xfs_inode.c 139 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_alloc.h"
  43. #include "xfs_ialloc.h"
  44. #include "xfs_bmap.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_error.h"
  47. #include "xfs_utils.h"
  48. #include "xfs_dir2_trace.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_acl.h"
  51. #include "xfs_filestream.h"
  52. #include "xfs_vnodeops.h"
  53. kmem_zone_t *xfs_ifork_zone;
  54. kmem_zone_t *xfs_inode_zone;
  55. kmem_zone_t *xfs_icluster_zone;
  56. /*
  57. * Used in xfs_itruncate(). This is the maximum number of extents
  58. * freed from a file in a single transaction.
  59. */
  60. #define XFS_ITRUNC_MAX_EXTENTS 2
  61. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  62. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  63. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  64. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  65. #ifdef DEBUG
  66. /*
  67. * Make sure that the extents in the given memory buffer
  68. * are valid.
  69. */
  70. STATIC void
  71. xfs_validate_extents(
  72. xfs_ifork_t *ifp,
  73. int nrecs,
  74. xfs_exntfmt_t fmt)
  75. {
  76. xfs_bmbt_irec_t irec;
  77. xfs_bmbt_rec_host_t rec;
  78. int i;
  79. for (i = 0; i < nrecs; i++) {
  80. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  81. rec.l0 = get_unaligned(&ep->l0);
  82. rec.l1 = get_unaligned(&ep->l1);
  83. xfs_bmbt_get_all(&rec, &irec);
  84. if (fmt == XFS_EXTFMT_NOSTATE)
  85. ASSERT(irec.br_state == XFS_EXT_NORM);
  86. }
  87. }
  88. #else /* DEBUG */
  89. #define xfs_validate_extents(ifp, nrecs, fmt)
  90. #endif /* DEBUG */
  91. /*
  92. * Check that none of the inode's in the buffer have a next
  93. * unlinked field of 0.
  94. */
  95. #if defined(DEBUG)
  96. void
  97. xfs_inobp_check(
  98. xfs_mount_t *mp,
  99. xfs_buf_t *bp)
  100. {
  101. int i;
  102. int j;
  103. xfs_dinode_t *dip;
  104. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  105. for (i = 0; i < j; i++) {
  106. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  107. i * mp->m_sb.sb_inodesize);
  108. if (!dip->di_next_unlinked) {
  109. xfs_fs_cmn_err(CE_ALERT, mp,
  110. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  111. bp);
  112. ASSERT(dip->di_next_unlinked);
  113. }
  114. }
  115. }
  116. #endif
  117. /*
  118. * This routine is called to map an inode number within a file
  119. * system to the buffer containing the on-disk version of the
  120. * inode. It returns a pointer to the buffer containing the
  121. * on-disk inode in the bpp parameter, and in the dip parameter
  122. * it returns a pointer to the on-disk inode within that buffer.
  123. *
  124. * If a non-zero error is returned, then the contents of bpp and
  125. * dipp are undefined.
  126. *
  127. * Use xfs_imap() to determine the size and location of the
  128. * buffer to read from disk.
  129. */
  130. STATIC int
  131. xfs_inotobp(
  132. xfs_mount_t *mp,
  133. xfs_trans_t *tp,
  134. xfs_ino_t ino,
  135. xfs_dinode_t **dipp,
  136. xfs_buf_t **bpp,
  137. int *offset)
  138. {
  139. int di_ok;
  140. xfs_imap_t imap;
  141. xfs_buf_t *bp;
  142. int error;
  143. xfs_dinode_t *dip;
  144. /*
  145. * Call the space management code to find the location of the
  146. * inode on disk.
  147. */
  148. imap.im_blkno = 0;
  149. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  150. if (error != 0) {
  151. cmn_err(CE_WARN,
  152. "xfs_inotobp: xfs_imap() returned an "
  153. "error %d on %s. Returning error.", error, mp->m_fsname);
  154. return error;
  155. }
  156. /*
  157. * If the inode number maps to a block outside the bounds of the
  158. * file system then return NULL rather than calling read_buf
  159. * and panicing when we get an error from the driver.
  160. */
  161. if ((imap.im_blkno + imap.im_len) >
  162. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  163. cmn_err(CE_WARN,
  164. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  165. "of the file system %s. Returning EINVAL.",
  166. (unsigned long long)imap.im_blkno,
  167. imap.im_len, mp->m_fsname);
  168. return XFS_ERROR(EINVAL);
  169. }
  170. /*
  171. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  172. * default to just a read_buf() call.
  173. */
  174. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  175. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  176. if (error) {
  177. cmn_err(CE_WARN,
  178. "xfs_inotobp: xfs_trans_read_buf() returned an "
  179. "error %d on %s. Returning error.", error, mp->m_fsname);
  180. return error;
  181. }
  182. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  183. di_ok =
  184. be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  185. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  186. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  187. XFS_RANDOM_ITOBP_INOTOBP))) {
  188. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  189. xfs_trans_brelse(tp, bp);
  190. cmn_err(CE_WARN,
  191. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  192. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  193. return XFS_ERROR(EFSCORRUPTED);
  194. }
  195. xfs_inobp_check(mp, bp);
  196. /*
  197. * Set *dipp to point to the on-disk inode in the buffer.
  198. */
  199. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  200. *bpp = bp;
  201. *offset = imap.im_boffset;
  202. return 0;
  203. }
  204. /*
  205. * This routine is called to map an inode to the buffer containing
  206. * the on-disk version of the inode. It returns a pointer to the
  207. * buffer containing the on-disk inode in the bpp parameter, and in
  208. * the dip parameter it returns a pointer to the on-disk inode within
  209. * that buffer.
  210. *
  211. * If a non-zero error is returned, then the contents of bpp and
  212. * dipp are undefined.
  213. *
  214. * If the inode is new and has not yet been initialized, use xfs_imap()
  215. * to determine the size and location of the buffer to read from disk.
  216. * If the inode has already been mapped to its buffer and read in once,
  217. * then use the mapping information stored in the inode rather than
  218. * calling xfs_imap(). This allows us to avoid the overhead of looking
  219. * at the inode btree for small block file systems (see xfs_dilocate()).
  220. * We can tell whether the inode has been mapped in before by comparing
  221. * its disk block address to 0. Only uninitialized inodes will have
  222. * 0 for the disk block address.
  223. */
  224. int
  225. xfs_itobp(
  226. xfs_mount_t *mp,
  227. xfs_trans_t *tp,
  228. xfs_inode_t *ip,
  229. xfs_dinode_t **dipp,
  230. xfs_buf_t **bpp,
  231. xfs_daddr_t bno,
  232. uint imap_flags)
  233. {
  234. xfs_imap_t imap;
  235. xfs_buf_t *bp;
  236. int error;
  237. int i;
  238. int ni;
  239. if (ip->i_blkno == (xfs_daddr_t)0) {
  240. /*
  241. * Call the space management code to find the location of the
  242. * inode on disk.
  243. */
  244. imap.im_blkno = bno;
  245. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  246. XFS_IMAP_LOOKUP | imap_flags)))
  247. return error;
  248. /*
  249. * If the inode number maps to a block outside the bounds
  250. * of the file system then return NULL rather than calling
  251. * read_buf and panicing when we get an error from the
  252. * driver.
  253. */
  254. if ((imap.im_blkno + imap.im_len) >
  255. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  256. #ifdef DEBUG
  257. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  258. "(imap.im_blkno (0x%llx) "
  259. "+ imap.im_len (0x%llx)) > "
  260. " XFS_FSB_TO_BB(mp, "
  261. "mp->m_sb.sb_dblocks) (0x%llx)",
  262. (unsigned long long) imap.im_blkno,
  263. (unsigned long long) imap.im_len,
  264. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  265. #endif /* DEBUG */
  266. return XFS_ERROR(EINVAL);
  267. }
  268. /*
  269. * Fill in the fields in the inode that will be used to
  270. * map the inode to its buffer from now on.
  271. */
  272. ip->i_blkno = imap.im_blkno;
  273. ip->i_len = imap.im_len;
  274. ip->i_boffset = imap.im_boffset;
  275. } else {
  276. /*
  277. * We've already mapped the inode once, so just use the
  278. * mapping that we saved the first time.
  279. */
  280. imap.im_blkno = ip->i_blkno;
  281. imap.im_len = ip->i_len;
  282. imap.im_boffset = ip->i_boffset;
  283. }
  284. ASSERT(bno == 0 || bno == imap.im_blkno);
  285. /*
  286. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  287. * default to just a read_buf() call.
  288. */
  289. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  290. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  291. if (error) {
  292. #ifdef DEBUG
  293. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  294. "xfs_trans_read_buf() returned error %d, "
  295. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  296. error, (unsigned long long) imap.im_blkno,
  297. (unsigned long long) imap.im_len);
  298. #endif /* DEBUG */
  299. return error;
  300. }
  301. /*
  302. * Validate the magic number and version of every inode in the buffer
  303. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  304. * No validation is done here in userspace (xfs_repair).
  305. */
  306. #if !defined(__KERNEL__)
  307. ni = 0;
  308. #elif defined(DEBUG)
  309. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  310. #else /* usual case */
  311. ni = 1;
  312. #endif
  313. for (i = 0; i < ni; i++) {
  314. int di_ok;
  315. xfs_dinode_t *dip;
  316. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  317. (i << mp->m_sb.sb_inodelog));
  318. di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  319. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  320. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  321. XFS_ERRTAG_ITOBP_INOTOBP,
  322. XFS_RANDOM_ITOBP_INOTOBP))) {
  323. if (imap_flags & XFS_IMAP_BULKSTAT) {
  324. xfs_trans_brelse(tp, bp);
  325. return XFS_ERROR(EINVAL);
  326. }
  327. #ifdef DEBUG
  328. cmn_err(CE_ALERT,
  329. "Device %s - bad inode magic/vsn "
  330. "daddr %lld #%d (magic=%x)",
  331. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  332. (unsigned long long)imap.im_blkno, i,
  333. be16_to_cpu(dip->di_core.di_magic));
  334. #endif
  335. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  336. mp, dip);
  337. xfs_trans_brelse(tp, bp);
  338. return XFS_ERROR(EFSCORRUPTED);
  339. }
  340. }
  341. xfs_inobp_check(mp, bp);
  342. /*
  343. * Mark the buffer as an inode buffer now that it looks good
  344. */
  345. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  346. /*
  347. * Set *dipp to point to the on-disk inode in the buffer.
  348. */
  349. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  350. *bpp = bp;
  351. return 0;
  352. }
  353. /*
  354. * Move inode type and inode format specific information from the
  355. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  356. * this means set if_rdev to the proper value. For files, directories,
  357. * and symlinks this means to bring in the in-line data or extent
  358. * pointers. For a file in B-tree format, only the root is immediately
  359. * brought in-core. The rest will be in-lined in if_extents when it
  360. * is first referenced (see xfs_iread_extents()).
  361. */
  362. STATIC int
  363. xfs_iformat(
  364. xfs_inode_t *ip,
  365. xfs_dinode_t *dip)
  366. {
  367. xfs_attr_shortform_t *atp;
  368. int size;
  369. int error;
  370. xfs_fsize_t di_size;
  371. ip->i_df.if_ext_max =
  372. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  373. error = 0;
  374. if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
  375. be16_to_cpu(dip->di_core.di_anextents) >
  376. be64_to_cpu(dip->di_core.di_nblocks))) {
  377. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  378. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  379. (unsigned long long)ip->i_ino,
  380. (int)(be32_to_cpu(dip->di_core.di_nextents) +
  381. be16_to_cpu(dip->di_core.di_anextents)),
  382. (unsigned long long)
  383. be64_to_cpu(dip->di_core.di_nblocks));
  384. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  385. ip->i_mount, dip);
  386. return XFS_ERROR(EFSCORRUPTED);
  387. }
  388. if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  389. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  390. "corrupt dinode %Lu, forkoff = 0x%x.",
  391. (unsigned long long)ip->i_ino,
  392. dip->di_core.di_forkoff);
  393. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  394. ip->i_mount, dip);
  395. return XFS_ERROR(EFSCORRUPTED);
  396. }
  397. switch (ip->i_d.di_mode & S_IFMT) {
  398. case S_IFIFO:
  399. case S_IFCHR:
  400. case S_IFBLK:
  401. case S_IFSOCK:
  402. if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
  403. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  404. ip->i_mount, dip);
  405. return XFS_ERROR(EFSCORRUPTED);
  406. }
  407. ip->i_d.di_size = 0;
  408. ip->i_size = 0;
  409. ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
  410. break;
  411. case S_IFREG:
  412. case S_IFLNK:
  413. case S_IFDIR:
  414. switch (dip->di_core.di_format) {
  415. case XFS_DINODE_FMT_LOCAL:
  416. /*
  417. * no local regular files yet
  418. */
  419. if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
  420. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  421. "corrupt inode %Lu "
  422. "(local format for regular file).",
  423. (unsigned long long) ip->i_ino);
  424. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  425. XFS_ERRLEVEL_LOW,
  426. ip->i_mount, dip);
  427. return XFS_ERROR(EFSCORRUPTED);
  428. }
  429. di_size = be64_to_cpu(dip->di_core.di_size);
  430. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  431. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  432. "corrupt inode %Lu "
  433. "(bad size %Ld for local inode).",
  434. (unsigned long long) ip->i_ino,
  435. (long long) di_size);
  436. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  437. XFS_ERRLEVEL_LOW,
  438. ip->i_mount, dip);
  439. return XFS_ERROR(EFSCORRUPTED);
  440. }
  441. size = (int)di_size;
  442. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  443. break;
  444. case XFS_DINODE_FMT_EXTENTS:
  445. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  446. break;
  447. case XFS_DINODE_FMT_BTREE:
  448. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  449. break;
  450. default:
  451. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  452. ip->i_mount);
  453. return XFS_ERROR(EFSCORRUPTED);
  454. }
  455. break;
  456. default:
  457. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  458. return XFS_ERROR(EFSCORRUPTED);
  459. }
  460. if (error) {
  461. return error;
  462. }
  463. if (!XFS_DFORK_Q(dip))
  464. return 0;
  465. ASSERT(ip->i_afp == NULL);
  466. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  467. ip->i_afp->if_ext_max =
  468. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  469. switch (dip->di_core.di_aformat) {
  470. case XFS_DINODE_FMT_LOCAL:
  471. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  472. size = be16_to_cpu(atp->hdr.totsize);
  473. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  474. break;
  475. case XFS_DINODE_FMT_EXTENTS:
  476. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  477. break;
  478. case XFS_DINODE_FMT_BTREE:
  479. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  480. break;
  481. default:
  482. error = XFS_ERROR(EFSCORRUPTED);
  483. break;
  484. }
  485. if (error) {
  486. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  487. ip->i_afp = NULL;
  488. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  489. }
  490. return error;
  491. }
  492. /*
  493. * The file is in-lined in the on-disk inode.
  494. * If it fits into if_inline_data, then copy
  495. * it there, otherwise allocate a buffer for it
  496. * and copy the data there. Either way, set
  497. * if_data to point at the data.
  498. * If we allocate a buffer for the data, make
  499. * sure that its size is a multiple of 4 and
  500. * record the real size in i_real_bytes.
  501. */
  502. STATIC int
  503. xfs_iformat_local(
  504. xfs_inode_t *ip,
  505. xfs_dinode_t *dip,
  506. int whichfork,
  507. int size)
  508. {
  509. xfs_ifork_t *ifp;
  510. int real_size;
  511. /*
  512. * If the size is unreasonable, then something
  513. * is wrong and we just bail out rather than crash in
  514. * kmem_alloc() or memcpy() below.
  515. */
  516. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  517. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  518. "corrupt inode %Lu "
  519. "(bad size %d for local fork, size = %d).",
  520. (unsigned long long) ip->i_ino, size,
  521. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  522. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  523. ip->i_mount, dip);
  524. return XFS_ERROR(EFSCORRUPTED);
  525. }
  526. ifp = XFS_IFORK_PTR(ip, whichfork);
  527. real_size = 0;
  528. if (size == 0)
  529. ifp->if_u1.if_data = NULL;
  530. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  531. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  532. else {
  533. real_size = roundup(size, 4);
  534. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  535. }
  536. ifp->if_bytes = size;
  537. ifp->if_real_bytes = real_size;
  538. if (size)
  539. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  540. ifp->if_flags &= ~XFS_IFEXTENTS;
  541. ifp->if_flags |= XFS_IFINLINE;
  542. return 0;
  543. }
  544. /*
  545. * The file consists of a set of extents all
  546. * of which fit into the on-disk inode.
  547. * If there are few enough extents to fit into
  548. * the if_inline_ext, then copy them there.
  549. * Otherwise allocate a buffer for them and copy
  550. * them into it. Either way, set if_extents
  551. * to point at the extents.
  552. */
  553. STATIC int
  554. xfs_iformat_extents(
  555. xfs_inode_t *ip,
  556. xfs_dinode_t *dip,
  557. int whichfork)
  558. {
  559. xfs_bmbt_rec_t *dp;
  560. xfs_ifork_t *ifp;
  561. int nex;
  562. int size;
  563. int i;
  564. ifp = XFS_IFORK_PTR(ip, whichfork);
  565. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  566. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  567. /*
  568. * If the number of extents is unreasonable, then something
  569. * is wrong and we just bail out rather than crash in
  570. * kmem_alloc() or memcpy() below.
  571. */
  572. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  573. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  574. "corrupt inode %Lu ((a)extents = %d).",
  575. (unsigned long long) ip->i_ino, nex);
  576. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  577. ip->i_mount, dip);
  578. return XFS_ERROR(EFSCORRUPTED);
  579. }
  580. ifp->if_real_bytes = 0;
  581. if (nex == 0)
  582. ifp->if_u1.if_extents = NULL;
  583. else if (nex <= XFS_INLINE_EXTS)
  584. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  585. else
  586. xfs_iext_add(ifp, 0, nex);
  587. ifp->if_bytes = size;
  588. if (size) {
  589. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  590. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  591. for (i = 0; i < nex; i++, dp++) {
  592. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  593. ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
  594. ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
  595. }
  596. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  597. if (whichfork != XFS_DATA_FORK ||
  598. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  599. if (unlikely(xfs_check_nostate_extents(
  600. ifp, 0, nex))) {
  601. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  602. XFS_ERRLEVEL_LOW,
  603. ip->i_mount);
  604. return XFS_ERROR(EFSCORRUPTED);
  605. }
  606. }
  607. ifp->if_flags |= XFS_IFEXTENTS;
  608. return 0;
  609. }
  610. /*
  611. * The file has too many extents to fit into
  612. * the inode, so they are in B-tree format.
  613. * Allocate a buffer for the root of the B-tree
  614. * and copy the root into it. The i_extents
  615. * field will remain NULL until all of the
  616. * extents are read in (when they are needed).
  617. */
  618. STATIC int
  619. xfs_iformat_btree(
  620. xfs_inode_t *ip,
  621. xfs_dinode_t *dip,
  622. int whichfork)
  623. {
  624. xfs_bmdr_block_t *dfp;
  625. xfs_ifork_t *ifp;
  626. /* REFERENCED */
  627. int nrecs;
  628. int size;
  629. ifp = XFS_IFORK_PTR(ip, whichfork);
  630. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  631. size = XFS_BMAP_BROOT_SPACE(dfp);
  632. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  633. /*
  634. * blow out if -- fork has less extents than can fit in
  635. * fork (fork shouldn't be a btree format), root btree
  636. * block has more records than can fit into the fork,
  637. * or the number of extents is greater than the number of
  638. * blocks.
