pch_udc.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972
  1. /*
  2. * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/pci.h>
  21. #include <linux/delay.h>
  22. #include <linux/errno.h>
  23. #include <linux/list.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/usb/ch9.h>
  26. #include <linux/usb/gadget.h>
  27. /* Address offset of Registers */
  28. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  29. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  30. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  31. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  32. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  33. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  34. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  35. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  36. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  37. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  38. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  39. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  40. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  41. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  42. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  43. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  44. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  45. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  46. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  47. /* Endpoint control register */
  48. /* Bit position */
  49. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  50. #define UDC_EPCTL_RRDY (1 << 9)
  51. #define UDC_EPCTL_CNAK (1 << 8)
  52. #define UDC_EPCTL_SNAK (1 << 7)
  53. #define UDC_EPCTL_NAK (1 << 6)
  54. #define UDC_EPCTL_P (1 << 3)
  55. #define UDC_EPCTL_F (1 << 1)
  56. #define UDC_EPCTL_S (1 << 0)
  57. #define UDC_EPCTL_ET_SHIFT 4
  58. /* Mask patern */
  59. #define UDC_EPCTL_ET_MASK 0x00000030
  60. /* Value for ET field */
  61. #define UDC_EPCTL_ET_CONTROL 0
  62. #define UDC_EPCTL_ET_ISO 1
  63. #define UDC_EPCTL_ET_BULK 2
  64. #define UDC_EPCTL_ET_INTERRUPT 3
  65. /* Endpoint status register */
  66. /* Bit position */
  67. #define UDC_EPSTS_XFERDONE (1 << 27)
  68. #define UDC_EPSTS_RSS (1 << 26)
  69. #define UDC_EPSTS_RCS (1 << 25)
  70. #define UDC_EPSTS_TXEMPTY (1 << 24)
  71. #define UDC_EPSTS_TDC (1 << 10)
  72. #define UDC_EPSTS_HE (1 << 9)
  73. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  74. #define UDC_EPSTS_BNA (1 << 7)
  75. #define UDC_EPSTS_IN (1 << 6)
  76. #define UDC_EPSTS_OUT_SHIFT 4
  77. /* Mask patern */
  78. #define UDC_EPSTS_OUT_MASK 0x00000030
  79. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  80. /* Value for OUT field */
  81. #define UDC_EPSTS_OUT_SETUP 2
  82. #define UDC_EPSTS_OUT_DATA 1
  83. /* Device configuration register */
  84. /* Bit position */
  85. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  86. #define UDC_DEVCFG_SP (1 << 3)
  87. /* SPD Valee */
  88. #define UDC_DEVCFG_SPD_HS 0x0
  89. #define UDC_DEVCFG_SPD_FS 0x1
  90. #define UDC_DEVCFG_SPD_LS 0x2
  91. /* Device control register */
  92. /* Bit position */
  93. #define UDC_DEVCTL_THLEN_SHIFT 24
  94. #define UDC_DEVCTL_BRLEN_SHIFT 16
  95. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  96. #define UDC_DEVCTL_SD (1 << 10)
  97. #define UDC_DEVCTL_MODE (1 << 9)
  98. #define UDC_DEVCTL_BREN (1 << 8)
  99. #define UDC_DEVCTL_THE (1 << 7)
  100. #define UDC_DEVCTL_DU (1 << 4)
  101. #define UDC_DEVCTL_TDE (1 << 3)
  102. #define UDC_DEVCTL_RDE (1 << 2)
  103. #define UDC_DEVCTL_RES (1 << 0)
  104. /* Device status register */
  105. /* Bit position */
  106. #define UDC_DEVSTS_TS_SHIFT 18
  107. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  108. #define UDC_DEVSTS_ALT_SHIFT 8
  109. #define UDC_DEVSTS_INTF_SHIFT 4
  110. #define UDC_DEVSTS_CFG_SHIFT 0
  111. /* Mask patern */
  112. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  113. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  114. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  115. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  116. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  117. /* value for maximum speed for SPEED field */
  118. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  119. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  120. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  121. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  122. /* Device irq register */
  123. /* Bit position */
  124. #define UDC_DEVINT_RWKP (1 << 7)
  125. #define UDC_DEVINT_ENUM (1 << 6)
  126. #define UDC_DEVINT_SOF (1 << 5)
  127. #define UDC_DEVINT_US (1 << 4)
  128. #define UDC_DEVINT_UR (1 << 3)
  129. #define UDC_DEVINT_ES (1 << 2)
  130. #define UDC_DEVINT_SI (1 << 1)
  131. #define UDC_DEVINT_SC (1 << 0)
  132. /* Mask patern */
  133. #define UDC_DEVINT_MSK 0x7f
  134. /* Endpoint irq register */
  135. /* Bit position */
  136. #define UDC_EPINT_IN_SHIFT 0
  137. #define UDC_EPINT_OUT_SHIFT 16
  138. #define UDC_EPINT_IN_EP0 (1 << 0)
  139. #define UDC_EPINT_OUT_EP0 (1 << 16)
  140. /* Mask patern */
  141. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  142. /* UDC_CSR_BUSY Status register */
  143. /* Bit position */
  144. #define UDC_CSR_BUSY (1 << 0)
  145. /* SOFT RESET register */
  146. /* Bit position */
  147. #define UDC_PSRST (1 << 1)
  148. #define UDC_SRST (1 << 0)
  149. /* USB_DEVICE endpoint register */
  150. /* Bit position */
  151. #define UDC_CSR_NE_NUM_SHIFT 0
  152. #define UDC_CSR_NE_DIR_SHIFT 4
  153. #define UDC_CSR_NE_TYPE_SHIFT 5
  154. #define UDC_CSR_NE_CFG_SHIFT 7
  155. #define UDC_CSR_NE_INTF_SHIFT 11
  156. #define UDC_CSR_NE_ALT_SHIFT 15
  157. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  158. /* Mask patern */
  159. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  160. #define UDC_CSR_NE_DIR_MASK 0x00000010
  161. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  162. #define UDC_CSR_NE_CFG_MASK 0x00000780
  163. #define UDC_CSR_NE_INTF_MASK 0x00007800
  164. #define UDC_CSR_NE_ALT_MASK 0x00078000
  165. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  166. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  167. #define PCH_UDC_EPINT(in, num)\
  168. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  169. /* Index of endpoint */
  170. #define UDC_EP0IN_IDX 0
  171. #define UDC_EP0OUT_IDX 1
  172. #define UDC_EPIN_IDX(ep) (ep * 2)
  173. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  174. #define PCH_UDC_EP0 0
  175. #define PCH_UDC_EP1 1
  176. #define PCH_UDC_EP2 2
  177. #define PCH_UDC_EP3 3
  178. /* Number of endpoint */
  179. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  180. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  181. /* Length Value */
  182. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  183. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  184. /* Value of EP Buffer Size */
  185. #define UDC_EP0IN_BUFF_SIZE 16
  186. #define UDC_EPIN_BUFF_SIZE 256
  187. #define UDC_EP0OUT_BUFF_SIZE 16
  188. #define UDC_EPOUT_BUFF_SIZE 256
  189. /* Value of EP maximum packet size */
  190. #define UDC_EP0IN_MAX_PKT_SIZE 64
  191. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  192. #define UDC_BULK_MAX_PKT_SIZE 512
  193. /* DMA */
  194. #define DMA_DIR_RX 1 /* DMA for data receive */
  195. #define DMA_DIR_TX 2 /* DMA for data transmit */
  196. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  197. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  198. /**
  199. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  200. * for data
  201. * @status: Status quadlet
  202. * @reserved: Reserved
  203. * @dataptr: Buffer descriptor
  204. * @next: Next descriptor
  205. */
  206. struct pch_udc_data_dma_desc {
  207. u32 status;
  208. u32 reserved;
  209. u32 dataptr;
  210. u32 next;
  211. };
  212. /**
  213. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  214. * for control data
  215. * @status: Status
  216. * @reserved: Reserved
  217. * @data12: First setup word
  218. * @data34: Second setup word
  219. */
  220. struct pch_udc_stp_dma_desc {
  221. u32 status;
  222. u32 reserved;
  223. struct usb_ctrlrequest request;
  224. } __attribute((packed));
  225. /* DMA status definitions */
  226. /* Buffer status */
  227. #define PCH_UDC_BUFF_STS 0xC0000000
  228. #define PCH_UDC_BS_HST_RDY 0x00000000
  229. #define PCH_UDC_BS_DMA_BSY 0x40000000
  230. #define PCH_UDC_BS_DMA_DONE 0x80000000
  231. #define PCH_UDC_BS_HST_BSY 0xC0000000
  232. /* Rx/Tx Status */
  233. #define PCH_UDC_RXTX_STS 0x30000000
  234. #define PCH_UDC_RTS_SUCC 0x00000000
  235. #define PCH_UDC_RTS_DESERR 0x10000000
  236. #define PCH_UDC_RTS_BUFERR 0x30000000
  237. /* Last Descriptor Indication */
  238. #define PCH_UDC_DMA_LAST 0x08000000
  239. /* Number of Rx/Tx Bytes Mask */
  240. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  241. /**
  242. * struct pch_udc_cfg_data - Structure to hold current configuration
  243. * and interface information
  244. * @cur_cfg: current configuration in use
  245. * @cur_intf: current interface in use
  246. * @cur_alt: current alt interface in use
  247. */
  248. struct pch_udc_cfg_data {
  249. u16 cur_cfg;
  250. u16 cur_intf;
  251. u16 cur_alt;
  252. };
  253. /**
  254. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  255. * @ep: embedded ep request
  256. * @td_stp_phys: for setup request
  257. * @td_data_phys: for data request
  258. * @td_stp: for setup request
  259. * @td_data: for data request
  260. * @dev: reference to device struct
  261. * @offset_addr: offset address of ep register
  262. * @desc: for this ep
  263. * @queue: queue for requests
  264. * @num: endpoint number
  265. * @in: endpoint is IN
  266. * @halted: endpoint halted?
