kvm_main.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include <asm-generic/bitops/le.h>
  53. #include "coalesced_mmio.h"
  54. #include "async_pf.h"
  55. #define CREATE_TRACE_POINTS
  56. #include <trace/events/kvm.h>
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. /*
  60. * Ordering of locks:
  61. *
  62. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  63. */
  64. DEFINE_SPINLOCK(kvm_lock);
  65. LIST_HEAD(vm_list);
  66. static cpumask_var_t cpus_hardware_enabled;
  67. static int kvm_usage_count = 0;
  68. static atomic_t hardware_enable_failed;
  69. struct kmem_cache *kvm_vcpu_cache;
  70. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  71. static __read_mostly struct preempt_ops kvm_preempt_ops;
  72. struct dentry *kvm_debugfs_dir;
  73. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  74. unsigned long arg);
  75. static int hardware_enable_all(void);
  76. static void hardware_disable_all(void);
  77. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  78. bool kvm_rebooting;
  79. EXPORT_SYMBOL_GPL(kvm_rebooting);
  80. static bool largepages_enabled = true;
  81. static struct page *hwpoison_page;
  82. static pfn_t hwpoison_pfn;
  83. static struct page *fault_page;
  84. static pfn_t fault_pfn;
  85. inline int kvm_is_mmio_pfn(pfn_t pfn)
  86. {
  87. if (pfn_valid(pfn)) {
  88. int reserved;
  89. struct page *tail = pfn_to_page(pfn);
  90. struct page *head = compound_trans_head(tail);
  91. reserved = PageReserved(head);
  92. if (head != tail) {
  93. /*
  94. * "head" is not a dangling pointer
  95. * (compound_trans_head takes care of that)
  96. * but the hugepage may have been splitted
  97. * from under us (and we may not hold a
  98. * reference count on the head page so it can
  99. * be reused before we run PageReferenced), so
  100. * we've to check PageTail before returning
  101. * what we just read.
  102. */
  103. smp_rmb();
  104. if (PageTail(tail))
  105. return reserved;
  106. }
  107. return PageReserved(tail);
  108. }
  109. return true;
  110. }
  111. /*
  112. * Switches to specified vcpu, until a matching vcpu_put()
  113. */
  114. void vcpu_load(struct kvm_vcpu *vcpu)
  115. {
  116. int cpu;
  117. mutex_lock(&vcpu->mutex);
  118. cpu = get_cpu();
  119. preempt_notifier_register(&vcpu->preempt_notifier);
  120. kvm_arch_vcpu_load(vcpu, cpu);
  121. put_cpu();
  122. }
  123. void vcpu_put(struct kvm_vcpu *vcpu)
  124. {
  125. preempt_disable();
  126. kvm_arch_vcpu_put(vcpu);
  127. preempt_notifier_unregister(&vcpu->preempt_notifier);
  128. preempt_enable();
  129. mutex_unlock(&vcpu->mutex);
  130. }
  131. static void ack_flush(void *_completed)
  132. {
  133. }
  134. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  135. {
  136. int i, cpu, me;
  137. cpumask_var_t cpus;
  138. bool called = true;
  139. struct kvm_vcpu *vcpu;
  140. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  141. raw_spin_lock(&kvm->requests_lock);
  142. me = smp_processor_id();
  143. kvm_for_each_vcpu(i, vcpu, kvm) {
  144. if (kvm_make_check_request(req, vcpu))
  145. continue;
  146. cpu = vcpu->cpu;
  147. if (cpus != NULL && cpu != -1 && cpu != me)
  148. cpumask_set_cpu(cpu, cpus);
  149. }
  150. if (unlikely(cpus == NULL))
  151. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  152. else if (!cpumask_empty(cpus))
  153. smp_call_function_many(cpus, ack_flush, NULL, 1);
  154. else
  155. called = false;
  156. raw_spin_unlock(&kvm->requests_lock);
  157. free_cpumask_var(cpus);
  158. return called;
  159. }
  160. void kvm_flush_remote_tlbs(struct kvm *kvm)
  161. {
  162. int dirty_count = kvm->tlbs_dirty;
  163. smp_mb();
  164. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  165. ++kvm->stat.remote_tlb_flush;
  166. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  167. }
  168. void kvm_reload_remote_mmus(struct kvm *kvm)
  169. {
  170. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  171. }
  172. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  173. {
  174. struct page *page;
  175. int r;
  176. mutex_init(&vcpu->mutex);
  177. vcpu->cpu = -1;
  178. vcpu->kvm = kvm;
  179. vcpu->vcpu_id = id;
  180. init_waitqueue_head(&vcpu->wq);
  181. kvm_async_pf_vcpu_init(vcpu);
  182. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  183. if (!page) {
  184. r = -ENOMEM;
  185. goto fail;
  186. }
  187. vcpu->run = page_address(page);
  188. r = kvm_arch_vcpu_init(vcpu);
  189. if (r < 0)
  190. goto fail_free_run;
  191. return 0;
  192. fail_free_run:
  193. free_page((unsigned long)vcpu->run);
  194. fail:
  195. return r;
  196. }
  197. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  198. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  199. {
  200. kvm_arch_vcpu_uninit(vcpu);
  201. free_page((unsigned long)vcpu->run);
  202. }
  203. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  204. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  205. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  206. {
  207. return container_of(mn, struct kvm, mmu_notifier);
  208. }
  209. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  210. struct mm_struct *mm,
  211. unsigned long address)
  212. {
  213. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  214. int need_tlb_flush, idx;
  215. /*
  216. * When ->invalidate_page runs, the linux pte has been zapped
  217. * already but the page is still allocated until
  218. * ->invalidate_page returns. So if we increase the sequence
  219. * here the kvm page fault will notice if the spte can't be
  220. * established because the page is going to be freed. If
  221. * instead the kvm page fault establishes the spte before
  222. * ->invalidate_page runs, kvm_unmap_hva will release it
  223. * before returning.
  224. *
  225. * The sequence increase only need to be seen at spin_unlock
  226. * time, and not at spin_lock time.
  227. *
  228. * Increasing the sequence after the spin_unlock would be
  229. * unsafe because the kvm page fault could then establish the
  230. * pte after kvm_unmap_hva returned, without noticing the page
  231. * is going to be freed.
  232. */
  233. idx = srcu_read_lock(&kvm->srcu);
  234. spin_lock(&kvm->mmu_lock);
  235. kvm->mmu_notifier_seq++;
  236. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  237. spin_unlock(&kvm->mmu_lock);
  238. srcu_read_unlock(&kvm->srcu, idx);
  239. /* we've to flush the tlb before the pages can be freed */
  240. if (need_tlb_flush)
  241. kvm_flush_remote_tlbs(kvm);
  242. }
  243. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  244. struct mm_struct *mm,
  245. unsigned long address,
  246. pte_t pte)
  247. {
  248. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  249. int idx;
  250. idx = srcu_read_lock(&kvm->srcu);
  251. spin_lock(&kvm->mmu_lock);
  252. kvm->mmu_notifier_seq++;
  253. kvm_set_spte_hva(kvm, address, pte);
  254. spin_unlock(&kvm->mmu_lock);
  255. srcu_read_unlock(&kvm->srcu, idx);
  256. }
  257. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  258. struct mm_struct *mm,
  259. unsigned long start,
  260. unsigned long end)
  261. {
  262. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  263. int need_tlb_flush = 0, idx;
  264. idx = srcu_read_lock(&kvm->srcu);
  265. spin_lock(&kvm->mmu_lock);
  266. /*
  267. * The count increase must become visible at unlock time as no
  268. * spte can be established without taking the mmu_lock and
  269. * count is also read inside the mmu_lock critical section.
  270. */
  271. kvm->mmu_notifier_count++;
  272. for (; start < end; start += PAGE_SIZE)
  273. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  274. need_tlb_flush |= kvm->tlbs_dirty;
  275. spin_unlock(&kvm->mmu_lock);
  276. srcu_read_unlock(&kvm->srcu, idx);
  277. /* we've to flush the tlb before the pages can be freed */
  278. if (need_tlb_flush)
  279. kvm_flush_remote_tlbs(kvm);
  280. }
  281. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  282. struct mm_struct *mm,
  283. unsigned long start,
  284. unsigned long end)
  285. {
  286. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  287. spin_lock(&kvm->mmu_lock);
  288. /*
  289. * This sequence increase will notify the kvm page fault that
  290. * the page that is going to be mapped in the spte could have
  291. * been freed.
  292. */
  293. kvm->mmu_notifier_seq++;
  294. /*
  295. * The above sequence increase must be visible before the
  296. * below count decrease but both values are read by the kvm
  297. * page fault under mmu_lock spinlock so we don't need to add
  298. * a smb_wmb() here in between the two.
