl(hwc->config_base, ctrl_val);
  865. }
  866. static void intel_pmu_enable_event(struct perf_event *event)
  867. {
  868. struct hw_perf_event *hwc = &event->hw;
  869. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  870. if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
  871. if (!__this_cpu_read(cpu_hw_events.enabled))
  872. return;
  873. intel_pmu_enable_bts(hwc->config);
  874. return;
  875. }
  876. if (event->attr.exclude_host)
  877. cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
  878. if (event->attr.exclude_guest)
  879. cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
  880. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  881. intel_pmu_enable_fixed(hwc);
  882. return;
  883. }
  884. if (unlikely(event->attr.precise_ip))
  885. intel_pmu_pebs_enable(event);
  886. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  887. }
  888. /*
  889. * Save and restart an expired event. Called by NMI contexts,
  890. * so it has to be careful about preempting normal event ops:
  891. */
  892. int intel_pmu_save_and_restart(struct perf_event *event)
  893. {
  894. x86_perf_event_update(event);
  895. return x86_perf_event_set_period(event);
  896. }
  897. static void intel_pmu_reset(void)
  898. {
  899. struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
  900. unsigned long flags;
  901. int idx;
  902. if (!x86_pmu.num_counters)
  903. return;
  904. local_irq_save(flags);
  905. printk("clearing PMU state on CPU#%d\n", smp_processor_id());
  906. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  907. checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
  908. checking_wrmsrl(x86_pmu_event_addr(idx), 0ull);
  909. }
  910. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
  911. checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  912. if (ds)
  913. ds->bts_index = ds->bts_buffer_base;
  914. local_irq_restore(flags);
  915. }
  916. /*
  917. * This handler is triggered by the local APIC, so the APIC IRQ handling
  918. * rules apply:
  919. */
  920. static int intel_pmu_handle_irq(struct pt_regs *regs)
  921. {
  922. struct perf_sample_data data;
  923. struct cpu_hw_events *cpuc;
  924. int bit, loops;
  925. u64 status;
  926. int handled;
  927. perf_sample_data_init(&data, 0);
  928. cpuc = &__get_cpu_var(cpu_hw_events);
  929. /*
  930. * Some chipsets need to unmask the LVTPC in a particular spot
  931. * inside the nmi handler. As a result, the unmasking was pushed
  932. * into all the nmi handlers.
  933. *
  934. * This handler doesn't seem to have any issues with the unmasking
  935. * so it was left at the top.
  936. */
  937. apic_write(APIC_LVTPC, APIC_DM_NMI);
  938. intel_pmu_disable_all();
  939. handled = intel_pmu_drain_bts_buffer();
  940. status = intel_pmu_get_status();
  941. if (!status) {
  942. intel_pmu_enable_all(0);
  943. return handled;
  944. }
  945. loops = 0;
  946. again:
  947. intel_pmu_ack_status(status);
  948. if (++loops > 100) {
  949. WARN_ONCE(1, "perfevents: irq loop stuck!\n");
  950. perf_event_print_debug();
  951. intel_pmu_reset();
  952. goto done;
  953. }
  954. inc_irq_stat(apic_perf_irqs);
  955. intel_pmu_lbr_read();
  956. /*
  957. * PEBS overflow sets bit 62 in the global status register
  958. */
  959. if (__test_and_clear_bit(62, (unsigned long *)&status)) {
  960. handled++;
  961. x86_pmu.drain_pebs(regs);
  962. }
  963. for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  964. struct perf_event *event = cpuc->events[bit];
  965. handled++;
  966. if (!test_bit(bit, cpuc->active_mask))
  967. continue;
  968. if (!intel_pmu_save_and_restart(event))
  969. continue;
  970. data.period = event->hw.last_period;
  971. if (perf_event_overflow(event, &data, regs))
  972. x86_pmu_stop(event, 0);
  973. }
  974. /*
  975. * Repeat if there is more work to be done:
  976. */
  977. status = intel_pmu_get_status();
  978. if (status)
  979. goto again;
  980. done:
  981. intel_pmu_enable_all(0);
  982. return handled;
  983. }
  984. static struct event_constraint *
  985. intel_bts_constraints(struct perf_event *event)
  986. {