  267. * @epsts: Endpoint status
  268. */
  269. struct pch_udc_ep {
  270. struct usb_ep ep;
  271. dma_addr_t td_stp_phys;
  272. dma_addr_t td_data_phys;
  273. struct pch_udc_stp_dma_desc *td_stp;
  274. struct pch_udc_data_dma_desc *td_data;
  275. struct pch_udc_dev *dev;
  276. unsigned long offset_addr;
  277. const struct usb_endpoint_descriptor *desc;
  278. struct list_head queue;
  279. unsigned num:5,
  280. in:1,
  281. halted:1;
  282. unsigned long epsts;
  283. };
  284. /**
  285. * struct pch_udc_dev - Structure holding complete information
  286. * of the PCH USB device
  287. * @gadget: gadget driver data
  288. * @driver: reference to gadget driver bound
  289. * @pdev: reference to the PCI device
  290. * @ep: array of endpoints
  291. * @lock: protects all state
  292. * @active: enabled the PCI device
  293. * @stall: stall requested
  294. * @prot_stall: protcol stall requested
  295. * @irq_registered: irq registered with system
  296. * @mem_region: device memory mapped
  297. * @registered: driver regsitered with system
  298. * @suspended: driver in suspended state
  299. * @connected: gadget driver associated
  300. * @set_cfg_not_acked: pending acknowledgement 4 setup
  301. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  302. * @data_requests: DMA pool for data requests
  303. * @stp_requests: DMA pool for setup requests
  304. * @dma_addr: DMA pool for received
  305. * @ep0out_buf: Buffer for DMA
  306. * @setup_data: Received setup data
  307. * @phys_addr: of device memory
  308. * @base_addr: for mapped device memory
  309. * @irq: IRQ line for the device
  310. * @cfg_data: current cfg, intf, and alt in use
  311. */
  312. struct pch_udc_dev {
  313. struct usb_gadget gadget;
  314. struct usb_gadget_driver *driver;
  315. struct pci_dev *pdev;
  316. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  317. spinlock_t lock; /* protects all state */
  318. unsigned active:1,
  319. stall:1,
  320. prot_stall:1,
  321. irq_registered:1,
  322. mem_region:1,
  323. registered:1,
  324. suspended:1,
  325. connected:1,
  326. set_cfg_not_acked:1,
  327. waiting_zlp_ack:1;
  328. struct pci_pool *data_requests;
  329. struct pci_pool *stp_requests;
  330. dma_addr_t dma_addr;
  331. void *ep0out_buf;
  332. struct usb_ctrlrequest setup_data;
  333. unsigned long phys_addr;
  334. void __iomem *base_addr;
  335. unsigned irq;
  336. struct pch_udc_cfg_data cfg_data;
  337. };
  338. #define PCH_UDC_PCI_BAR 1
  339. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  340. #define PCI_VENDOR_ID_ROHM 0x10DB
  341. #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
  342. static const char ep0_string[] = "ep0in";
  343. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  344. struct pch_udc_dev *pch_udc; /* pointer to device object */
  345. static int speed_fs;
  346. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  347. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  348. /**
  349. * struct pch_udc_request - Structure holding a PCH USB device request packet
  350. * @req: embedded ep request
  351. * @td_data_phys: phys. address
  352. * @td_data: first dma desc. of chain
  353. * @td_data_last: last dma desc. of chain
  354. * @queue: associated queue
  355. * @dma_going: DMA in progress for request
  356. * @dma_mapped: DMA memory mapped for request
  357. * @dma_done: DMA completed for request
  358. * @chain_len: chain length
  359. */
  360. struct pch_udc_request {
  361. struct usb_request req;
  362. dma_addr_t td_data_phys;
  363. struct pch_udc_data_dma_desc *td_data;
  364. struct pch_udc_data_dma_desc *td_data_last;
  365. struct list_head queue;
  366. unsigned dma_going:1,
  367. dma_mapped:1,
  368. dma_done:1;
  369. unsigned chain_len;
  370. };
  371. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  372. {
  373. return ioread32(dev->base_addr + reg);
  374. }
  375. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  376. unsigned long val, unsigned long reg)
  377. {
  378. iowrite32(val, dev->base_addr + reg);
  379. }
  380. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  381. unsigned long reg,
  382. unsigned long bitmask)
  383. {
  384. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  385. }
  386. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  387. unsigned long reg,
  388. unsigned long bitmask)
  389. {
  390. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  391. }
  392. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  393. {
  394. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  395. }
  396. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  397. unsigned long val, unsigned long reg)
  398. {
  399. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  400. }
  401. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  402. unsigned long reg,
  403. unsigned long bitmask)
  404. {
  405. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  406. }
  407. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  408. unsigned long reg,
  409. unsigned long bitmask)
  410. {
  411. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  412. }
  413. /**
  414. * pch_udc_csr_busy() - Wait till idle.
  415. * @dev: Reference to pch_udc_dev structure
  416. */
  417. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  418. {
  419. unsigned int count = 200;
  420. /* Wait till idle */
  421. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  422. && --count)
  423. cpu_relax();
  424. if (!count)
  425. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  426. }
  427. /**
  428. * pch_udc_write_csr() - Write the command and status registers.
  429. * @dev: Reference to pch_udc_dev structure
  430. * @val: value to be written to CSR register
  431. * @addr: address of CSR register
  432. */
  433. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  434. unsigned int ep)
  435. {
  436. unsigned long reg = PCH_UDC_CSR(ep);
  437. pch_udc_csr_busy(dev); /* Wait till idle */
  438. pch_udc_writel(dev, val, reg);
  439. pch_udc_csr_busy(dev); /* Wait till idle */
  440. }
  441. /**
  442. * pch_udc_read_csr() - Read the command and status registers.
  443. * @dev: Reference to pch_udc_dev structure
  444. * @addr: address of CSR register
  445. *
  446. * Return codes: content of CSR register
  447. */
  448. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  449. {
  450. unsigned long reg = PCH_UDC_CSR(ep);
  451. pch_udc_csr_busy(dev); /* Wait till idle */
  452. pch_udc_readl(dev, reg); /* Dummy read */
  453. pch_udc_csr_busy(dev); /* Wait till idle */
  454. return pch_udc_readl(dev, reg);
  455. }
  456. /**
  457. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  458. * @dev: Reference to pch_udc_dev structure
  459. */
  460. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  461. {
  462. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  463. mdelay(1);
  464. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  465. }
  466. /**
  467. * pch_udc_get_frame() - Get the current frame from device status register
  468. * @dev: Reference to pch_udc_dev structure
  469. * Retern current frame
  470. */
  471. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  472. {
  473. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  474. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  475. }
  476. /**
  477. * pch_udc_clear_selfpowered() - Clear the self power control
  478. * @dev: Reference to pch_udc_regs structure
  479. */
  480. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  481. {
  482. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  483. }
  484. /**
  485. * pch_udc_set_selfpowered() - Set the self power control
  486. * @dev: Reference to pch_udc_regs structure
  487. */
  488. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  489. {
  490. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  491. }
  492. /**
  493. * pch_udc_set_disconnect() - Set the disconnect status.
  494. * @dev: Reference to pch_udc_regs structure
  495. */
  496. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  497. {
  498. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  499. }
  500. /**
  501. * pch_udc_clear_disconnect() - Clear the disconnect status.
  502. * @dev: Reference to pch_udc_regs structure
  503. */
  504. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  505. {
  506. /* Clear the disconnect */
  507. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  508. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  509. mdelay(1);
  510. /* Resume USB signalling */
  511. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  512. }
  513. /**
  514. * pch_udc_vbus_session() - set or clearr the disconnect status.
  515. * @dev: Reference to pch_udc_regs structure
  516. * @is_active: Parameter specifying the action
  517. * 0: indicating VBUS power is ending
  518. * !0: indicating VBUS power is starting
  519. */
  520. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  521. int is_active)
  522. {
  523. if (is_active)
  524. pch_udc_clear_disconnect(dev);
  525. else
  526. pch_udc_set_disconnect(dev);
  527. }
  528. /**
  529. * pch_udc_ep_set_stall() - Set the stall of endpoint
  530. * @ep: Reference to structure of type pch_udc_ep_regs
  531. */
  532. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  533. {
  534. if (ep->in) {
  535. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  536. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  537. } else {
  538. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  539. }
  540. }
  541. /**
  542. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  543. * @ep: Reference to structure of type pch_udc_ep_regs
  544. */
  545. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  546. {
  547. /* Clear the stall */
  548. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  549. /* Clear NAK by writing CNAK */
  550. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  551. }
  552. /**
  553. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  554. * @ep: Reference to structure of type pch_udc_ep_regs
  555. * @type: Type of endpoint
  556. */
  557. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  558. u8 type)
  559. {
  560. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  561. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  562. }
  563. /**
  564. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  565. * @ep: Reference to structure of type pch_udc_ep_regs
  566. * @buf_size: The buffer size
  567. */
  568. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  569. u32 buf_size, u32 ep_in)
  570. {
  571. u32 data;
  572. if (ep_in) {
  573. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  574. data = (data & 0xffff0000) | (buf_size & 0xffff);
  575. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  576. } else {
  577. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  578. data = (buf_size << 16) | (data & 0xffff);
  579. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  580. }
  581. }
  582. /**
  583. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  584. * @ep: Reference to structure of type pch_udc_ep_regs
  585. * @pkt_size: The packet size
  586. */
  587. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  588. {
  589. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  590. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  591. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  592. }
  593. /**
  594. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  595. * @ep: Reference to structure of type pch_udc_ep_regs
  596. * @addr: Address of the register
  597. */
  598. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  599. {
  600. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  601. }
  602. /**
  603. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  604. * @ep: Reference to structure of type pch_udc_ep_regs
  605. * @addr: Address of the register
  606. */
  607. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  608. {
  609. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  610. }
  611. /**
  612. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  613. * @ep: Reference to structure of type pch_udc_ep_regs
  614. */
  615. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  616. {
  617. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  618. }
  619. /**
  620. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  621. * @ep: Reference to structure of type pch_udc_ep_regs
  622. */
  623. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  624. {
  625. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  626. }
  627. /**
  628. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  629. * @ep: Reference to structure of type pch_udc_ep_regs
  630. */
  631. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  632. {
  633. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  634. }
  635. /**
  636. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  637. * register depending on the direction specified
  638. * @dev: Reference to structure of type pch_udc_regs
  639. * @dir: whether Tx or Rx
  640. * DMA_DIR_RX: Receive
  641. * DMA_DIR_TX: Transmit
  642. */
  643. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  644. {
  645. if (dir == DMA_DIR_RX)
  646. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  647. else if (dir == DMA_DIR_TX)