  299. */
  300. kvm->mmu_notifier_count--;
  301. spin_unlock(&kvm->mmu_lock);
  302. BUG_ON(kvm->mmu_notifier_count < 0);
  303. }
  304. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  305. struct mm_struct *mm,
  306. unsigned long address)
  307. {
  308. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  309. int young, idx;
  310. idx = srcu_read_lock(&kvm->srcu);
  311. spin_lock(&kvm->mmu_lock);
  312. young = kvm_age_hva(kvm, address);
  313. spin_unlock(&kvm->mmu_lock);
  314. srcu_read_unlock(&kvm->srcu, idx);
  315. if (young)
  316. kvm_flush_remote_tlbs(kvm);
  317. return young;
  318. }
  319. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  320. struct mm_struct *mm,
  321. unsigned long address)
  322. {
  323. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  324. int young, idx;
  325. idx = srcu_read_lock(&kvm->srcu);
  326. spin_lock(&kvm->mmu_lock);
  327. young = kvm_test_age_hva(kvm, address);
  328. spin_unlock(&kvm->mmu_lock);
  329. srcu_read_unlock(&kvm->srcu, idx);
  330. return young;
  331. }
  332. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  333. struct mm_struct *mm)
  334. {
  335. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  336. int idx;
  337. idx = srcu_read_lock(&kvm->srcu);
  338. kvm_arch_flush_shadow(kvm);
  339. srcu_read_unlock(&kvm->srcu, idx);
  340. }
  341. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  342. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  343. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  344. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  345. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  346. .test_young = kvm_mmu_notifier_test_young,
  347. .change_pte = kvm_mmu_notifier_change_pte,
  348. .release = kvm_mmu_notifier_release,
  349. };
  350. static int kvm_init_mmu_notifier(struct kvm *kvm)
  351. {
  352. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  353. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  354. }
  355. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  356. static int kvm_init_mmu_notifier(struct kvm *kvm)
  357. {
  358. return 0;
  359. }
  360. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  361. static struct kvm *kvm_create_vm(void)
  362. {
  363. int r, i;
  364. struct kvm *kvm = kvm_arch_alloc_vm();
  365. if (!kvm)
  366. return ERR_PTR(-ENOMEM);
  367. r = kvm_arch_init_vm(kvm);
  368. if (r)
  369. goto out_err_nodisable;
  370. r = hardware_enable_all();
  371. if (r)
  372. goto out_err_nodisable;
  373. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  374. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  375. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  376. #endif
  377. r = -ENOMEM;
  378. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  379. if (!kvm->memslots)
  380. goto out_err_nosrcu;
  381. if (init_srcu_struct(&kvm->srcu))
  382. goto out_err_nosrcu;
  383. for (i = 0; i < KVM_NR_BUSES; i++) {
  384. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  385. GFP_KERNEL);
  386. if (!kvm->buses[i])
  387. goto out_err;
  388. }
  389. r = kvm_init_mmu_notifier(kvm);
  390. if (r)
  391. goto out_err;
  392. kvm->mm = current->mm;
  393. atomic_inc(&kvm->mm->mm_count);
  394. spin_lock_init(&kvm->mmu_lock);
  395. raw_spin_lock_init(&kvm->requests_lock);
  396. kvm_eventfd_init(kvm);
  397. mutex_init(&kvm->lock);
  398. mutex_init(&kvm->irq_lock);
  399. mutex_init(&kvm->slots_lock);
  400. atomic_set(&kvm->users_count, 1);
  401. spin_lock(&kvm_lock);
  402. list_add(&kvm->vm_list, &vm_list);
  403. spin_unlock(&kvm_lock);
  404. return kvm;
  405. out_err:
  406. cleanup_srcu_struct(&kvm->srcu);
  407. out_err_nosrcu:
  408. hardware_disable_all();
  409. out_err_nodisable:
  410. for (i = 0; i < KVM_NR_BUSES; i++)
  411. kfree(kvm->buses[i]);
  412. kfree(kvm->memslots);
  413. kvm_arch_free_vm(kvm);
  414. return ERR_PTR(r);
  415. }
  416. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  417. {
  418. if (!memslot->dirty_bitmap)
  419. return;
  420. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  421. vfree(memslot->dirty_bitmap_head);
  422. else
  423. kfree(memslot->dirty_bitmap_head);
  424. memslot->dirty_bitmap = NULL;
  425. memslot->dirty_bitmap_head = NULL;
  426. }
  427. /*
  428. * Free any memory in @free but not in @dont.
  429. */
  430. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  431. struct kvm_memory_slot *dont)
  432. {
  433. int i;
  434. if (!dont || free->rmap != dont->rmap)
  435. vfree(free->rmap);
  436. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  437. kvm_destroy_dirty_bitmap(free);
  438. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  439. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  440. vfree(free->lpage_info[i]);
  441. free->lpage_info[i] = NULL;
  442. }
  443. }
  444. free->npages = 0;
  445. free->rmap = NULL;
  446. }
  447. void kvm_free_physmem(struct kvm *kvm)
  448. {
  449. int i;
  450. struct kvm_memslots *slots = kvm->memslots;
  451. for (i = 0; i < slots->nmemslots; ++i)
  452. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  453. kfree(kvm->memslots);
  454. }
  455. static void kvm_destroy_vm(struct kvm *kvm)
  456. {
  457. int i;
  458. struct mm_struct *mm = kvm->mm;
  459. kvm_arch_sync_events(kvm);
  460. spin_lock(&kvm_lock);
  461. list_del(&kvm->vm_list);
  462. spin_unlock(&kvm_lock);
  463. kvm_free_irq_routing(kvm);
  464. for (i = 0; i < KVM_NR_BUSES; i++)
  465. kvm_io_bus_destroy(kvm->buses[i]);
  466. kvm_coalesced_mmio_free(kvm);
  467. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  468. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  469. #else
  470. kvm_arch_flush_shadow(kvm);
  471. #endif
  472. kvm_arch_destroy_vm(kvm);
  473. kvm_free_physmem(kvm);
  474. cleanup_srcu_struct(&kvm->srcu);
  475. kvm_arch_free_vm(kvm);
  476. hardware_disable_all();
  477. mmdrop(mm);
  478. }
  479. void kvm_get_kvm(struct kvm *kvm)
  480. {
  481. atomic_inc(&kvm->users_count);
  482. }
  483. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  484. void kvm_put_kvm(struct kvm *kvm)
  485. {
  486. if (atomic_dec_and_test(&kvm->users_count))
  487. kvm_destroy_vm(kvm);
  488. }
  489. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  490. static int kvm_vm_release(struct inode *inode, struct file *filp)
  491. {
  492. struct kvm *kvm = filp->private_data;
  493. kvm_irqfd_release(kvm);
  494. kvm_put_kvm(kvm);
  495. return 0;
  496. }
  497. /*
  498. * Allocation size is twice as large as the actual dirty bitmap size.
  499. * This makes it possible to do double buffering: see x86's
  500. * kvm_vm_ioctl_get_dirty_log().
  501. */
  502. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  503. {
  504. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  505. if (dirty_bytes > PAGE_SIZE)
  506. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  507. else
  508. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  509. if (!memslot->dirty_bitmap)
  510. return -ENOMEM;
  511. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  512. return 0;
  513. }
  514. /*
  515. * Allocate some memory and give it an address in the guest physical address
  516. * space.
  517. *
  518. * Discontiguous memory is allowed, mostly for framebuffers.
  519. *
  520. * Must be called holding mmap_sem for write.