  639. */
  640. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  641. || XFS_BMDR_SPACE_CALC(nrecs) >
  642. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  643. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  644. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  645. "corrupt inode %Lu (btree).",
  646. (unsigned long long) ip->i_ino);
  647. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  648. ip->i_mount);
  649. return XFS_ERROR(EFSCORRUPTED);
  650. }
  651. ifp->if_broot_bytes = size;
  652. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  653. ASSERT(ifp->if_broot != NULL);
  654. /*
  655. * Copy and convert from the on-disk structure
  656. * to the in-memory structure.
  657. */
  658. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  659. ifp->if_broot, size);
  660. ifp->if_flags &= ~XFS_IFEXTENTS;
  661. ifp->if_flags |= XFS_IFBROOT;
  662. return 0;
  663. }
  664. void
  665. xfs_dinode_from_disk(
  666. xfs_icdinode_t *to,
  667. xfs_dinode_core_t *from)
  668. {
  669. to->di_magic = be16_to_cpu(from->di_magic);
  670. to->di_mode = be16_to_cpu(from->di_mode);
  671. to->di_version = from ->di_version;
  672. to->di_format = from->di_format;
  673. to->di_onlink = be16_to_cpu(from->di_onlink);
  674. to->di_uid = be32_to_cpu(from->di_uid);
  675. to->di_gid = be32_to_cpu(from->di_gid);
  676. to->di_nlink = be32_to_cpu(from->di_nlink);
  677. to->di_projid = be16_to_cpu(from->di_projid);
  678. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  679. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  680. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  681. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  682. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  683. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  684. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  685. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  686. to->di_size = be64_to_cpu(from->di_size);
  687. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  688. to->di_extsize = be32_to_cpu(from->di_extsize);
  689. to->di_nextents = be32_to_cpu(from->di_nextents);
  690. to->di_anextents = be16_to_cpu(from->di_anextents);
  691. to->di_forkoff = from->di_forkoff;
  692. to->di_aformat = from->di_aformat;
  693. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  694. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  695. to->di_flags = be16_to_cpu(from->di_flags);
  696. to->di_gen = be32_to_cpu(from->di_gen);
  697. }
  698. void
  699. xfs_dinode_to_disk(
  700. xfs_dinode_core_t *to,
  701. xfs_icdinode_t *from)
  702. {
  703. to->di_magic = cpu_to_be16(from->di_magic);
  704. to->di_mode = cpu_to_be16(from->di_mode);
  705. to->di_version = from ->di_version;
  706. to->di_format = from->di_format;
  707. to->di_onlink = cpu_to_be16(from->di_onlink);
  708. to->di_uid = cpu_to_be32(from->di_uid);
  709. to->di_gid = cpu_to_be32(from->di_gid);
  710. to->di_nlink = cpu_to_be32(from->di_nlink);
  711. to->di_projid = cpu_to_be16(from->di_projid);
  712. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  713. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  714. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  715. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  716. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  717. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  718. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  719. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  720. to->di_size = cpu_to_be64(from->di_size);
  721. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  722. to->di_extsize = cpu_to_be32(from->di_extsize);
  723. to->di_nextents = cpu_to_be32(from->di_nextents);
  724. to->di_anextents = cpu_to_be16(from->di_anextents);
  725. to->di_forkoff = from->di_forkoff;
  726. to->di_aformat = from->di_aformat;
  727. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  728. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  729. to->di_flags = cpu_to_be16(from->di_flags);
  730. to->di_gen = cpu_to_be32(from->di_gen);
  731. }
  732. STATIC uint
  733. _xfs_dic2xflags(
  734. __uint16_t di_flags)
  735. {
  736. uint flags = 0;
  737. if (di_flags & XFS_DIFLAG_ANY) {
  738. if (di_flags & XFS_DIFLAG_REALTIME)
  739. flags |= XFS_XFLAG_REALTIME;
  740. if (di_flags & XFS_DIFLAG_PREALLOC)
  741. flags |= XFS_XFLAG_PREALLOC;
  742. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  743. flags |= XFS_XFLAG_IMMUTABLE;
  744. if (di_flags & XFS_DIFLAG_APPEND)
  745. flags |= XFS_XFLAG_APPEND;
  746. if (di_flags & XFS_DIFLAG_SYNC)
  747. flags |= XFS_XFLAG_SYNC;
  748. if (di_flags & XFS_DIFLAG_NOATIME)
  749. flags |= XFS_XFLAG_NOATIME;
  750. if (di_flags & XFS_DIFLAG_NODUMP)
  751. flags |= XFS_XFLAG_NODUMP;
  752. if (di_flags & XFS_DIFLAG_RTINHERIT)
  753. flags |= XFS_XFLAG_RTINHERIT;
  754. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  755. flags |= XFS_XFLAG_PROJINHERIT;
  756. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  757. flags |= XFS_XFLAG_NOSYMLINKS;
  758. if (di_flags & XFS_DIFLAG_EXTSIZE)
  759. flags |= XFS_XFLAG_EXTSIZE;
  760. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  761. flags |= XFS_XFLAG_EXTSZINHERIT;
  762. if (di_flags & XFS_DIFLAG_NODEFRAG)
  763. flags |= XFS_XFLAG_NODEFRAG;
  764. if (di_flags & XFS_DIFLAG_FILESTREAM)
  765. flags |= XFS_XFLAG_FILESTREAM;
  766. }
  767. return flags;
  768. }
  769. uint
  770. xfs_ip2xflags(
  771. xfs_inode_t *ip)
  772. {
  773. xfs_icdinode_t *dic = &ip->i_d;
  774. return _xfs_dic2xflags(dic->di_flags) |
  775. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  776. }
  777. uint
  778. xfs_dic2xflags(
  779. xfs_dinode_core_t *dic)
  780. {
  781. return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
  782. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  783. }
  784. /*
  785. * Given a mount structure and an inode number, return a pointer
  786. * to a newly allocated in-core inode corresponding to the given
  787. * inode number.
  788. *
  789. * Initialize the inode's attributes and extent pointers if it
  790. * already has them (it will not if the inode has no links).
  791. */
  792. int
  793. xfs_iread(
  794. xfs_mount_t *mp,
  795. xfs_trans_t *tp,
  796. xfs_ino_t ino,
  797. xfs_inode_t **ipp,
  798. xfs_daddr_t bno,
  799. uint imap_flags)
  800. {
  801. xfs_buf_t *bp;
  802. xfs_dinode_t *dip;
  803. xfs_inode_t *ip;
  804. int error;
  805. ASSERT(xfs_inode_zone != NULL);
  806. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  807. ip->i_ino = ino;
  808. ip->i_mount = mp;
  809. atomic_set(&ip->i_iocount, 0);
  810. spin_lock_init(&ip->i_flags_lock);
  811. /*
  812. * Get pointer's to the on-disk inode and the buffer containing it.
  813. * If the inode number refers to a block outside the file system
  814. * then xfs_itobp() will return NULL. In this case we should
  815. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  816. * know that this is a new incore inode.
  817. */
  818. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  819. if (error) {
  820. kmem_zone_free(xfs_inode_zone, ip);
  821. return error;
  822. }
  823. /*
  824. * Initialize inode's trace buffers.
  825. * Do this before xfs_iformat in case it adds entries.
  826. */
  827. #ifdef XFS_INODE_TRACE
  828. ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
  829. #endif
  830. #ifdef XFS_BMAP_TRACE
  831. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  832. #endif
  833. #ifdef XFS_BMBT_TRACE
  834. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  835. #endif
  836. #ifdef XFS_RW_TRACE
  837. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  838. #endif
  839. #ifdef XFS_ILOCK_TRACE
  840. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  841. #endif
  842. #ifdef XFS_DIR2_TRACE
  843. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  844. #endif
  845. /*
  846. * If we got something that isn't an inode it means someone
  847. * (nfs or dmi) has a stale handle.
  848. */
  849. if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
  850. kmem_zone_free(xfs_inode_zone, ip);
  851. xfs_trans_brelse(tp, bp);
  852. #ifdef DEBUG
  853. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  854. "dip->di_core.di_magic (0x%x) != "
  855. "XFS_DINODE_MAGIC (0x%x)",
  856. be16_to_cpu(dip->di_core.di_magic),
  857. XFS_DINODE_MAGIC);
  858. #endif /* DEBUG */
  859. return XFS_ERROR(EINVAL);
  860. }
  861. /*
  862. * If the on-disk inode is already linked to a directory
  863. * entry, copy all of the inode into the in-core inode.
  864. * xfs_iformat() handles copying in the inode format
  865. * specific information.
  866. * Otherwise, just get the truly permanent information.
  867. */
  868. if (dip->di_core.di_mode) {
  869. xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
  870. error = xfs_iformat(ip, dip);
  871. if (error) {
  872. kmem_zone_free(xfs_inode_zone, ip);
  873. xfs_trans_brelse(tp, bp);
  874. #ifdef DEBUG
  875. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  876. "xfs_iformat() returned error %d",
  877. error);
  878. #endif /* DEBUG */
  879. return error;
  880. }
  881. } else {
  882. ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
  883. ip->i_d.di_version = dip->di_core.di_version;
  884. ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
  885. ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
  886. /*
  887. * Make sure to pull in the mode here as well in
  888. * case the inode is released without being used.
  889. * This ensures that xfs_inactive() will see that
  890. * the inode is already free and not try to mess
  891. * with the uninitialized part of it.
  892. */
  893. ip->i_d.di_mode = 0;
  894. /*
  895. * Initialize the per-fork minima and maxima for a new
  896. * inode here. xfs_iformat will do it for old inodes.
  897. */
  898. ip->i_df.if_ext_max =
  899. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  900. }
  901. INIT_LIST_HEAD(&ip->i_reclaim);
  902. /*
  903. * The inode format changed when we moved the link count and
  904. * made it 32 bits long. If this is an old format inode,
  905. * convert it in memory to look like a new one. If it gets
  906. * flushed to disk we will convert back before flushing or
  907. * logging it. We zero out the new projid field and the old link
  908. * count field. We'll handle clearing the pad field (the remains
  909. * of the old uuid field) when we actually convert the inode to
  910. * the new format. We don't change the version number so that we
  911. * can distinguish this from a real new format inode.
  912. */
  913. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  914. ip->i_d.di_nlink = ip->i_d.di_onlink;
  915. ip->i_d.di_onlink = 0;
  916. ip->i_d.di_projid = 0;
  917. }
  918. ip->i_delayed_blks = 0;
  919. ip->i_size = ip->i_d.di_size;
  920. /*
  921. * Mark the buffer containing the inode as something to keep
  922. * around for a while. This helps to keep recently accessed
  923. * meta-data in-core longer.
  924. */
  925. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  926. /*
  927. * Use xfs_trans_brelse() to release the buffer containing the
  928. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  929. * in xfs_itobp() above. If tp is NULL, this is just a normal
  930. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  931. * will only release the buffer if it is not dirty within the
  932. * transaction. It will be OK to release the buffer in this case,
  933. * because inodes on disk are never destroyed and we will be
  934. * locking the new in-core inode before putting it in the hash
  935. * table where other processes can find it. Thus we don't have
  936. * to worry about the inode being changed just because we released
  937. * the buffer.
  938. */
  939. xfs_trans_brelse(tp, bp);
  940. *ipp = ip;
  941. return 0;
  942. }
  943. /*
  944. * Read in extents from a btree-format inode.
  945. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  946. */
  947. int
  948. xfs_iread_extents(
  949. xfs_trans_t *tp,
  950. xfs_inode_t *ip,
  951. int whichfork)
  952. {
  953. int error;
  954. xfs_ifork_t *ifp;
  955. xfs_extnum_t nextents;
  956. size_t size;
  957. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  958. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  959. ip->i_mount);
  960. return XFS_ERROR(EFSCORRUPTED);
  961. }
  962. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  963. size = nextents * sizeof(xfs_bmbt_rec_t);
  964. ifp = XFS_IFORK_PTR(ip, whichfork);
  965. /*
  966. * We know that the size is valid (it's checked in iformat_btree)
  967. */
  968. ifp->if_lastex = NULLEXTNUM;
  969. ifp->if_bytes = ifp->if_real_bytes = 0;
  970. ifp->if_flags |= XFS_IFEXTENTS;
  971. xfs_iext_add(ifp, 0, nextents);
  972. error = xfs_bmap_read_extents(tp, ip, whichfork);
  973. if (error) {
  974. xfs_iext_destroy(ifp);
  975. ifp->if_flags &= ~XFS_IFEXTENTS;
  976. return error;
  977. }
  978. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  979. return 0;
  980. }
  981. /*
  982. * Allocate an inode on disk and return a copy of its in-core version.
  983. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  984. * appropriately within the inode. The uid and gid for the inode are
  985. * set according to the contents of the given cred structure.
  986. *
  987. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  988. * has a free inode available, call xfs_iget()
  989. * to obtain the in-core version of the allocated inode. Finally,
  990. * fill in the inode and log its initial contents. In this case,
  991. * ialloc_context would be set to NULL and call_again set to false.
  992. *
  993. * If xfs_dialloc() does not have an available inode,
  994. * it will replenish its supply by doing an allocation. Since we can
  995. * only do one allocation within a transaction without deadlocks, we
  996. * must commit the current transaction before returning the inode itself.
  997. * In this case, therefore, we will set call_again to true and return.
  998. * The caller should then commit the current transaction, start a new
  999. * transaction, and call xfs_ialloc() again to actually get the inode.
  1000. *
  1001. * To ensure that some other process does not grab the inode that
  1002. * was allocated during the first call to xfs_ialloc(), this routine
  1003. * also returns the [locked] bp pointing to the head of the freelist
  1004. * as ialloc_context. The caller should hold this buffer across
  1005. * the commit and pass it back into this routine on the second call.
  1006. *
  1007. * If we are allocating quota inodes, we do not have a parent inode
  1008. * to attach to or associate with (i.e. pip == NULL) because they
  1009. * are not linked into the directory structure - they are attached
  1010. * directly to the superblock - and so have no parent.
  1011. */
  1012. int
  1013. xfs_ialloc(
  1014. xfs_trans_t *tp,
  1015. xfs_inode_t *pip,
  1016. mode_t mode,
  1017. xfs_nlink_t nlink,
  1018. xfs_dev_t rdev,
  1019. cred_t *cr,
  1020. xfs_prid_t prid,
  1021. int okalloc,
  1022. xfs_buf_t **ialloc_context,
  1023. boolean_t *call_again,
  1024. xfs_inode_t **ipp)
  1025. {
  1026. xfs_ino_t ino;
  1027. xfs_inode_t *ip;
  1028. bhv_vnode_t *vp;
  1029. uint flags;
  1030. int error;
  1031. /*
  1032. * Call the space management code to pick
  1033. * the on-disk inode to be allocated.
  1034. */
  1035. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1036. ialloc_context, call_again, &ino);
  1037. if (error != 0) {
  1038. return error;
  1039. }
  1040. if (*call_again || ino == NULLFSINO) {
  1041. *ipp = NULL;
  1042. return 0;
  1043. }
  1044. ASSERT(*ialloc_context == NULL);
  1045. /*
  1046. * Get the in-core inode with the lock held exclusively.
  1047. * This is because we're setting fields here we need
  1048. * to prevent others from looking at until we're done.
  1049. */
  1050. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1051. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1052. if (error != 0) {
  1053. return error;
  1054. }
  1055. ASSERT(ip != NULL);
  1056. vp = XFS_ITOV(ip);
  1057. ip->i_d.di_mode = (__uint16_t)mode;
  1058. ip->i_d.di_onlink = 0;
  1059. ip->i_d.di_nlink = nlink;
  1060. ASSERT(ip->i_d.di_nlink == nlink);
  1061. ip->i_d.di_uid = current_fsuid(cr);
  1062. ip->i_d.di_gid = current_fsgid(cr);
  1063. ip->i_d.di_projid = prid;
  1064. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1065. /*
  1066. * If the superblock version is up to where we support new format
  1067. * inodes and this is currently an old format inode, then change
  1068. * the inode version number now. This way we only do the conversion
  1069. * here rather than here and in the flush/logging code.
  1070. */
  1071. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1072. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1073. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1074. /*
  1075. * We've already zeroed the old link count, the projid field,
  1076. * and the pad field.
  1077. */
  1078. }
  1079. /*
  1080. * Project ids won't be stored on disk if we are using a version 1 inode.
  1081. */
  1082. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1083. xfs_bump_ino_vers2(tp, ip);
  1084. if (pip && XFS_INHERIT_GID(pip)) {
  1085. ip->i_d.di_gid = pip->i_d.di_gid;
  1086. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1087. ip->i_d.di_mode |= S_ISGID;
  1088. }
  1089. }
  1090. /*
  1091. * If the group ID of the new file does not match the effective group
  1092. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1093. * (and only if the irix_sgid_inherit compatibility variable is set).
  1094. */
  1095. if ((irix_sgid_inherit) &&
  1096. (ip->i_d.di_mode & S_ISGID) &&
  1097. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1098. ip->i_d.di_mode &= ~S_ISGID;
  1099. }
  1100. ip->i_d.di_size = 0;
  1101. ip->i_size = 0;
  1102. ip->i_d.di_nextents = 0;
  1103. ASSERT(ip->i_d.di_nblocks == 0);
  1104. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1105. /*
  1106. * di_gen will have been taken care of in xfs_iread.
  1107. */
  1108. ip->i_d.di_extsize = 0;
  1109. ip->i_d.di_dmevmask = 0;
  1110. ip->i_d.di_dmstate = 0;
  1111. ip->i_d.di_flags = 0;
  1112. flags = XFS_ILOG_CORE;
  1113. switch (mode & S_IFMT) {
  1114. case S_IFIFO:
  1115. case S_IFCHR:
  1116. case S_IFBLK:
  1117. case S_IFSOCK:
  1118. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1119. ip->i_df.if_u2.if_rdev = rdev;
  1120. ip->i_df.if_flags = 0;
  1121. flags |= XFS_ILOG_DEV;
  1122. break;
  1123. case S_IFREG:
  1124. if (pip && xfs_inode_is_filestream(pip)) {
  1125. error = xfs_filestream_associate(pip, ip);
  1126. if (error < 0)
  1127. return -error;
  1128. if (!error)
  1129. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1130. }
  1131. /* fall through */
  1132. case S_IFDIR:
  1133. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1134. uint di_flags = 0;
  1135. if ((mode & S_IFMT) == S_IFDIR) {
  1136. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1137. di_flags |= XFS_DIFLAG_RTINHERIT;
  1138. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1139. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1140. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1141. }
  1142. } else if ((mode & S_IFMT) == S_IFREG) {
  1143. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1144. di_flags |= XFS_DIFLAG_REALTIME;
  1145. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1146. }
  1147. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1148. di_flags |= XFS_DIFLAG_EXTSIZE;
  1149. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1150. }
  1151. }
  1152. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1153. xfs_inherit_noatime)
  1154. di_flags |= XFS_DIFLAG_NOATIME;
  1155. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1156. xfs_inherit_nodump)
  1157. di_flags |= XFS_DIFLAG_NODUMP;
  1158. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1159. xfs_inherit_sync)
  1160. di_flags |= XFS_DIFLAG_SYNC;
  1161. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1162. xfs_inherit_nosymlinks)
  1163. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1164. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1165. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1166. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1167. xfs_inherit_nodefrag)
  1168. di_flags |= XFS_DIFLAG_NODEFRAG;
  1169. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1170. di_flags |= XFS_DIFLAG_FILESTREAM;
  1171. ip->i_d.di_flags |= di_flags;
  1172. }
  1173. /* FALLTHROUGH */
  1174. case S_IFLNK:
  1175. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1176. ip->i_df.if_flags = XFS_IFEXTENTS;
  1177. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1178. ip->i_df.if_u1.if_extents = NULL;
  1179. break;
  1180. default:
  1181. ASSERT(0);
  1182. }
  1183. /*
  1184. * Attribute fork settings for new inode.