  648. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  649. }
  650. /**
  651. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  652. * register depending on the direction specified
  653. * @dev: Reference to structure of type pch_udc_regs
  654. * @dir: Whether Tx or Rx
  655. * DMA_DIR_RX: Receive
  656. * DMA_DIR_TX: Transmit
  657. */
  658. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  659. {
  660. if (dir == DMA_DIR_RX)
  661. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  662. else if (dir == DMA_DIR_TX)
  663. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  664. }
  665. /**
  666. * pch_udc_set_csr_done() - Set the device control register
  667. * CSR done field (bit 13)
  668. * @dev: reference to structure of type pch_udc_regs
  669. */
  670. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  671. {
  672. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  673. }
  674. /**
  675. * pch_udc_disable_interrupts() - Disables the specified interrupts
  676. * @dev: Reference to structure of type pch_udc_regs
  677. * @mask: Mask to disable interrupts
  678. */
  679. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  680. u32 mask)
  681. {
  682. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  683. }
  684. /**
  685. * pch_udc_enable_interrupts() - Enable the specified interrupts
  686. * @dev: Reference to structure of type pch_udc_regs
  687. * @mask: Mask to enable interrupts
  688. */
  689. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  690. u32 mask)
  691. {
  692. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  693. }
  694. /**
  695. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  696. * @dev: Reference to structure of type pch_udc_regs
  697. * @mask: Mask to disable interrupts
  698. */
  699. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  700. u32 mask)
  701. {
  702. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  703. }
  704. /**
  705. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  706. * @dev: Reference to structure of type pch_udc_regs
  707. * @mask: Mask to enable interrupts
  708. */
  709. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  710. u32 mask)
  711. {
  712. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  713. }
  714. /**
  715. * pch_udc_read_device_interrupts() - Read the device interrupts
  716. * @dev: Reference to structure of type pch_udc_regs
  717. * Retern The device interrupts
  718. */
  719. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  720. {
  721. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  722. }
  723. /**
  724. * pch_udc_write_device_interrupts() - Write device interrupts
  725. * @dev: Reference to structure of type pch_udc_regs
  726. * @val: The value to be written to interrupt register
  727. */
  728. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  729. u32 val)
  730. {
  731. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  732. }
  733. /**
  734. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  735. * @dev: Reference to structure of type pch_udc_regs
  736. * Retern The endpoint interrupt
  737. */
  738. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  739. {
  740. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  741. }
  742. /**
  743. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  744. * @dev: Reference to structure of type pch_udc_regs
  745. * @val: The value to be written to interrupt register
  746. */
  747. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  748. u32 val)
  749. {
  750. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  751. }
  752. /**
  753. * pch_udc_read_device_status() - Read the device status
  754. * @dev: Reference to structure of type pch_udc_regs
  755. * Retern The device status
  756. */
  757. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  758. {
  759. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  760. }
  761. /**
  762. * pch_udc_read_ep_control() - Read the endpoint control
  763. * @ep: Reference to structure of type pch_udc_ep_regs
  764. * Retern The endpoint control register value
  765. */
  766. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  767. {
  768. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  769. }
  770. /**
  771. * pch_udc_clear_ep_control() - Clear the endpoint control register
  772. * @ep: Reference to structure of type pch_udc_ep_regs
  773. * Retern The endpoint control register value
  774. */
  775. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  776. {
  777. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  778. }
  779. /**
  780. * pch_udc_read_ep_status() - Read the endpoint status
  781. * @ep: Reference to structure of type pch_udc_ep_regs
  782. * Retern The endpoint status
  783. */
  784. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  785. {
  786. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  787. }
  788. /**
  789. * pch_udc_clear_ep_status() - Clear the endpoint status
  790. * @ep: Reference to structure of type pch_udc_ep_regs
  791. * @stat: Endpoint status
  792. */
  793. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  794. u32 stat)
  795. {
  796. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  797. }
  798. /**
  799. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  800. * of the endpoint control register
  801. * @ep: Reference to structure of type pch_udc_ep_regs
  802. */
  803. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  804. {
  805. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  806. }
  807. /**
  808. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  809. * of the endpoint control register
  810. * @ep: reference to structure of type pch_udc_ep_regs
  811. */
  812. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  813. {
  814. unsigned int loopcnt = 0;
  815. struct pch_udc_dev *dev = ep->dev;
  816. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  817. return;
  818. if (!ep->in) {
  819. loopcnt = 10000;
  820. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  821. --loopcnt)
  822. udelay(5);
  823. if (!loopcnt)
  824. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  825. __func__);
  826. }
  827. loopcnt = 10000;
  828. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  829. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  830. udelay(5);
  831. }
  832. if (!loopcnt)
  833. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  834. __func__, ep->num, (ep->in ? "in" : "out"));
  835. }
  836. /**
  837. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  838. * @ep: reference to structure of type pch_udc_ep_regs
  839. * @dir: direction of endpoint
  840. * 0: endpoint is OUT
  841. * !0: endpoint is IN
  842. */
  843. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  844. {
  845. unsigned int loopcnt = 0;
  846. struct pch_udc_dev *dev = ep->dev;
  847. if (dir) { /* IN ep */
  848. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  849. return;
  850. }
  851. if (pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP)
  852. return;
  853. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_MRXFLUSH);
  854. /* Wait for RxFIFO Empty */
  855. loopcnt = 10000;
  856. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  857. --loopcnt)
  858. udelay(5);
  859. if (!loopcnt)
  860. dev_err(&dev->pdev->dev, "RxFIFO not Empty\n");
  861. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_MRXFLUSH);
  862. }
  863. /**
  864. * pch_udc_ep_enable() - This api enables endpoint
  865. * @regs: Reference to structure pch_udc_ep_regs
  866. * @desc: endpoint descriptor
  867. */
  868. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  869. struct pch_udc_cfg_data *cfg,
  870. const struct usb_endpoint_descriptor *desc)
  871. {
  872. u32 val = 0;
  873. u32 buff_size = 0;
  874. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  875. if (ep->in)
  876. buff_size = UDC_EPIN_BUFF_SIZE;
  877. else
  878. buff_size = UDC_EPOUT_BUFF_SIZE;
  879. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  880. pch_udc_ep_set_maxpkt(ep, le16_to_cpu(desc->wMaxPacketSize));
  881. pch_udc_ep_set_nak(ep);
  882. pch_udc_ep_fifo_flush(ep, ep->in);
  883. /* Configure the endpoint */
  884. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  885. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  886. UDC_CSR_NE_TYPE_SHIFT) |
  887. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  888. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  889. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  890. le16_to_cpu(desc->wMaxPacketSize) << UDC_CSR_NE_MAX_PKT_SHIFT;
  891. if (ep->in)
  892. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  893. else
  894. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  895. }
  896. /**
  897. * pch_udc_ep_disable() - This api disables endpoint
  898. * @regs: Reference to structure pch_udc_ep_regs
  899. */
  900. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  901. {
  902. if (ep->in) {
  903. /* flush the fifo */
  904. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  905. /* set NAK */
  906. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  907. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  908. } else {
  909. /* set NAK */
  910. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  911. }
  912. /* reset desc pointer */
  913. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  914. }
  915. /**
  916. * pch_udc_wait_ep_stall() - Wait EP stall.
  917. * @dev: Reference to pch_udc_dev structure
  918. */
  919. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  920. {
  921. unsigned int count = 10000;
  922. /* Wait till idle */
  923. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  924. udelay(5);
  925. if (!count)
  926. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  927. }
  928. /**
  929. * pch_udc_init() - This API initializes usb device controller
  930. * @dev: Rreference to pch_udc_regs structure
  931. */
  932. static void pch_udc_init(struct pch_udc_dev *dev)
  933. {
  934. if (NULL == dev) {
  935. pr_err("%s: Invalid address\n", __func__);
  936. return;
  937. }
  938. /* Soft Reset and Reset PHY */
  939. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  940. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  941. mdelay(1);
  942. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  943. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  944. mdelay(1);
  945. /* mask and clear all device interrupts */
  946. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  947. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  948. /* mask and clear all ep interrupts */
  949. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  950. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  951. /* enable dynamic CSR programmingi, self powered and device speed */
  952. if (speed_fs)
  953. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  954. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  955. else /* defaul high speed */
  956. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  957. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  958. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  959. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  960. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  961. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  962. UDC_DEVCTL_THE);
  963. }
  964. /**
  965. * pch_udc_exit() - This API exit usb device controller
  966. * @dev: Reference to pch_udc_regs structure
  967. */
  968. static void pch_udc_exit(struct pch_udc_dev *dev)
  969. {
  970. /* mask all device interrupts */
  971. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  972. /* mask all ep interrupts */
  973. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  974. /* put device in disconnected state */
  975. pch_udc_set_disconnect(dev);
  976. }
  977. /**
  978. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  979. * @gadget: Reference to the gadget driver
  980. *
  981. * Return codes:
  982. * 0: Success
  983. * -EINVAL: If the gadget passed is NULL
  984. */
  985. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  986. {
  987. struct pch_udc_dev *dev;
  988. if (!gadget)
  989. return -EINVAL;
  990. dev = container_of(gadget, struct pch_udc_dev, gadget);
  991. return pch_udc_get_frame(dev);
  992. }
  993. /**
  994. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  995. * @gadget: Reference to the gadget driver
  996. *
  997. * Return codes:
  998. * 0: Success
  999. * -EINVAL: If the gadget passed is NULL
  1000. */
  1001. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  1002. {
  1003. struct pch_udc_dev *dev;
  1004. unsigned long flags;
  1005. if (!gadget)
  1006. return -EINVAL;
  1007. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1008. spin_lock_irqsave(&dev->lock, flags);
  1009. pch_udc_rmt_wakeup(dev);
  1010. spin_unlock_irqrestore(&dev->lock, flags);
  1011. return 0;
  1012. }
  1013. /**
  1014. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  1015. * is self powered or not
  1016. * @gadget: Reference to the gadget driver
  1017. * @value: Specifies self powered or not
  1018. *
  1019. * Return codes:
  1020. * 0: Success
  1021. * -EINVAL: If the gadget passed is NULL
  1022. */
  1023. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1024. {