  521. */
  522. int __kvm_set_memory_region(struct kvm *kvm,
  523. struct kvm_userspace_memory_region *mem,
  524. int user_alloc)
  525. {
  526. int r, flush_shadow = 0;
  527. gfn_t base_gfn;
  528. unsigned long npages;
  529. unsigned long i;
  530. struct kvm_memory_slot *memslot;
  531. struct kvm_memory_slot old, new;
  532. struct kvm_memslots *slots, *old_memslots;
  533. r = -EINVAL;
  534. /* General sanity checks */
  535. if (mem->memory_size & (PAGE_SIZE - 1))
  536. goto out;
  537. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  538. goto out;
  539. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  540. goto out;
  541. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  542. goto out;
  543. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  544. goto out;
  545. memslot = &kvm->memslots->memslots[mem->slot];
  546. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  547. npages = mem->memory_size >> PAGE_SHIFT;
  548. r = -EINVAL;
  549. if (npages > KVM_MEM_MAX_NR_PAGES)
  550. goto out;
  551. if (!npages)
  552. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  553. new = old = *memslot;
  554. new.id = mem->slot;
  555. new.base_gfn = base_gfn;
  556. new.npages = npages;
  557. new.flags = mem->flags;
  558. /* Disallow changing a memory slot's size. */
  559. r = -EINVAL;
  560. if (npages && old.npages && npages != old.npages)
  561. goto out_free;
  562. /* Check for overlaps */
  563. r = -EEXIST;
  564. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  565. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  566. if (s == memslot || !s->npages)
  567. continue;
  568. if (!((base_gfn + npages <= s->base_gfn) ||
  569. (base_gfn >= s->base_gfn + s->npages)))
  570. goto out_free;
  571. }
  572. /* Free page dirty bitmap if unneeded */
  573. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  574. new.dirty_bitmap = NULL;
  575. r = -ENOMEM;
  576. /* Allocate if a slot is being created */
  577. #ifndef CONFIG_S390
  578. if (npages && !new.rmap) {
  579. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  580. if (!new.rmap)
  581. goto out_free;
  582. new.user_alloc = user_alloc;
  583. new.userspace_addr = mem->userspace_addr;
  584. }
  585. if (!npages)
  586. goto skip_lpage;
  587. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  588. unsigned long ugfn;
  589. unsigned long j;
  590. int lpages;
  591. int level = i + 2;
  592. /* Avoid unused variable warning if no large pages */
  593. (void)level;
  594. if (new.lpage_info[i])
  595. continue;
  596. lpages = 1 + ((base_gfn + npages - 1)
  597. >> KVM_HPAGE_GFN_SHIFT(level));
  598. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  599. new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
  600. if (!new.lpage_info[i])
  601. goto out_free;
  602. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  603. new.lpage_info[i][0].write_count = 1;
  604. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  605. new.lpage_info[i][lpages - 1].write_count = 1;
  606. ugfn = new.userspace_addr >> PAGE_SHIFT;
  607. /*
  608. * If the gfn and userspace address are not aligned wrt each
  609. * other, or if explicitly asked to, disable large page
  610. * support for this slot
  611. */
  612. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  613. !largepages_enabled)
  614. for (j = 0; j < lpages; ++j)
  615. new.lpage_info[i][j].write_count = 1;
  616. }
  617. skip_lpage:
  618. /* Allocate page dirty bitmap if needed */
  619. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  620. if (kvm_create_dirty_bitmap(&new) < 0)
  621. goto out_free;
  622. /* destroy any largepage mappings for dirty tracking */
  623. if (old.npages)
  624. flush_shadow = 1;
  625. }
  626. #else /* not defined CONFIG_S390 */
  627. new.user_alloc = user_alloc;
  628. if (user_alloc)
  629. new.userspace_addr = mem->userspace_addr;
  630. #endif /* not defined CONFIG_S390 */
  631. if (!npages) {
  632. r = -ENOMEM;
  633. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  634. if (!slots)
  635. goto out_free;
  636. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  637. if (mem->slot >= slots->nmemslots)
  638. slots->nmemslots = mem->slot + 1;
  639. slots->generation++;
  640. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  641. old_memslots = kvm->memslots;
  642. rcu_assign_pointer(kvm->memslots, slots);
  643. synchronize_srcu_expedited(&kvm->srcu);
  644. /* From this point no new shadow pages pointing to a deleted
  645. * memslot will be created.
  646. *
  647. * validation of sp->gfn happens in:
  648. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  649. * - kvm_is_visible_gfn (mmu_check_roots)
  650. */
  651. kvm_arch_flush_shadow(kvm);
  652. kfree(old_memslots);
  653. }
  654. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  655. if (r)
  656. goto out_free;
  657. /* map the pages in iommu page table */
  658. if (npages) {
  659. r = kvm_iommu_map_pages(kvm, &new);
  660. if (r)
  661. goto out_free;
  662. }
  663. r = -ENOMEM;
  664. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  665. if (!slots)
  666. goto out_free;
  667. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  668. if (mem->slot >= slots->nmemslots)
  669. slots->nmemslots = mem->slot + 1;
  670. slots->generation++;
  671. /* actual memory is freed via old in kvm_free_physmem_slot below */
  672. if (!npages) {
  673. new.rmap = NULL;
  674. new.dirty_bitmap = NULL;
  675. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  676. new.lpage_info[i] = NULL;
  677. }
  678. slots->memslots[mem->slot] = new;
  679. old_memslots = kvm->memslots;
  680. rcu_assign_pointer(kvm->memslots, slots);
  681. synchronize_srcu_expedited(&kvm->srcu);
  682. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  683. kvm_free_physmem_slot(&old, &new);
  684. kfree(old_memslots);
  685. if (flush_shadow)
  686. kvm_arch_flush_shadow(kvm);
  687. return 0;
  688. out_free:
  689. kvm_free_physmem_slot(&new, &old);
  690. out:
  691. return r;
  692. }
  693. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  694. int kvm_set_memory_region(struct kvm *kvm,
  695. struct kvm_userspace_memory_region *mem,
  696. int user_alloc)
  697. {
  698. int r;
  699. mutex_lock(&kvm->slots_lock);
  700. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  701. mutex_unlock(&kvm->slots_lock);
  702. return r;
  703. }
  704. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  705. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  706. struct
  707. kvm_userspace_memory_region *mem,
  708. int user_alloc)
  709. {
  710. if (mem->slot >= KVM_MEMORY_SLOTS)
  711. return -EINVAL;
  712. return kvm_set_memory_region(kvm, mem, user_alloc);
  713. }
  714. int kvm_get_dirty_log(struct kvm *kvm,
  715. struct kvm_dirty_log *log, int *is_dirty)
  716. {
  717. struct kvm_memory_slot *memslot;
  718. int r, i;
  719. unsigned long n;
  720. unsigned long any = 0;
  721. r = -EINVAL;
  722. if (log->slot >= KVM_MEMORY_SLOTS)
  723. goto out;
  724. memslot = &kvm->memslots->memslots[log->slot];
  725. r = -ENOENT;
  726. if (!memslot->dirty_bitmap)
  727. goto out;
  728. n = kvm_dirty_bitmap_bytes(memslot);
  729. for (i = 0; !any && i < n/sizeof(long); ++i)
  730. any = memslot->dirty_bitmap[i];
  731. r = -EFAULT;
  732. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  733. goto out;
  734. if (any)
  735. *is_dirty = 1;
  736. r = 0;
  737. out:
  738. return r;
  739. }
  740. void kvm_disable_largepages(void)
  741. {
  742. largepages_enabled = false;
  743. }
  744. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  745. int is_error_page(struct page *page)
  746. {
  747. return page == bad_page || page == hwpoison_page || page == fault_page;
  748. }
  749. EXPORT_SYMBOL_GPL(is_error_page);
  750. int is_error_pfn(pfn_t pfn)
  751. {
  752. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  753. }
  754. EXPORT_SYMBOL_GPL(is_error_pfn);
  755. int is_hwpoison_pfn(pfn_t pfn)
  756. {
  757. return pfn == hwpoison_pfn;
  758. }
  759. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  760. int is_fault_pfn(pfn_t pfn)
  761. {
  762. return pfn == fault_pfn;
  763. }
  764. EXPORT_SYMBOL_GPL(is_fault_pfn);
  765. static inline unsigned long bad_hva(void)
  766. {
  767. return PAGE_OFFSET;
  768. }
  769. int kvm_is_error_hva(unsigned long addr)
  770. {
  771. return addr == bad_hva();
  772. }
  773. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  774. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  775. gfn_t gfn)
  776. {
  777. int i;
  778. for (i = 0; i < slots->nmemslots; ++i) {
  779. struct kvm_memory_slot *memslot = &slots->memslots[i];
  780. if (gfn >= memslot->base_gfn
  781. && gfn < memslot->base_gfn + memslot->npages)
  782. return memslot;
  783. }
  784. return NULL;
  785. }
  786. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  787. {