  1185. */
  1186. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1187. ip->i_d.di_anextents = 0;
  1188. /*
  1189. * Log the new values stuffed into the inode.
  1190. */
  1191. xfs_trans_log_inode(tp, ip, flags);
  1192. /* now that we have an i_mode we can setup inode ops and unlock */
  1193. xfs_initialize_vnode(tp->t_mountp, vp, ip);
  1194. *ipp = ip;
  1195. return 0;
  1196. }
  1197. /*
  1198. * Check to make sure that there are no blocks allocated to the
  1199. * file beyond the size of the file. We don't check this for
  1200. * files with fixed size extents or real time extents, but we
  1201. * at least do it for regular files.
  1202. */
  1203. #ifdef DEBUG
  1204. void
  1205. xfs_isize_check(
  1206. xfs_mount_t *mp,
  1207. xfs_inode_t *ip,
  1208. xfs_fsize_t isize)
  1209. {
  1210. xfs_fileoff_t map_first;
  1211. int nimaps;
  1212. xfs_bmbt_irec_t imaps[2];
  1213. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1214. return;
  1215. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1216. return;
  1217. nimaps = 2;
  1218. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1219. /*
  1220. * The filesystem could be shutting down, so bmapi may return
  1221. * an error.
  1222. */
  1223. if (xfs_bmapi(NULL, ip, map_first,
  1224. (XFS_B_TO_FSB(mp,
  1225. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1226. map_first),
  1227. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1228. NULL, NULL))
  1229. return;
  1230. ASSERT(nimaps == 1);
  1231. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1232. }
  1233. #endif /* DEBUG */
  1234. /*
  1235. * Calculate the last possible buffered byte in a file. This must
  1236. * include data that was buffered beyond the EOF by the write code.
  1237. * This also needs to deal with overflowing the xfs_fsize_t type
  1238. * which can happen for sizes near the limit.
  1239. *
  1240. * We also need to take into account any blocks beyond the EOF. It
  1241. * may be the case that they were buffered by a write which failed.
  1242. * In that case the pages will still be in memory, but the inode size
  1243. * will never have been updated.
  1244. */
  1245. xfs_fsize_t
  1246. xfs_file_last_byte(
  1247. xfs_inode_t *ip)
  1248. {
  1249. xfs_mount_t *mp;
  1250. xfs_fsize_t last_byte;
  1251. xfs_fileoff_t last_block;
  1252. xfs_fileoff_t size_last_block;
  1253. int error;
  1254. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1255. mp = ip->i_mount;
  1256. /*
  1257. * Only check for blocks beyond the EOF if the extents have
  1258. * been read in. This eliminates the need for the inode lock,
  1259. * and it also saves us from looking when it really isn't
  1260. * necessary.
  1261. */
  1262. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1263. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1264. XFS_DATA_FORK);
  1265. if (error) {
  1266. last_block = 0;
  1267. }
  1268. } else {
  1269. last_block = 0;
  1270. }
  1271. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1272. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1273. last_byte = XFS_FSB_TO_B(mp, last_block);
  1274. if (last_byte < 0) {
  1275. return XFS_MAXIOFFSET(mp);
  1276. }
  1277. last_byte += (1 << mp->m_writeio_log);
  1278. if (last_byte < 0) {
  1279. return XFS_MAXIOFFSET(mp);
  1280. }
  1281. return last_byte;
  1282. }
  1283. #if defined(XFS_RW_TRACE)
  1284. STATIC void
  1285. xfs_itrunc_trace(
  1286. int tag,
  1287. xfs_inode_t *ip,
  1288. int flag,
  1289. xfs_fsize_t new_size,
  1290. xfs_off_t toss_start,
  1291. xfs_off_t toss_finish)
  1292. {
  1293. if (ip->i_rwtrace == NULL) {
  1294. return;
  1295. }
  1296. ktrace_enter(ip->i_rwtrace,
  1297. (void*)((long)tag),
  1298. (void*)ip,
  1299. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1300. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1301. (void*)((long)flag),
  1302. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1303. (void*)(unsigned long)(new_size & 0xffffffff),
  1304. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1305. (void*)(unsigned long)(toss_start & 0xffffffff),
  1306. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1307. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1308. (void*)(unsigned long)current_cpu(),
  1309. (void*)(unsigned long)current_pid(),
  1310. (void*)NULL,
  1311. (void*)NULL,
  1312. (void*)NULL);
  1313. }
  1314. #else
  1315. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1316. #endif
  1317. /*
  1318. * Start the truncation of the file to new_size. The new size
  1319. * must be smaller than the current size. This routine will
  1320. * clear the buffer and page caches of file data in the removed
  1321. * range, and xfs_itruncate_finish() will remove the underlying
  1322. * disk blocks.
  1323. *
  1324. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1325. * must NOT have the inode lock held at all. This is because we're
  1326. * calling into the buffer/page cache code and we can't hold the
  1327. * inode lock when we do so.
  1328. *
  1329. * We need to wait for any direct I/Os in flight to complete before we
  1330. * proceed with the truncate. This is needed to prevent the extents
  1331. * being read or written by the direct I/Os from being removed while the
  1332. * I/O is in flight as there is no other method of synchronising
  1333. * direct I/O with the truncate operation. Also, because we hold
  1334. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1335. * started until the truncate completes and drops the lock. Essentially,
  1336. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1337. * between direct I/Os and the truncate operation.
  1338. *
  1339. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1340. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1341. * in the case that the caller is locking things out of order and
  1342. * may not be able to call xfs_itruncate_finish() with the inode lock
  1343. * held without dropping the I/O lock. If the caller must drop the
  1344. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1345. * must be called again with all the same restrictions as the initial
  1346. * call.
  1347. */
  1348. int
  1349. xfs_itruncate_start(
  1350. xfs_inode_t *ip,
  1351. uint flags,
  1352. xfs_fsize_t new_size)
  1353. {
  1354. xfs_fsize_t last_byte;
  1355. xfs_off_t toss_start;
  1356. xfs_mount_t *mp;
  1357. bhv_vnode_t *vp;
  1358. int error = 0;
  1359. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1360. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1361. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1362. (flags == XFS_ITRUNC_MAYBE));
  1363. mp = ip->i_mount;
  1364. vp = XFS_ITOV(ip);
  1365. /* wait for the completion of any pending DIOs */
  1366. if (new_size < ip->i_size)
  1367. vn_iowait(ip);
  1368. /*
  1369. * Call toss_pages or flushinval_pages to get rid of pages
  1370. * overlapping the region being removed. We have to use
  1371. * the less efficient flushinval_pages in the case that the
  1372. * caller may not be able to finish the truncate without
  1373. * dropping the inode's I/O lock. Make sure
  1374. * to catch any pages brought in by buffers overlapping
  1375. * the EOF by searching out beyond the isize by our
  1376. * block size. We round new_size up to a block boundary
  1377. * so that we don't toss things on the same block as
  1378. * new_size but before it.
  1379. *
  1380. * Before calling toss_page or flushinval_pages, make sure to
  1381. * call remapf() over the same region if the file is mapped.
  1382. * This frees up mapped file references to the pages in the
  1383. * given range and for the flushinval_pages case it ensures
  1384. * that we get the latest mapped changes flushed out.
  1385. */
  1386. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1387. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1388. if (toss_start < 0) {
  1389. /*
  1390. * The place to start tossing is beyond our maximum
  1391. * file size, so there is no way that the data extended
  1392. * out there.
  1393. */
  1394. return 0;
  1395. }
  1396. last_byte = xfs_file_last_byte(ip);
  1397. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1398. last_byte);
  1399. if (last_byte > toss_start) {
  1400. if (flags & XFS_ITRUNC_DEFINITE) {
  1401. xfs_tosspages(ip, toss_start,
  1402. -1, FI_REMAPF_LOCKED);
  1403. } else {
  1404. error = xfs_flushinval_pages(ip, toss_start,
  1405. -1, FI_REMAPF_LOCKED);
  1406. }
  1407. }
  1408. #ifdef DEBUG
  1409. if (new_size == 0) {
  1410. ASSERT(VN_CACHED(vp) == 0);
  1411. }
  1412. #endif
  1413. return error;
  1414. }
  1415. /*
  1416. * Shrink the file to the given new_size. The new
  1417. * size must be smaller than the current size.
  1418. * This will free up the underlying blocks
  1419. * in the removed range after a call to xfs_itruncate_start()
  1420. * or xfs_atruncate_start().
  1421. *
  1422. * The transaction passed to this routine must have made
  1423. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1424. * This routine may commit the given transaction and
  1425. * start new ones, so make sure everything involved in
  1426. * the transaction is tidy before calling here.
  1427. * Some transaction will be returned to the caller to be
  1428. * committed. The incoming transaction must already include
  1429. * the inode, and both inode locks must be held exclusively.
  1430. * The inode must also be "held" within the transaction. On
  1431. * return the inode will be "held" within the returned transaction.
  1432. * This routine does NOT require any disk space to be reserved
  1433. * for it within the transaction.
  1434. *
  1435. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1436. * and it indicates the fork which is to be truncated. For the
  1437. * attribute fork we only support truncation to size 0.
  1438. *
  1439. * We use the sync parameter to indicate whether or not the first
  1440. * transaction we perform might have to be synchronous. For the attr fork,
  1441. * it needs to be so if the unlink of the inode is not yet known to be
  1442. * permanent in the log. This keeps us from freeing and reusing the
  1443. * blocks of the attribute fork before the unlink of the inode becomes
  1444. * permanent.
  1445. *
  1446. * For the data fork, we normally have to run synchronously if we're
  1447. * being called out of the inactive path or we're being called
  1448. * out of the create path where we're truncating an existing file.
  1449. * Either way, the truncate needs to be sync so blocks don't reappear
  1450. * in the file with altered data in case of a crash. wsync filesystems
  1451. * can run the first case async because anything that shrinks the inode
  1452. * has to run sync so by the time we're called here from inactive, the
  1453. * inode size is permanently set to 0.
  1454. *
  1455. * Calls from the truncate path always need to be sync unless we're
  1456. * in a wsync filesystem and the file has already been unlinked.
  1457. *
  1458. * The caller is responsible for correctly setting the sync parameter.
  1459. * It gets too hard for us to guess here which path we're being called
  1460. * out of just based on inode state.
  1461. */
  1462. int
  1463. xfs_itruncate_finish(
  1464. xfs_trans_t **tp,
  1465. xfs_inode_t *ip,
  1466. xfs_fsize_t new_size,
  1467. int fork,
  1468. int sync)
  1469. {
  1470. xfs_fsblock_t first_block;
  1471. xfs_fileoff_t first_unmap_block;
  1472. xfs_fileoff_t last_block;
  1473. xfs_filblks_t unmap_len=0;
  1474. xfs_mount_t *mp;
  1475. xfs_trans_t *ntp;
  1476. int done;
  1477. int committed;
  1478. xfs_bmap_free_t free_list;
  1479. int error;
  1480. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1481. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1482. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1483. ASSERT(*tp != NULL);
  1484. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1485. ASSERT(ip->i_transp == *tp);
  1486. ASSERT(ip->i_itemp != NULL);
  1487. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1488. ntp = *tp;
  1489. mp = (ntp)->t_mountp;
  1490. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1491. /*
  1492. * We only support truncating the entire attribute fork.
  1493. */
  1494. if (fork == XFS_ATTR_FORK) {
  1495. new_size = 0LL;
  1496. }
  1497. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1498. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1499. /*
  1500. * The first thing we do is set the size to new_size permanently
  1501. * on disk. This way we don't have to worry about anyone ever
  1502. * being able to look at the data being freed even in the face
  1503. * of a crash. What we're getting around here is the case where
  1504. * we free a block, it is allocated to another file, it is written
  1505. * to, and then we crash. If the new data gets written to the
  1506. * file but the log buffers containing the free and reallocation
  1507. * don't, then we'd end up with garbage in the blocks being freed.
  1508. * As long as we make the new_size permanent before actually
  1509. * freeing any blocks it doesn't matter if they get writtten to.
  1510. *
  1511. * The callers must signal into us whether or not the size
  1512. * setting here must be synchronous. There are a few cases
  1513. * where it doesn't have to be synchronous. Those cases
  1514. * occur if the file is unlinked and we know the unlink is
  1515. * permanent or if the blocks being truncated are guaranteed
  1516. * to be beyond the inode eof (regardless of the link count)
  1517. * and the eof value is permanent. Both of these cases occur
  1518. * only on wsync-mounted filesystems. In those cases, we're
  1519. * guaranteed that no user will ever see the data in the blocks
  1520. * that are being truncated so the truncate can run async.
  1521. * In the free beyond eof case, the file may wind up with
  1522. * more blocks allocated to it than it needs if we crash
  1523. * and that won't get fixed until the next time the file
  1524. * is re-opened and closed but that's ok as that shouldn't
  1525. * be too many blocks.
  1526. *
  1527. * However, we can't just make all wsync xactions run async
  1528. * because there's one call out of the create path that needs
  1529. * to run sync where it's truncating an existing file to size
  1530. * 0 whose size is > 0.
  1531. *
  1532. * It's probably possible to come up with a test in this
  1533. * routine that would correctly distinguish all the above
  1534. * cases from the values of the function parameters and the
  1535. * inode state but for sanity's sake, I've decided to let the
  1536. * layers above just tell us. It's simpler to correctly figure
  1537. * out in the layer above exactly under what conditions we
  1538. * can run async and I think it's easier for others read and
  1539. * follow the logic in case something has to be changed.
  1540. * cscope is your friend -- rcc.
  1541. *
  1542. * The attribute fork is much simpler.
  1543. *
  1544. * For the attribute fork we allow the caller to tell us whether
  1545. * the unlink of the inode that led to this call is yet permanent
  1546. * in the on disk log. If it is not and we will be freeing extents
  1547. * in this inode then we make the first transaction synchronous
  1548. * to make sure that the unlink is permanent by the time we free
  1549. * the blocks.
  1550. */
  1551. if (fork == XFS_DATA_FORK) {
  1552. if (ip->i_d.di_nextents > 0) {
  1553. /*
  1554. * If we are not changing the file size then do
  1555. * not update the on-disk file size - we may be
  1556. * called from xfs_inactive_free_eofblocks(). If we
  1557. * update the on-disk file size and then the system
  1558. * crashes before the contents of the file are
  1559. * flushed to disk then the files may be full of
  1560. * holes (ie NULL files bug).
  1561. */
  1562. if (ip->i_size != new_size) {
  1563. ip->i_d.di_size = new_size;
  1564. ip->i_size = new_size;
  1565. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1566. }
  1567. }
  1568. } else if (sync) {
  1569. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1570. if (ip->i_d.di_anextents > 0)
  1571. xfs_trans_set_sync(ntp);
  1572. }
  1573. ASSERT(fork == XFS_DATA_FORK ||
  1574. (fork == XFS_ATTR_FORK &&
  1575. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1576. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1577. /*
  1578. * Since it is possible for space to become allocated beyond
  1579. * the end of the file (in a crash where the space is allocated
  1580. * but the inode size is not yet updated), simply remove any
  1581. * blocks which show up between the new EOF and the maximum
  1582. * possible file size. If the first block to be removed is
  1583. * beyond the maximum file size (ie it is the same as last_block),
  1584. * then there is nothing to do.
  1585. */
  1586. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1587. ASSERT(first_unmap_block <= last_block);
  1588. done = 0;
  1589. if (last_block == first_unmap_block) {
  1590. done = 1;
  1591. } else {
  1592. unmap_len = last_block - first_unmap_block + 1;
  1593. }
  1594. while (!done) {
  1595. /*
  1596. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1597. * will tell us whether it freed the entire range or
  1598. * not. If this is a synchronous mount (wsync),
  1599. * then we can tell bunmapi to keep all the
  1600. * transactions asynchronous since the unlink
  1601. * transaction that made this inode inactive has
  1602. * already hit the disk. There's no danger of
  1603. * the freed blocks being reused, there being a
  1604. * crash, and the reused blocks suddenly reappearing
  1605. * in this file with garbage in them once recovery
  1606. * runs.
  1607. */
  1608. XFS_BMAP_INIT(&free_list, &first_block);
  1609. error = xfs_bunmapi(ntp, ip,
  1610. first_unmap_block, unmap_len,
  1611. XFS_BMAPI_AFLAG(fork) |
  1612. (sync ? 0 : XFS_BMAPI_ASYNC),
  1613. XFS_ITRUNC_MAX_EXTENTS,
  1614. &first_block, &free_list,
  1615. NULL, &done);
  1616. if (error) {
  1617. /*
  1618. * If the bunmapi call encounters an error,
  1619. * return to the caller where the transaction
  1620. * can be properly aborted. We just need to
  1621. * make sure we're not holding any resources
  1622. * that we were not when we came in.
  1623. */
  1624. xfs_bmap_cancel(&free_list);
  1625. return error;
  1626. }
  1627. /*
  1628. * Duplicate the transaction that has the permanent
  1629. * reservation and commit the old transaction.
  1630. */
  1631. error = xfs_bmap_finish(tp, &free_list, &committed);
  1632. ntp = *tp;
  1633. if (error) {
  1634. /*
  1635. * If the bmap finish call encounters an error,
  1636. * return to the caller where the transaction
  1637. * can be properly aborted. We just need to
  1638. * make sure we're not holding any resources
  1639. * that we were not when we came in.
  1640. *
  1641. * Aborting from this point might lose some
  1642. * blocks in the file system, but oh well.
  1643. */
  1644. xfs_bmap_cancel(&free_list);
  1645. if (committed) {
  1646. /*
  1647. * If the passed in transaction committed
  1648. * in xfs_bmap_finish(), then we want to
  1649. * add the inode to this one before returning.
  1650. * This keeps things simple for the higher
  1651. * level code, because it always knows that
  1652. * the inode is locked and held in the
  1653. * transaction that returns to it whether
  1654. * errors occur or not. We don't mark the
  1655. * inode dirty so that this transaction can
  1656. * be easily aborted if possible.
  1657. */
  1658. xfs_trans_ijoin(ntp, ip,
  1659. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1660. xfs_trans_ihold(ntp, ip);
  1661. }
  1662. return error;
  1663. }
  1664. if (committed) {
  1665. /*
  1666. * The first xact was committed,
  1667. * so add the inode to the new one.