  1025. struct pch_udc_dev *dev;
  1026. if (!gadget)
  1027. return -EINVAL;
  1028. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1029. if (value)
  1030. pch_udc_set_selfpowered(dev);
  1031. else
  1032. pch_udc_clear_selfpowered(dev);
  1033. return 0;
  1034. }
  1035. /**
  1036. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1037. * visible/invisible to the host
  1038. * @gadget: Reference to the gadget driver
  1039. * @is_on: Specifies whether the pull up is made active or inactive
  1040. *
  1041. * Return codes:
  1042. * 0: Success
  1043. * -EINVAL: If the gadget passed is NULL
  1044. */
  1045. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1046. {
  1047. struct pch_udc_dev *dev;
  1048. if (!gadget)
  1049. return -EINVAL;
  1050. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1051. pch_udc_vbus_session(dev, is_on);
  1052. return 0;
  1053. }
  1054. /**
  1055. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1056. * transceiver (or GPIO) that
  1057. * detects a VBUS power session starting/ending
  1058. * @gadget: Reference to the gadget driver
  1059. * @is_active: specifies whether the session is starting or ending
  1060. *
  1061. * Return codes:
  1062. * 0: Success
  1063. * -EINVAL: If the gadget passed is NULL
  1064. */
  1065. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1066. {
  1067. struct pch_udc_dev *dev;
  1068. if (!gadget)
  1069. return -EINVAL;
  1070. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1071. pch_udc_vbus_session(dev, is_active);
  1072. return 0;
  1073. }
  1074. /**
  1075. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1076. * SET_CONFIGURATION calls to
  1077. * specify how much power the device can consume
  1078. * @gadget: Reference to the gadget driver
  1079. * @mA: specifies the current limit in 2mA unit
  1080. *
  1081. * Return codes:
  1082. * -EINVAL: If the gadget passed is NULL
  1083. * -EOPNOTSUPP:
  1084. */
  1085. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1086. {
  1087. return -EOPNOTSUPP;
  1088. }
  1089. static const struct usb_gadget_ops pch_udc_ops = {
  1090. .get_frame = pch_udc_pcd_get_frame,
  1091. .wakeup = pch_udc_pcd_wakeup,
  1092. .set_selfpowered = pch_udc_pcd_selfpowered,
  1093. .pullup = pch_udc_pcd_pullup,
  1094. .vbus_session = pch_udc_pcd_vbus_session,
  1095. .vbus_draw = pch_udc_pcd_vbus_draw,
  1096. };
  1097. /**
  1098. * complete_req() - This API is invoked from the driver when processing
  1099. * of a request is complete
  1100. * @ep: Reference to the endpoint structure
  1101. * @req: Reference to the request structure
  1102. * @status: Indicates the success/failure of completion
  1103. */
  1104. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1105. int status)
  1106. {
  1107. struct pch_udc_dev *dev;
  1108. unsigned halted = ep->halted;
  1109. list_del_init(&req->queue);
  1110. /* set new status if pending */
  1111. if (req->req.status == -EINPROGRESS)
  1112. req->req.status = status;
  1113. else
  1114. status = req->req.status;
  1115. dev = ep->dev;
  1116. if (req->dma_mapped) {
  1117. if (ep->in)
  1118. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1119. req->req.length, DMA_TO_DEVICE);
  1120. else
  1121. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1122. req->req.length, DMA_FROM_DEVICE);
  1123. req->dma_mapped = 0;
  1124. req->req.dma = DMA_ADDR_INVALID;
  1125. }
  1126. ep->halted = 1;
  1127. spin_unlock(&dev->lock);
  1128. if (!ep->in)
  1129. pch_udc_ep_clear_rrdy(ep);
  1130. req->req.complete(&ep->ep, &req->req);
  1131. spin_lock(&dev->lock);
  1132. ep->halted = halted;
  1133. }
  1134. /**
  1135. * empty_req_queue() - This API empties the request queue of an endpoint
  1136. * @ep: Reference to the endpoint structure
  1137. */
  1138. static void empty_req_queue(struct pch_udc_ep *ep)
  1139. {
  1140. struct pch_udc_request *req;
  1141. ep->halted = 1;
  1142. while (!list_empty(&ep->queue)) {
  1143. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1144. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1145. }
  1146. }
  1147. /**
  1148. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1149. * for the request
  1150. * @dev Reference to the driver structure
  1151. * @req Reference to the request to be freed
  1152. *
  1153. * Return codes:
  1154. * 0: Success
  1155. */
  1156. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1157. struct pch_udc_request *req)
  1158. {
  1159. struct pch_udc_data_dma_desc *td = req->td_data;
  1160. unsigned i = req->chain_len;
  1161. for (; i > 1; --i) {
  1162. dma_addr_t addr = (dma_addr_t)td->next;
  1163. /* do not free first desc., will be done by free for request */
  1164. td = phys_to_virt(addr);
  1165. pci_pool_free(dev->data_requests, td, addr);
  1166. }
  1167. }
  1168. /**
  1169. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1170. * a DMA chain
  1171. * @ep: Reference to the endpoint structure
  1172. * @req: Reference to the request
  1173. * @buf_len: The buffer length
  1174. * @gfp_flags: Flags to be used while mapping the data buffer
  1175. *
  1176. * Return codes:
  1177. * 0: success,
  1178. * -ENOMEM: pci_pool_alloc invocation fails
  1179. */
  1180. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1181. struct pch_udc_request *req,
  1182. unsigned long buf_len,
  1183. gfp_t gfp_flags)
  1184. {
  1185. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1186. unsigned long bytes = req->req.length, i = 0;
  1187. dma_addr_t dma_addr;
  1188. unsigned len = 1;
  1189. if (req->chain_len > 1)
  1190. pch_udc_free_dma_chain(ep->dev, req);
  1191. for (; ; bytes -= buf_len, ++len) {
  1192. if (ep->in)
  1193. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1194. else
  1195. td->status = PCH_UDC_BS_HST_BSY;
  1196. if (bytes <= buf_len)
  1197. break;
  1198. last = td;
  1199. td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
  1200. &dma_addr);
  1201. if (!td)
  1202. goto nomem;
  1203. i += buf_len;
  1204. td->dataptr = req->req.dma + i;
  1205. last->next = dma_addr;
  1206. }
  1207. req->td_data_last = td;
  1208. td->status |= PCH_UDC_DMA_LAST;
  1209. td->next = req->td_data_phys;
  1210. req->chain_len = len;
  1211. return 0;
  1212. nomem:
  1213. if (len > 1) {
  1214. req->chain_len = len;
  1215. pch_udc_free_dma_chain(ep->dev, req);
  1216. }
  1217. req->chain_len = 1;
  1218. return -ENOMEM;
  1219. }
  1220. /**
  1221. * prepare_dma() - This function creates and initializes the DMA chain
  1222. * for the request
  1223. * @ep: Reference to the endpoint structure
  1224. * @req: Reference to the request
  1225. * @gfp: Flag to be used while mapping the data buffer
  1226. *
  1227. * Return codes:
  1228. * 0: Success
  1229. * Other 0: linux error number on failure
  1230. */
  1231. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1232. gfp_t gfp)
  1233. {
  1234. int retval;
  1235. req->td_data->dataptr = req->req.dma;
  1236. req->td_data->status |= PCH_UDC_DMA_LAST;
  1237. /* Allocate and create a DMA chain */
  1238. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1239. if (retval) {
  1240. pr_err("%s: could not create DMA chain: %d\n",
  1241. __func__, retval);
  1242. return retval;
  1243. }
  1244. if (!ep->in)
  1245. return 0;
  1246. if (req->req.length <= ep->ep.maxpacket)
  1247. req->td_data->status = PCH_UDC_DMA_LAST | PCH_UDC_BS_HST_BSY |
  1248. req->req.length;
  1249. /* if bytes < max packet then tx bytes must
  1250. * be written in packet per buffer mode
  1251. */
  1252. if ((req->req.length < ep->ep.maxpacket) || !ep->num)
  1253. req->td_data->status = (req->td_data->status &
  1254. ~PCH_UDC_RXTX_BYTES) | req->req.length;
  1255. req->td_data->status = (req->td_data->status &
  1256. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_BSY;
  1257. return 0;
  1258. }
  1259. /**
  1260. * process_zlp() - This function process zero length packets
  1261. * from the gadget driver
  1262. * @ep: Reference to the endpoint structure
  1263. * @req: Reference to the request
  1264. */
  1265. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1266. {
  1267. struct pch_udc_dev *dev = ep->dev;
  1268. /* IN zlp's are handled by hardware */
  1269. complete_req(ep, req, 0);
  1270. /* if set_config or set_intf is waiting for ack by zlp
  1271. * then set CSR_DONE
  1272. */
  1273. if (dev->set_cfg_not_acked) {
  1274. pch_udc_set_csr_done(dev);
  1275. dev->set_cfg_not_acked = 0;
  1276. }
  1277. /* setup command is ACK'ed now by zlp */
  1278. if (!dev->stall && dev->waiting_zlp_ack) {
  1279. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1280. dev->waiting_zlp_ack = 0;
  1281. }
  1282. }
  1283. /**
  1284. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1285. * @ep: Reference to the endpoint structure
  1286. * @req: Reference to the request structure
  1287. */
  1288. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1289. struct pch_udc_request *req)
  1290. {
  1291. struct pch_udc_data_dma_desc *td_data;
  1292. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1293. td_data = req->td_data;
  1294. /* Set the status bits for all descriptors */
  1295. while (1) {
  1296. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1297. PCH_UDC_BS_HST_RDY;
  1298. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1299. break;
  1300. td_data = phys_to_virt(td_data->next);
  1301. }
  1302. /* Write the descriptor pointer */
  1303. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1304. req->dma_going = 1;
  1305. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1306. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1307. pch_udc_ep_clear_nak(ep);
  1308. pch_udc_ep_set_rrdy(ep);
  1309. }
  1310. /**
  1311. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1312. * from gadget driver
  1313. * @usbep: Reference to the USB endpoint structure
  1314. * @desc: Reference to the USB endpoint descriptor structure
  1315. *
  1316. * Return codes:
  1317. * 0: Success
  1318. * -EINVAL:
  1319. * -ESHUTDOWN:
  1320. */
  1321. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1322. const struct usb_endpoint_descriptor *desc)
  1323. {
  1324. struct pch_udc_ep *ep;
  1325. struct pch_udc_dev *dev;
  1326. unsigned long iflags;
  1327. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1328. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1329. return -EINVAL;
  1330. ep = container_of(usbep, struct pch_udc_ep, ep);
  1331. dev = ep->dev;
  1332. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1333. return -ESHUTDOWN;
  1334. spin_lock_irqsave(&dev->lock, iflags);
  1335. ep->desc = desc;
  1336. ep->halted = 0;
  1337. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1338. ep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize);
  1339. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1340. spin_unlock_irqrestore(&dev->lock, iflags);
  1341. return 0;
  1342. }
  1343. /**
  1344. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1345. * from gadget driver
  1346. * @usbep Reference to the USB endpoint structure
  1347. *
  1348. * Return codes:
  1349. * 0: Success
  1350. * -EINVAL:
  1351. */
  1352. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1353. {
  1354. struct pch_udc_ep *ep;
  1355. struct pch_udc_dev *dev;
  1356. unsigned long iflags;
  1357. if (!usbep)
  1358. return -EINVAL;
  1359. ep = container_of(usbep, struct pch_udc_ep, ep);
  1360. dev = ep->dev;
  1361. if ((usbep->name == ep0_string) || !ep->desc)
  1362. return -EINVAL;
  1363. spin_lock_irqsave(&ep->dev->lock, iflags);
  1364. empty_req_queue(ep);
  1365. ep->halted = 1;
  1366. pch_udc_ep_disable(ep);
  1367. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1368. ep->desc = NULL;
  1369. INIT_LIST_HEAD(&ep->queue);
  1370. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1371. return 0;
  1372. }
  1373. /**
  1374. * pch_udc_alloc_request() - This function allocates request structure.
  1375. * It is called by gadget driver
  1376. * @usbep: Reference to the USB endpoint structure
  1377. * @gfp: Flag to be used while allocating memory
  1378. *
  1379. * Return codes:
  1380. * NULL: Failure
  1381. * Allocated address: Success
  1382. */
  1383. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1384. gfp_t gfp)
  1385. {
  1386. struct pch_udc_request *req;
  1387. struct pch_udc_ep *ep;
  1388. struct pch_udc_data_dma_desc *dma_desc;
  1389. struct pch_udc_dev *dev;
  1390. if (!usbep)
  1391. return NULL;
  1392. ep = container_of(usbep, struct pch_udc_ep, ep);
  1393. dev = ep->dev;
  1394. req = kzalloc(sizeof *req, gfp);
  1395. if (!req)
  1396. return NULL;
  1397. req->req.dma = DMA_ADDR_INVALID;
  1398. INIT_LIST_HEAD(&req->queue);
  1399. if (!ep->dev->dma_addr)
  1400. return &req->req;
  1401. /* ep0 in requests are allocated from data pool here */
  1402. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  1403. &req->td_data_phys);
  1404. if (NULL == dma_desc) {
  1405. kfree(req);
  1406. return NULL;
  1407. }
  1408. /* prevent from using desc. - set HOST BUSY */
  1409. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1410. dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
  1411. req->td_data = dma_desc;
  1412. req->td_data_last = dma_desc;
  1413. req->chain_len = 1;
  1414. return &req->req;
  1415. }
  1416. /**
  1417. * pch_udc_free_request() - This function frees request structure.