  788. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  789. }
  790. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  791. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  792. {
  793. int i;
  794. struct kvm_memslots *slots = kvm_memslots(kvm);
  795. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  796. struct kvm_memory_slot *memslot = &slots->memslots[i];
  797. if (memslot->flags & KVM_MEMSLOT_INVALID)
  798. continue;
  799. if (gfn >= memslot->base_gfn
  800. && gfn < memslot->base_gfn + memslot->npages)
  801. return 1;
  802. }
  803. return 0;
  804. }
  805. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  806. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  807. {
  808. struct vm_area_struct *vma;
  809. unsigned long addr, size;
  810. size = PAGE_SIZE;
  811. addr = gfn_to_hva(kvm, gfn);
  812. if (kvm_is_error_hva(addr))
  813. return PAGE_SIZE;
  814. down_read(&current->mm->mmap_sem);
  815. vma = find_vma(current->mm, addr);
  816. if (!vma)
  817. goto out;
  818. size = vma_kernel_pagesize(vma);
  819. out:
  820. up_read(&current->mm->mmap_sem);
  821. return size;
  822. }
  823. int memslot_id(struct kvm *kvm, gfn_t gfn)
  824. {
  825. int i;
  826. struct kvm_memslots *slots = kvm_memslots(kvm);
  827. struct kvm_memory_slot *memslot = NULL;
  828. for (i = 0; i < slots->nmemslots; ++i) {
  829. memslot = &slots->memslots[i];
  830. if (gfn >= memslot->base_gfn
  831. && gfn < memslot->base_gfn + memslot->npages)
  832. break;
  833. }
  834. return memslot - slots->memslots;
  835. }
  836. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  837. gfn_t *nr_pages)
  838. {
  839. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  840. return bad_hva();
  841. if (nr_pages)
  842. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  843. return gfn_to_hva_memslot(slot, gfn);
  844. }
  845. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  846. {
  847. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  848. }
  849. EXPORT_SYMBOL_GPL(gfn_to_hva);
  850. static pfn_t get_fault_pfn(void)
  851. {
  852. get_page(fault_page);
  853. return fault_pfn;
  854. }
  855. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  856. bool *async, bool write_fault, bool *writable)
  857. {
  858. struct page *page[1];
  859. int npages = 0;
  860. pfn_t pfn;
  861. /* we can do it either atomically or asynchronously, not both */
  862. BUG_ON(atomic && async);
  863. BUG_ON(!write_fault && !writable);
  864. if (writable)
  865. *writable = true;
  866. if (atomic || async)
  867. npages = __get_user_pages_fast(addr, 1, 1, page);
  868. if (unlikely(npages != 1) && !atomic) {
  869. might_sleep();
  870. if (writable)
  871. *writable = write_fault;
  872. npages = get_user_pages_fast(addr, 1, write_fault, page);
  873. /* map read fault as writable if possible */
  874. if (unlikely(!write_fault) && npages == 1) {
  875. struct page *wpage[1];
  876. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  877. if (npages == 1) {
  878. *writable = true;
  879. put_page(page[0]);
  880. page[0] = wpage[0];
  881. }
  882. npages = 1;
  883. }
  884. }
  885. if (unlikely(npages != 1)) {
  886. struct vm_area_struct *vma;
  887. if (atomic)
  888. return get_fault_pfn();
  889. down_read(&current->mm->mmap_sem);
  890. if (is_hwpoison_address(addr)) {
  891. up_read(&current->mm->mmap_sem);
  892. get_page(hwpoison_page);
  893. return page_to_pfn(hwpoison_page);
  894. }
  895. vma = find_vma_intersection(current->mm, addr, addr+1);
  896. if (vma == NULL)
  897. pfn = get_fault_pfn();
  898. else if ((vma->vm_flags & VM_PFNMAP)) {
  899. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  900. vma->vm_pgoff;
  901. BUG_ON(!kvm_is_mmio_pfn(pfn));
  902. } else {
  903. if (async && (vma->vm_flags & VM_WRITE))
  904. *async = true;
  905. pfn = get_fault_pfn();
  906. }
  907. up_read(&current->mm->mmap_sem);
  908. } else
  909. pfn = page_to_pfn(page[0]);
  910. return pfn;
  911. }
  912. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  913. {
  914. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  915. }
  916. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  917. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  918. bool write_fault, bool *writable)
  919. {
  920. unsigned long addr;
  921. if (async)
  922. *async = false;
  923. addr = gfn_to_hva(kvm, gfn);
  924. if (kvm_is_error_hva(addr)) {
  925. get_page(bad_page);
  926. return page_to_pfn(bad_page);
  927. }
  928. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  929. }
  930. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  931. {
  932. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  933. }
  934. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  935. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  936. bool write_fault, bool *writable)
  937. {
  938. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  939. }
  940. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  941. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  942. {
  943. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  944. }
  945. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  946. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  947. bool *writable)
  948. {
  949. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  950. }
  951. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  952. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  953. struct kvm_memory_slot *slot, gfn_t gfn)
  954. {
  955. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  956. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  957. }
  958. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  959. int nr_pages)
  960. {
  961. unsigned long addr;
  962. gfn_t entry;
  963. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  964. if (kvm_is_error_hva(addr))
  965. return -1;
  966. if (entry < nr_pages)
  967. return 0;
  968. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  969. }
  970. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  971. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  972. {
  973. pfn_t pfn;
  974. pfn = gfn_to_pfn(kvm, gfn);
  975. if (!kvm_is_mmio_pfn(pfn))
  976. return pfn_to_page(pfn);
  977. WARN_ON(kvm_is_mmio_pfn(pfn));
  978. get_page(bad_page);
  979. return bad_page;
  980. }
  981. EXPORT_SYMBOL_GPL(gfn_to_page);
  982. void kvm_release_page_clean(struct page *page)
  983. {
  984. kvm_release_pfn_clean(page_to_pfn(page));
  985. }
  986. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  987. void kvm_release_pfn_clean(pfn_t pfn)
  988. {
  989. if (!kvm_is_mmio_pfn(pfn))
  990. put_page(pfn_to_page(pfn));
  991. }
  992. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  993. void kvm_release_page_dirty(struct page *page)
  994. {
  995. kvm_release_pfn_dirty(page_to_pfn(page));
  996. }
  997. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  998. void kvm_release_pfn_dirty(pfn_t pfn)
  999. {
  1000. kvm_set_pfn_dirty(pfn);
  1001. kvm_release_pfn_clean(pfn);
  1002. }
  1003. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1004. void kvm_set_page_dirty(struct page *page)
  1005. {
  1006. kvm_set_pfn_dirty(page_to_pfn(page));
  1007. }
  1008. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1009. void kvm_set_pfn_dirty(pfn_t pfn)
  1010. {
  1011. if (!kvm_is_mmio_pfn(pfn)) {
  1012. struct page *page = pfn_to_page(pfn);
  1013. if (!PageReserved(page))
  1014. SetPageDirty(page);
  1015. }
  1016. }
  1017. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1018. void kvm_set_pfn_accessed(pfn_t pfn)
  1019. {
  1020. if (!kvm_is_mmio_pfn(pfn))
  1021. mark_page_accessed(pfn_to_page(pfn));
  1022. }
  1023. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1024. void kvm_get_pfn(pfn_t pfn)
  1025. {
  1026. if (!kvm_is_mmio_pfn(pfn))
  1027. get_page(pfn_to_page(pfn));
  1028. }
  1029. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1030. static int next_segment(unsigned long len, int offset)
  1031. {
  1032. if (len > PAGE_SIZE - offset)
  1033. return PAGE_SIZE - offset;
  1034. else
  1035. return len;
  1036. }
  1037. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1038. int len)
  1039. {
  1040. int r;
  1041. unsigned long addr;
  1042. addr = gfn_to_hva(kvm, gfn);
  1043. if (kvm_is_error_hva(addr))
  1044. return -EFAULT;
  1045. r = copy_from_user(data, (void __user *)addr + offset, len);
  1046. if (r)
  1047. return -EFAULT;
  1048. return 0;
  1049. }
  1050. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1051. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1052. {
  1053. gfn_t gfn = gpa >> PAGE_SHIFT;
  1054. int seg;
  1055. int offset = offset_in_page(gpa);
  1056. int ret;
  1057. while ((seg = next_segment(len, offset)) != 0) {
  1058. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1059. if (ret < 0)
  1060. return ret;
  1061. offset = 0;
  1062. len -= seg;
  1063. data += seg;
  1064. ++gfn;