  1668. * Mark it dirty so it will be logged
  1669. * and moved forward in the log as
  1670. * part of every commit.
  1671. */
  1672. xfs_trans_ijoin(ntp, ip,
  1673. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1674. xfs_trans_ihold(ntp, ip);
  1675. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1676. }
  1677. ntp = xfs_trans_dup(ntp);
  1678. (void) xfs_trans_commit(*tp, 0);
  1679. *tp = ntp;
  1680. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1681. XFS_TRANS_PERM_LOG_RES,
  1682. XFS_ITRUNCATE_LOG_COUNT);
  1683. /*
  1684. * Add the inode being truncated to the next chained
  1685. * transaction.
  1686. */
  1687. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1688. xfs_trans_ihold(ntp, ip);
  1689. if (error)
  1690. return (error);
  1691. }
  1692. /*
  1693. * Only update the size in the case of the data fork, but
  1694. * always re-log the inode so that our permanent transaction
  1695. * can keep on rolling it forward in the log.
  1696. */
  1697. if (fork == XFS_DATA_FORK) {
  1698. xfs_isize_check(mp, ip, new_size);
  1699. /*
  1700. * If we are not changing the file size then do
  1701. * not update the on-disk file size - we may be
  1702. * called from xfs_inactive_free_eofblocks(). If we
  1703. * update the on-disk file size and then the system
  1704. * crashes before the contents of the file are
  1705. * flushed to disk then the files may be full of
  1706. * holes (ie NULL files bug).
  1707. */
  1708. if (ip->i_size != new_size) {
  1709. ip->i_d.di_size = new_size;
  1710. ip->i_size = new_size;
  1711. }
  1712. }
  1713. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1714. ASSERT((new_size != 0) ||
  1715. (fork == XFS_ATTR_FORK) ||
  1716. (ip->i_delayed_blks == 0));
  1717. ASSERT((new_size != 0) ||
  1718. (fork == XFS_ATTR_FORK) ||
  1719. (ip->i_d.di_nextents == 0));
  1720. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1721. return 0;
  1722. }
  1723. /*
  1724. * xfs_igrow_start
  1725. *
  1726. * Do the first part of growing a file: zero any data in the last
  1727. * block that is beyond the old EOF. We need to do this before
  1728. * the inode is joined to the transaction to modify the i_size.
  1729. * That way we can drop the inode lock and call into the buffer
  1730. * cache to get the buffer mapping the EOF.
  1731. */
  1732. int
  1733. xfs_igrow_start(
  1734. xfs_inode_t *ip,
  1735. xfs_fsize_t new_size,
  1736. cred_t *credp)
  1737. {
  1738. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1739. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1740. ASSERT(new_size > ip->i_size);
  1741. /*
  1742. * Zero any pages that may have been created by
  1743. * xfs_write_file() beyond the end of the file
  1744. * and any blocks between the old and new file sizes.
  1745. */
  1746. return xfs_zero_eof(ip, new_size, ip->i_size);
  1747. }
  1748. /*
  1749. * xfs_igrow_finish
  1750. *
  1751. * This routine is called to extend the size of a file.
  1752. * The inode must have both the iolock and the ilock locked
  1753. * for update and it must be a part of the current transaction.
  1754. * The xfs_igrow_start() function must have been called previously.
  1755. * If the change_flag is not zero, the inode change timestamp will
  1756. * be updated.
  1757. */
  1758. void
  1759. xfs_igrow_finish(
  1760. xfs_trans_t *tp,
  1761. xfs_inode_t *ip,
  1762. xfs_fsize_t new_size,
  1763. int change_flag)
  1764. {
  1765. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1766. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1767. ASSERT(ip->i_transp == tp);
  1768. ASSERT(new_size > ip->i_size);
  1769. /*
  1770. * Update the file size. Update the inode change timestamp
  1771. * if change_flag set.
  1772. */
  1773. ip->i_d.di_size = new_size;
  1774. ip->i_size = new_size;
  1775. if (change_flag)
  1776. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1777. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1778. }
  1779. /*
  1780. * This is called when the inode's link count goes to 0.
  1781. * We place the on-disk inode on a list in the AGI. It
  1782. * will be pulled from this list when the inode is freed.
  1783. */
  1784. int
  1785. xfs_iunlink(
  1786. xfs_trans_t *tp,
  1787. xfs_inode_t *ip)
  1788. {
  1789. xfs_mount_t *mp;
  1790. xfs_agi_t *agi;
  1791. xfs_dinode_t *dip;
  1792. xfs_buf_t *agibp;
  1793. xfs_buf_t *ibp;
  1794. xfs_agnumber_t agno;
  1795. xfs_daddr_t agdaddr;
  1796. xfs_agino_t agino;
  1797. short bucket_index;
  1798. int offset;
  1799. int error;
  1800. int agi_ok;
  1801. ASSERT(ip->i_d.di_nlink == 0);
  1802. ASSERT(ip->i_d.di_mode != 0);
  1803. ASSERT(ip->i_transp == tp);
  1804. mp = tp->t_mountp;
  1805. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1806. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1807. /*
  1808. * Get the agi buffer first. It ensures lock ordering
  1809. * on the list.
  1810. */
  1811. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1812. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1813. if (error)
  1814. return error;
  1815. /*
  1816. * Validate the magic number of the agi block.
  1817. */
  1818. agi = XFS_BUF_TO_AGI(agibp);
  1819. agi_ok =
  1820. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1821. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1822. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1823. XFS_RANDOM_IUNLINK))) {
  1824. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1825. xfs_trans_brelse(tp, agibp);
  1826. return XFS_ERROR(EFSCORRUPTED);
  1827. }
  1828. /*
  1829. * Get the index into the agi hash table for the
  1830. * list this inode will go on.
  1831. */
  1832. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1833. ASSERT(agino != 0);
  1834. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1835. ASSERT(agi->agi_unlinked[bucket_index]);
  1836. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1837. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1838. if (error)
  1839. return error;
  1840. /*
  1841. * Clear the on-disk di_nlink. This is to prevent xfs_bulkstat
  1842. * from picking up this inode when it is reclaimed (its incore state
  1843. * initialzed but not flushed to disk yet). The in-core di_nlink is
  1844. * already cleared in xfs_droplink() and a corresponding transaction
  1845. * logged. The hack here just synchronizes the in-core to on-disk
  1846. * di_nlink value in advance before the actual inode sync to disk.
  1847. * This is OK because the inode is already unlinked and would never
  1848. * change its di_nlink again for this inode generation.
  1849. * This is a temporary hack that would require a proper fix
  1850. * in the future.
  1851. */
  1852. dip->di_core.di_nlink = 0;
  1853. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1854. /*
  1855. * There is already another inode in the bucket we need
  1856. * to add ourselves to. Add us at the front of the list.
  1857. * Here we put the head pointer into our next pointer,
  1858. * and then we fall through to point the head at us.
  1859. */
  1860. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1861. /* both on-disk, don't endian flip twice */
  1862. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1863. offset = ip->i_boffset +
  1864. offsetof(xfs_dinode_t, di_next_unlinked);
  1865. xfs_trans_inode_buf(tp, ibp);
  1866. xfs_trans_log_buf(tp, ibp, offset,
  1867. (offset + sizeof(xfs_agino_t) - 1));
  1868. xfs_inobp_check(mp, ibp);
  1869. }
  1870. /*
  1871. * Point the bucket head pointer at the inode being inserted.
  1872. */
  1873. ASSERT(agino != 0);
  1874. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1875. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1876. (sizeof(xfs_agino_t) * bucket_index);
  1877. xfs_trans_log_buf(tp, agibp, offset,
  1878. (offset + sizeof(xfs_agino_t) - 1));
  1879. return 0;
  1880. }
  1881. /*
  1882. * Pull the on-disk inode from the AGI unlinked list.
  1883. */
  1884. STATIC int
  1885. xfs_iunlink_remove(
  1886. xfs_trans_t *tp,
  1887. xfs_inode_t *ip)
  1888. {
  1889. xfs_ino_t next_ino;
  1890. xfs_mount_t *mp;
  1891. xfs_agi_t *agi;
  1892. xfs_dinode_t *dip;
  1893. xfs_buf_t *agibp;
  1894. xfs_buf_t *ibp;
  1895. xfs_agnumber_t agno;
  1896. xfs_daddr_t agdaddr;
  1897. xfs_agino_t agino;
  1898. xfs_agino_t next_agino;
  1899. xfs_buf_t *last_ibp;
  1900. xfs_dinode_t *last_dip = NULL;
  1901. short bucket_index;
  1902. int offset, last_offset = 0;
  1903. int error;
  1904. int agi_ok;
  1905. /*
  1906. * First pull the on-disk inode from the AGI unlinked list.
  1907. */
  1908. mp = tp->t_mountp;
  1909. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1910. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1911. /*
  1912. * Get the agi buffer first. It ensures lock ordering
  1913. * on the list.
  1914. */
  1915. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1916. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1917. if (error) {
  1918. cmn_err(CE_WARN,
  1919. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1920. error, mp->m_fsname);
  1921. return error;
  1922. }
  1923. /*
  1924. * Validate the magic number of the agi block.
  1925. */
  1926. agi = XFS_BUF_TO_AGI(agibp);
  1927. agi_ok =
  1928. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1929. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1930. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1931. XFS_RANDOM_IUNLINK_REMOVE))) {
  1932. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1933. mp, agi);
  1934. xfs_trans_brelse(tp, agibp);
  1935. cmn_err(CE_WARN,
  1936. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1937. mp->m_fsname);
  1938. return XFS_ERROR(EFSCORRUPTED);
  1939. }
  1940. /*
  1941. * Get the index into the agi hash table for the
  1942. * list this inode will go on.
  1943. */
  1944. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1945. ASSERT(agino != 0);
  1946. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1947. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1948. ASSERT(agi->agi_unlinked[bucket_index]);
  1949. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1950. /*
  1951. * We're at the head of the list. Get the inode's
  1952. * on-disk buffer to see if there is anyone after us
  1953. * on the list. Only modify our next pointer if it
  1954. * is not already NULLAGINO. This saves us the overhead
  1955. * of dealing with the buffer when there is no need to
  1956. * change it.
  1957. */
  1958. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1959. if (error) {
  1960. cmn_err(CE_WARN,
  1961. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1962. error, mp->m_fsname);
  1963. return error;
  1964. }
  1965. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1966. ASSERT(next_agino != 0);
  1967. if (next_agino != NULLAGINO) {
  1968. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1969. offset = ip->i_boffset +
  1970. offsetof(xfs_dinode_t, di_next_unlinked);
  1971. xfs_trans_inode_buf(tp, ibp);
  1972. xfs_trans_log_buf(tp, ibp, offset,
  1973. (offset + sizeof(xfs_agino_t) - 1));
  1974. xfs_inobp_check(mp, ibp);
  1975. } else {
  1976. xfs_trans_brelse(tp, ibp);
  1977. }
  1978. /*
  1979. * Point the bucket head pointer at the next inode.
  1980. */
  1981. ASSERT(next_agino != 0);
  1982. ASSERT(next_agino != agino);
  1983. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1984. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1985. (sizeof(xfs_agino_t) * bucket_index);
  1986. xfs_trans_log_buf(tp, agibp, offset,
  1987. (offset + sizeof(xfs_agino_t) - 1));
  1988. } else {
  1989. /*
  1990. * We need to search the list for the inode being freed.
  1991. */
  1992. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1993. last_ibp = NULL;
  1994. while (next_agino != agino) {
  1995. /*
  1996. * If the last inode wasn't the one pointing to
  1997. * us, then release its buffer since we're not
  1998. * going to do anything with it.
  1999. */
  2000. if (last_ibp != NULL) {
  2001. xfs_trans_brelse(tp, last_ibp);
  2002. }
  2003. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  2004. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  2005. &last_ibp, &last_offset);
  2006. if (error) {
  2007. cmn_err(CE_WARN,
  2008. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  2009. error, mp->m_fsname);
  2010. return error;
  2011. }
  2012. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  2013. ASSERT(next_agino != NULLAGINO);
  2014. ASSERT(next_agino != 0);
  2015. }
  2016. /*
  2017. * Now last_ibp points to the buffer previous to us on
  2018. * the unlinked list. Pull us from the list.
  2019. */
  2020. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  2021. if (error) {
  2022. cmn_err(CE_WARN,
  2023. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  2024. error, mp->m_fsname);
  2025. return error;
  2026. }
  2027. next_agino = be32_to_cpu(dip->di_next_unlinked);
  2028. ASSERT(next_agino != 0);
  2029. ASSERT(next_agino != agino);
  2030. if (next_agino != NULLAGINO) {
  2031. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  2032. offset = ip->i_boffset +
  2033. offsetof(xfs_dinode_t, di_next_unlinked);
  2034. xfs_trans_inode_buf(tp, ibp);
  2035. xfs_trans_log_buf(tp, ibp, offset,
  2036. (offset + sizeof(xfs_agino_t) - 1));
  2037. xfs_inobp_check(mp, ibp);
  2038. } else {
  2039. xfs_trans_brelse(tp, ibp);
  2040. }
  2041. /*
  2042. * Point the previous inode on the list to the next inode.
  2043. */
  2044. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  2045. ASSERT(next_agino != 0);
  2046. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  2047. xfs_trans_inode_buf(tp, last_ibp);
  2048. xfs_trans_log_buf(tp, last_ibp, offset,
  2049. (offset + sizeof(xfs_agino_t) - 1));
  2050. xfs_inobp_check(mp, last_ibp);
  2051. }
  2052. return 0;
  2053. }
  2054. STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
  2055. {
  2056. return (((ip->i_itemp == NULL) ||
  2057. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2058. (ip->i_update_core == 0));
  2059. }
  2060. STATIC void
  2061. xfs_ifree_cluster(
  2062. xfs_inode_t *free_ip,
  2063. xfs_trans_t *tp,
  2064. xfs_ino_t inum)
  2065. {
  2066. xfs_mount_t *mp = free_ip->i_mount;
  2067. int blks_per_cluster;
  2068. int nbufs;
  2069. int ninodes;
  2070. int i, j, found, pre_flushed;
  2071. xfs_daddr_t blkno;
  2072. xfs_buf_t *bp;
  2073. xfs_inode_t *ip, **ip_found;
  2074. xfs_inode_log_item_t *iip;
  2075. xfs_log_item_t *lip;
  2076. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  2077. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2078. blks_per_cluster = 1;
  2079. ninodes = mp->m_sb.sb_inopblock;
  2080. nbufs = XFS_IALLOC_BLOCKS(mp);
  2081. } else {
  2082. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2083. mp->m_sb.sb_blocksize;
  2084. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2085. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2086. }
  2087. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2088. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2089. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2090. XFS_INO_TO_AGBNO(mp, inum));
  2091. /*
  2092. * Look for each inode in memory and attempt to lock it,
  2093. * we can be racing with flush and tail pushing here.
  2094. * any inode we get the locks on, add to an array of
  2095. * inode items to process later.
  2096. *
  2097. * The get the buffer lock, we could beat a flush
  2098. * or tail pushing thread to the lock here, in which
  2099. * case they will go looking for the inode buffer
  2100. * and fail, we need some other form of interlock
  2101. * here.
  2102. */
  2103. found = 0;
  2104. for (i = 0; i < ninodes; i++) {
  2105. read_lock(&pag->pag_ici_lock);
  2106. ip = radix_tree_lookup(&pag->pag_ici_root,
  2107. XFS_INO_TO_AGINO(mp, (inum + i)));
  2108. /* Inode not in memory or we found it already,
  2109. * nothing to do
  2110. */
  2111. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2112. read_unlock(&pag->pag_ici_lock);
  2113. continue;
  2114. }
  2115. if (xfs_inode_clean(ip)) {
  2116. read_unlock(&pag->pag_ici_lock);
  2117. continue;
  2118. }
  2119. /* If we can get the locks then add it to the
  2120. * list, otherwise by the time we get the bp lock
  2121. * below it will already be attached to the
  2122. * inode buffer.
  2123. */
  2124. /* This inode will already be locked - by us, lets
  2125. * keep it that way.
  2126. */
  2127. if (ip == free_ip) {
  2128. if (xfs_iflock_nowait(ip)) {
  2129. xfs_iflags_set(ip, XFS_ISTALE);
  2130. if (xfs_inode_clean(ip)) {
  2131. xfs_ifunlock(ip);
  2132. } else {
  2133. ip_found[found++] = ip;
  2134. }
  2135. }
  2136. read_unlock(&pag->pag_ici_lock);
  2137. continue;
  2138. }
  2139. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2140. if (xfs_iflock_nowait(ip)) {
  2141. xfs_iflags_set(ip, XFS_ISTALE);
  2142. if (xfs_inode_clean(ip)) {
  2143. xfs_ifunlock(ip);
  2144. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2145. } else {
  2146. ip_found[found++] = ip;
  2147. }
  2148. } else {
  2149. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2150. }
  2151. }
  2152. read_unlock(&pag->pag_ici_lock);
  2153. }
  2154. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2155. mp->m_bsize * blks_per_cluster,
  2156. XFS_BUF_LOCK);
  2157. pre_flushed = 0;
  2158. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2159. while (lip) {
  2160. if (lip->li_type == XFS_LI_INODE) {
  2161. iip = (xfs_inode_log_item_t *)lip;
  2162. ASSERT(iip->ili_logged == 1);
  2163. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2164. spin_lock(&mp->m_ail_lock);
  2165. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2166. spin_unlock(&mp->m_ail_lock);
  2167. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2168. pre_flushed++;
  2169. }
  2170. lip = lip->li_bio_list;
  2171. }
  2172. for (i = 0; i < found; i++) {
  2173. ip = ip_found[i];
  2174. iip = ip->i_itemp;
  2175. if (!iip) {
  2176. ip->i_update_core = 0;
  2177. xfs_ifunlock(ip);
  2178. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2179. continue;
  2180. }
  2181. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2182. iip->ili_format.ilf_fields = 0;
  2183. iip->ili_logged = 1;
  2184. spin_lock(&mp->m_ail_lock);
  2185. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2186. spin_unlock(&mp->m_ail_lock);
  2187. xfs_buf_attach_iodone(bp,
  2188. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2189. xfs_istale_done, (xfs_log_item_t *)iip);
  2190. if (ip != free_ip) {
  2191. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2192. }
  2193. }
  2194. if (found || pre_flushed)
  2195. xfs_trans_stale_inode_buf(tp, bp);
  2196. xfs_trans_binval(tp, bp);
  2197. }
  2198. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2199. xfs_put_perag(mp, pag);
  2200. }
  2201. /*
  2202. * This is called to return an inode to the inode free list.
  2203. * The inode should already be truncated to 0 length and have
  2204. * no pages associated with it. This routine also assumes that
  2205. * the inode is already a part of the transaction.
  2206. *
  2207. * The on-disk copy of the inode will have been added to the list
  2208. * of unlinked inodes in the AGI. We need to remove the inode from
  2209. * that list atomically with respect to freeing it here.