  987. struct hw_perf_event *hwc = &event->hw;
  988. unsigned int hw_event, bts_event;
  989. if (event->attr.freq)
  990. return NULL;
  991. hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
  992. bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
  993. if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
  994. return &bts_constraint;
  995. return NULL;
  996. }
  997. static bool intel_try_alt_er(struct perf_event *event, int orig_idx)
  998. {
  999. if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
  1000. return false;
  1001. if (event->hw.extra_reg.idx == EXTRA_REG_RSP_0) {
  1002. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  1003. event->hw.config |= 0x01bb;
  1004. event->hw.extra_reg.idx = EXTRA_REG_RSP_1;
  1005. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
  1006. } else if (event->hw.extra_reg.idx == EXTRA_REG_RSP_1) {
  1007. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  1008. event->hw.config |= 0x01b7;
  1009. event->hw.extra_reg.idx = EXTRA_REG_RSP_0;
  1010. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
  1011. }
  1012. if (event->hw.extra_reg.idx == orig_idx)
  1013. return false;
  1014. return true;
  1015. }
  1016. /*
  1017. * manage allocation of shared extra msr for certain events
  1018. *
  1019. * sharing can be:
  1020. * per-cpu: to be shared between the various events on a single PMU
  1021. * per-core: per-cpu + shared by HT threads
  1022. */
  1023. static struct event_constraint *
  1024. __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
  1025. struct perf_event *event)
  1026. {
  1027. struct event_constraint *c = &emptyconstraint;
  1028. struct hw_perf_event_extra *reg = &event->hw.extra_reg;
  1029. struct er_account *era;
  1030. unsigned long flags;
  1031. int orig_idx = reg->idx;
  1032. /* already allocated shared msr */
  1033. if (reg->alloc)
  1034. return &unconstrained;
  1035. again:
  1036. era = &cpuc->shared_regs->regs[reg->idx];
  1037. /*
  1038. * we use spin_lock_irqsave() to avoid lockdep issues when
  1039. * passing a fake cpuc
  1040. */
  1041. raw_spin_lock_irqsave(&era->lock, flags);
  1042. if (!atomic_read(&era->ref) || era->config == reg->config) {
  1043. /* lock in msr value */
  1044. era->config = reg->config;
  1045. era->reg = reg->reg;
  1046. /* one more user */
  1047. atomic_inc(&era->ref);
  1048. /* no need to reallocate during incremental event scheduling */
  1049. reg->alloc = 1;
  1050. /*
  1051. * All events using extra_reg are unconstrained.
  1052. * Avoids calling x86_get_event_constraints()
  1053. *
  1054. * Must revisit if extra_reg controlling events
  1055. * ever have constraints. Worst case we go through
  1056. * the regular event constraint table.
  1057. */
  1058. c = &unconstrained;
  1059. } else if (intel_try_alt_er(event, orig_idx)) {
  1060. raw_spin_unlock(&era->lock);
  1061. goto again;
  1062. }
  1063. raw_spin_unlock_irqrestore(&era->lock, flags);
  1064. return c;
  1065. }
  1066. static void
  1067. __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
  1068. struct hw_perf_event_extra *reg)
  1069. {
  1070. struct er_account *era;
  1071. /*
  1072. * only put constraint if extra reg was actually
  1073. * allocated. Also takes care of event which do
  1074. * not use an extra shared reg
  1075. */
  1076. if (!reg->alloc)
  1077. return;
  1078. era = &cpuc->shared_regs->regs[reg->idx];
  1079. /* one fewer user */
  1080. atomic_dec(&era->ref);
  1081. /* allocate again next time */
  1082. reg->alloc = 0;
  1083. }
  1084. static struct event_constraint *
  1085. intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
  1086. struct perf_event *event)
  1087. {
  1088. struct event_constraint *c = NULL;
  1089. if (event->hw.extra_reg.idx != EXTRA_REG_NONE)
  1090. c = __intel_shared_reg_get_constraints(cpuc, event);
  1091. return c;
  1092. }
  1093. struct event_constraint *
  1094. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  1095. {
  1096. struct event_constraint *c;
  1097. if (x86_pmu.event_constraints) {
  1098. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1099. if ((event->hw.config & c->cmask) == c->code)