  1418. * It is called by gadget driver
  1419. * @usbep: Reference to the USB endpoint structure
  1420. * @usbreq: Reference to the USB request
  1421. */
  1422. static void pch_udc_free_request(struct usb_ep *usbep,
  1423. struct usb_request *usbreq)
  1424. {
  1425. struct pch_udc_ep *ep;
  1426. struct pch_udc_request *req;
  1427. struct pch_udc_dev *dev;
  1428. if (!usbep || !usbreq)
  1429. return;
  1430. ep = container_of(usbep, struct pch_udc_ep, ep);
  1431. req = container_of(usbreq, struct pch_udc_request, req);
  1432. dev = ep->dev;
  1433. if (!list_empty(&req->queue))
  1434. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1435. __func__, usbep->name, req);
  1436. if (req->td_data != NULL) {
  1437. if (req->chain_len > 1)
  1438. pch_udc_free_dma_chain(ep->dev, req);
  1439. pci_pool_free(ep->dev->data_requests, req->td_data,
  1440. req->td_data_phys);
  1441. }
  1442. kfree(req);
  1443. }
  1444. /**
  1445. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1446. * by gadget driver
  1447. * @usbep: Reference to the USB endpoint structure
  1448. * @usbreq: Reference to the USB request
  1449. * @gfp: Flag to be used while mapping the data buffer
  1450. *
  1451. * Return codes:
  1452. * 0: Success
  1453. * linux error number: Failure
  1454. */
  1455. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1456. gfp_t gfp)
  1457. {
  1458. int retval = 0;
  1459. struct pch_udc_ep *ep;
  1460. struct pch_udc_dev *dev;
  1461. struct pch_udc_request *req;
  1462. unsigned long iflags;
  1463. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1464. return -EINVAL;
  1465. ep = container_of(usbep, struct pch_udc_ep, ep);
  1466. dev = ep->dev;
  1467. if (!ep->desc && ep->num)
  1468. return -EINVAL;
  1469. req = container_of(usbreq, struct pch_udc_request, req);
  1470. if (!list_empty(&req->queue))
  1471. return -EINVAL;
  1472. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1473. return -ESHUTDOWN;
  1474. spin_lock_irqsave(&ep->dev->lock, iflags);
  1475. /* map the buffer for dma */
  1476. if (usbreq->length &&
  1477. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1478. if (ep->in)
  1479. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1480. usbreq->buf,
  1481. usbreq->length,
  1482. DMA_TO_DEVICE);
  1483. else
  1484. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1485. usbreq->buf,
  1486. usbreq->length,
  1487. DMA_FROM_DEVICE);
  1488. req->dma_mapped = 1;
  1489. }
  1490. if (usbreq->length > 0) {
  1491. retval = prepare_dma(ep, req, GFP_ATOMIC);
  1492. if (retval)
  1493. goto probe_end;
  1494. }
  1495. usbreq->actual = 0;
  1496. usbreq->status = -EINPROGRESS;
  1497. req->dma_done = 0;
  1498. if (list_empty(&ep->queue) && !ep->halted) {
  1499. /* no pending transfer, so start this req */
  1500. if (!usbreq->length) {
  1501. process_zlp(ep, req);
  1502. retval = 0;
  1503. goto probe_end;
  1504. }
  1505. if (!ep->in) {
  1506. pch_udc_start_rxrequest(ep, req);
  1507. } else {
  1508. /*
  1509. * For IN trfr the descriptors will be programmed and
  1510. * P bit will be set when
  1511. * we get an IN token
  1512. */
  1513. pch_udc_wait_ep_stall(ep);
  1514. pch_udc_ep_clear_nak(ep);
  1515. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1516. }
  1517. }
  1518. /* Now add this request to the ep's pending requests */
  1519. if (req != NULL)
  1520. list_add_tail(&req->queue, &ep->queue);
  1521. probe_end:
  1522. spin_unlock_irqrestore(&dev->lock, iflags);
  1523. return retval;
  1524. }
  1525. /**
  1526. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1527. * It is called by gadget driver
  1528. * @usbep: Reference to the USB endpoint structure
  1529. * @usbreq: Reference to the USB request
  1530. *
  1531. * Return codes:
  1532. * 0: Success
  1533. * linux error number: Failure
  1534. */
  1535. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1536. struct usb_request *usbreq)
  1537. {
  1538. struct pch_udc_ep *ep;
  1539. struct pch_udc_request *req;
  1540. struct pch_udc_dev *dev;
  1541. unsigned long flags;
  1542. int ret = -EINVAL;
  1543. ep = container_of(usbep, struct pch_udc_ep, ep);
  1544. dev = ep->dev;
  1545. if (!usbep || !usbreq || (!ep->desc && ep->num))
  1546. return ret;
  1547. req = container_of(usbreq, struct pch_udc_request, req);
  1548. spin_lock_irqsave(&ep->dev->lock, flags);
  1549. /* make sure it's still queued on this endpoint */
  1550. list_for_each_entry(req, &ep->queue, queue) {
  1551. if (&req->req == usbreq) {
  1552. pch_udc_ep_set_nak(ep);
  1553. if (!list_empty(&req->queue))
  1554. complete_req(ep, req, -ECONNRESET);
  1555. ret = 0;
  1556. break;
  1557. }
  1558. }
  1559. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1560. return ret;
  1561. }
  1562. /**
  1563. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1564. * feature
  1565. * @usbep: Reference to the USB endpoint structure
  1566. * @halt: Specifies whether to set or clear the feature
  1567. *
  1568. * Return codes:
  1569. * 0: Success
  1570. * linux error number: Failure
  1571. */
  1572. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1573. {
  1574. struct pch_udc_ep *ep;
  1575. struct pch_udc_dev *dev;
  1576. unsigned long iflags;
  1577. int ret;
  1578. if (!usbep)
  1579. return -EINVAL;
  1580. ep = container_of(usbep, struct pch_udc_ep, ep);
  1581. dev = ep->dev;
  1582. if (!ep->desc && !ep->num)
  1583. return -EINVAL;
  1584. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1585. return -ESHUTDOWN;
  1586. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1587. if (list_empty(&ep->queue)) {
  1588. if (halt) {
  1589. if (ep->num == PCH_UDC_EP0)
  1590. ep->dev->stall = 1;
  1591. pch_udc_ep_set_stall(ep);
  1592. pch_udc_enable_ep_interrupts(ep->dev,
  1593. PCH_UDC_EPINT(ep->in,
  1594. ep->num));
  1595. } else {
  1596. pch_udc_ep_clear_stall(ep);
  1597. }
  1598. ret = 0;
  1599. } else {
  1600. ret = -EAGAIN;
  1601. }
  1602. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1603. return ret;
  1604. }
  1605. /**
  1606. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1607. * halt feature
  1608. * @usbep: Reference to the USB endpoint structure
  1609. * @halt: Specifies whether to set or clear the feature
  1610. *
  1611. * Return codes:
  1612. * 0: Success
  1613. * linux error number: Failure
  1614. */
  1615. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1616. {
  1617. struct pch_udc_ep *ep;
  1618. struct pch_udc_dev *dev;
  1619. unsigned long iflags;
  1620. int ret;
  1621. if (!usbep)
  1622. return -EINVAL;
  1623. ep = container_of(usbep, struct pch_udc_ep, ep);
  1624. dev = ep->dev;
  1625. if (!ep->desc && !ep->num)
  1626. return -EINVAL;
  1627. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1628. return -ESHUTDOWN;
  1629. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1630. if (!list_empty(&ep->queue)) {
  1631. ret = -EAGAIN;
  1632. } else {
  1633. if (ep->num == PCH_UDC_EP0)
  1634. ep->dev->stall = 1;
  1635. pch_udc_ep_set_stall(ep);
  1636. pch_udc_enable_ep_interrupts(ep->dev,
  1637. PCH_UDC_EPINT(ep->in, ep->num));
  1638. ep->dev->prot_stall = 1;
  1639. ret = 0;
  1640. }
  1641. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1642. return ret;
  1643. }
  1644. /**
  1645. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1646. * @usbep: Reference to the USB endpoint structure
  1647. */
  1648. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1649. {
  1650. struct pch_udc_ep *ep;
  1651. if (!usbep)
  1652. return;
  1653. ep = container_of(usbep, struct pch_udc_ep, ep);
  1654. if (ep->desc || !ep->num)
  1655. pch_udc_ep_fifo_flush(ep, ep->in);
  1656. }
  1657. static const struct usb_ep_ops pch_udc_ep_ops = {
  1658. .enable = pch_udc_pcd_ep_enable,
  1659. .disable = pch_udc_pcd_ep_disable,
  1660. .alloc_request = pch_udc_alloc_request,
  1661. .free_request = pch_udc_free_request,
  1662. .queue = pch_udc_pcd_queue,
  1663. .dequeue = pch_udc_pcd_dequeue,
  1664. .set_halt = pch_udc_pcd_set_halt,
  1665. .set_wedge = pch_udc_pcd_set_wedge,
  1666. .fifo_status = NULL,
  1667. .fifo_flush = pch_udc_pcd_fifo_flush,
  1668. };
  1669. /**
  1670. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1671. * @td_stp: Reference to the SETP buffer structure
  1672. */
  1673. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1674. {
  1675. static u32 pky_marker;
  1676. if (!td_stp)
  1677. return;
  1678. td_stp->reserved = ++pky_marker;
  1679. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1680. td_stp->status = PCH_UDC_BS_HST_RDY;
  1681. }
  1682. /**
  1683. * pch_udc_start_next_txrequest() - This function starts
  1684. * the next transmission requirement
  1685. * @ep: Reference to the endpoint structure
  1686. */
  1687. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1688. {
  1689. struct pch_udc_request *req;
  1690. struct pch_udc_data_dma_desc *td_data;
  1691. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1692. return;
  1693. if (list_empty(&ep->queue))
  1694. return;
  1695. /* next request */
  1696. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1697. if (req->dma_going)
  1698. return;
  1699. if (!req->td_data)
  1700. return;
  1701. pch_udc_wait_ep_stall(ep);
  1702. req->dma_going = 1;
  1703. pch_udc_ep_set_ddptr(ep, 0);
  1704. td_data = req->td_data;
  1705. while (1) {
  1706. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1707. PCH_UDC_BS_HST_RDY;
  1708. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1709. break;
  1710. td_data = phys_to_virt(td_data->next);
  1711. }
  1712. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1713. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1714. pch_udc_ep_set_pd(ep);
  1715. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1716. pch_udc_ep_clear_nak(ep);
  1717. }
  1718. /**
  1719. * pch_udc_complete_transfer() - This function completes a transfer
  1720. * @ep: Reference to the endpoint structure
  1721. */
  1722. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1723. {
  1724. struct pch_udc_request *req;
  1725. struct pch_udc_dev *dev = ep->dev;
  1726. if (list_empty(&ep->queue))
  1727. return;
  1728. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1729. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1730. PCH_UDC_BS_DMA_DONE)
  1731. return;
  1732. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1733. PCH_UDC_RTS_SUCC) {
  1734. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1735. "epstatus=0x%08x\n",
  1736. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1737. (int)(ep->epsts));
  1738. return;
  1739. }
  1740. req->req.actual = req->req.length;
  1741. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1742. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1743. complete_req(ep, req, 0);
  1744. req->dma_going = 0;
  1745. if (!list_empty(&ep->queue)) {
  1746. pch_udc_wait_ep_stall(ep);
  1747. pch_udc_ep_clear_nak(ep);
  1748. pch_udc_enable_ep_interrupts(ep->dev,
  1749. PCH_UDC_EPINT(ep->in, ep->num));
  1750. } else {
  1751. pch_udc_disable_ep_interrupts(ep->dev,
  1752. PCH_UDC_EPINT(ep->in, ep->num));
  1753. }
  1754. }
  1755. /**
  1756. * pch_udc_complete_receiver() - This function completes a receiver
  1757. * @ep: Reference to the endpoint structure
  1758. */
  1759. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1760. {
  1761. struct pch_udc_request *req;
  1762. struct pch_udc_dev *dev = ep->dev;
  1763. unsigned int count;
  1764. if (list_empty(&ep->queue))