  2210. */
  2211. int
  2212. xfs_ifree(
  2213. xfs_trans_t *tp,
  2214. xfs_inode_t *ip,
  2215. xfs_bmap_free_t *flist)
  2216. {
  2217. int error;
  2218. int delete;
  2219. xfs_ino_t first_ino;
  2220. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2221. ASSERT(ip->i_transp == tp);
  2222. ASSERT(ip->i_d.di_nlink == 0);
  2223. ASSERT(ip->i_d.di_nextents == 0);
  2224. ASSERT(ip->i_d.di_anextents == 0);
  2225. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2226. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2227. ASSERT(ip->i_d.di_nblocks == 0);
  2228. /*
  2229. * Pull the on-disk inode from the AGI unlinked list.
  2230. */
  2231. error = xfs_iunlink_remove(tp, ip);
  2232. if (error != 0) {
  2233. return error;
  2234. }
  2235. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2236. if (error != 0) {
  2237. return error;
  2238. }
  2239. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2240. ip->i_d.di_flags = 0;
  2241. ip->i_d.di_dmevmask = 0;
  2242. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2243. ip->i_df.if_ext_max =
  2244. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2245. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2246. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2247. /*
  2248. * Bump the generation count so no one will be confused
  2249. * by reincarnations of this inode.
  2250. */
  2251. ip->i_d.di_gen++;
  2252. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2253. if (delete) {
  2254. xfs_ifree_cluster(ip, tp, first_ino);
  2255. }
  2256. return 0;
  2257. }
  2258. /*
  2259. * Reallocate the space for if_broot based on the number of records
  2260. * being added or deleted as indicated in rec_diff. Move the records
  2261. * and pointers in if_broot to fit the new size. When shrinking this
  2262. * will eliminate holes between the records and pointers created by
  2263. * the caller. When growing this will create holes to be filled in
  2264. * by the caller.
  2265. *
  2266. * The caller must not request to add more records than would fit in
  2267. * the on-disk inode root. If the if_broot is currently NULL, then
  2268. * if we adding records one will be allocated. The caller must also
  2269. * not request that the number of records go below zero, although
  2270. * it can go to zero.
  2271. *
  2272. * ip -- the inode whose if_broot area is changing
  2273. * ext_diff -- the change in the number of records, positive or negative,
  2274. * requested for the if_broot array.
  2275. */
  2276. void
  2277. xfs_iroot_realloc(
  2278. xfs_inode_t *ip,
  2279. int rec_diff,
  2280. int whichfork)
  2281. {
  2282. int cur_max;
  2283. xfs_ifork_t *ifp;
  2284. xfs_bmbt_block_t *new_broot;
  2285. int new_max;
  2286. size_t new_size;
  2287. char *np;
  2288. char *op;
  2289. /*
  2290. * Handle the degenerate case quietly.
  2291. */
  2292. if (rec_diff == 0) {
  2293. return;
  2294. }
  2295. ifp = XFS_IFORK_PTR(ip, whichfork);
  2296. if (rec_diff > 0) {
  2297. /*
  2298. * If there wasn't any memory allocated before, just
  2299. * allocate it now and get out.
  2300. */
  2301. if (ifp->if_broot_bytes == 0) {
  2302. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2303. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2304. KM_SLEEP);
  2305. ifp->if_broot_bytes = (int)new_size;
  2306. return;
  2307. }
  2308. /*
  2309. * If there is already an existing if_broot, then we need
  2310. * to realloc() it and shift the pointers to their new
  2311. * location. The records don't change location because
  2312. * they are kept butted up against the btree block header.
  2313. */
  2314. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2315. new_max = cur_max + rec_diff;
  2316. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2317. ifp->if_broot = (xfs_bmbt_block_t *)
  2318. kmem_realloc(ifp->if_broot,
  2319. new_size,
  2320. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2321. KM_SLEEP);
  2322. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2323. ifp->if_broot_bytes);
  2324. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2325. (int)new_size);
  2326. ifp->if_broot_bytes = (int)new_size;
  2327. ASSERT(ifp->if_broot_bytes <=
  2328. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2329. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2330. return;
  2331. }
  2332. /*
  2333. * rec_diff is less than 0. In this case, we are shrinking the
  2334. * if_broot buffer. It must already exist. If we go to zero
  2335. * records, just get rid of the root and clear the status bit.
  2336. */
  2337. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2338. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2339. new_max = cur_max + rec_diff;
  2340. ASSERT(new_max >= 0);
  2341. if (new_max > 0)
  2342. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2343. else
  2344. new_size = 0;
  2345. if (new_size > 0) {
  2346. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2347. /*
  2348. * First copy over the btree block header.
  2349. */
  2350. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2351. } else {
  2352. new_broot = NULL;
  2353. ifp->if_flags &= ~XFS_IFBROOT;
  2354. }
  2355. /*
  2356. * Only copy the records and pointers if there are any.
  2357. */
  2358. if (new_max > 0) {
  2359. /*
  2360. * First copy the records.
  2361. */
  2362. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2363. ifp->if_broot_bytes);
  2364. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2365. (int)new_size);
  2366. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2367. /*
  2368. * Then copy the pointers.
  2369. */
  2370. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2371. ifp->if_broot_bytes);
  2372. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2373. (int)new_size);
  2374. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2375. }
  2376. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2377. ifp->if_broot = new_broot;
  2378. ifp->if_broot_bytes = (int)new_size;
  2379. ASSERT(ifp->if_broot_bytes <=
  2380. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2381. return;
  2382. }
  2383. /*
  2384. * This is called when the amount of space needed for if_data
  2385. * is increased or decreased. The change in size is indicated by
  2386. * the number of bytes that need to be added or deleted in the
  2387. * byte_diff parameter.
  2388. *
  2389. * If the amount of space needed has decreased below the size of the
  2390. * inline buffer, then switch to using the inline buffer. Otherwise,
  2391. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2392. * to what is needed.
  2393. *
  2394. * ip -- the inode whose if_data area is changing
  2395. * byte_diff -- the change in the number of bytes, positive or negative,
  2396. * requested for the if_data array.
  2397. */
  2398. void
  2399. xfs_idata_realloc(
  2400. xfs_inode_t *ip,
  2401. int byte_diff,
  2402. int whichfork)
  2403. {
  2404. xfs_ifork_t *ifp;
  2405. int new_size;
  2406. int real_size;
  2407. if (byte_diff == 0) {
  2408. return;
  2409. }
  2410. ifp = XFS_IFORK_PTR(ip, whichfork);
  2411. new_size = (int)ifp->if_bytes + byte_diff;
  2412. ASSERT(new_size >= 0);
  2413. if (new_size == 0) {
  2414. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2415. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2416. }
  2417. ifp->if_u1.if_data = NULL;
  2418. real_size = 0;
  2419. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2420. /*
  2421. * If the valid extents/data can fit in if_inline_ext/data,
  2422. * copy them from the malloc'd vector and free it.
  2423. */
  2424. if (ifp->if_u1.if_data == NULL) {
  2425. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2426. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2427. ASSERT(ifp->if_real_bytes != 0);
  2428. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2429. new_size);
  2430. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2431. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2432. }
  2433. real_size = 0;
  2434. } else {
  2435. /*
  2436. * Stuck with malloc/realloc.
  2437. * For inline data, the underlying buffer must be
  2438. * a multiple of 4 bytes in size so that it can be
  2439. * logged and stay on word boundaries. We enforce
  2440. * that here.
  2441. */
  2442. real_size = roundup(new_size, 4);
  2443. if (ifp->if_u1.if_data == NULL) {
  2444. ASSERT(ifp->if_real_bytes == 0);
  2445. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2446. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2447. /*
  2448. * Only do the realloc if the underlying size
  2449. * is really changing.
  2450. */
  2451. if (ifp->if_real_bytes != real_size) {
  2452. ifp->if_u1.if_data =
  2453. kmem_realloc(ifp->if_u1.if_data,
  2454. real_size,
  2455. ifp->if_real_bytes,
  2456. KM_SLEEP);
  2457. }
  2458. } else {
  2459. ASSERT(ifp->if_real_bytes == 0);
  2460. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2461. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2462. ifp->if_bytes);
  2463. }
  2464. }
  2465. ifp->if_real_bytes = real_size;
  2466. ifp->if_bytes = new_size;
  2467. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2468. }
  2469. /*
  2470. * Map inode to disk block and offset.
  2471. *
  2472. * mp -- the mount point structure for the current file system
  2473. * tp -- the current transaction
  2474. * ino -- the inode number of the inode to be located
  2475. * imap -- this structure is filled in with the information necessary
  2476. * to retrieve the given inode from disk
  2477. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2478. * lookups in the inode btree were OK or not
  2479. */
  2480. int
  2481. xfs_imap(
  2482. xfs_mount_t *mp,
  2483. xfs_trans_t *tp,
  2484. xfs_ino_t ino,
  2485. xfs_imap_t *imap,
  2486. uint flags)
  2487. {
  2488. xfs_fsblock_t fsbno;
  2489. int len;
  2490. int off;
  2491. int error;
  2492. fsbno = imap->im_blkno ?
  2493. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2494. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2495. if (error != 0) {
  2496. return error;
  2497. }
  2498. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2499. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2500. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2501. imap->im_ioffset = (ushort)off;
  2502. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2503. return 0;
  2504. }
  2505. void
  2506. xfs_idestroy_fork(
  2507. xfs_inode_t *ip,
  2508. int whichfork)
  2509. {
  2510. xfs_ifork_t *ifp;
  2511. ifp = XFS_IFORK_PTR(ip, whichfork);
  2512. if (ifp->if_broot != NULL) {
  2513. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2514. ifp->if_broot = NULL;
  2515. }
  2516. /*
  2517. * If the format is local, then we can't have an extents
  2518. * array so just look for an inline data array. If we're
  2519. * not local then we may or may not have an extents list,
  2520. * so check and free it up if we do.
  2521. */
  2522. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2523. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2524. (ifp->if_u1.if_data != NULL)) {
  2525. ASSERT(ifp->if_real_bytes != 0);
  2526. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2527. ifp->if_u1.if_data = NULL;
  2528. ifp->if_real_bytes = 0;
  2529. }
  2530. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2531. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2532. ((ifp->if_u1.if_extents != NULL) &&
  2533. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2534. ASSERT(ifp->if_real_bytes != 0);
  2535. xfs_iext_destroy(ifp);
  2536. }
  2537. ASSERT(ifp->if_u1.if_extents == NULL ||
  2538. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2539. ASSERT(ifp->if_real_bytes == 0);
  2540. if (whichfork == XFS_ATTR_FORK) {
  2541. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2542. ip->i_afp = NULL;
  2543. }
  2544. }
  2545. /*
  2546. * This is called free all the memory associated with an inode.
  2547. * It must free the inode itself and any buffers allocated for
  2548. * if_extents/if_data and if_broot. It must also free the lock
  2549. * associated with the inode.
  2550. */
  2551. void
  2552. xfs_idestroy(
  2553. xfs_inode_t *ip)
  2554. {
  2555. switch (ip->i_d.di_mode & S_IFMT) {
  2556. case S_IFREG:
  2557. case S_IFDIR:
  2558. case S_IFLNK:
  2559. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2560. break;
  2561. }
  2562. if (ip->i_afp)
  2563. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2564. mrfree(&ip->i_lock);
  2565. mrfree(&ip->i_iolock);
  2566. freesema(&ip->i_flock);
  2567. #ifdef XFS_INODE_TRACE
  2568. ktrace_free(ip->i_trace);
  2569. #endif
  2570. #ifdef XFS_BMAP_TRACE
  2571. ktrace_free(ip->i_xtrace);
  2572. #endif
  2573. #ifdef XFS_BMBT_TRACE
  2574. ktrace_free(ip->i_btrace);
  2575. #endif
  2576. #ifdef XFS_RW_TRACE
  2577. ktrace_free(ip->i_rwtrace);
  2578. #endif
  2579. #ifdef XFS_ILOCK_TRACE
  2580. ktrace_free(ip->i_lock_trace);
  2581. #endif
  2582. #ifdef XFS_DIR2_TRACE
  2583. ktrace_free(ip->i_dir_trace);
  2584. #endif
  2585. if (ip->i_itemp) {
  2586. /*
  2587. * Only if we are shutting down the fs will we see an
  2588. * inode still in the AIL. If it is there, we should remove
  2589. * it to prevent a use-after-free from occurring.
  2590. */
  2591. xfs_mount_t *mp = ip->i_mount;
  2592. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2593. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2594. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2595. if (lip->li_flags & XFS_LI_IN_AIL) {
  2596. spin_lock(&mp->m_ail_lock);
  2597. if (lip->li_flags & XFS_LI_IN_AIL)
  2598. xfs_trans_delete_ail(mp, lip);
  2599. else
  2600. spin_unlock(&mp->m_ail_lock);
  2601. }
  2602. xfs_inode_item_destroy(ip);
  2603. }
  2604. kmem_zone_free(xfs_inode_zone, ip);
  2605. }
  2606. /*
  2607. * Increment the pin count of the given buffer.
  2608. * This value is protected by ipinlock spinlock in the mount structure.
  2609. */
  2610. void
  2611. xfs_ipin(
  2612. xfs_inode_t *ip)
  2613. {
  2614. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2615. atomic_inc(&ip->i_pincount);
  2616. }
  2617. /*
  2618. * Decrement the pin count of the given inode, and wake up
  2619. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2620. * inode must have been previously pinned with a call to xfs_ipin().
  2621. */
  2622. void
  2623. xfs_iunpin(
  2624. xfs_inode_t *ip)
  2625. {
  2626. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2627. if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
  2628. /*
  2629. * If the inode is currently being reclaimed, the link between
  2630. * the bhv_vnode and the xfs_inode will be broken after the
  2631. * XFS_IRECLAIM* flag is set. Hence, if these flags are not
  2632. * set, then we can move forward and mark the linux inode dirty
  2633. * knowing that it is still valid as it won't freed until after
  2634. * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
  2635. * i_flags_lock is used to synchronise the setting of the
  2636. * XFS_IRECLAIM* flags and the breaking of the link, and so we
  2637. * can execute atomically w.r.t to reclaim by holding this lock
  2638. * here.
  2639. *
  2640. * However, we still need to issue the unpin wakeup call as the
  2641. * inode reclaim may be blocked waiting for the inode to become
  2642. * unpinned.
  2643. */
  2644. if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
  2645. bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
  2646. struct inode *inode = NULL;
  2647. BUG_ON(vp == NULL);
  2648. inode = vn_to_inode(vp);
  2649. BUG_ON(inode->i_state & I_CLEAR);
  2650. /* make sync come back and flush this inode */
  2651. if (!(inode->i_state & (I_NEW|I_FREEING)))
  2652. mark_inode_dirty_sync(inode);
  2653. }
  2654. spin_unlock(&ip->i_flags_lock);
  2655. wake_up(&ip->i_ipin_wait);
  2656. }
  2657. }
  2658. /*
  2659. * This is called to wait for the given inode to be unpinned.
  2660. * It will sleep until this happens. The caller must have the
  2661. * inode locked in at least shared mode so that the buffer cannot
  2662. * be subsequently pinned once someone is waiting for it to be
  2663. * unpinned.
  2664. */
  2665. STATIC void
  2666. xfs_iunpin_wait(
  2667. xfs_inode_t *ip)
  2668. {
  2669. xfs_inode_log_item_t *iip;
  2670. xfs_lsn_t lsn;
  2671. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2672. if (atomic_read(&ip->i_pincount) == 0) {
  2673. return;
  2674. }
  2675. iip = ip->i_itemp;
  2676. if (iip && iip->ili_last_lsn) {
  2677. lsn = iip->ili_last_lsn;
  2678. } else {
  2679. lsn = (xfs_lsn_t)0;
  2680. }
  2681. /*
  2682. * Give the log a push so we don't wait here too long.
  2683. */
  2684. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2685. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2686. }
  2687. /*
  2688. * xfs_iextents_copy()
  2689. *
  2690. * This is called to copy the REAL extents (as opposed to the delayed
  2691. * allocation extents) from the inode into the given buffer. It
  2692. * returns the number of bytes copied into the buffer.
  2693. *
  2694. * If there are no delayed allocation extents, then we can just
  2695. * memcpy() the extents into the buffer. Otherwise, we need to
  2696. * examine each extent in turn and skip those which are delayed.
  2697. */
  2698. int
  2699. xfs_iextents_copy(
  2700. xfs_inode_t *ip,
  2701. xfs_bmbt_rec_t *dp,
  2702. int whichfork)
  2703. {
  2704. int copied;
  2705. int i;
  2706. xfs_ifork_t *ifp;
  2707. int nrecs;
  2708. xfs_fsblock_t start_block;
  2709. ifp = XFS_IFORK_PTR(ip, whichfork);
  2710. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2711. ASSERT(ifp->if_bytes > 0);
  2712. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2713. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2714. ASSERT(nrecs > 0);
  2715. /*
  2716. * There are some delayed allocation extents in the
  2717. * inode, so copy the extents one at a time and skip
  2718. * the delayed ones. There must be at least one
  2719. * non-delayed extent.
  2720. */
  2721. copied = 0;
  2722. for (i = 0; i < nrecs; i++) {
  2723. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2724. start_block = xfs_bmbt_get_startblock(ep);
  2725. if (ISNULLSTARTBLOCK(start_block)) {
  2726. /*
  2727. * It's a delayed allocation extent, so skip it.
  2728. */
  2729. continue;
  2730. }
  2731. /* Translate to on disk format */
  2732. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2733. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2734. dp++;
  2735. copied++;
  2736. }
  2737. ASSERT(copied != 0);
  2738. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2739. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2740. }
  2741. /*
  2742. * Each of the following cases stores data into the same region
  2743. * of the on-disk inode, so only one of them can be valid at
  2744. * any given time. While it is possible to have conflicting formats
  2745. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2746. * in EXTENTS format, this can only happen when the fork has
  2747. * changed formats after being modified but before being flushed.
  2748. * In these cases, the format always takes precedence, because the
  2749. * format indicates the current state of the fork.
  2750. */
  2751. /*ARGSUSED*/
  2752. STATIC int
  2753. xfs_iflush_fork(
  2754. xfs_inode_t *ip,
  2755. xfs_dinode_t *dip,
  2756. xfs_inode_log_item_t *iip,
  2757. int whichfork,
  2758. xfs_buf_t *bp)
  2759. {
  2760. char *cp;
  2761. xfs_ifork_t *ifp;
  2762. xfs_mount_t *mp;
  2763. #ifdef XFS_TRANS_DEBUG
  2764. int first;
  2765. #endif
  2766. static const short brootflag[2] =
  2767. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2768. static const short dataflag[2] =
  2769. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2770. static const short extflag[2] =
  2771. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2772. if (iip == NULL)
  2773. return 0;
  2774. ifp = XFS_IFORK_PTR(ip, whichfork);
  2775. /*
  2776. * This can happen if we gave up in iformat in an error path,
  2777. * for the attribute fork.