  1100. return c;
  1101. }
  1102. }
  1103. return &unconstrained;
  1104. }
  1105. static struct event_constraint *
  1106. intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  1107. {
  1108. struct event_constraint *c;
  1109. c = intel_bts_constraints(event);
  1110. if (c)
  1111. return c;
  1112. c = intel_pebs_constraints(event);
  1113. if (c)
  1114. return c;
  1115. c = intel_shared_regs_constraints(cpuc, event);
  1116. if (c)
  1117. return c;
  1118. return x86_get_event_constraints(cpuc, event);
  1119. }
  1120. static void
  1121. intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
  1122. struct perf_event *event)
  1123. {
  1124. struct hw_perf_event_extra *reg;
  1125. reg = &event->hw.extra_reg;
  1126. if (reg->idx != EXTRA_REG_NONE)
  1127. __intel_shared_reg_put_constraints(cpuc, reg);
  1128. }
  1129. static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
  1130. struct perf_event *event)
  1131. {
  1132. intel_put_shared_regs_event_constraints(cpuc, event);
  1133. }
  1134. static int intel_pmu_hw_config(struct perf_event *event)
  1135. {
  1136. int ret = x86_pmu_hw_config(event);
  1137. if (ret)
  1138. return ret;
  1139. if (event->attr.precise_ip &&
  1140. (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  1141. /*
  1142. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  1143. * (0x003c) so that we can use it with PEBS.
  1144. *
  1145. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  1146. * PEBS capable. However we can use INST_RETIRED.ANY_P
  1147. * (0x00c0), which is a PEBS capable event, to get the same
  1148. * count.
  1149. *
  1150. * INST_RETIRED.ANY_P counts the number of cycles that retires
  1151. * CNTMASK instructions. By setting CNTMASK to a value (16)
  1152. * larger than the maximum number of instructions that can be
  1153. * retired per cycle (4) and then inverting the condition, we
  1154. * count all cycles that retire 16 or less instructions, which
  1155. * is every cycle.
  1156. *
  1157. * Thereby we gain a PEBS capable cycle counter.
  1158. */
  1159. u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
  1160. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  1161. event->hw.config = alt_config;
  1162. }
  1163. if (event->attr.type != PERF_TYPE_RAW)
  1164. return 0;
  1165. if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
  1166. return 0;
  1167. if (x86_pmu.version < 3)
  1168. return -EINVAL;
  1169. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  1170. return -EACCES;
  1171. event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
  1172. return 0;
  1173. }
  1174. struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
  1175. {
  1176. if (x86_pmu.guest_get_msrs)
  1177. return x86_pmu.guest_get_msrs(nr);
  1178. *nr = 0;
  1179. return NULL;
  1180. }
  1181. EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
  1182. static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
  1183. {
  1184. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1185. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  1186. arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
  1187. arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
  1188. arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
  1189. *nr = 1;
  1190. return arr;
  1191. }
  1192. static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
  1193. {
  1194. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1195. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  1196. int idx;
  1197. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1198. struct perf_event *event = cpuc->events[idx];
  1199. arr[idx].msr = x86_pmu_config_addr(idx);
  1200. arr[idx].host = arr[idx].guest = 0;
  1201. if (!test_bit(idx, cpuc->active_mask))
  1202. continue;
  1203. arr[idx].host = arr[idx].guest =
  1204. event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
  1205. if (event->attr.exclude_host)
  1206. arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  1207. else if (event->attr.exclude_guest)
  1208. arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  1209. }