  1765. return;
  1766. /* next request */
  1767. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1768. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1769. PCH_UDC_BS_DMA_DONE)
  1770. return;
  1771. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1772. pch_udc_ep_set_ddptr(ep, 0);
  1773. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1774. PCH_UDC_RTS_SUCC) {
  1775. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1776. "epstatus=0x%08x\n",
  1777. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1778. (int)(ep->epsts));
  1779. return;
  1780. }
  1781. count = req->td_data_last->status & PCH_UDC_RXTX_BYTES;
  1782. /* on 64k packets the RXBYTES field is zero */
  1783. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  1784. count = UDC_DMA_MAXPACKET;
  1785. req->td_data->status |= PCH_UDC_DMA_LAST;
  1786. req->td_data_last->status |= PCH_UDC_BS_HST_BSY;
  1787. req->dma_going = 0;
  1788. req->req.actual = count;
  1789. complete_req(ep, req, 0);
  1790. /* If there is a new/failed requests try that now */
  1791. if (!list_empty(&ep->queue)) {
  1792. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1793. pch_udc_start_rxrequest(ep, req);
  1794. }
  1795. }
  1796. /**
  1797. * pch_udc_svc_data_in() - This function process endpoint interrupts
  1798. * for IN endpoints
  1799. * @dev: Reference to the device structure
  1800. * @ep_num: Endpoint that generated the interrupt
  1801. */
  1802. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  1803. {
  1804. u32 epsts;
  1805. struct pch_udc_ep *ep;
  1806. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  1807. epsts = ep->epsts;
  1808. ep->epsts = 0;
  1809. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1810. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1811. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  1812. return;
  1813. if ((epsts & UDC_EPSTS_BNA))
  1814. return;
  1815. if (epsts & UDC_EPSTS_HE)
  1816. return;
  1817. if (epsts & UDC_EPSTS_RSS) {
  1818. pch_udc_ep_set_stall(ep);
  1819. pch_udc_enable_ep_interrupts(ep->dev,
  1820. PCH_UDC_EPINT(ep->in, ep->num));
  1821. }
  1822. if (epsts & UDC_EPSTS_RCS) {
  1823. if (!dev->prot_stall) {
  1824. pch_udc_ep_clear_stall(ep);
  1825. } else {
  1826. pch_udc_ep_set_stall(ep);
  1827. pch_udc_enable_ep_interrupts(ep->dev,
  1828. PCH_UDC_EPINT(ep->in, ep->num));
  1829. }
  1830. }
  1831. if (epsts & UDC_EPSTS_TDC)
  1832. pch_udc_complete_transfer(ep);
  1833. /* On IN interrupt, provide data if we have any */
  1834. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  1835. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  1836. pch_udc_start_next_txrequest(ep);
  1837. }
  1838. /**
  1839. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  1840. * @dev: Reference to the device structure
  1841. * @ep_num: Endpoint that generated the interrupt
  1842. */
  1843. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  1844. {
  1845. u32 epsts;
  1846. struct pch_udc_ep *ep;
  1847. struct pch_udc_request *req = NULL;
  1848. ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
  1849. epsts = ep->epsts;
  1850. ep->epsts = 0;
  1851. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  1852. /* next request */
  1853. req = list_entry(ep->queue.next, struct pch_udc_request,
  1854. queue);
  1855. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1856. PCH_UDC_BS_DMA_DONE) {
  1857. if (!req->dma_going)
  1858. pch_udc_start_rxrequest(ep, req);
  1859. return;
  1860. }
  1861. }
  1862. if (epsts & UDC_EPSTS_HE)
  1863. return;
  1864. if (epsts & UDC_EPSTS_RSS) {
  1865. pch_udc_ep_set_stall(ep);
  1866. pch_udc_enable_ep_interrupts(ep->dev,
  1867. PCH_UDC_EPINT(ep->in, ep->num));
  1868. }
  1869. if (epsts & UDC_EPSTS_RCS) {
  1870. if (!dev->prot_stall) {
  1871. pch_udc_ep_clear_stall(ep);
  1872. } else {
  1873. pch_udc_ep_set_stall(ep);
  1874. pch_udc_enable_ep_interrupts(ep->dev,
  1875. PCH_UDC_EPINT(ep->in, ep->num));
  1876. }
  1877. }
  1878. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1879. UDC_EPSTS_OUT_DATA) {
  1880. if (ep->dev->prot_stall == 1) {
  1881. pch_udc_ep_set_stall(ep);
  1882. pch_udc_enable_ep_interrupts(ep->dev,
  1883. PCH_UDC_EPINT(ep->in, ep->num));
  1884. } else {
  1885. pch_udc_complete_receiver(ep);
  1886. }
  1887. }
  1888. if (list_empty(&ep->queue))
  1889. pch_udc_set_dma(dev, DMA_DIR_RX);
  1890. }
  1891. /**
  1892. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  1893. * @dev: Reference to the device structure
  1894. */
  1895. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  1896. {
  1897. u32 epsts;
  1898. struct pch_udc_ep *ep;
  1899. struct pch_udc_ep *ep_out;
  1900. ep = &dev->ep[UDC_EP0IN_IDX];
  1901. ep_out = &dev->ep[UDC_EP0OUT_IDX];
  1902. epsts = ep->epsts;
  1903. ep->epsts = 0;
  1904. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1905. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1906. UDC_EPSTS_XFERDONE)))
  1907. return;
  1908. if ((epsts & UDC_EPSTS_BNA))
  1909. return;
  1910. if (epsts & UDC_EPSTS_HE)
  1911. return;
  1912. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
  1913. pch_udc_complete_transfer(ep);
  1914. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1915. ep_out->td_data->status = (ep_out->td_data->status &
  1916. ~PCH_UDC_BUFF_STS) |
  1917. PCH_UDC_BS_HST_RDY;
  1918. pch_udc_ep_clear_nak(ep_out);
  1919. pch_udc_set_dma(dev, DMA_DIR_RX);
  1920. pch_udc_ep_set_rrdy(ep_out);
  1921. }
  1922. /* On IN interrupt, provide data if we have any */
  1923. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  1924. !(epsts & UDC_EPSTS_TXEMPTY))
  1925. pch_udc_start_next_txrequest(ep);
  1926. }
  1927. /**
  1928. * pch_udc_svc_control_out() - Routine that handle Control
  1929. * OUT endpoint interrupts
  1930. * @dev: Reference to the device structure
  1931. */
  1932. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  1933. {
  1934. u32 stat;
  1935. int setup_supported;
  1936. struct pch_udc_ep *ep;
  1937. ep = &dev->ep[UDC_EP0OUT_IDX];
  1938. stat = ep->epsts;
  1939. ep->epsts = 0;
  1940. /* If setup data */
  1941. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1942. UDC_EPSTS_OUT_SETUP) {
  1943. dev->stall = 0;
  1944. dev->ep[UDC_EP0IN_IDX].halted = 0;
  1945. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  1946. dev->setup_data = ep->td_stp->request;
  1947. pch_udc_init_setup_buff(ep->td_stp);
  1948. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1949. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  1950. dev->ep[UDC_EP0IN_IDX].in);
  1951. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  1952. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  1953. else /* OUT */
  1954. dev->gadget.ep0 = &ep->ep;
  1955. spin_unlock(&dev->lock);
  1956. /* If Mass storage Reset */
  1957. if ((dev->setup_data.bRequestType == 0x21) &&
  1958. (dev->setup_data.bRequest == 0xFF))
  1959. dev->prot_stall = 0;
  1960. /* call gadget with setup data received */
  1961. setup_supported = dev->driver->setup(&dev->gadget,
  1962. &dev->setup_data);
  1963. spin_lock(&dev->lock);
  1964. if (dev->setup_data.bRequestType & USB_DIR_IN) {
  1965. ep->td_data->status = (ep->td_data->status &
  1966. ~PCH_UDC_BUFF_STS) |
  1967. PCH_UDC_BS_HST_RDY;
  1968. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  1969. }
  1970. /* ep0 in returns data on IN phase */
  1971. if (setup_supported >= 0 && setup_supported <
  1972. UDC_EP0IN_MAX_PKT_SIZE) {
  1973. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1974. /* Gadget would have queued a request when
  1975. * we called the setup */
  1976. if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
  1977. pch_udc_set_dma(dev, DMA_DIR_RX);
  1978. pch_udc_ep_clear_nak(ep);
  1979. }
  1980. } else if (setup_supported < 0) {
  1981. /* if unsupported request, then stall */
  1982. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  1983. pch_udc_enable_ep_interrupts(ep->dev,
  1984. PCH_UDC_EPINT(ep->in, ep->num));
  1985. dev->stall = 0;
  1986. pch_udc_set_dma(dev, DMA_DIR_RX);
  1987. } else {
  1988. dev->waiting_zlp_ack = 1;
  1989. }
  1990. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1991. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  1992. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1993. pch_udc_ep_set_ddptr(ep, 0);
  1994. if (!list_empty(&ep->queue)) {
  1995. ep->epsts = stat;
  1996. pch_udc_svc_data_out(dev, PCH_UDC_EP0);
  1997. }
  1998. pch_udc_set_dma(dev, DMA_DIR_RX);
  1999. }
  2000. pch_udc_ep_set_rrdy(ep);
  2001. }
  2002. /**
  2003. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  2004. * and clears NAK status
  2005. * @dev: Reference to the device structure
  2006. * @ep_num: End point number
  2007. */
  2008. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  2009. {
  2010. struct pch_udc_ep *ep;
  2011. struct pch_udc_request *req;
  2012. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2013. if (!list_empty(&ep->queue)) {
  2014. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2015. pch_udc_enable_ep_interrupts(ep->dev,
  2016. PCH_UDC_EPINT(ep->in, ep->num));
  2017. pch_udc_ep_clear_nak(ep);
  2018. }
  2019. }
  2020. /**
  2021. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2022. * @dev: Reference to the device structure
  2023. * @ep_intr: Status of endpoint interrupt
  2024. */
  2025. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2026. {
  2027. int i;
  2028. struct pch_udc_ep *ep;
  2029. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2030. /* IN */
  2031. if (ep_intr & (0x1 << i)) {
  2032. ep = &dev->ep[UDC_EPIN_IDX(i)];
  2033. ep->epsts = pch_udc_read_ep_status(ep);
  2034. pch_udc_clear_ep_status(ep, ep->epsts);
  2035. }
  2036. /* OUT */
  2037. if (ep_intr & (0x10000 << i)) {
  2038. ep = &dev->ep[UDC_EPOUT_IDX(i)];
  2039. ep->epsts = pch_udc_read_ep_status(ep);
  2040. pch_udc_clear_ep_status(ep, ep->epsts);
  2041. }
  2042. }
  2043. }
  2044. /**
  2045. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2046. * for traffic after a reset
  2047. * @dev: Reference to the device structure
  2048. */
  2049. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2050. {
  2051. struct pch_udc_ep *ep;
  2052. u32 val;
  2053. /* Setup the IN endpoint */
  2054. ep = &dev->ep[UDC_EP0IN_IDX];
  2055. pch_udc_clear_ep_control(ep);
  2056. pch_udc_ep_fifo_flush(ep, ep->in);
  2057. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2058. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2059. /* Initialize the IN EP Descriptor */
  2060. ep->td_data = NULL;
  2061. ep->td_stp = NULL;
  2062. ep->td_data_phys = 0;
  2063. ep->td_stp_phys = 0;
  2064. /* Setup the OUT endpoint */
  2065. ep = &dev->ep[UDC_EP0OUT_IDX];
  2066. pch_udc_clear_ep_control(ep);
  2067. pch_udc_ep_fifo_flush(ep, ep->in);
  2068. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2069. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2070. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2071. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2072. /* Initialize the SETUP buffer */
  2073. pch_udc_init_setup_buff(ep->td_stp);
  2074. /* Write the pointer address of dma descriptor */
  2075. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2076. /* Write the pointer address of Setup descriptor */
  2077. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2078. /* Initialize the dma descriptor */
  2079. ep->td_data->status = PCH_UDC_DMA_LAST;
  2080. ep->td_data->dataptr = dev->dma_addr;