  2778. */
  2779. if (ifp == NULL) {
  2780. ASSERT(whichfork == XFS_ATTR_FORK);
  2781. return 0;
  2782. }
  2783. cp = XFS_DFORK_PTR(dip, whichfork);
  2784. mp = ip->i_mount;
  2785. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2786. case XFS_DINODE_FMT_LOCAL:
  2787. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2788. (ifp->if_bytes > 0)) {
  2789. ASSERT(ifp->if_u1.if_data != NULL);
  2790. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2791. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2792. }
  2793. break;
  2794. case XFS_DINODE_FMT_EXTENTS:
  2795. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2796. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2797. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2798. (ifp->if_bytes == 0));
  2799. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2800. (ifp->if_bytes > 0));
  2801. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2802. (ifp->if_bytes > 0)) {
  2803. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2804. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2805. whichfork);
  2806. }
  2807. break;
  2808. case XFS_DINODE_FMT_BTREE:
  2809. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2810. (ifp->if_broot_bytes > 0)) {
  2811. ASSERT(ifp->if_broot != NULL);
  2812. ASSERT(ifp->if_broot_bytes <=
  2813. (XFS_IFORK_SIZE(ip, whichfork) +
  2814. XFS_BROOT_SIZE_ADJ));
  2815. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2816. (xfs_bmdr_block_t *)cp,
  2817. XFS_DFORK_SIZE(dip, mp, whichfork));
  2818. }
  2819. break;
  2820. case XFS_DINODE_FMT_DEV:
  2821. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2822. ASSERT(whichfork == XFS_DATA_FORK);
  2823. dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
  2824. }
  2825. break;
  2826. case XFS_DINODE_FMT_UUID:
  2827. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2828. ASSERT(whichfork == XFS_DATA_FORK);
  2829. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2830. sizeof(uuid_t));
  2831. }
  2832. break;
  2833. default:
  2834. ASSERT(0);
  2835. break;
  2836. }
  2837. return 0;
  2838. }
  2839. /*
  2840. * xfs_iflush() will write a modified inode's changes out to the
  2841. * inode's on disk home. The caller must have the inode lock held
  2842. * in at least shared mode and the inode flush semaphore must be
  2843. * held as well. The inode lock will still be held upon return from
  2844. * the call and the caller is free to unlock it.
  2845. * The inode flush lock will be unlocked when the inode reaches the disk.
  2846. * The flags indicate how the inode's buffer should be written out.
  2847. */
  2848. int
  2849. xfs_iflush(
  2850. xfs_inode_t *ip,
  2851. uint flags)
  2852. {
  2853. xfs_inode_log_item_t *iip;
  2854. xfs_buf_t *bp;
  2855. xfs_dinode_t *dip;
  2856. xfs_mount_t *mp;
  2857. int error;
  2858. /* REFERENCED */
  2859. xfs_inode_t *iq;
  2860. int clcount; /* count of inodes clustered */
  2861. int bufwasdelwri;
  2862. struct hlist_node *entry;
  2863. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2864. XFS_STATS_INC(xs_iflush_count);
  2865. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2866. ASSERT(issemalocked(&(ip->i_flock)));
  2867. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2868. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2869. iip = ip->i_itemp;
  2870. mp = ip->i_mount;
  2871. /*
  2872. * If the inode isn't dirty, then just release the inode
  2873. * flush lock and do nothing.
  2874. */
  2875. if ((ip->i_update_core == 0) &&
  2876. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2877. ASSERT((iip != NULL) ?
  2878. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2879. xfs_ifunlock(ip);
  2880. return 0;
  2881. }
  2882. /*
  2883. * We can't flush the inode until it is unpinned, so
  2884. * wait for it. We know noone new can pin it, because
  2885. * we are holding the inode lock shared and you need
  2886. * to hold it exclusively to pin the inode.
  2887. */
  2888. xfs_iunpin_wait(ip);
  2889. /*
  2890. * This may have been unpinned because the filesystem is shutting
  2891. * down forcibly. If that's the case we must not write this inode
  2892. * to disk, because the log record didn't make it to disk!
  2893. */
  2894. if (XFS_FORCED_SHUTDOWN(mp)) {
  2895. ip->i_update_core = 0;
  2896. if (iip)
  2897. iip->ili_format.ilf_fields = 0;
  2898. xfs_ifunlock(ip);
  2899. return XFS_ERROR(EIO);
  2900. }
  2901. /*
  2902. * Get the buffer containing the on-disk inode.
  2903. */
  2904. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2905. if (error) {
  2906. xfs_ifunlock(ip);
  2907. return error;
  2908. }
  2909. /*
  2910. * Decide how buffer will be flushed out. This is done before
  2911. * the call to xfs_iflush_int because this field is zeroed by it.
  2912. */
  2913. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2914. /*
  2915. * Flush out the inode buffer according to the directions
  2916. * of the caller. In the cases where the caller has given
  2917. * us a choice choose the non-delwri case. This is because
  2918. * the inode is in the AIL and we need to get it out soon.
  2919. */
  2920. switch (flags) {
  2921. case XFS_IFLUSH_SYNC:
  2922. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2923. flags = 0;
  2924. break;
  2925. case XFS_IFLUSH_ASYNC:
  2926. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2927. flags = INT_ASYNC;
  2928. break;
  2929. case XFS_IFLUSH_DELWRI:
  2930. flags = INT_DELWRI;
  2931. break;
  2932. default:
  2933. ASSERT(0);
  2934. flags = 0;
  2935. break;
  2936. }
  2937. } else {
  2938. switch (flags) {
  2939. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2940. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2941. case XFS_IFLUSH_DELWRI:
  2942. flags = INT_DELWRI;
  2943. break;
  2944. case XFS_IFLUSH_ASYNC:
  2945. flags = INT_ASYNC;
  2946. break;
  2947. case XFS_IFLUSH_SYNC:
  2948. flags = 0;
  2949. break;
  2950. default:
  2951. ASSERT(0);
  2952. flags = 0;
  2953. break;
  2954. }
  2955. }
  2956. /*
  2957. * First flush out the inode that xfs_iflush was called with.
  2958. */
  2959. error = xfs_iflush_int(ip, bp);
  2960. if (error) {
  2961. goto corrupt_out;
  2962. }
  2963. /*
  2964. * inode clustering:
  2965. * see if other inodes can be gathered into this write
  2966. */
  2967. spin_lock(&ip->i_cluster->icl_lock);
  2968. ip->i_cluster->icl_buf = bp;
  2969. clcount = 0;
  2970. hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
  2971. if (iq == ip)
  2972. continue;
  2973. /*
  2974. * Do an un-protected check to see if the inode is dirty and
  2975. * is a candidate for flushing. These checks will be repeated
  2976. * later after the appropriate locks are acquired.
  2977. */
  2978. iip = iq->i_itemp;
  2979. if ((iq->i_update_core == 0) &&
  2980. ((iip == NULL) ||
  2981. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2982. xfs_ipincount(iq) == 0) {
  2983. continue;
  2984. }
  2985. /*
  2986. * Try to get locks. If any are unavailable,
  2987. * then this inode cannot be flushed and is skipped.
  2988. */
  2989. /* get inode locks (just i_lock) */
  2990. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2991. /* get inode flush lock */
  2992. if (xfs_iflock_nowait(iq)) {
  2993. /* check if pinned */
  2994. if (xfs_ipincount(iq) == 0) {
  2995. /* arriving here means that
  2996. * this inode can be flushed.
  2997. * first re-check that it's
  2998. * dirty
  2999. */
  3000. iip = iq->i_itemp;
  3001. if ((iq->i_update_core != 0)||
  3002. ((iip != NULL) &&
  3003. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3004. clcount++;
  3005. error = xfs_iflush_int(iq, bp);
  3006. if (error) {
  3007. xfs_iunlock(iq,
  3008. XFS_ILOCK_SHARED);
  3009. goto cluster_corrupt_out;
  3010. }
  3011. } else {
  3012. xfs_ifunlock(iq);
  3013. }
  3014. } else {
  3015. xfs_ifunlock(iq);
  3016. }
  3017. }
  3018. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  3019. }
  3020. }
  3021. spin_unlock(&ip->i_cluster->icl_lock);
  3022. if (clcount) {
  3023. XFS_STATS_INC(xs_icluster_flushcnt);
  3024. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  3025. }
  3026. /*
  3027. * If the buffer is pinned then push on the log so we won't
  3028. * get stuck waiting in the write for too long.
  3029. */
  3030. if (XFS_BUF_ISPINNED(bp)){
  3031. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  3032. }
  3033. if (flags & INT_DELWRI) {
  3034. xfs_bdwrite(mp, bp);
  3035. } else if (flags & INT_ASYNC) {
  3036. xfs_bawrite(mp, bp);
  3037. } else {
  3038. error = xfs_bwrite(mp, bp);
  3039. }
  3040. return error;
  3041. corrupt_out:
  3042. xfs_buf_relse(bp);
  3043. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3044. xfs_iflush_abort(ip);
  3045. /*
  3046. * Unlocks the flush lock
  3047. */
  3048. return XFS_ERROR(EFSCORRUPTED);
  3049. cluster_corrupt_out:
  3050. /* Corruption detected in the clustering loop. Invalidate the
  3051. * inode buffer and shut down the filesystem.
  3052. */
  3053. spin_unlock(&ip->i_cluster->icl_lock);
  3054. /*
  3055. * Clean up the buffer. If it was B_DELWRI, just release it --
  3056. * brelse can handle it with no problems. If not, shut down the
  3057. * filesystem before releasing the buffer.
  3058. */
  3059. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  3060. xfs_buf_relse(bp);
  3061. }
  3062. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3063. if(!bufwasdelwri) {
  3064. /*
  3065. * Just like incore_relse: if we have b_iodone functions,
  3066. * mark the buffer as an error and call them. Otherwise
  3067. * mark it as stale and brelse.
  3068. */
  3069. if (XFS_BUF_IODONE_FUNC(bp)) {
  3070. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3071. XFS_BUF_UNDONE(bp);
  3072. XFS_BUF_STALE(bp);
  3073. XFS_BUF_SHUT(bp);
  3074. XFS_BUF_ERROR(bp,EIO);
  3075. xfs_biodone(bp);
  3076. } else {
  3077. XFS_BUF_STALE(bp);
  3078. xfs_buf_relse(bp);
  3079. }
  3080. }
  3081. xfs_iflush_abort(iq);
  3082. /*
  3083. * Unlocks the flush lock
  3084. */
  3085. return XFS_ERROR(EFSCORRUPTED);
  3086. }
  3087. STATIC int
  3088. xfs_iflush_int(
  3089. xfs_inode_t *ip,
  3090. xfs_buf_t *bp)
  3091. {
  3092. xfs_inode_log_item_t *iip;
  3093. xfs_dinode_t *dip;
  3094. xfs_mount_t *mp;
  3095. #ifdef XFS_TRANS_DEBUG
  3096. int first;
  3097. #endif
  3098. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3099. ASSERT(issemalocked(&(ip->i_flock)));
  3100. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3101. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3102. iip = ip->i_itemp;
  3103. mp = ip->i_mount;
  3104. /*
  3105. * If the inode isn't dirty, then just release the inode
  3106. * flush lock and do nothing.
  3107. */
  3108. if ((ip->i_update_core == 0) &&
  3109. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3110. xfs_ifunlock(ip);
  3111. return 0;
  3112. }
  3113. /* set *dip = inode's place in the buffer */
  3114. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3115. /*
  3116. * Clear i_update_core before copying out the data.
  3117. * This is for coordination with our timestamp updates
  3118. * that don't hold the inode lock. They will always
  3119. * update the timestamps BEFORE setting i_update_core,
  3120. * so if we clear i_update_core after they set it we
  3121. * are guaranteed to see their updates to the timestamps.
  3122. * I believe that this depends on strongly ordered memory
  3123. * semantics, but we have that. We use the SYNCHRONIZE
  3124. * macro to make sure that the compiler does not reorder
  3125. * the i_update_core access below the data copy below.
  3126. */
  3127. ip->i_update_core = 0;
  3128. SYNCHRONIZE();
  3129. /*
  3130. * Make sure to get the latest atime from the Linux inode.
  3131. */
  3132. xfs_synchronize_atime(ip);
  3133. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
  3134. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3135. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3136. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3137. ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
  3138. goto corrupt_out;
  3139. }
  3140. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3141. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3142. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3143. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3144. ip->i_ino, ip, ip->i_d.di_magic);
  3145. goto corrupt_out;
  3146. }
  3147. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3148. if (XFS_TEST_ERROR(
  3149. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3150. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3151. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3152. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3153. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3154. ip->i_ino, ip);
  3155. goto corrupt_out;
  3156. }
  3157. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3158. if (XFS_TEST_ERROR(
  3159. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3160. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3161. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3162. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3163. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3164. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3165. ip->i_ino, ip);
  3166. goto corrupt_out;
  3167. }
  3168. }
  3169. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3170. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3171. XFS_RANDOM_IFLUSH_5)) {
  3172. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3173. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3174. ip->i_ino,
  3175. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3176. ip->i_d.di_nblocks,
  3177. ip);
  3178. goto corrupt_out;
  3179. }
  3180. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3181. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3182. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3183. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3184. ip->i_ino, ip->i_d.di_forkoff, ip);
  3185. goto corrupt_out;
  3186. }
  3187. /*
  3188. * bump the flush iteration count, used to detect flushes which
  3189. * postdate a log record during recovery.
  3190. */
  3191. ip->i_d.di_flushiter++;
  3192. /*
  3193. * Copy the dirty parts of the inode into the on-disk
  3194. * inode. We always copy out the core of the inode,
  3195. * because if the inode is dirty at all the core must
  3196. * be.
  3197. */
  3198. xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
  3199. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3200. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3201. ip->i_d.di_flushiter = 0;
  3202. /*
  3203. * If this is really an old format inode and the superblock version
  3204. * has not been updated to support only new format inodes, then
  3205. * convert back to the old inode format. If the superblock version
  3206. * has been updated, then make the conversion permanent.
  3207. */
  3208. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3209. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3210. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3211. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3212. /*
  3213. * Convert it back.
  3214. */
  3215. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3216. dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  3217. } else {
  3218. /*
  3219. * The superblock version has already been bumped,
  3220. * so just make the conversion to the new inode
  3221. * format permanent.
  3222. */
  3223. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3224. dip->di_core.di_version = XFS_DINODE_VERSION_2;
  3225. ip->i_d.di_onlink = 0;
  3226. dip->di_core.di_onlink = 0;
  3227. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3228. memset(&(dip->di_core.di_pad[0]), 0,
  3229. sizeof(dip->di_core.di_pad));
  3230. ASSERT(ip->i_d.di_projid == 0);
  3231. }
  3232. }
  3233. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3234. goto corrupt_out;
  3235. }
  3236. if (XFS_IFORK_Q(ip)) {
  3237. /*
  3238. * The only error from xfs_iflush_fork is on the data fork.
  3239. */
  3240. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3241. }
  3242. xfs_inobp_check(mp, bp);
  3243. /*
  3244. * We've recorded everything logged in the inode, so we'd
  3245. * like to clear the ilf_fields bits so we don't log and
  3246. * flush things unnecessarily. However, we can't stop
  3247. * logging all this information until the data we've copied
  3248. * into the disk buffer is written to disk. If we did we might
  3249. * overwrite the copy of the inode in the log with all the
  3250. * data after re-logging only part of it, and in the face of
  3251. * a crash we wouldn't have all the data we need to recover.
  3252. *
  3253. * What we do is move the bits to the ili_last_fields field.
  3254. * When logging the inode, these bits are moved back to the
  3255. * ilf_fields field. In the xfs_iflush_done() routine we
  3256. * clear ili_last_fields, since we know that the information
  3257. * those bits represent is permanently on disk. As long as
  3258. * the flush completes before the inode is logged again, then
  3259. * both ilf_fields and ili_last_fields will be cleared.
  3260. *
  3261. * We can play with the ilf_fields bits here, because the inode
  3262. * lock must be held exclusively in order to set bits there
  3263. * and the flush lock protects the ili_last_fields bits.
  3264. * Set ili_logged so the flush done
  3265. * routine can tell whether or not to look in the AIL.
  3266. * Also, store the current LSN of the inode so that we can tell
  3267. * whether the item has moved in the AIL from xfs_iflush_done().
  3268. * In order to read the lsn we need the AIL lock, because
  3269. * it is a 64 bit value that cannot be read atomically.
  3270. */
  3271. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3272. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3273. iip->ili_format.ilf_fields = 0;
  3274. iip->ili_logged = 1;
  3275. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3276. spin_lock(&mp->m_ail_lock);
  3277. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3278. spin_unlock(&mp->m_ail_lock);
  3279. /*
  3280. * Attach the function xfs_iflush_done to the inode's
  3281. * buffer. This will remove the inode from the AIL
  3282. * and unlock the inode's flush lock when the inode is
  3283. * completely written to disk.
  3284. */
  3285. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3286. xfs_iflush_done, (xfs_log_item_t *)iip);
  3287. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3288. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3289. } else {
  3290. /*
  3291. * We're flushing an inode which is not in the AIL and has
  3292. * not been logged but has i_update_core set. For this
  3293. * case we can use a B_DELWRI flush and immediately drop
  3294. * the inode flush lock because we can avoid the whole
  3295. * AIL state thing. It's OK to drop the flush lock now,
  3296. * because we've already locked the buffer and to do anything
  3297. * you really need both.
  3298. */
  3299. if (iip != NULL) {
  3300. ASSERT(iip->ili_logged == 0);
  3301. ASSERT(iip->ili_last_fields == 0);
  3302. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3303. }
  3304. xfs_ifunlock(ip);
  3305. }
  3306. return 0;
  3307. corrupt_out:
  3308. return XFS_ERROR(EFSCORRUPTED);
  3309. }
  3310. /*
  3311. * Flush all inactive inodes in mp.
  3312. */
  3313. void
  3314. xfs_iflush_all(
  3315. xfs_mount_t *mp)
  3316. {
  3317. xfs_inode_t *ip;
  3318. bhv_vnode_t *vp;
  3319. again:
  3320. XFS_MOUNT_ILOCK(mp);
  3321. ip = mp->m_inodes;
  3322. if (ip == NULL)
  3323. goto out;
  3324. do {
  3325. /* Make sure we skip markers inserted by sync */
  3326. if (ip->i_mount == NULL) {
  3327. ip = ip->i_mnext;
  3328. continue;
  3329. }
  3330. vp = XFS_ITOV_NULL(ip);
  3331. if (!vp) {
  3332. XFS_MOUNT_IUNLOCK(mp);
  3333. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3334. goto again;
  3335. }
  3336. ASSERT(vn_count(vp) == 0);
  3337. ip = ip->i_mnext;
  3338. } while (ip != mp->m_inodes);
  3339. out:
  3340. XFS_MOUNT_IUNLOCK(mp);
  3341. }
  3342. /*
  3343. * xfs_iaccess: check accessibility of inode for mode.
  3344. */
  3345. int
  3346. xfs_iaccess(
  3347. xfs_inode_t *ip,
  3348. mode_t mode,
  3349. cred_t *cr)
  3350. {
  3351. int error;
  3352. mode_t orgmode = mode;
  3353. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3354. if (mode & S_IWUSR) {
  3355. umode_t imode = inode->i_mode;
  3356. if (IS_RDONLY(inode) &&
  3357. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3358. return XFS_ERROR(EROFS);
  3359. if (IS_IMMUTABLE(inode))
  3360. return XFS_ERROR(EACCES);
  3361. }
  3362. /*
  3363. * If there's an Access Control List it's used instead of
  3364. * the mode bits.