  1210. *nr = x86_pmu.num_counters;
  1211. return arr;
  1212. }
  1213. static void core_pmu_enable_event(struct perf_event *event)
  1214. {
  1215. if (!event->attr.exclude_host)
  1216. x86_pmu_enable_event(event);
  1217. }
  1218. static void core_pmu_enable_all(int added)
  1219. {
  1220. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1221. int idx;
  1222. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1223. struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
  1224. if (!test_bit(idx, cpuc->active_mask) ||
  1225. cpuc->events[idx]->attr.exclude_host)
  1226. continue;
  1227. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  1228. }
  1229. }
  1230. static __initconst const struct x86_pmu core_pmu = {
  1231. .name = "core",
  1232. .handle_irq = x86_pmu_handle_irq,
  1233. .disable_all = x86_pmu_disable_all,
  1234. .enable_all = core_pmu_enable_all,
  1235. .enable = core_pmu_enable_event,
  1236. .disable = x86_pmu_disable_event,
  1237. .hw_config = x86_pmu_hw_config,
  1238. .schedule_events = x86_schedule_events,
  1239. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1240. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1241. .event_map = intel_pmu_event_map,
  1242. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1243. .apic = 1,
  1244. /*
  1245. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1246. * so we install an artificial 1<<31 period regardless of
  1247. * the generic event period:
  1248. */
  1249. .max_period = (1ULL << 31) - 1,
  1250. .get_event_constraints = intel_get_event_constraints,
  1251. .put_event_constraints = intel_put_event_constraints,
  1252. .event_constraints = intel_core_event_constraints,
  1253. .guest_get_msrs = core_guest_get_msrs,
  1254. };
  1255. struct intel_shared_regs *allocate_shared_regs(int cpu)
  1256. {
  1257. struct intel_shared_regs *regs;
  1258. int i;
  1259. regs = kzalloc_node(sizeof(struct intel_shared_regs),
  1260. GFP_KERNEL, cpu_to_node(cpu));
  1261. if (regs) {
  1262. /*
  1263. * initialize the locks to keep lockdep happy
  1264. */
  1265. for (i = 0; i < EXTRA_REG_MAX; i++)
  1266. raw_spin_lock_init(&regs->regs[i].lock);
  1267. regs->core_id = -1;
  1268. }
  1269. return regs;
  1270. }
  1271. static int intel_pmu_cpu_prepare(int cpu)
  1272. {
  1273. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1274. if (!x86_pmu.extra_regs)
  1275. return NOTIFY_OK;
  1276. cpuc->shared_regs = allocate_shared_regs(cpu);
  1277. if (!cpuc->shared_regs)
  1278. return NOTIFY_BAD;
  1279. return NOTIFY_OK;
  1280. }
  1281. static void intel_pmu_cpu_starting(int cpu)
  1282. {
  1283. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1284. int core_id = topology_core_id(cpu);
  1285. int i;
  1286. init_debug_store_on_cpu(cpu);
  1287. /*
  1288. * Deal with CPUs that don't clear their LBRs on power-up.
  1289. */
  1290. intel_pmu_lbr_reset();
  1291. if (!cpuc->shared_regs || (x86_pmu.er_flags & ERF_NO_HT_SHARING))
  1292. return;
  1293. for_each_cpu(i, topology_thread_cpumask(cpu)) {
  1294. struct intel_shared_regs *pc;
  1295. pc = per_cpu(cpu_hw_events, i).shared_regs;
  1296. if (pc && pc->core_id == core_id) {
  1297. cpuc->kfree_on_online = cpuc->shared_regs;
  1298. cpuc->shared_regs = pc;
  1299. break;
  1300. }
  1301. }
  1302. cpuc->shared_regs->core_id = core_id;
  1303. cpuc->shared_regs->refcnt++;
  1304. }
  1305. static void intel_pmu_cpu_dying(int cpu)
  1306. {
  1307. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1308. struct intel_shared_regs *pc;
  1309. pc = cpuc->shared_regs;
  1310. if (pc) {
  1311. if (pc->core_id == -1 || --pc->refcnt == 0)
  1312. kfree(pc);
  1313. cpuc->shared_regs = NULL;
  1314. }
  1315. fini_debug_store_on_cpu(cpu);
  1316. }
  1317. static __initconst const struct x86_pmu intel_pmu = {
  1318. .name = "Intel",
  1319. .handle_irq = intel_pmu_handle_irq,
  1320. .disable_all = intel_pmu_disable_all,
  1321. .enable_all = intel_pmu_enable_all,
  1322. .enable = intel_pmu_enable_event,
  1323. .disable = intel_pmu_disable_event,
  1324. .hw_config = intel_pmu_hw_config,
  1325. .schedule_events = x86_schedule_events,