  2081. ep->td_data->next = ep->td_data_phys;
  2082. pch_udc_ep_clear_nak(ep);
  2083. }
  2084. /**
  2085. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2086. * @dev: Reference to driver structure
  2087. */
  2088. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2089. {
  2090. struct pch_udc_ep *ep;
  2091. int i;
  2092. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2093. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2094. /* Mask all endpoint interrupts */
  2095. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2096. /* clear all endpoint interrupts */
  2097. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2098. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2099. ep = &dev->ep[i];
  2100. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2101. pch_udc_clear_ep_control(ep);
  2102. pch_udc_ep_set_ddptr(ep, 0);
  2103. pch_udc_write_csr(ep->dev, 0x00, i);
  2104. }
  2105. dev->stall = 0;
  2106. dev->prot_stall = 0;
  2107. dev->waiting_zlp_ack = 0;
  2108. dev->set_cfg_not_acked = 0;
  2109. /* disable ep to empty req queue. Skip the control EP's */
  2110. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2111. ep = &dev->ep[i];
  2112. pch_udc_ep_set_nak(ep);
  2113. pch_udc_ep_fifo_flush(ep, ep->in);
  2114. /* Complete request queue */
  2115. empty_req_queue(ep);
  2116. }
  2117. if (dev->driver && dev->driver->disconnect)
  2118. dev->driver->disconnect(&dev->gadget);
  2119. }
  2120. /**
  2121. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2122. * done interrupt
  2123. * @dev: Reference to driver structure
  2124. */
  2125. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2126. {
  2127. u32 dev_stat, dev_speed;
  2128. u32 speed = USB_SPEED_FULL;
  2129. dev_stat = pch_udc_read_device_status(dev);
  2130. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2131. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2132. switch (dev_speed) {
  2133. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2134. speed = USB_SPEED_HIGH;
  2135. break;
  2136. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2137. speed = USB_SPEED_FULL;
  2138. break;
  2139. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2140. speed = USB_SPEED_LOW;
  2141. break;
  2142. default:
  2143. BUG();
  2144. }
  2145. dev->gadget.speed = speed;
  2146. pch_udc_activate_control_ep(dev);
  2147. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2148. pch_udc_set_dma(dev, DMA_DIR_TX);
  2149. pch_udc_set_dma(dev, DMA_DIR_RX);
  2150. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2151. }
  2152. /**
  2153. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2154. * interrupt
  2155. * @dev: Reference to driver structure
  2156. */
  2157. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2158. {
  2159. u32 reg, dev_stat = 0;
  2160. int i, ret;
  2161. dev_stat = pch_udc_read_device_status(dev);
  2162. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2163. UDC_DEVSTS_INTF_SHIFT;
  2164. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2165. UDC_DEVSTS_ALT_SHIFT;
  2166. dev->set_cfg_not_acked = 1;
  2167. /* Construct the usb request for gadget driver and inform it */
  2168. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2169. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2170. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2171. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2172. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2173. /* programm the Endpoint Cfg registers */
  2174. /* Only one end point cfg register */
  2175. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2176. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2177. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2178. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2179. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2180. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2181. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2182. /* clear stall bits */
  2183. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2184. dev->ep[i].halted = 0;
  2185. }
  2186. dev->stall = 0;
  2187. spin_unlock(&dev->lock);
  2188. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2189. spin_lock(&dev->lock);
  2190. }
  2191. /**
  2192. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2193. * interrupt
  2194. * @dev: Reference to driver structure
  2195. */
  2196. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2197. {
  2198. int i, ret;
  2199. u32 reg, dev_stat = 0;
  2200. dev_stat = pch_udc_read_device_status(dev);
  2201. dev->set_cfg_not_acked = 1;
  2202. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2203. UDC_DEVSTS_CFG_SHIFT;
  2204. /* make usb request for gadget driver */
  2205. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2206. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2207. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2208. /* program the NE registers */
  2209. /* Only one end point cfg register */
  2210. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2211. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2212. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2213. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2214. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2215. /* clear stall bits */
  2216. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2217. dev->ep[i].halted = 0;
  2218. }
  2219. dev->stall = 0;
  2220. /* call gadget zero with setup data received */
  2221. spin_unlock(&dev->lock);
  2222. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2223. spin_lock(&dev->lock);
  2224. }
  2225. /**
  2226. * pch_udc_dev_isr() - This function services device interrupts
  2227. * by invoking appropriate routines.
  2228. * @dev: Reference to the device structure
  2229. * @dev_intr: The Device interrupt status.
  2230. */
  2231. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2232. {
  2233. /* USB Reset Interrupt */
  2234. if (dev_intr & UDC_DEVINT_UR)
  2235. pch_udc_svc_ur_interrupt(dev);
  2236. /* Enumeration Done Interrupt */
  2237. if (dev_intr & UDC_DEVINT_ENUM)
  2238. pch_udc_svc_enum_interrupt(dev);
  2239. /* Set Interface Interrupt */
  2240. if (dev_intr & UDC_DEVINT_SI)
  2241. pch_udc_svc_intf_interrupt(dev);
  2242. /* Set Config Interrupt */
  2243. if (dev_intr & UDC_DEVINT_SC)
  2244. pch_udc_svc_cfg_interrupt(dev);
  2245. /* USB Suspend interrupt */
  2246. if (dev_intr & UDC_DEVINT_US)
  2247. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2248. /* Clear the SOF interrupt, if enabled */
  2249. if (dev_intr & UDC_DEVINT_SOF)
  2250. dev_dbg(&dev->pdev->dev, "SOF\n");
  2251. /* ES interrupt, IDLE > 3ms on the USB */
  2252. if (dev_intr & UDC_DEVINT_ES)
  2253. dev_dbg(&dev->pdev->dev, "ES\n");
  2254. /* RWKP interrupt */
  2255. if (dev_intr & UDC_DEVINT_RWKP)
  2256. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2257. }
  2258. /**
  2259. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2260. * @irq: Interrupt request number
  2261. * @dev: Reference to the device structure
  2262. */
  2263. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2264. {
  2265. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2266. u32 dev_intr, ep_intr;
  2267. int i;
  2268. dev_intr = pch_udc_read_device_interrupts(dev);
  2269. ep_intr = pch_udc_read_ep_interrupts(dev);
  2270. if (dev_intr)
  2271. /* Clear device interrupts */
  2272. pch_udc_write_device_interrupts(dev, dev_intr);
  2273. if (ep_intr)
  2274. /* Clear ep interrupts */
  2275. pch_udc_write_ep_interrupts(dev, ep_intr);
  2276. if (!dev_intr && !ep_intr)
  2277. return IRQ_NONE;
  2278. spin_lock(&dev->lock);
  2279. if (dev_intr)
  2280. pch_udc_dev_isr(dev, dev_intr);
  2281. if (ep_intr) {
  2282. pch_udc_read_all_epstatus(dev, ep_intr);
  2283. /* Process Control In interrupts, if present */
  2284. if (ep_intr & UDC_EPINT_IN_EP0) {
  2285. pch_udc_svc_control_in(dev);
  2286. pch_udc_postsvc_epinters(dev, 0);
  2287. }
  2288. /* Process Control Out interrupts, if present */
  2289. if (ep_intr & UDC_EPINT_OUT_EP0)
  2290. pch_udc_svc_control_out(dev);
  2291. /* Process data in end point interrupts */
  2292. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2293. if (ep_intr & (1 << i)) {
  2294. pch_udc_svc_data_in(dev, i);
  2295. pch_udc_postsvc_epinters(dev, i);
  2296. }
  2297. }
  2298. /* Process data out end point interrupts */
  2299. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2300. PCH_UDC_USED_EP_NUM); i++)
  2301. if (ep_intr & (1 << i))
  2302. pch_udc_svc_data_out(dev, i -
  2303. UDC_EPINT_OUT_SHIFT);
  2304. }
  2305. spin_unlock(&dev->lock);
  2306. return IRQ_HANDLED;
  2307. }
  2308. /**
  2309. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2310. * @dev: Reference to the device structure
  2311. */
  2312. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2313. {
  2314. /* enable ep0 interrupts */
  2315. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2316. UDC_EPINT_OUT_EP0);
  2317. /* enable device interrupts */
  2318. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2319. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2320. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2321. }
  2322. /**
  2323. * gadget_release() - Free the gadget driver private data
  2324. * @pdev reference to struct pci_dev
  2325. */
  2326. static void gadget_release(struct device *pdev)
  2327. {
  2328. struct pch_udc_dev *dev = dev_get_drvdata(pdev);
  2329. kfree(dev);
  2330. }
  2331. /**
  2332. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2333. * @dev: Reference to the driver structure
  2334. */
  2335. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2336. {
  2337. const char *const ep_string[] = {
  2338. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2339. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2340. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2341. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2342. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2343. "ep15in", "ep15out",
  2344. };
  2345. int i;
  2346. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2347. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2348. /* Initialize the endpoints structures */
  2349. memset(dev->ep, 0, sizeof dev->ep);
  2350. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2351. struct pch_udc_ep *ep = &dev->ep[i];
  2352. ep->dev = dev;
  2353. ep->halted = 1;
  2354. ep->num = i / 2;
  2355. ep->in = ~i & 1;
  2356. ep->ep.name = ep_string[i];
  2357. ep->ep.ops = &pch_udc_ep_ops;
  2358. if (ep->in)
  2359. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2360. else
  2361. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2362. UDC_EP_REG_SHIFT;
  2363. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2364. ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
  2365. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2366. INIT_LIST_HEAD(&ep->queue);
  2367. }
  2368. dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  2369. dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  2370. /* remove ep0 in and out from the list. They have own pointer */
  2371. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2372. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2373. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2374. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2375. }
  2376. /**
  2377. * pch_udc_pcd_init() - This API initializes the driver structure
  2378. * @dev: Reference to the driver structure