  3365. */
  3366. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3367. return error ? XFS_ERROR(error) : 0;
  3368. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3369. mode >>= 3;
  3370. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3371. mode >>= 3;
  3372. }
  3373. /*
  3374. * If the DACs are ok we don't need any capability check.
  3375. */
  3376. if ((ip->i_d.di_mode & mode) == mode)
  3377. return 0;
  3378. /*
  3379. * Read/write DACs are always overridable.
  3380. * Executable DACs are overridable if at least one exec bit is set.
  3381. */
  3382. if (!(orgmode & S_IXUSR) ||
  3383. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3384. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3385. return 0;
  3386. if ((orgmode == S_IRUSR) ||
  3387. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3388. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3389. return 0;
  3390. #ifdef NOISE
  3391. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3392. #endif /* NOISE */
  3393. return XFS_ERROR(EACCES);
  3394. }
  3395. return XFS_ERROR(EACCES);
  3396. }
  3397. /*
  3398. * xfs_iroundup: round up argument to next power of two
  3399. */
  3400. uint
  3401. xfs_iroundup(
  3402. uint v)
  3403. {
  3404. int i;
  3405. uint m;
  3406. if ((v & (v - 1)) == 0)
  3407. return v;
  3408. ASSERT((v & 0x80000000) == 0);
  3409. if ((v & (v + 1)) == 0)
  3410. return v + 1;
  3411. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3412. if (v & m)
  3413. continue;
  3414. v |= m;
  3415. if ((v & (v + 1)) == 0)
  3416. return v + 1;
  3417. }
  3418. ASSERT(0);
  3419. return( 0 );
  3420. }
  3421. #ifdef XFS_ILOCK_TRACE
  3422. ktrace_t *xfs_ilock_trace_buf;
  3423. void
  3424. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3425. {
  3426. ktrace_enter(ip->i_lock_trace,
  3427. (void *)ip,
  3428. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3429. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3430. (void *)ra, /* caller of ilock */
  3431. (void *)(unsigned long)current_cpu(),
  3432. (void *)(unsigned long)current_pid(),
  3433. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3434. }
  3435. #endif
  3436. /*
  3437. * Return a pointer to the extent record at file index idx.
  3438. */
  3439. xfs_bmbt_rec_host_t *
  3440. xfs_iext_get_ext(
  3441. xfs_ifork_t *ifp, /* inode fork pointer */
  3442. xfs_extnum_t idx) /* index of target extent */
  3443. {
  3444. ASSERT(idx >= 0);
  3445. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3446. return ifp->if_u1.if_ext_irec->er_extbuf;
  3447. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3448. xfs_ext_irec_t *erp; /* irec pointer */
  3449. int erp_idx = 0; /* irec index */
  3450. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3451. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3452. return &erp->er_extbuf[page_idx];
  3453. } else if (ifp->if_bytes) {
  3454. return &ifp->if_u1.if_extents[idx];
  3455. } else {
  3456. return NULL;
  3457. }
  3458. }
  3459. /*
  3460. * Insert new item(s) into the extent records for incore inode
  3461. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3462. */
  3463. void
  3464. xfs_iext_insert(
  3465. xfs_ifork_t *ifp, /* inode fork pointer */
  3466. xfs_extnum_t idx, /* starting index of new items */
  3467. xfs_extnum_t count, /* number of inserted items */
  3468. xfs_bmbt_irec_t *new) /* items to insert */
  3469. {
  3470. xfs_extnum_t i; /* extent record index */
  3471. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3472. xfs_iext_add(ifp, idx, count);
  3473. for (i = idx; i < idx + count; i++, new++)
  3474. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3475. }
  3476. /*
  3477. * This is called when the amount of space required for incore file
  3478. * extents needs to be increased. The ext_diff parameter stores the
  3479. * number of new extents being added and the idx parameter contains
  3480. * the extent index where the new extents will be added. If the new
  3481. * extents are being appended, then we just need to (re)allocate and
  3482. * initialize the space. Otherwise, if the new extents are being
  3483. * inserted into the middle of the existing entries, a bit more work
  3484. * is required to make room for the new extents to be inserted. The
  3485. * caller is responsible for filling in the new extent entries upon
  3486. * return.
  3487. */
  3488. void
  3489. xfs_iext_add(
  3490. xfs_ifork_t *ifp, /* inode fork pointer */
  3491. xfs_extnum_t idx, /* index to begin adding exts */
  3492. int ext_diff) /* number of extents to add */
  3493. {
  3494. int byte_diff; /* new bytes being added */
  3495. int new_size; /* size of extents after adding */
  3496. xfs_extnum_t nextents; /* number of extents in file */
  3497. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3498. ASSERT((idx >= 0) && (idx <= nextents));
  3499. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3500. new_size = ifp->if_bytes + byte_diff;
  3501. /*
  3502. * If the new number of extents (nextents + ext_diff)
  3503. * fits inside the inode, then continue to use the inline
  3504. * extent buffer.
  3505. */
  3506. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3507. if (idx < nextents) {
  3508. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3509. &ifp->if_u2.if_inline_ext[idx],
  3510. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3511. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3512. }
  3513. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3514. ifp->if_real_bytes = 0;
  3515. ifp->if_lastex = nextents + ext_diff;
  3516. }
  3517. /*
  3518. * Otherwise use a linear (direct) extent list.
  3519. * If the extents are currently inside the inode,
  3520. * xfs_iext_realloc_direct will switch us from
  3521. * inline to direct extent allocation mode.
  3522. */
  3523. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3524. xfs_iext_realloc_direct(ifp, new_size);
  3525. if (idx < nextents) {
  3526. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3527. &ifp->if_u1.if_extents[idx],
  3528. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3529. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3530. }
  3531. }
  3532. /* Indirection array */
  3533. else {
  3534. xfs_ext_irec_t *erp;
  3535. int erp_idx = 0;
  3536. int page_idx = idx;
  3537. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3538. if (ifp->if_flags & XFS_IFEXTIREC) {
  3539. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3540. } else {
  3541. xfs_iext_irec_init(ifp);
  3542. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3543. erp = ifp->if_u1.if_ext_irec;
  3544. }
  3545. /* Extents fit in target extent page */
  3546. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3547. if (page_idx < erp->er_extcount) {
  3548. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3549. &erp->er_extbuf[page_idx],
  3550. (erp->er_extcount - page_idx) *
  3551. sizeof(xfs_bmbt_rec_t));
  3552. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3553. }
  3554. erp->er_extcount += ext_diff;
  3555. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3556. }
  3557. /* Insert a new extent page */
  3558. else if (erp) {
  3559. xfs_iext_add_indirect_multi(ifp,
  3560. erp_idx, page_idx, ext_diff);
  3561. }
  3562. /*
  3563. * If extent(s) are being appended to the last page in
  3564. * the indirection array and the new extent(s) don't fit
  3565. * in the page, then erp is NULL and erp_idx is set to
  3566. * the next index needed in the indirection array.
  3567. */
  3568. else {
  3569. int count = ext_diff;
  3570. while (count) {
  3571. erp = xfs_iext_irec_new(ifp, erp_idx);
  3572. erp->er_extcount = count;
  3573. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3574. if (count) {
  3575. erp_idx++;
  3576. }
  3577. }
  3578. }
  3579. }
  3580. ifp->if_bytes = new_size;
  3581. }
  3582. /*
  3583. * This is called when incore extents are being added to the indirection
  3584. * array and the new extents do not fit in the target extent list. The
  3585. * erp_idx parameter contains the irec index for the target extent list
  3586. * in the indirection array, and the idx parameter contains the extent
  3587. * index within the list. The number of extents being added is stored
  3588. * in the count parameter.
  3589. *
  3590. * |-------| |-------|
  3591. * | | | | idx - number of extents before idx
  3592. * | idx | | count |
  3593. * | | | | count - number of extents being inserted at idx
  3594. * |-------| |-------|
  3595. * | count | | nex2 | nex2 - number of extents after idx + count
  3596. * |-------| |-------|
  3597. */
  3598. void
  3599. xfs_iext_add_indirect_multi(
  3600. xfs_ifork_t *ifp, /* inode fork pointer */
  3601. int erp_idx, /* target extent irec index */
  3602. xfs_extnum_t idx, /* index within target list */
  3603. int count) /* new extents being added */
  3604. {
  3605. int byte_diff; /* new bytes being added */
  3606. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3607. xfs_extnum_t ext_diff; /* number of extents to add */
  3608. xfs_extnum_t ext_cnt; /* new extents still needed */
  3609. xfs_extnum_t nex2; /* extents after idx + count */
  3610. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3611. int nlists; /* number of irec's (lists) */
  3612. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3613. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3614. nex2 = erp->er_extcount - idx;
  3615. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3616. /*
  3617. * Save second part of target extent list
  3618. * (all extents past */
  3619. if (nex2) {
  3620. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3621. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3622. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3623. erp->er_extcount -= nex2;
  3624. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3625. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3626. }
  3627. /*
  3628. * Add the new extents to the end of the target
  3629. * list, then allocate new irec record(s) and
  3630. * extent buffer(s) as needed to store the rest
  3631. * of the new extents.
  3632. */
  3633. ext_cnt = count;
  3634. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3635. if (ext_diff) {
  3636. erp->er_extcount += ext_diff;
  3637. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3638. ext_cnt -= ext_diff;
  3639. }
  3640. while (ext_cnt) {
  3641. erp_idx++;
  3642. erp = xfs_iext_irec_new(ifp, erp_idx);
  3643. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3644. erp->er_extcount = ext_diff;
  3645. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3646. ext_cnt -= ext_diff;
  3647. }
  3648. /* Add nex2 extents back to indirection array */
  3649. if (nex2) {
  3650. xfs_extnum_t ext_avail;
  3651. int i;
  3652. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3653. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3654. i = 0;
  3655. /*
  3656. * If nex2 extents fit in the current page, append
  3657. * nex2_ep after the new extents.
  3658. */
  3659. if (nex2 <= ext_avail) {
  3660. i = erp->er_extcount;
  3661. }
  3662. /*
  3663. * Otherwise, check if space is available in the
  3664. * next page.
  3665. */
  3666. else if ((erp_idx < nlists - 1) &&
  3667. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3668. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3669. erp_idx++;
  3670. erp++;
  3671. /* Create a hole for nex2 extents */
  3672. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3673. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3674. }
  3675. /*
  3676. * Final choice, create a new extent page for
  3677. * nex2 extents.
  3678. */
  3679. else {
  3680. erp_idx++;
  3681. erp = xfs_iext_irec_new(ifp, erp_idx);
  3682. }
  3683. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3684. kmem_free(nex2_ep, byte_diff);
  3685. erp->er_extcount += nex2;
  3686. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3687. }
  3688. }
  3689. /*
  3690. * This is called when the amount of space required for incore file
  3691. * extents needs to be decreased. The ext_diff parameter stores the
  3692. * number of extents to be removed and the idx parameter contains
  3693. * the extent index where the extents will be removed from.
  3694. *
  3695. * If the amount of space needed has decreased below the linear
  3696. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3697. * extent array. Otherwise, use kmem_realloc() to adjust the
  3698. * size to what is needed.
  3699. */
  3700. void
  3701. xfs_iext_remove(
  3702. xfs_ifork_t *ifp, /* inode fork pointer */
  3703. xfs_extnum_t idx, /* index to begin removing exts */
  3704. int ext_diff) /* number of extents to remove */
  3705. {
  3706. xfs_extnum_t nextents; /* number of extents in file */
  3707. int new_size; /* size of extents after removal */
  3708. ASSERT(ext_diff > 0);
  3709. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3710. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3711. if (new_size == 0) {
  3712. xfs_iext_destroy(ifp);
  3713. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3714. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3715. } else if (ifp->if_real_bytes) {
  3716. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3717. } else {
  3718. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3719. }
  3720. ifp->if_bytes = new_size;
  3721. }
  3722. /*
  3723. * This removes ext_diff extents from the inline buffer, beginning
  3724. * at extent index idx.
  3725. */
  3726. void
  3727. xfs_iext_remove_inline(
  3728. xfs_ifork_t *ifp, /* inode fork pointer */
  3729. xfs_extnum_t idx, /* index to begin removing exts */
  3730. int ext_diff) /* number of extents to remove */
  3731. {
  3732. int nextents; /* number of extents in file */
  3733. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3734. ASSERT(idx < XFS_INLINE_EXTS);
  3735. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3736. ASSERT(((nextents - ext_diff) > 0) &&
  3737. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3738. if (idx + ext_diff < nextents) {
  3739. memmove(&ifp->if_u2.if_inline_ext[idx],
  3740. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3741. (nextents - (idx + ext_diff)) *
  3742. sizeof(xfs_bmbt_rec_t));
  3743. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3744. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3745. } else {
  3746. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3747. ext_diff * sizeof(xfs_bmbt_rec_t));
  3748. }
  3749. }
  3750. /*
  3751. * This removes ext_diff extents from a linear (direct) extent list,
  3752. * beginning at extent index idx. If the extents are being removed
  3753. * from the end of the list (ie. truncate) then we just need to re-
  3754. * allocate the list to remove the extra space. Otherwise, if the
  3755. * extents are being removed from the middle of the existing extent
  3756. * entries, then we first need to move the extent records beginning
  3757. * at idx + ext_diff up in the list to overwrite the records being
  3758. * removed, then remove the extra space via kmem_realloc.
  3759. */
  3760. void
  3761. xfs_iext_remove_direct(
  3762. xfs_ifork_t *ifp, /* inode fork pointer */
  3763. xfs_extnum_t idx, /* index to begin removing exts */
  3764. int ext_diff) /* number of extents to remove */
  3765. {
  3766. xfs_extnum_t nextents; /* number of extents in file */
  3767. int new_size; /* size of extents after removal */
  3768. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3769. new_size = ifp->if_bytes -
  3770. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3771. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3772. if (new_size == 0) {
  3773. xfs_iext_destroy(ifp);
  3774. return;
  3775. }
  3776. /* Move extents up in the list (if needed) */
  3777. if (idx + ext_diff < nextents) {
  3778. memmove(&ifp->if_u1.if_extents[idx],
  3779. &ifp->if_u1.if_extents[idx + ext_diff],
  3780. (nextents - (idx + ext_diff)) *
  3781. sizeof(xfs_bmbt_rec_t));
  3782. }
  3783. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3784. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3785. /*
  3786. * Reallocate the direct extent list. If the extents
  3787. * will fit inside the inode then xfs_iext_realloc_direct
  3788. * will switch from direct to inline extent allocation
  3789. * mode for us.
  3790. */
  3791. xfs_iext_realloc_direct(ifp, new_size);
  3792. ifp->if_bytes = new_size;
  3793. }
  3794. /*
  3795. * This is called when incore extents are being removed from the
  3796. * indirection array and the extents being removed span multiple extent
  3797. * buffers. The idx parameter contains the file extent index where we
  3798. * want to begin removing extents, and the count parameter contains
  3799. * how many extents need to be removed.
  3800. *
  3801. * |-------| |-------|
  3802. * | nex1 | | | nex1 - number of extents before idx
  3803. * |-------| | count |
  3804. * | | | | count - number of extents being removed at idx
  3805. * | count | |-------|
  3806. * | | | nex2 | nex2 - number of extents after idx + count
  3807. * |-------| |-------|
  3808. */
  3809. void
  3810. xfs_iext_remove_indirect(
  3811. xfs_ifork_t *ifp, /* inode fork pointer */
  3812. xfs_extnum_t idx, /* index to begin removing extents */
  3813. int count) /* number of extents to remove */
  3814. {
  3815. xfs_ext_irec_t *erp; /* indirection array pointer */
  3816. int erp_idx = 0; /* indirection array index */
  3817. xfs_extnum_t ext_cnt; /* extents left to remove */
  3818. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3819. xfs_extnum_t nex1; /* number of extents before idx */
  3820. xfs_extnum_t nex2; /* extents after idx + count */
  3821. int nlists; /* entries in indirection array */
  3822. int page_idx = idx; /* index in target extent list */
  3823. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3824. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3825. ASSERT(erp != NULL);
  3826. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3827. nex1 = page_idx;
  3828. ext_cnt = count;
  3829. while (ext_cnt) {
  3830. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3831. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3832. /*
  3833. * Check for deletion of entire list;
  3834. * xfs_iext_irec_remove() updates extent offsets.
  3835. */
  3836. if (ext_diff == erp->er_extcount) {
  3837. xfs_iext_irec_remove(ifp, erp_idx);
  3838. ext_cnt -= ext_diff;
  3839. nex1 = 0;
  3840. if (ext_cnt) {
  3841. ASSERT(erp_idx < ifp->if_real_bytes /
  3842. XFS_IEXT_BUFSZ);
  3843. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3844. nex1 = 0;
  3845. continue;
  3846. } else {
  3847. break;
  3848. }
  3849. }
  3850. /* Move extents up (if needed) */
  3851. if (nex2) {
  3852. memmove(&erp->er_extbuf[nex1],
  3853. &erp->er_extbuf[nex1 + ext_diff],
  3854. nex2 * sizeof(xfs_bmbt_rec_t));
  3855. }
  3856. /* Zero out rest of page */
  3857. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3858. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3859. /* Update remaining counters */
  3860. erp->er_extcount -= ext_diff;
  3861. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3862. ext_cnt -= ext_diff;
  3863. nex1 = 0;
  3864. erp_idx++;
  3865. erp++;
  3866. }
  3867. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3868. xfs_iext_irec_compact(ifp);
  3869. }
  3870. /*
  3871. * Create, destroy, or resize a linear (direct) block of extents.
  3872. */
  3873. void
  3874. xfs_iext_realloc_direct(
  3875. xfs_ifork_t *ifp, /* inode fork pointer */
  3876. int new_size) /* new size of extents */
  3877. {
  3878. int rnew_size; /* real new size of extents */
  3879. rnew_size = new_size;
  3880. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3881. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3882. (new_size != ifp->if_real_bytes)));
  3883. /* Free extent records */
  3884. if (new_size == 0) {
  3885. xfs_iext_destroy(ifp);
  3886. }
  3887. /* Resize direct extent list and zero any new bytes */
  3888. else if (ifp->if_real_bytes) {
  3889. /* Check if extents will fit inside the inode */
  3890. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3891. xfs_iext_direct_to_inline(ifp, new_size /
  3892. (uint)sizeof(xfs_bmbt_rec_t));
  3893. ifp->if_bytes = new_size;
  3894. return;
  3895. }
  3896. if (!is_power_of_2(new_size)){
  3897. rnew_size = xfs_iroundup(new_size);
  3898. }
  3899. if (rnew_size != ifp->if_real_bytes) {
  3900. ifp->if_u1.if_extents =
  3901. kmem_realloc(ifp->if_u1.if_extents,
  3902. rnew_size,
  3903. ifp->if_real_bytes,
  3904. KM_SLEEP);
  3905. }
  3906. if (rnew_size > ifp->if_real_bytes) {
  3907. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3908. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3909. rnew_size - ifp->if_real_bytes);
  3910. }
  3911. }
  3912. /*
  3913. * Switch from the inline extent buffer to a direct
  3914. * extent list. Be sure to include the inline extent
  3915. * bytes in new_size.