  1065. }
  1066. return 0;
  1067. }
  1068. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1069. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1070. unsigned long len)
  1071. {
  1072. int r;
  1073. unsigned long addr;
  1074. gfn_t gfn = gpa >> PAGE_SHIFT;
  1075. int offset = offset_in_page(gpa);
  1076. addr = gfn_to_hva(kvm, gfn);
  1077. if (kvm_is_error_hva(addr))
  1078. return -EFAULT;
  1079. pagefault_disable();
  1080. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1081. pagefault_enable();
  1082. if (r)
  1083. return -EFAULT;
  1084. return 0;
  1085. }
  1086. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1087. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1088. int offset, int len)
  1089. {
  1090. int r;
  1091. unsigned long addr;
  1092. addr = gfn_to_hva(kvm, gfn);
  1093. if (kvm_is_error_hva(addr))
  1094. return -EFAULT;
  1095. r = copy_to_user((void __user *)addr + offset, data, len);
  1096. if (r)
  1097. return -EFAULT;
  1098. mark_page_dirty(kvm, gfn);
  1099. return 0;
  1100. }
  1101. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1102. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1103. unsigned long len)
  1104. {
  1105. gfn_t gfn = gpa >> PAGE_SHIFT;
  1106. int seg;
  1107. int offset = offset_in_page(gpa);
  1108. int ret;
  1109. while ((seg = next_segment(len, offset)) != 0) {
  1110. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1111. if (ret < 0)
  1112. return ret;
  1113. offset = 0;
  1114. len -= seg;
  1115. data += seg;
  1116. ++gfn;
  1117. }
  1118. return 0;
  1119. }
  1120. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1121. gpa_t gpa)
  1122. {
  1123. struct kvm_memslots *slots = kvm_memslots(kvm);
  1124. int offset = offset_in_page(gpa);
  1125. gfn_t gfn = gpa >> PAGE_SHIFT;
  1126. ghc->gpa = gpa;
  1127. ghc->generation = slots->generation;
  1128. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1129. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1130. if (!kvm_is_error_hva(ghc->hva))
  1131. ghc->hva += offset;
  1132. else
  1133. return -EFAULT;
  1134. return 0;
  1135. }
  1136. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1137. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1138. void *data, unsigned long len)
  1139. {
  1140. struct kvm_memslots *slots = kvm_memslots(kvm);
  1141. int r;
  1142. if (slots->generation != ghc->generation)
  1143. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1144. if (kvm_is_error_hva(ghc->hva))
  1145. return -EFAULT;
  1146. r = copy_to_user((void __user *)ghc->hva, data, len);
  1147. if (r)
  1148. return -EFAULT;
  1149. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1150. return 0;
  1151. }
  1152. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1153. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1154. {
  1155. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1156. offset, len);
  1157. }
  1158. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1159. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1160. {
  1161. gfn_t gfn = gpa >> PAGE_SHIFT;
  1162. int seg;
  1163. int offset = offset_in_page(gpa);
  1164. int ret;
  1165. while ((seg = next_segment(len, offset)) != 0) {
  1166. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1167. if (ret < 0)
  1168. return ret;
  1169. offset = 0;
  1170. len -= seg;
  1171. ++gfn;
  1172. }
  1173. return 0;
  1174. }
  1175. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1176. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1177. gfn_t gfn)
  1178. {
  1179. if (memslot && memslot->dirty_bitmap) {
  1180. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1181. generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
  1182. }
  1183. }
  1184. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1185. {
  1186. struct kvm_memory_slot *memslot;
  1187. memslot = gfn_to_memslot(kvm, gfn);
  1188. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1189. }
  1190. /*
  1191. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1192. */
  1193. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1194. {
  1195. DEFINE_WAIT(wait);
  1196. for (;;) {
  1197. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1198. if (kvm_arch_vcpu_runnable(vcpu)) {
  1199. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1200. break;
  1201. }
  1202. if (kvm_cpu_has_pending_timer(vcpu))
  1203. break;
  1204. if (signal_pending(current))
  1205. break;
  1206. schedule();
  1207. }
  1208. finish_wait(&vcpu->wq, &wait);
  1209. }
  1210. void kvm_resched(struct kvm_vcpu *vcpu)
  1211. {
  1212. if (!need_resched())
  1213. return;
  1214. cond_resched();
  1215. }
  1216. EXPORT_SYMBOL_GPL(kvm_resched);
  1217. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  1218. {
  1219. ktime_t expires;
  1220. DEFINE_WAIT(wait);
  1221. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1222. /* Sleep for 100 us, and hope lock-holder got scheduled */
  1223. expires = ktime_add_ns(ktime_get(), 100000UL);
  1224. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  1225. finish_wait(&vcpu->wq, &wait);
  1226. }
  1227. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1228. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1229. {
  1230. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1231. struct page *page;
  1232. if (vmf->pgoff == 0)
  1233. page = virt_to_page(vcpu->run);
  1234. #ifdef CONFIG_X86
  1235. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1236. page = virt_to_page(vcpu->arch.pio_data);
  1237. #endif
  1238. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1239. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1240. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1241. #endif
  1242. else
  1243. return VM_FAULT_SIGBUS;
  1244. get_page(page);
  1245. vmf->page = page;
  1246. return 0;
  1247. }
  1248. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1249. .fault = kvm_vcpu_fault,
  1250. };
  1251. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1252. {
  1253. vma->vm_ops = &kvm_vcpu_vm_ops;
  1254. return 0;
  1255. }
  1256. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1257. {
  1258. struct kvm_vcpu *vcpu = filp->private_data;
  1259. kvm_put_kvm(vcpu->kvm);
  1260. return 0;
  1261. }
  1262. static struct file_operations kvm_vcpu_fops = {
  1263. .release = kvm_vcpu_release,
  1264. .unlocked_ioctl = kvm_vcpu_ioctl,
  1265. .compat_ioctl = kvm_vcpu_ioctl,
  1266. .mmap = kvm_vcpu_mmap,
  1267. .llseek = noop_llseek,
  1268. };
  1269. /*
  1270. * Allocates an inode for the vcpu.
  1271. */
  1272. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1273. {
  1274. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1275. }
  1276. /*
  1277. * Creates some virtual cpus. Good luck creating more than one.
  1278. */
  1279. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1280. {
  1281. int r;
  1282. struct kvm_vcpu *vcpu, *v;
  1283. vcpu = kvm_arch_vcpu_create(kvm, id);
  1284. if (IS_ERR(vcpu))
  1285. return PTR_ERR(vcpu);
  1286. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1287. r = kvm_arch_vcpu_setup(vcpu);
  1288. if (r)
  1289. return r;
  1290. mutex_lock(&kvm->lock);
  1291. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1292. r = -EINVAL;
  1293. goto vcpu_destroy;
  1294. }
  1295. kvm_for_each_vcpu(r, v, kvm)
  1296. if (v->vcpu_id == id) {
  1297. r = -EEXIST;
  1298. goto vcpu_destroy;
  1299. }
  1300. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1301. /* Now it's all set up, let userspace reach it */
  1302. kvm_get_kvm(kvm);
  1303. r = create_vcpu_fd(vcpu);
  1304. if (r < 0) {
  1305. kvm_put_kvm(kvm);
  1306. goto vcpu_destroy;
  1307. }
  1308. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1309. smp_wmb();
  1310. atomic_inc(&kvm->online_vcpus);
  1311. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1312. if (kvm->bsp_vcpu_id == id)
  1313. kvm->bsp_vcpu = vcpu;
  1314. #endif
  1315. mutex_unlock(&kvm->lock);
  1316. return r;
  1317. vcpu_destroy:
  1318. mutex_unlock(&kvm->lock);
  1319. kvm_arch_vcpu_destroy(vcpu);
  1320. return r;
  1321. }
  1322. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1323. {
  1324. if (sigset) {
  1325. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1326. vcpu->sigset_active = 1;
  1327. vcpu->sigset = *sigset;
  1328. } else
  1329. vcpu->sigset_active = 0;
  1330. return 0;
  1331. }
  1332. static long kvm_vcpu_ioctl(struct file *filp,
  1333. unsigned int ioctl, unsigned long arg)
  1334. {
  1335. struct kvm_vcpu *vcpu = filp->private_data;
  1336. void __user *argp = (void __user *)arg;
  1337. int r;
  1338. struct kvm_fpu *fpu = NULL;
  1339. struct kvm_sregs *kvm_sregs = NULL;
  1340. if (vcpu->kvm->mm != current->mm)
  1341. return -EIO;
  1342. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1343. /*
  1344. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1345. * so vcpu_load() would break it.