  2379. *
  2380. * Return codes:
  2381. * 0: Success
  2382. */
  2383. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2384. {
  2385. pch_udc_init(dev);
  2386. pch_udc_pcd_reinit(dev);
  2387. return 0;
  2388. }
  2389. /**
  2390. * init_dma_pools() - create dma pools during initialization
  2391. * @pdev: reference to struct pci_dev
  2392. */
  2393. static int init_dma_pools(struct pch_udc_dev *dev)
  2394. {
  2395. struct pch_udc_stp_dma_desc *td_stp;
  2396. struct pch_udc_data_dma_desc *td_data;
  2397. /* DMA setup */
  2398. dev->data_requests = pci_pool_create("data_requests", dev->pdev,
  2399. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2400. if (!dev->data_requests) {
  2401. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2402. __func__);
  2403. return -ENOMEM;
  2404. }
  2405. /* dma desc for setup data */
  2406. dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
  2407. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2408. if (!dev->stp_requests) {
  2409. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2410. __func__);
  2411. return -ENOMEM;
  2412. }
  2413. /* setup */
  2414. td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2415. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2416. if (!td_stp) {
  2417. dev_err(&dev->pdev->dev,
  2418. "%s: can't allocate setup dma descriptor\n", __func__);
  2419. return -ENOMEM;
  2420. }
  2421. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2422. /* data: 0 packets !? */
  2423. td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
  2424. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2425. if (!td_data) {
  2426. dev_err(&dev->pdev->dev,
  2427. "%s: can't allocate data dma descriptor\n", __func__);
  2428. return -ENOMEM;
  2429. }
  2430. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2431. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2432. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2433. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2434. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2435. dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
  2436. if (!dev->ep0out_buf)
  2437. return -ENOMEM;
  2438. dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
  2439. UDC_EP0OUT_BUFF_SIZE * 4,
  2440. DMA_FROM_DEVICE);
  2441. return 0;
  2442. }
  2443. int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
  2444. int (*bind)(struct usb_gadget *))
  2445. {
  2446. struct pch_udc_dev *dev = pch_udc;
  2447. int retval;
  2448. if (!driver || (driver->speed == USB_SPEED_UNKNOWN) || !bind ||
  2449. !driver->setup || !driver->unbind || !driver->disconnect) {
  2450. dev_err(&dev->pdev->dev,
  2451. "%s: invalid driver parameter\n", __func__);
  2452. return -EINVAL;
  2453. }
  2454. if (!dev)
  2455. return -ENODEV;
  2456. if (dev->driver) {
  2457. dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
  2458. return -EBUSY;
  2459. }
  2460. driver->driver.bus = NULL;
  2461. dev->driver = driver;
  2462. dev->gadget.dev.driver = &driver->driver;
  2463. /* Invoke the bind routine of the gadget driver */
  2464. retval = bind(&dev->gadget);
  2465. if (retval) {
  2466. dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
  2467. __func__, driver->driver.name, retval);
  2468. dev->driver = NULL;
  2469. dev->gadget.dev.driver = NULL;
  2470. return retval;
  2471. }
  2472. /* get ready for ep0 traffic */
  2473. pch_udc_setup_ep0(dev);
  2474. /* clear SD */
  2475. pch_udc_clear_disconnect(dev);
  2476. dev->connected = 1;
  2477. return 0;
  2478. }
  2479. EXPORT_SYMBOL(usb_gadget_probe_driver);
  2480. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
  2481. {
  2482. struct pch_udc_dev *dev = pch_udc;
  2483. if (!dev)
  2484. return -ENODEV;
  2485. if (!driver || (driver != dev->driver)) {
  2486. dev_err(&dev->pdev->dev,
  2487. "%s: invalid driver parameter\n", __func__);
  2488. return -EINVAL;
  2489. }
  2490. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2491. /* Assures that there are no pending requests with this driver */
  2492. driver->disconnect(&dev->gadget);
  2493. driver->unbind(&dev->gadget);
  2494. dev->gadget.dev.driver = NULL;
  2495. dev->driver = NULL;
  2496. dev->connected = 0;
  2497. /* set SD */
  2498. pch_udc_set_disconnect(dev);
  2499. return 0;
  2500. }
  2501. EXPORT_SYMBOL(usb_gadget_unregister_driver);
  2502. static void pch_udc_shutdown(struct pci_dev *pdev)
  2503. {
  2504. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2505. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2506. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2507. /* disable the pullup so the host will think we're gone */
  2508. pch_udc_set_disconnect(dev);
  2509. }
  2510. static void pch_udc_remove(struct pci_dev *pdev)
  2511. {
  2512. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2513. /* gadget driver must not be registered */
  2514. if (dev->driver)
  2515. dev_err(&pdev->dev,
  2516. "%s: gadget driver still bound!!!\n", __func__);
  2517. /* dma pool cleanup */
  2518. if (dev->data_requests)
  2519. pci_pool_destroy(dev->data_requests);
  2520. if (dev->stp_requests) {
  2521. /* cleanup DMA desc's for ep0in */
  2522. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2523. pci_pool_free(dev->stp_requests,
  2524. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2525. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2526. }
  2527. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2528. pci_pool_free(dev->stp_requests,
  2529. dev->ep[UDC_EP0OUT_IDX].td_data,
  2530. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2531. }
  2532. pci_pool_destroy(dev->stp_requests);
  2533. }
  2534. if (dev->dma_addr)
  2535. dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
  2536. UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
  2537. kfree(dev->ep0out_buf);
  2538. pch_udc_exit(dev);
  2539. if (dev->irq_registered)
  2540. free_irq(pdev->irq, dev);
  2541. if (dev->base_addr)
  2542. iounmap(dev->base_addr);
  2543. if (dev->mem_region)
  2544. release_mem_region(dev->phys_addr,
  2545. pci_resource_len(pdev, PCH_UDC_PCI_BAR));
  2546. if (dev->active)
  2547. pci_disable_device(pdev);
  2548. if (dev->registered)
  2549. device_unregister(&dev->gadget.dev);
  2550. kfree(dev);
  2551. pci_set_drvdata(pdev, NULL);
  2552. }
  2553. #ifdef CONFIG_PM
  2554. static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
  2555. {
  2556. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2557. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2558. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2559. pci_disable_device(pdev);
  2560. pci_enable_wake(pdev, PCI_D3hot, 0);
  2561. if (pci_save_state(pdev)) {
  2562. dev_err(&pdev->dev,
  2563. "%s: could not save PCI config state\n", __func__);
  2564. return -ENOMEM;
  2565. }
  2566. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2567. return 0;
  2568. }
  2569. static int pch_udc_resume(struct pci_dev *pdev)
  2570. {
  2571. int ret;
  2572. pci_set_power_state(pdev, PCI_D0);
  2573. pci_restore_state(pdev);
  2574. ret = pci_enable_device(pdev);
  2575. if (ret) {
  2576. dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
  2577. return ret;
  2578. }
  2579. pci_enable_wake(pdev, PCI_D3hot, 0);
  2580. return 0;
  2581. }
  2582. #else
  2583. #define pch_udc_suspend NULL
  2584. #define pch_udc_resume NULL
  2585. #endif /* CONFIG_PM */
  2586. static int pch_udc_probe(struct pci_dev *pdev,
  2587. const struct pci_device_id *id)
  2588. {
  2589. unsigned long resource;
  2590. unsigned long len;
  2591. int retval;
  2592. struct pch_udc_dev *dev;
  2593. /* one udc only */
  2594. if (pch_udc) {
  2595. pr_err("%s: already probed\n", __func__);
  2596. return -EBUSY;
  2597. }
  2598. /* init */
  2599. dev = kzalloc(sizeof *dev, GFP_KERNEL);
  2600. if (!dev) {
  2601. pr_err("%s: no memory for device structure\n", __func__);
  2602. return -ENOMEM;
  2603. }
  2604. /* pci setup */
  2605. if (pci_enable_device(pdev) < 0) {
  2606. kfree(dev);
  2607. pr_err("%s: pci_enable_device failed\n", __func__);
  2608. return -ENODEV;
  2609. }
  2610. dev->active = 1;
  2611. pci_set_drvdata(pdev, dev);
  2612. /* PCI resource allocation */
  2613. resource = pci_resource_start(pdev, 1);
  2614. len = pci_resource_len(pdev, 1);
  2615. if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
  2616. dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
  2617. retval = -EBUSY;
  2618. goto finished;
  2619. }
  2620. dev->phys_addr = resource;
  2621. dev->mem_region = 1;
  2622. dev->base_addr = ioremap_nocache(resource, len);
  2623. if (!dev->base_addr) {
  2624. pr_err("%s: device memory cannot be mapped\n", __func__);
  2625. retval = -ENOMEM;
  2626. goto finished;
  2627. }
  2628. if (!pdev->irq) {
  2629. dev_err(&pdev->dev, "%s: irq not set\n", __func__);
  2630. retval = -ENODEV;
  2631. goto finished;
  2632. }
  2633. pch_udc = dev;
  2634. /* initialize the hardware */
  2635. if (pch_udc_pcd_init(dev))
  2636. goto finished;
  2637. if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
  2638. dev)) {
  2639. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2640. pdev->irq);
  2641. retval = -ENODEV;
  2642. goto finished;
  2643. }
  2644. dev->irq = pdev->irq;
  2645. dev->irq_registered = 1;
  2646. pci_set_master(pdev);
  2647. pci_try_set_mwi(pdev);
  2648. /* device struct setup */
  2649. spin_lock_init(&dev->lock);
  2650. dev->pdev = pdev;
  2651. dev->gadget.ops = &pch_udc_ops;
  2652. retval = init_dma_pools(dev);
  2653. if (retval)
  2654. goto finished;
  2655. dev_set_name(&dev->gadget.dev, "gadget");
  2656. dev->gadget.dev.parent = &pdev->dev;
  2657. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2658. dev->gadget.dev.release = gadget_release;
  2659. dev->gadget.name = KBUILD_MODNAME;
  2660. dev->gadget.is_dualspeed = 1;
  2661. retval = device_register(&dev->gadget.dev);
  2662. if (retval)
  2663. goto finished;
  2664. dev->registered = 1;
  2665. /* Put the device in disconnected state till a driver is bound */
  2666. pch_udc_set_disconnect(dev);
  2667. return 0;
  2668. finished:
  2669. pch_udc_remove(pdev);
  2670. return retval;
  2671. }
  2672. static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
  2673. {
  2674. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2675. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2676. .class_mask = 0xffffffff,
  2677. },
  2678. {
  2679. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
  2680. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2681. .class_mask = 0xffffffff,
  2682. },
  2683. { 0 },
  2684. };
  2685. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2686. static struct pci_driver pch_udc_driver = {
  2687. .name = KBUILD_MODNAME,
  2688. .id_table = pch_udc_pcidev_id,
  2689. .probe = pch_udc_probe,
  2690. .remove = pch_udc_remove,
  2691. .suspend = pch_udc_suspend,
  2692. .resume = pch_udc_resume,
  2693. .shutdown = pch_udc_shutdown,
  2694. };
  2695. static int __init pch_udc_pci_init(void)
  2696. {
  2697. return pci_register_driver(&pch_udc_driver);
  2698. }
  2699. module_init(pch_udc_pci_init);
  2700. static void __exit pch_udc_pci_exit(void)
  2701. {
  2702. pci_unregister_driver(&pch_udc_driver);
  2703. }
  2704. module_exit(pch_udc_pci_exit);
  2705. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  2706. MODULE_AUTHOR("OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>");
  2707. MODULE_LICENSE("GPL");