  3916. */
  3917. else {
  3918. new_size += ifp->if_bytes;
  3919. if (!is_power_of_2(new_size)) {
  3920. rnew_size = xfs_iroundup(new_size);
  3921. }
  3922. xfs_iext_inline_to_direct(ifp, rnew_size);
  3923. }
  3924. ifp->if_real_bytes = rnew_size;
  3925. ifp->if_bytes = new_size;
  3926. }
  3927. /*
  3928. * Switch from linear (direct) extent records to inline buffer.
  3929. */
  3930. void
  3931. xfs_iext_direct_to_inline(
  3932. xfs_ifork_t *ifp, /* inode fork pointer */
  3933. xfs_extnum_t nextents) /* number of extents in file */
  3934. {
  3935. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3936. ASSERT(nextents <= XFS_INLINE_EXTS);
  3937. /*
  3938. * The inline buffer was zeroed when we switched
  3939. * from inline to direct extent allocation mode,
  3940. * so we don't need to clear it here.
  3941. */
  3942. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3943. nextents * sizeof(xfs_bmbt_rec_t));
  3944. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3945. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3946. ifp->if_real_bytes = 0;
  3947. }
  3948. /*
  3949. * Switch from inline buffer to linear (direct) extent records.
  3950. * new_size should already be rounded up to the next power of 2
  3951. * by the caller (when appropriate), so use new_size as it is.
  3952. * However, since new_size may be rounded up, we can't update
  3953. * if_bytes here. It is the caller's responsibility to update
  3954. * if_bytes upon return.
  3955. */
  3956. void
  3957. xfs_iext_inline_to_direct(
  3958. xfs_ifork_t *ifp, /* inode fork pointer */
  3959. int new_size) /* number of extents in file */
  3960. {
  3961. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
  3962. memset(ifp->if_u1.if_extents, 0, new_size);
  3963. if (ifp->if_bytes) {
  3964. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3965. ifp->if_bytes);
  3966. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3967. sizeof(xfs_bmbt_rec_t));
  3968. }
  3969. ifp->if_real_bytes = new_size;
  3970. }
  3971. /*
  3972. * Resize an extent indirection array to new_size bytes.
  3973. */
  3974. void
  3975. xfs_iext_realloc_indirect(
  3976. xfs_ifork_t *ifp, /* inode fork pointer */
  3977. int new_size) /* new indirection array size */
  3978. {
  3979. int nlists; /* number of irec's (ex lists) */
  3980. int size; /* current indirection array size */
  3981. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3982. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3983. size = nlists * sizeof(xfs_ext_irec_t);
  3984. ASSERT(ifp->if_real_bytes);
  3985. ASSERT((new_size >= 0) && (new_size != size));
  3986. if (new_size == 0) {
  3987. xfs_iext_destroy(ifp);
  3988. } else {
  3989. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3990. kmem_realloc(ifp->if_u1.if_ext_irec,
  3991. new_size, size, KM_SLEEP);
  3992. }
  3993. }
  3994. /*
  3995. * Switch from indirection array to linear (direct) extent allocations.
  3996. */
  3997. void
  3998. xfs_iext_indirect_to_direct(
  3999. xfs_ifork_t *ifp) /* inode fork pointer */
  4000. {
  4001. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  4002. xfs_extnum_t nextents; /* number of extents in file */
  4003. int size; /* size of file extents */
  4004. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4005. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4006. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4007. size = nextents * sizeof(xfs_bmbt_rec_t);
  4008. xfs_iext_irec_compact_full(ifp);
  4009. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  4010. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  4011. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  4012. ifp->if_flags &= ~XFS_IFEXTIREC;
  4013. ifp->if_u1.if_extents = ep;
  4014. ifp->if_bytes = size;
  4015. if (nextents < XFS_LINEAR_EXTS) {
  4016. xfs_iext_realloc_direct(ifp, size);
  4017. }
  4018. }
  4019. /*
  4020. * Free incore file extents.
  4021. */
  4022. void
  4023. xfs_iext_destroy(
  4024. xfs_ifork_t *ifp) /* inode fork pointer */
  4025. {
  4026. if (ifp->if_flags & XFS_IFEXTIREC) {
  4027. int erp_idx;
  4028. int nlists;
  4029. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4030. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  4031. xfs_iext_irec_remove(ifp, erp_idx);
  4032. }
  4033. ifp->if_flags &= ~XFS_IFEXTIREC;
  4034. } else if (ifp->if_real_bytes) {
  4035. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  4036. } else if (ifp->if_bytes) {
  4037. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  4038. sizeof(xfs_bmbt_rec_t));
  4039. }
  4040. ifp->if_u1.if_extents = NULL;
  4041. ifp->if_real_bytes = 0;
  4042. ifp->if_bytes = 0;
  4043. }
  4044. /*
  4045. * Return a pointer to the extent record for file system block bno.
  4046. */
  4047. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  4048. xfs_iext_bno_to_ext(
  4049. xfs_ifork_t *ifp, /* inode fork pointer */
  4050. xfs_fileoff_t bno, /* block number to search for */
  4051. xfs_extnum_t *idxp) /* index of target extent */
  4052. {
  4053. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  4054. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  4055. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  4056. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4057. int high; /* upper boundary in search */
  4058. xfs_extnum_t idx = 0; /* index of target extent */
  4059. int low; /* lower boundary in search */
  4060. xfs_extnum_t nextents; /* number of file extents */
  4061. xfs_fileoff_t startoff = 0; /* start offset of extent */
  4062. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4063. if (nextents == 0) {
  4064. *idxp = 0;
  4065. return NULL;
  4066. }
  4067. low = 0;
  4068. if (ifp->if_flags & XFS_IFEXTIREC) {
  4069. /* Find target extent list */
  4070. int erp_idx = 0;
  4071. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4072. base = erp->er_extbuf;
  4073. high = erp->er_extcount - 1;
  4074. } else {
  4075. base = ifp->if_u1.if_extents;
  4076. high = nextents - 1;
  4077. }
  4078. /* Binary search extent records */
  4079. while (low <= high) {
  4080. idx = (low + high) >> 1;
  4081. ep = base + idx;
  4082. startoff = xfs_bmbt_get_startoff(ep);
  4083. blockcount = xfs_bmbt_get_blockcount(ep);
  4084. if (bno < startoff) {
  4085. high = idx - 1;
  4086. } else if (bno >= startoff + blockcount) {
  4087. low = idx + 1;
  4088. } else {
  4089. /* Convert back to file-based extent index */
  4090. if (ifp->if_flags & XFS_IFEXTIREC) {
  4091. idx += erp->er_extoff;
  4092. }
  4093. *idxp = idx;
  4094. return ep;
  4095. }
  4096. }
  4097. /* Convert back to file-based extent index */
  4098. if (ifp->if_flags & XFS_IFEXTIREC) {
  4099. idx += erp->er_extoff;
  4100. }
  4101. if (bno >= startoff + blockcount) {
  4102. if (++idx == nextents) {
  4103. ep = NULL;
  4104. } else {
  4105. ep = xfs_iext_get_ext(ifp, idx);
  4106. }
  4107. }
  4108. *idxp = idx;
  4109. return ep;
  4110. }
  4111. /*
  4112. * Return a pointer to the indirection array entry containing the
  4113. * extent record for filesystem block bno. Store the index of the
  4114. * target irec in *erp_idxp.
  4115. */
  4116. xfs_ext_irec_t * /* pointer to found extent record */
  4117. xfs_iext_bno_to_irec(
  4118. xfs_ifork_t *ifp, /* inode fork pointer */
  4119. xfs_fileoff_t bno, /* block number to search for */
  4120. int *erp_idxp) /* irec index of target ext list */
  4121. {
  4122. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4123. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4124. int erp_idx; /* indirection array index */
  4125. int nlists; /* number of extent irec's (lists) */
  4126. int high; /* binary search upper limit */
  4127. int low; /* binary search lower limit */
  4128. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4129. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4130. erp_idx = 0;
  4131. low = 0;
  4132. high = nlists - 1;
  4133. while (low <= high) {
  4134. erp_idx = (low + high) >> 1;
  4135. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4136. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4137. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4138. high = erp_idx - 1;
  4139. } else if (erp_next && bno >=
  4140. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4141. low = erp_idx + 1;
  4142. } else {
  4143. break;
  4144. }
  4145. }
  4146. *erp_idxp = erp_idx;
  4147. return erp;
  4148. }
  4149. /*
  4150. * Return a pointer to the indirection array entry containing the
  4151. * extent record at file extent index *idxp. Store the index of the
  4152. * target irec in *erp_idxp and store the page index of the target
  4153. * extent record in *idxp.
  4154. */
  4155. xfs_ext_irec_t *
  4156. xfs_iext_idx_to_irec(
  4157. xfs_ifork_t *ifp, /* inode fork pointer */
  4158. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4159. int *erp_idxp, /* pointer to target irec */
  4160. int realloc) /* new bytes were just added */
  4161. {
  4162. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4163. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4164. int erp_idx; /* indirection array index */
  4165. int nlists; /* number of irec's (ex lists) */
  4166. int high; /* binary search upper limit */
  4167. int low; /* binary search lower limit */
  4168. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4169. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4170. ASSERT(page_idx >= 0 && page_idx <=
  4171. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4172. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4173. erp_idx = 0;
  4174. low = 0;
  4175. high = nlists - 1;
  4176. /* Binary search extent irec's */
  4177. while (low <= high) {
  4178. erp_idx = (low + high) >> 1;
  4179. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4180. prev = erp_idx > 0 ? erp - 1 : NULL;
  4181. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4182. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4183. high = erp_idx - 1;
  4184. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4185. (page_idx == erp->er_extoff + erp->er_extcount &&
  4186. !realloc)) {
  4187. low = erp_idx + 1;
  4188. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4189. erp->er_extcount == XFS_LINEAR_EXTS) {
  4190. ASSERT(realloc);
  4191. page_idx = 0;
  4192. erp_idx++;
  4193. erp = erp_idx < nlists ? erp + 1 : NULL;
  4194. break;
  4195. } else {
  4196. page_idx -= erp->er_extoff;
  4197. break;
  4198. }
  4199. }
  4200. *idxp = page_idx;
  4201. *erp_idxp = erp_idx;
  4202. return(erp);
  4203. }
  4204. /*
  4205. * Allocate and initialize an indirection array once the space needed
  4206. * for incore extents increases above XFS_IEXT_BUFSZ.
  4207. */
  4208. void
  4209. xfs_iext_irec_init(
  4210. xfs_ifork_t *ifp) /* inode fork pointer */
  4211. {
  4212. xfs_ext_irec_t *erp; /* indirection array pointer */
  4213. xfs_extnum_t nextents; /* number of extents in file */
  4214. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4215. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4216. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4217. erp = (xfs_ext_irec_t *)
  4218. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4219. if (nextents == 0) {
  4220. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4221. } else if (!ifp->if_real_bytes) {
  4222. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4223. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4224. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4225. }
  4226. erp->er_extbuf = ifp->if_u1.if_extents;
  4227. erp->er_extcount = nextents;
  4228. erp->er_extoff = 0;
  4229. ifp->if_flags |= XFS_IFEXTIREC;
  4230. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4231. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4232. ifp->if_u1.if_ext_irec = erp;
  4233. return;
  4234. }
  4235. /*
  4236. * Allocate and initialize a new entry in the indirection array.
  4237. */
  4238. xfs_ext_irec_t *
  4239. xfs_iext_irec_new(
  4240. xfs_ifork_t *ifp, /* inode fork pointer */
  4241. int erp_idx) /* index for new irec */
  4242. {
  4243. xfs_ext_irec_t *erp; /* indirection array pointer */
  4244. int i; /* loop counter */
  4245. int nlists; /* number of irec's (ex lists) */
  4246. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4247. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4248. /* Resize indirection array */
  4249. xfs_iext_realloc_indirect(ifp, ++nlists *
  4250. sizeof(xfs_ext_irec_t));
  4251. /*
  4252. * Move records down in the array so the
  4253. * new page can use erp_idx.
  4254. */
  4255. erp = ifp->if_u1.if_ext_irec;
  4256. for (i = nlists - 1; i > erp_idx; i--) {
  4257. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4258. }
  4259. ASSERT(i == erp_idx);
  4260. /* Initialize new extent record */
  4261. erp = ifp->if_u1.if_ext_irec;
  4262. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4263. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4264. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4265. erp[erp_idx].er_extcount = 0;
  4266. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4267. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4268. return (&erp[erp_idx]);
  4269. }
  4270. /*
  4271. * Remove a record from the indirection array.
  4272. */
  4273. void
  4274. xfs_iext_irec_remove(
  4275. xfs_ifork_t *ifp, /* inode fork pointer */
  4276. int erp_idx) /* irec index to remove */
  4277. {
  4278. xfs_ext_irec_t *erp; /* indirection array pointer */
  4279. int i; /* loop counter */
  4280. int nlists; /* number of irec's (ex lists) */
  4281. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4282. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4283. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4284. if (erp->er_extbuf) {
  4285. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4286. -erp->er_extcount);
  4287. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4288. }
  4289. /* Compact extent records */
  4290. erp = ifp->if_u1.if_ext_irec;
  4291. for (i = erp_idx; i < nlists - 1; i++) {
  4292. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4293. }
  4294. /*
  4295. * Manually free the last extent record from the indirection
  4296. * array. A call to xfs_iext_realloc_indirect() with a size
  4297. * of zero would result in a call to xfs_iext_destroy() which
  4298. * would in turn call this function again, creating a nasty
  4299. * infinite loop.
  4300. */
  4301. if (--nlists) {
  4302. xfs_iext_realloc_indirect(ifp,
  4303. nlists * sizeof(xfs_ext_irec_t));
  4304. } else {
  4305. kmem_free(ifp->if_u1.if_ext_irec,
  4306. sizeof(xfs_ext_irec_t));
  4307. }
  4308. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4309. }
  4310. /*
  4311. * This is called to clean up large amounts of unused memory allocated
  4312. * by the indirection array. Before compacting anything though, verify
  4313. * that the indirection array is still needed and switch back to the
  4314. * linear extent list (or even the inline buffer) if possible. The
  4315. * compaction policy is as follows:
  4316. *
  4317. * Full Compaction: Extents fit into a single page (or inline buffer)
  4318. * Full Compaction: Extents occupy less than 10% of allocated space
  4319. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4320. * No Compaction: Extents occupy at least 50% of allocated space
  4321. */
  4322. void
  4323. xfs_iext_irec_compact(
  4324. xfs_ifork_t *ifp) /* inode fork pointer */
  4325. {
  4326. xfs_extnum_t nextents; /* number of extents in file */
  4327. int nlists; /* number of irec's (ex lists) */
  4328. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4329. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4330. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4331. if (nextents == 0) {
  4332. xfs_iext_destroy(ifp);
  4333. } else if (nextents <= XFS_INLINE_EXTS) {
  4334. xfs_iext_indirect_to_direct(ifp);
  4335. xfs_iext_direct_to_inline(ifp, nextents);
  4336. } else if (nextents <= XFS_LINEAR_EXTS) {
  4337. xfs_iext_indirect_to_direct(ifp);
  4338. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4339. xfs_iext_irec_compact_full(ifp);
  4340. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4341. xfs_iext_irec_compact_pages(ifp);
  4342. }
  4343. }
  4344. /*
  4345. * Combine extents from neighboring extent pages.
  4346. */
  4347. void
  4348. xfs_iext_irec_compact_pages(
  4349. xfs_ifork_t *ifp) /* inode fork pointer */
  4350. {
  4351. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4352. int erp_idx = 0; /* indirection array index */
  4353. int nlists; /* number of irec's (ex lists) */
  4354. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4355. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4356. while (erp_idx < nlists - 1) {
  4357. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4358. erp_next = erp + 1;
  4359. if (erp_next->er_extcount <=
  4360. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4361. memmove(&erp->er_extbuf[erp->er_extcount],
  4362. erp_next->er_extbuf, erp_next->er_extcount *
  4363. sizeof(xfs_bmbt_rec_t));
  4364. erp->er_extcount += erp_next->er_extcount;
  4365. /*
  4366. * Free page before removing extent record
  4367. * so er_extoffs don't get modified in
  4368. * xfs_iext_irec_remove.
  4369. */
  4370. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4371. erp_next->er_extbuf = NULL;
  4372. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4373. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4374. } else {
  4375. erp_idx++;
  4376. }
  4377. }
  4378. }
  4379. /*
  4380. * Fully compact the extent records managed by the indirection array.
  4381. */
  4382. void
  4383. xfs_iext_irec_compact_full(
  4384. xfs_ifork_t *ifp) /* inode fork pointer */
  4385. {
  4386. xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
  4387. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4388. int erp_idx = 0; /* extent irec index */
  4389. int ext_avail; /* empty entries in ex list */
  4390. int ext_diff; /* number of exts to add */
  4391. int nlists; /* number of irec's (ex lists) */
  4392. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4393. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4394. erp = ifp->if_u1.if_ext_irec;
  4395. ep = &erp->er_extbuf[erp->er_extcount];
  4396. erp_next = erp + 1;
  4397. ep_next = erp_next->er_extbuf;
  4398. while (erp_idx < nlists - 1) {
  4399. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4400. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4401. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4402. erp->er_extcount += ext_diff;
  4403. erp_next->er_extcount -= ext_diff;
  4404. /* Remove next page */
  4405. if (erp_next->er_extcount == 0) {
  4406. /*
  4407. * Free page before removing extent record
  4408. * so er_extoffs don't get modified in
  4409. * xfs_iext_irec_remove.
  4410. */
  4411. kmem_free(erp_next->er_extbuf,
  4412. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4413. erp_next->er_extbuf = NULL;
  4414. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4415. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4416. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4417. /* Update next page */
  4418. } else {
  4419. /* Move rest of page up to become next new page */
  4420. memmove(erp_next->er_extbuf, ep_next,
  4421. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4422. ep_next = erp_next->er_extbuf;
  4423. memset(&ep_next[erp_next->er_extcount], 0,
  4424. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4425. sizeof(xfs_bmbt_rec_t));
  4426. }
  4427. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4428. erp_idx++;
  4429. if (erp_idx < nlists)
  4430. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4431. else
  4432. break;
  4433. }
  4434. ep = &erp->er_extbuf[erp->er_extcount];
  4435. erp_next = erp + 1;
  4436. ep_next = erp_next->er_extbuf;
  4437. }
  4438. }
  4439. /*
  4440. * This is called to update the er_extoff field in the indirection
  4441. * array when extents have been added or removed from one of the
  4442. * extent lists. erp_idx contains the irec index to begin updating
  4443. * at and ext_diff contains the number of extents that were added
  4444. * or removed.
  4445. */
  4446. void
  4447. xfs_iext_irec_update_extoffs(
  4448. xfs_ifork_t *ifp, /* inode fork pointer */
  4449. int erp_idx, /* irec index to update */
  4450. int ext_diff) /* number of new extents */
  4451. {
  4452. int i; /* loop counter */
  4453. int nlists; /* number of irec's (ex lists */
  4454. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4455. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4456. for (i = erp_idx; i < nlists; i++) {
  4457. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4458. }
  4459. }