  1326. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1327. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1328. .event_map = intel_pmu_event_map,
  1329. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1330. .apic = 1,
  1331. /*
  1332. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1333. * so we install an artificial 1<<31 period regardless of
  1334. * the generic event period:
  1335. */
  1336. .max_period = (1ULL << 31) - 1,
  1337. .get_event_constraints = intel_get_event_constraints,
  1338. .put_event_constraints = intel_put_event_constraints,
  1339. .cpu_prepare = intel_pmu_cpu_prepare,
  1340. .cpu_starting = intel_pmu_cpu_starting,
  1341. .cpu_dying = intel_pmu_cpu_dying,
  1342. .guest_get_msrs = intel_guest_get_msrs,
  1343. };
  1344. static void intel_clovertown_quirks(void)
  1345. {
  1346. /*
  1347. * PEBS is unreliable due to:
  1348. *
  1349. * AJ67 - PEBS may experience CPL leaks
  1350. * AJ68 - PEBS PMI may be delayed by one event
  1351. * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
  1352. * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
  1353. *
  1354. * AJ67 could be worked around by restricting the OS/USR flags.
  1355. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
  1356. *
  1357. * AJ106 could possibly be worked around by not allowing LBR
  1358. * usage from PEBS, including the fixup.
  1359. * AJ68 could possibly be worked around by always programming
  1360. * a pebs_event_reset[0] value and coping with the lost events.
  1361. *
  1362. * But taken together it might just make sense to not enable PEBS on
  1363. * these chips.
  1364. */
  1365. printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
  1366. x86_pmu.pebs = 0;
  1367. x86_pmu.pebs_constraints = NULL;
  1368. }
  1369. static void intel_sandybridge_quirks(void)
  1370. {
  1371. printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
  1372. x86_pmu.pebs = 0;
  1373. x86_pmu.pebs_constraints = NULL;
  1374. }
  1375. __init int intel_pmu_init(void)
  1376. {
  1377. union cpuid10_edx edx;
  1378. union cpuid10_eax eax;
  1379. unsigned int unused;
  1380. unsigned int ebx;
  1381. int version;
  1382. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
  1383. switch (boot_cpu_data.x86) {
  1384. case 0x6:
  1385. return p6_pmu_init();
  1386. case 0xf:
  1387. return p4_pmu_init();
  1388. }
  1389. return -ENODEV;
  1390. }
  1391. /*
  1392. * Check whether the Architectural PerfMon supports
  1393. * Branch Misses Retired hw_event or not.
  1394. */
  1395. cpuid(10, &eax.full, &ebx, &unused, &edx.full);
  1396. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  1397. return -ENODEV;
  1398. version = eax.split.version_id;
  1399. if (version < 2)
  1400. x86_pmu = core_pmu;
  1401. else
  1402. x86_pmu = intel_pmu;
  1403. x86_pmu.version = version;
  1404. x86_pmu.num_counters = eax.split.num_counters;
  1405. x86_pmu.cntval_bits = eax.split.bit_width;
  1406. x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
  1407. /*
  1408. * Quirk: v2 perfmon does not report fixed-purpose events, so
  1409. * assume at least 3 events:
  1410. */
  1411. if (version > 1)
  1412. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  1413. /*
  1414. * v2 and above have a perf capabilities MSR
  1415. */
  1416. if (version > 1) {
  1417. u64 capabilities;
  1418. rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
  1419. x86_pmu.intel_cap.capabilities = capabilities;
  1420. }
  1421. intel_ds_init();
  1422. /*
  1423. * Install the hw-cache-events table:
  1424. */
  1425. switch (boot_cpu_data.x86_model) {
  1426. case 14: /* 65 nm core solo/duo, "Yonah" */
  1427. pr_cont("Core events, ");
  1428. break;
  1429. case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
  1430. x86_pmu.quirks = intel_clovertown_quirks;
  1431. case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
  1432. case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
  1433. case 29: /* six-core 45 nm xeon "Dunnington" */
  1434. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  1435. sizeof(hw_cache_event_ids));