  1346. */
  1347. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1348. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1349. #endif
  1350. vcpu_load(vcpu);
  1351. switch (ioctl) {
  1352. case KVM_RUN:
  1353. r = -EINVAL;
  1354. if (arg)
  1355. goto out;
  1356. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1357. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1358. break;
  1359. case KVM_GET_REGS: {
  1360. struct kvm_regs *kvm_regs;
  1361. r = -ENOMEM;
  1362. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1363. if (!kvm_regs)
  1364. goto out;
  1365. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1366. if (r)
  1367. goto out_free1;
  1368. r = -EFAULT;
  1369. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1370. goto out_free1;
  1371. r = 0;
  1372. out_free1:
  1373. kfree(kvm_regs);
  1374. break;
  1375. }
  1376. case KVM_SET_REGS: {
  1377. struct kvm_regs *kvm_regs;
  1378. r = -ENOMEM;
  1379. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1380. if (!kvm_regs)
  1381. goto out;
  1382. r = -EFAULT;
  1383. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1384. goto out_free2;
  1385. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1386. if (r)
  1387. goto out_free2;
  1388. r = 0;
  1389. out_free2:
  1390. kfree(kvm_regs);
  1391. break;
  1392. }
  1393. case KVM_GET_SREGS: {
  1394. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1395. r = -ENOMEM;
  1396. if (!kvm_sregs)
  1397. goto out;
  1398. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1399. if (r)
  1400. goto out;
  1401. r = -EFAULT;
  1402. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1403. goto out;
  1404. r = 0;
  1405. break;
  1406. }
  1407. case KVM_SET_SREGS: {
  1408. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1409. r = -ENOMEM;
  1410. if (!kvm_sregs)
  1411. goto out;
  1412. r = -EFAULT;
  1413. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1414. goto out;
  1415. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1416. if (r)
  1417. goto out;
  1418. r = 0;
  1419. break;
  1420. }
  1421. case KVM_GET_MP_STATE: {
  1422. struct kvm_mp_state mp_state;
  1423. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1424. if (r)
  1425. goto out;
  1426. r = -EFAULT;
  1427. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1428. goto out;
  1429. r = 0;
  1430. break;
  1431. }
  1432. case KVM_SET_MP_STATE: {
  1433. struct kvm_mp_state mp_state;
  1434. r = -EFAULT;
  1435. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1436. goto out;
  1437. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1438. if (r)
  1439. goto out;
  1440. r = 0;
  1441. break;
  1442. }
  1443. case KVM_TRANSLATE: {
  1444. struct kvm_translation tr;
  1445. r = -EFAULT;
  1446. if (copy_from_user(&tr, argp, sizeof tr))
  1447. goto out;
  1448. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1449. if (r)
  1450. goto out;
  1451. r = -EFAULT;
  1452. if (copy_to_user(argp, &tr, sizeof tr))
  1453. goto out;
  1454. r = 0;
  1455. break;
  1456. }
  1457. case KVM_SET_GUEST_DEBUG: {
  1458. struct kvm_guest_debug dbg;
  1459. r = -EFAULT;
  1460. if (copy_from_user(&dbg, argp, sizeof dbg))
  1461. goto out;
  1462. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1463. if (r)
  1464. goto out;
  1465. r = 0;
  1466. break;
  1467. }
  1468. case KVM_SET_SIGNAL_MASK: {
  1469. struct kvm_signal_mask __user *sigmask_arg = argp;
  1470. struct kvm_signal_mask kvm_sigmask;
  1471. sigset_t sigset, *p;
  1472. p = NULL;
  1473. if (argp) {
  1474. r = -EFAULT;
  1475. if (copy_from_user(&kvm_sigmask, argp,
  1476. sizeof kvm_sigmask))
  1477. goto out;
  1478. r = -EINVAL;
  1479. if (kvm_sigmask.len != sizeof sigset)
  1480. goto out;
  1481. r = -EFAULT;
  1482. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1483. sizeof sigset))
  1484. goto out;
  1485. p = &sigset;
  1486. }
  1487. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1488. break;
  1489. }
  1490. case KVM_GET_FPU: {
  1491. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1492. r = -ENOMEM;
  1493. if (!fpu)
  1494. goto out;
  1495. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1496. if (r)
  1497. goto out;
  1498. r = -EFAULT;
  1499. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1500. goto out;
  1501. r = 0;
  1502. break;
  1503. }
  1504. case KVM_SET_FPU: {
  1505. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1506. r = -ENOMEM;
  1507. if (!fpu)
  1508. goto out;
  1509. r = -EFAULT;
  1510. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1511. goto out;
  1512. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1513. if (r)
  1514. goto out;
  1515. r = 0;
  1516. break;
  1517. }
  1518. default:
  1519. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1520. }
  1521. out:
  1522. vcpu_put(vcpu);
  1523. kfree(fpu);
  1524. kfree(kvm_sregs);
  1525. return r;
  1526. }
  1527. static long kvm_vm_ioctl(struct file *filp,
  1528. unsigned int ioctl, unsigned long arg)
  1529. {
  1530. struct kvm *kvm = filp->private_data;
  1531. void __user *argp = (void __user *)arg;
  1532. int r;
  1533. if (kvm->mm != current->mm)
  1534. return -EIO;
  1535. switch (ioctl) {
  1536. case KVM_CREATE_VCPU:
  1537. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1538. if (r < 0)
  1539. goto out;
  1540. break;
  1541. case KVM_SET_USER_MEMORY_REGION: {
  1542. struct kvm_userspace_memory_region kvm_userspace_mem;
  1543. r = -EFAULT;
  1544. if (copy_from_user(&kvm_userspace_mem, argp,
  1545. sizeof kvm_userspace_mem))
  1546. goto out;
  1547. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1548. if (r)
  1549. goto out;
  1550. break;
  1551. }
  1552. case KVM_GET_DIRTY_LOG: {
  1553. struct kvm_dirty_log log;
  1554. r = -EFAULT;
  1555. if (copy_from_user(&log, argp, sizeof log))
  1556. goto out;
  1557. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1558. if (r)
  1559. goto out;
  1560. break;
  1561. }
  1562. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1563. case KVM_REGISTER_COALESCED_MMIO: {
  1564. struct kvm_coalesced_mmio_zone zone;
  1565. r = -EFAULT;
  1566. if (copy_from_user(&zone, argp, sizeof zone))
  1567. goto out;
  1568. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1569. if (r)
  1570. goto out;
  1571. r = 0;
  1572. break;
  1573. }
  1574. case KVM_UNREGISTER_COALESCED_MMIO: {
  1575. struct kvm_coalesced_mmio_zone zone;
  1576. r = -EFAULT;
  1577. if (copy_from_user(&zone, argp, sizeof zone))
  1578. goto out;
  1579. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1580. if (r)
  1581. goto out;
  1582. r = 0;
  1583. break;
  1584. }
  1585. #endif
  1586. case KVM_IRQFD: {
  1587. struct kvm_irqfd data;
  1588. r = -EFAULT;
  1589. if (copy_from_user(&data, argp, sizeof data))
  1590. goto out;
  1591. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1592. break;
  1593. }
  1594. case KVM_IOEVENTFD: {
  1595. struct kvm_ioeventfd data;
  1596. r = -EFAULT;
  1597. if (copy_from_user(&data, argp, sizeof data))
  1598. goto out;
  1599. r = kvm_ioeventfd(kvm, &data);
  1600. break;
  1601. }
  1602. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1603. case KVM_SET_BOOT_CPU_ID:
  1604. r = 0;
  1605. mutex_lock(&kvm->lock);
  1606. if (atomic_read(&kvm->online_vcpus) != 0)
  1607. r = -EBUSY;
  1608. else
  1609. kvm->bsp_vcpu_id = arg;
  1610. mutex_unlock(&kvm->lock);
  1611. break;
  1612. #endif
  1613. default:
  1614. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1615. if (r == -ENOTTY)
  1616. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1617. }
  1618. out:
  1619. return r;
  1620. }
  1621. #ifdef CONFIG_COMPAT
  1622. struct compat_kvm_dirty_log {
  1623. __u32 slot;