  1436. intel_pmu_lbr_init_core();
  1437. x86_pmu.event_constraints = intel_core2_event_constraints;
  1438. x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
  1439. pr_cont("Core2 events, ");
  1440. break;
  1441. case 26: /* 45 nm nehalem, "Bloomfield" */
  1442. case 30: /* 45 nm nehalem, "Lynnfield" */
  1443. case 46: /* 45 nm nehalem-ex, "Beckton" */
  1444. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  1445. sizeof(hw_cache_event_ids));
  1446. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1447. sizeof(hw_cache_extra_regs));
  1448. intel_pmu_lbr_init_nhm();
  1449. x86_pmu.event_constraints = intel_nehalem_event_constraints;
  1450. x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
  1451. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1452. x86_pmu.extra_regs = intel_nehalem_extra_regs;
  1453. /* UOPS_ISSUED.STALLED_CYCLES */
  1454. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1455. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1456. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1457. if (ebx & 0x40) {
  1458. /*
  1459. * Erratum AAJ80 detected, we work it around by using
  1460. * the BR_MISP_EXEC.ANY event. This will over-count
  1461. * branch-misses, but it's still much better than the
  1462. * architectural event which is often completely bogus:
  1463. */
  1464. intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
  1465. pr_cont("erratum AAJ80 worked around, ");
  1466. }
  1467. pr_cont("Nehalem events, ");
  1468. break;
  1469. case 28: /* Atom */
  1470. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  1471. sizeof(hw_cache_event_ids));
  1472. intel_pmu_lbr_init_atom();
  1473. x86_pmu.event_constraints = intel_gen_event_constraints;
  1474. x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
  1475. pr_cont("Atom events, ");
  1476. break;
  1477. case 37: /* 32 nm nehalem, "Clarkdale" */
  1478. case 44: /* 32 nm nehalem, "Gulftown" */
  1479. case 47: /* 32 nm Xeon E7 */
  1480. memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
  1481. sizeof(hw_cache_event_ids));
  1482. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  1483. sizeof(hw_cache_extra_regs));
  1484. intel_pmu_lbr_init_nhm();
  1485. x86_pmu.event_constraints = intel_westmere_event_constraints;
  1486. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  1487. x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
  1488. x86_pmu.extra_regs = intel_westmere_extra_regs;
  1489. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1490. /* UOPS_ISSUED.STALLED_CYCLES */
  1491. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1492. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  1493. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
  1494. pr_cont("Westmere events, ");
  1495. break;
  1496. case 42: /* SandyBridge */
  1497. x86_pmu.quirks = intel_sandybridge_quirks;
  1498. case 45: /* SandyBridge, "Romely-EP" */
  1499. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  1500. sizeof(hw_cache_event_ids));
  1501. intel_pmu_lbr_init_nhm();
  1502. x86_pmu.event_constraints = intel_snb_event_constraints;
  1503. x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
  1504. x86_pmu.extra_regs = intel_snb_extra_regs;
  1505. /* all extra regs are per-cpu when HT is on */
  1506. x86_pmu.er_flags |= ERF_HAS_RSP_1;
  1507. x86_pmu.er_flags |= ERF_NO_HT_SHARING;
  1508. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  1509. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
  1510. /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
  1511. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x18001b1;
  1512. pr_cont("SandyBridge events, ");
  1513. break;
  1514. default:
  1515. switch (x86_pmu.version) {
  1516. case 1:
  1517. x86_pmu.event_constraints = intel_v1_event_constraints;
  1518. pr_cont("generic architected perfmon v1, ");
  1519. break;
  1520. default:
  1521. /*
  1522. * default constraints for v2 and up
  1523. */
  1524. x86_pmu.event_constraints = intel_gen_event_constraints;
  1525. pr_cont("generic architected perfmon, ");
  1526. break;
  1527. }
  1528. }
  1529. return 0;
  1530. }