  1624. __u32 padding1;
  1625. union {
  1626. compat_uptr_t dirty_bitmap; /* one bit per page */
  1627. __u64 padding2;
  1628. };
  1629. };
  1630. static long kvm_vm_compat_ioctl(struct file *filp,
  1631. unsigned int ioctl, unsigned long arg)
  1632. {
  1633. struct kvm *kvm = filp->private_data;
  1634. int r;
  1635. if (kvm->mm != current->mm)
  1636. return -EIO;
  1637. switch (ioctl) {
  1638. case KVM_GET_DIRTY_LOG: {
  1639. struct compat_kvm_dirty_log compat_log;
  1640. struct kvm_dirty_log log;
  1641. r = -EFAULT;
  1642. if (copy_from_user(&compat_log, (void __user *)arg,
  1643. sizeof(compat_log)))
  1644. goto out;
  1645. log.slot = compat_log.slot;
  1646. log.padding1 = compat_log.padding1;
  1647. log.padding2 = compat_log.padding2;
  1648. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1649. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1650. if (r)
  1651. goto out;
  1652. break;
  1653. }
  1654. default:
  1655. r = kvm_vm_ioctl(filp, ioctl, arg);
  1656. }
  1657. out:
  1658. return r;
  1659. }
  1660. #endif
  1661. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1662. {
  1663. struct page *page[1];
  1664. unsigned long addr;
  1665. int npages;
  1666. gfn_t gfn = vmf->pgoff;
  1667. struct kvm *kvm = vma->vm_file->private_data;
  1668. addr = gfn_to_hva(kvm, gfn);
  1669. if (kvm_is_error_hva(addr))
  1670. return VM_FAULT_SIGBUS;
  1671. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1672. NULL);
  1673. if (unlikely(npages != 1))
  1674. return VM_FAULT_SIGBUS;
  1675. vmf->page = page[0];
  1676. return 0;
  1677. }
  1678. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1679. .fault = kvm_vm_fault,
  1680. };
  1681. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1682. {
  1683. vma->vm_ops = &kvm_vm_vm_ops;
  1684. return 0;
  1685. }
  1686. static struct file_operations kvm_vm_fops = {
  1687. .release = kvm_vm_release,
  1688. .unlocked_ioctl = kvm_vm_ioctl,
  1689. #ifdef CONFIG_COMPAT
  1690. .compat_ioctl = kvm_vm_compat_ioctl,
  1691. #endif
  1692. .mmap = kvm_vm_mmap,
  1693. .llseek = noop_llseek,
  1694. };
  1695. static int kvm_dev_ioctl_create_vm(void)
  1696. {
  1697. int r;
  1698. struct kvm *kvm;
  1699. kvm = kvm_create_vm();
  1700. if (IS_ERR(kvm))
  1701. return PTR_ERR(kvm);
  1702. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1703. r = kvm_coalesced_mmio_init(kvm);
  1704. if (r < 0) {
  1705. kvm_put_kvm(kvm);
  1706. return r;
  1707. }
  1708. #endif
  1709. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1710. if (r < 0)
  1711. kvm_put_kvm(kvm);
  1712. return r;
  1713. }
  1714. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1715. {
  1716. switch (arg) {
  1717. case KVM_CAP_USER_MEMORY:
  1718. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1719. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1720. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1721. case KVM_CAP_SET_BOOT_CPU_ID:
  1722. #endif
  1723. case KVM_CAP_INTERNAL_ERROR_DATA:
  1724. return 1;
  1725. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1726. case KVM_CAP_IRQ_ROUTING:
  1727. return KVM_MAX_IRQ_ROUTES;
  1728. #endif
  1729. default:
  1730. break;
  1731. }
  1732. return kvm_dev_ioctl_check_extension(arg);
  1733. }
  1734. static long kvm_dev_ioctl(struct file *filp,
  1735. unsigned int ioctl, unsigned long arg)
  1736. {
  1737. long r = -EINVAL;
  1738. switch (ioctl) {
  1739. case KVM_GET_API_VERSION:
  1740. r = -EINVAL;
  1741. if (arg)
  1742. goto out;
  1743. r = KVM_API_VERSION;
  1744. break;
  1745. case KVM_CREATE_VM:
  1746. r = -EINVAL;
  1747. if (arg)
  1748. goto out;
  1749. r = kvm_dev_ioctl_create_vm();
  1750. break;
  1751. case KVM_CHECK_EXTENSION:
  1752. r = kvm_dev_ioctl_check_extension_generic(arg);
  1753. break;
  1754. case KVM_GET_VCPU_MMAP_SIZE:
  1755. r = -EINVAL;
  1756. if (arg)
  1757. goto out;
  1758. r = PAGE_SIZE; /* struct kvm_run */
  1759. #ifdef CONFIG_X86
  1760. r += PAGE_SIZE; /* pio data page */
  1761. #endif
  1762. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1763. r += PAGE_SIZE; /* coalesced mmio ring page */
  1764. #endif
  1765. break;
  1766. case KVM_TRACE_ENABLE:
  1767. case KVM_TRACE_PAUSE:
  1768. case KVM_TRACE_DISABLE:
  1769. r = -EOPNOTSUPP;
  1770. break;
  1771. default:
  1772. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1773. }
  1774. out:
  1775. return r;
  1776. }
  1777. static struct file_operations kvm_chardev_ops = {
  1778. .unlocked_ioctl = kvm_dev_ioctl,
  1779. .compat_ioctl = kvm_dev_ioctl,
  1780. .llseek = noop_llseek,
  1781. };
  1782. static struct miscdevice kvm_dev = {
  1783. KVM_MINOR,
  1784. "kvm",
  1785. &kvm_chardev_ops,
  1786. };
  1787. static void hardware_enable_nolock(void *junk)
  1788. {
  1789. int cpu = raw_smp_processor_id();
  1790. int r;
  1791. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1792. return;
  1793. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1794. r = kvm_arch_hardware_enable(NULL);
  1795. if (r) {
  1796. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1797. atomic_inc(&hardware_enable_failed);
  1798. printk(KERN_INFO "kvm: enabling virtualization on "
  1799. "CPU%d failed\n", cpu);
  1800. }
  1801. }
  1802. static void hardware_enable(void *junk)
  1803. {
  1804. spin_lock(&kvm_lock);
  1805. hardware_enable_nolock(junk);
  1806. spin_unlock(&kvm_lock);
  1807. }
  1808. static void hardware_disable_nolock(void *junk)
  1809. {
  1810. int cpu = raw_smp_processor_id();
  1811. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1812. return;
  1813. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1814. kvm_arch_hardware_disable(NULL);
  1815. }
  1816. static void hardware_disable(void *junk)
  1817. {
  1818. spin_lock(&kvm_lock);
  1819. hardware_disable_nolock(junk);
  1820. spin_unlock(&kvm_lock);
  1821. }
  1822. static void hardware_disable_all_nolock(void)
  1823. {
  1824. BUG_ON(!kvm_usage_count);
  1825. kvm_usage_count--;
  1826. if (!kvm_usage_count)
  1827. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1828. }
  1829. static void hardware_disable_all(void)
  1830. {
  1831. spin_lock(&kvm_lock);
  1832. hardware_disable_all_nolock();
  1833. spin_unlock(&kvm_lock);
  1834. }
  1835. static int hardware_enable_all(void)
  1836. {
  1837. int r = 0;
  1838. spin_lock(&kvm_lock);
  1839. kvm_usage_count++;
  1840. if (kvm_usage_count == 1) {
  1841. atomic_set(&hardware_enable_failed, 0);
  1842. on_each_cpu(hardware_enable_nolock, NULL, 1);
  1843. if (atomic_read(&hardware_enable_failed)) {
  1844. hardware_disable_all_nolock();
  1845. r = -EBUSY;
  1846. }
  1847. }
  1848. spin_unlock(&kvm_lock);
  1849. return r;
  1850. }
  1851. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1852. void *v)
  1853. {
  1854. int cpu = (long)v;
  1855. if (!kvm_usage_count)
  1856. return NOTIFY_OK;
  1857. val &= ~CPU_TASKS_FROZEN;
  1858. switch (val) {
  1859. case CPU_DYING:
  1860. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1861. cpu);
  1862. hardware_disable(NULL);
  1863. break;
  1864. case CPU_STARTING:
  1865. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1866. cpu);
  1867. hardware_enable(NULL);
  1868. break;
  1869. }
  1870. return NOTIFY_OK;
  1871. }
  1872. asmlinkage void kvm_spurious_fault(void)
  1873. {
  1874. /* Fault while not rebooting. We want the trace. */
  1875. BUG();
  1876. }
  1877. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  1878. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1879. void *v)
  1880. {
  1881. /*
  1882. * Some (well, at least mine) BIOSes hang on reboot if
  1883. * in vmx root mode.
  1884. *
  1885. * And Intel TXT required VMX off for all cpu when system shutdown.
  1886. */
  1887. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1888. kvm_rebooting = true;
  1889. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1890. return NOTIFY_OK;
  1891. }
  1892. static struct notifier_block kvm_reboot_notifier = {
  1893. .notifier_call = kvm_reboot,
  1894. .priority = 0,
  1895. };
  1896. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1897. {
  1898. int i;
  1899. for (i = 0; i < bus->dev_count; i++) {
  1900. struct kvm_io_device *pos = bus->devs[i];
  1901. kvm_iodevice_destructor(pos);
  1902. }
  1903. kfree(bus);
  1904. }
  1905. /* kvm_io_bus_write - called under kvm->slots_lock */
  1906. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1907. int len, const void *val)
  1908. {
  1909. int i;
  1910. struct kvm_io_bus *bus;
  1911. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1912. for (i = 0; i < bus->dev_count; i++)
  1913. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1914. return 0;
  1915. return -EOPNOTSUPP;
  1916. }
  1917. /* kvm_io_bus_read - called under kvm->slots_lock */
  1918. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1919. int len, void *val)
  1920. {
  1921. int i;
  1922. struct kvm_io_bus *bus;
  1923. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1924. for (i = 0; i < bus->dev_count; i++)
  1925. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1926. return 0;
  1927. return -EOPNOTSUPP;
  1928. }
  1929. /* Caller must hold slots_lock. */
  1930. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1931. struct kvm_io_device *dev)
  1932. {
  1933. struct kvm_io_bus *new_bus, *bus;
  1934. bus = kvm->buses[bus_idx];
  1935. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1936. return -ENOSPC;
  1937. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1938. if (!new_bus)
  1939. return -ENOMEM;
  1940. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1941. new_bus->devs[new_bus->dev_count++] = dev;
  1942. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1943. synchronize_srcu_expedited(&kvm->srcu);
  1944. kfree(bus);
  1945. return 0;
  1946. }
  1947. /* Caller must hold slots_lock. */
  1948. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1949. struct kvm_io_device *dev)
  1950. {
  1951. int i, r;
  1952. struct kvm_io_bus *new_bus, *bus;
  1953. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1954. if (!new_bus)
  1955. return -ENOMEM;
  1956. bus = kvm->buses[bus_idx];
  1957. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1958. r = -ENOENT;
  1959. for (i = 0; i < new_bus->dev_count; i++)
  1960. if (new_bus->devs[i] == dev) {
  1961. r = 0;
  1962. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  1963. break;
  1964. }
  1965. if (r) {
  1966. kfree(new_bus);
  1967. return r;
  1968. }
  1969. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1970. synchronize_srcu_expedited(&kvm->srcu);
  1971. kfree(bus);
  1972. return r;
  1973. }
  1974. static struct notifier_block kvm_cpu_notifier = {
  1975. .notifier_call = kvm_cpu_hotplug,
  1976. };
  1977. static int vm_stat_get(void *_offset, u64 *val)
  1978. {
  1979. unsigned offset = (long)_offset;
  1980. struct kvm *kvm;
  1981. *val = 0;
  1982. spin_lock(&kvm_lock);
  1983. list_for_each_entry(kvm, &vm_list, vm_list)
  1984. *val += *(u32 *)((void *)kvm + offset);
  1985. spin_unlock(&kvm_lock);
  1986. return 0;
  1987. }
  1988. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1989. static int vcpu_stat_get(void *_offset, u64 *val)
  1990. {
  1991. unsigned offset = (long)_offset;
  1992. struct kvm *kvm;
  1993. struct kvm_vcpu *vcpu;
  1994. int i;
  1995. *val = 0;
  1996. spin_lock(&kvm_lock);
  1997. list_for_each_entry(kvm, &vm_list, vm_list)
  1998. kvm_for_each_vcpu(i, vcpu, kvm)
  1999. *val += *(u32 *)((void *)vcpu + offset);
  2000. spin_unlock(&kvm_lock);
  2001. return 0;
  2002. }
  2003. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2004. static const struct file_operations *stat_fops[] = {
  2005. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2006. [KVM_STAT_VM] = &vm_stat_fops,
  2007. };
  2008. static void kvm_init_debug(void)
  2009. {
  2010. struct kvm_stats_debugfs_item *p;
  2011. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2012. for (p = debugfs_entries; p->name; ++p)
  2013. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2014. (void *)(long)p->offset,
  2015. stat_fops[p->kind]);
  2016. }
  2017. static void kvm_exit_debug(void)
  2018. {
  2019. struct kvm_stats_debugfs_item *p;
  2020. for (p = debugfs_entries; p->name; ++p)
  2021. debugfs_remove(p->dentry);
  2022. debugfs_remove(kvm_debugfs_dir);
  2023. }
  2024. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2025. {
  2026. if (kvm_usage_count)
  2027. hardware_disable_nolock(NULL);
  2028. return 0;
  2029. }
  2030. static int kvm_resume(struct sys_device *dev)
  2031. {
  2032. if (kvm_usage_count) {
  2033. WARN_ON(spin_is_locked(&kvm_lock));
  2034. hardware_enable_nolock(NULL);
  2035. }
  2036. return 0;
  2037. }
  2038. static struct sysdev_class kvm_sysdev_class = {
  2039. .name = "kvm",
  2040. .suspend = kvm_suspend,
  2041. .resume = kvm_resume,
  2042. };
  2043. static struct sys_device kvm_sysdev = {
  2044. .id = 0,
  2045. .cls = &kvm_sysdev_class,
  2046. };
  2047. struct page *bad_page;
  2048. pfn_t bad_pfn;
  2049. static inline
  2050. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2051. {
  2052. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2053. }
  2054. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2055. {
  2056. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2057. kvm_arch_vcpu_load(vcpu, cpu);
  2058. }
  2059. static void kvm_sched_out(struct preempt_notifier *pn,
  2060. struct task_struct *next)
  2061. {
  2062. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2063. kvm_arch_vcpu_put(vcpu);
  2064. }
  2065. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2066. struct module *module)
  2067. {
  2068. int r;
  2069. int cpu;
  2070. r = kvm_arch_init(opaque);
  2071. if (r)
  2072. goto out_fail;
  2073. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2074. if (bad_page == NULL) {
  2075. r = -ENOMEM;
  2076. goto out;
  2077. }
  2078. bad_pfn = page_to_pfn(bad_page);
  2079. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2080. if (hwpoison_page == NULL) {
  2081. r = -ENOMEM;
  2082. goto out_free_0;
  2083. }
  2084. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2085. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2086. if (fault_page == NULL) {
  2087. r = -ENOMEM;
  2088. goto out_free_0;
  2089. }
  2090. fault_pfn = page_to_pfn(fault_page);
  2091. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2092. r = -ENOMEM;
  2093. goto out_free_0;
  2094. }
  2095. r = kvm_arch_hardware_setup();
  2096. if (r < 0)
  2097. goto out_free_0a;
  2098. for_each_online_cpu(cpu) {
  2099. smp_call_function_single(cpu,
  2100. kvm_arch_check_processor_compat,
  2101. &r, 1);
  2102. if (r < 0)
  2103. goto out_free_1;
  2104. }
  2105. r = register_cpu_notifier(&kvm_cpu_notifier);
  2106. if (r)
  2107. goto out_free_2;
  2108. register_reboot_notifier(&kvm_reboot_notifier);
  2109. r = sysdev_class_register(&kvm_sysdev_class);
  2110. if (r)
  2111. goto out_free_3;
  2112. r = sysdev_register(&kvm_sysdev);
  2113. if (r)
  2114. goto out_free_4;
  2115. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2116. if (!vcpu_align)
  2117. vcpu_align = __alignof__(struct kvm_vcpu);
  2118. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2119. 0, NULL);
  2120. if (!kvm_vcpu_cache) {
  2121. r = -ENOMEM;
  2122. goto out_free_5;
  2123. }
  2124. r = kvm_async_pf_init();
  2125. if (r)
  2126. goto out_free;
  2127. kvm_chardev_ops.owner = module;
  2128. kvm_vm_fops.owner = module;
  2129. kvm_vcpu_fops.owner = module;
  2130. r = misc_register(&kvm_dev);
  2131. if (r) {
  2132. printk(KERN_ERR "kvm: misc device register failed\n");
  2133. goto out_unreg;
  2134. }
  2135. kvm_preempt_ops.sched_in = kvm_sched_in;
  2136. kvm_preempt_ops.sched_out = kvm_sched_out;
  2137. kvm_init_debug();
  2138. return 0;
  2139. out_unreg:
  2140. kvm_async_pf_deinit();
  2141. out_free:
  2142. kmem_cache_destroy(kvm_vcpu_cache);
  2143. out_free_5:
  2144. sysdev_unregister(&kvm_sysdev);
  2145. out_free_4:
  2146. sysdev_class_unregister(&kvm_sysdev_class);
  2147. out_free_3:
  2148. unregister_reboot_notifier(&kvm_reboot_notifier);
  2149. unregister_cpu_notifier(&kvm_cpu_notifier);
  2150. out_free_2:
  2151. out_free_1:
  2152. kvm_arch_hardware_unsetup();
  2153. out_free_0a:
  2154. free_cpumask_var(cpus_hardware_enabled);
  2155. out_free_0:
  2156. if (fault_page)
  2157. __free_page(fault_page);
  2158. if (hwpoison_page)
  2159. __free_page(hwpoison_page);
  2160. __free_page(bad_page);
  2161. out:
  2162. kvm_arch_exit();
  2163. out_fail:
  2164. return r;
  2165. }
  2166. EXPORT_SYMBOL_GPL(kvm_init);
  2167. void kvm_exit(void)
  2168. {
  2169. kvm_exit_debug();
  2170. misc_deregister(&kvm_dev);
  2171. kmem_cache_destroy(kvm_vcpu_cache);
  2172. kvm_async_pf_deinit();
  2173. sysdev_unregister(&kvm_sysdev);
  2174. sysdev_class_unregister(&kvm_sysdev_class);
  2175. unregister_reboot_notifier(&kvm_reboot_notifier);
  2176. unregister_cpu_notifier(&kvm_cpu_notifier);
  2177. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2178. kvm_arch_hardware_unsetup();
  2179. kvm_arch_exit();
  2180. free_cpumask_var(cpus_hardware_enabled);
  2181. __free_page(hwpoison_page);
  2182. __free_page(bad_page);
  2183. }
  2184. EXPORT_SYMBOL_GPL(kvm_exit);