init_64.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/pfn.h>
  27. #include <linux/poison.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/module.h>
  30. #include <linux/memory_hotplug.h>
  31. #include <linux/nmi.h>
  32. #include <linux/gfp.h>
  33. #include <asm/processor.h>
  34. #include <asm/bios_ebda.h>
  35. #include <asm/system.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/dma.h>
  40. #include <asm/fixmap.h>
  41. #include <asm/e820.h>
  42. #include <asm/apic.h>
  43. #include <asm/tlb.h>
  44. #include <asm/mmu_context.h>
  45. #include <asm/proto.h>
  46. #include <asm/smp.h>
  47. #include <asm/sections.h>
  48. #include <asm/kdebug.h>
  49. #include <asm/numa.h>
  50. #include <asm/cacheflush.h>
  51. #include <asm/init.h>
  52. static int __init parse_direct_gbpages_off(char *arg)
  53. {
  54. direct_gbpages = 0;
  55. return 0;
  56. }
  57. early_param("nogbpages", parse_direct_gbpages_off);
  58. static int __init parse_direct_gbpages_on(char *arg)
  59. {
  60. direct_gbpages = 1;
  61. return 0;
  62. }
  63. early_param("gbpages", parse_direct_gbpages_on);
  64. /*
  65. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  66. * physical space so we can cache the place of the first one and move
  67. * around without checking the pgd every time.
  68. */
  69. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  70. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  71. int force_personality32;
  72. /*
  73. * noexec32=on|off
  74. * Control non executable heap for 32bit processes.
  75. * To control the stack too use noexec=off
  76. *
  77. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  78. * off PROT_READ implies PROT_EXEC
  79. */
  80. static int __init nonx32_setup(char *str)
  81. {
  82. if (!strcmp(str, "on"))
  83. force_personality32 &= ~READ_IMPLIES_EXEC;
  84. else if (!strcmp(str, "off"))
  85. force_personality32 |= READ_IMPLIES_EXEC;
  86. return 1;
  87. }
  88. __setup("noexec32=", nonx32_setup);
  89. /*
  90. * When memory was added/removed make sure all the processes MM have
  91. * suitable PGD entries in the local PGD level page.
  92. */
  93. void sync_global_pgds(unsigned long start, unsigned long end)
  94. {
  95. unsigned long address;
  96. for (address = start; address <= end; address += PGDIR_SIZE) {
  97. const pgd_t *pgd_ref = pgd_offset_k(address);
  98. unsigned long flags;
  99. struct page *page;
  100. if (pgd_none(*pgd_ref))
  101. continue;
  102. spin_lock_irqsave(&pgd_lock, flags);
  103. list_for_each_entry(page, &pgd_list, lru) {
  104. pgd_t *pgd;
  105. spinlock_t *pgt_lock;
  106. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  107. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  108. spin_lock(pgt_lock);
  109. if (pgd_none(*pgd))
  110. set_pgd(pgd, *pgd_ref);
  111. else
  112. BUG_ON(pgd_page_vaddr(*pgd)
  113. != pgd_page_vaddr(*pgd_ref));
  114. spin_unlock(pgt_lock);
  115. }
  116. spin_unlock_irqrestore(&pgd_lock, flags);
  117. }
  118. }
  119. /*
  120. * NOTE: This function is marked __ref because it calls __init function
  121. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  122. */
  123. static __ref void *spp_getpage(void)
  124. {
  125. void *ptr;
  126. if (after_bootmem)
  127. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  128. else
  129. ptr = alloc_bootmem_pages(PAGE_SIZE);
  130. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  131. panic("set_pte_phys: cannot allocate page data %s\n",
  132. after_bootmem ? "after bootmem" : "");
  133. }
  134. pr_debug("spp_getpage %p\n", ptr);
  135. return ptr;
  136. }
  137. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  138. {
  139. if (pgd_none(*pgd)) {
  140. pud_t *pud = (pud_t *)spp_getpage();
  141. pgd_populate(&init_mm, pgd, pud);
  142. if (pud != pud_offset(pgd, 0))
  143. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  144. pud, pud_offset(pgd, 0));
  145. }
  146. return pud_offset(pgd, vaddr);
  147. }
  148. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  149. {
  150. if (pud_none(*pud)) {
  151. pmd_t *pmd = (pmd_t *) spp_getpage();
  152. pud_populate(&init_mm, pud, pmd);
  153. if (pmd != pmd_offset(pud, 0))
  154. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  155. pmd, pmd_offset(pud, 0));
  156. }
  157. return pmd_offset(pud, vaddr);
  158. }
  159. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  160. {
  161. if (pmd_none(*pmd)) {
  162. pte_t *pte = (pte_t *) spp_getpage();
  163. pmd_populate_kernel(&init_mm, pmd, pte);
  164. if (pte != pte_offset_kernel(pmd, 0))
  165. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  166. }
  167. return pte_offset_kernel(pmd, vaddr);
  168. }
  169. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  170. {
  171. pud_t *pud;
  172. pmd_t *pmd;
  173. pte_t *pte;
  174. pud = pud_page + pud_index(vaddr);
  175. pmd = fill_pmd(pud, vaddr);
  176. pte = fill_pte(pmd, vaddr);
  177. set_pte(pte, new_pte);
  178. /*
  179. * It's enough to flush this one mapping.
  180. * (PGE mappings get flushed as well)
  181. */
  182. __flush_tlb_one(vaddr);
  183. }
  184. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  185. {
  186. pgd_t *pgd;
  187. pud_t *pud_page;
  188. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  189. pgd = pgd_offset_k(vaddr);
  190. if (pgd_none(*pgd)) {
  191. printk(KERN_ERR
  192. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  193. return;
  194. }
  195. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  196. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  197. }
  198. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  199. {
  200. pgd_t *pgd;
  201. pud_t *pud;
  202. pgd = pgd_offset_k(vaddr);
  203. pud = fill_pud(pgd, vaddr);
  204. return fill_pmd(pud, vaddr);
  205. }
  206. pte_t * __init populate_extra_pte(unsigned long vaddr)
  207. {
  208. pmd_t *pmd;
  209. pmd = populate_extra_pmd(vaddr);
  210. return fill_pte(pmd, vaddr);
  211. }
  212. /*
  213. * Create large page table mappings for a range of physical addresses.
  214. */
  215. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  216. pgprot_t prot)
  217. {
  218. pgd_t *pgd;
  219. pud_t *pud;
  220. pmd_t *pmd;
  221. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  222. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  223. pgd = pgd_offset_k((unsigned long)__va(phys));
  224. if (pgd_none(*pgd)) {
  225. pud = (pud_t *) spp_getpage();
  226. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  227. _PAGE_USER));
  228. }
  229. pud = pud_offset(pgd, (unsigned long)__va(phys));
  230. if (pud_none(*pud)) {
  231. pmd = (pmd_t *) spp_getpage();
  232. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  233. _PAGE_USER));
  234. }
  235. pmd = pmd_offset(pud, phys);
  236. BUG_ON(!pmd_none(*pmd));
  237. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  238. }
  239. }
  240. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  241. {
  242. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  243. }
  244. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  245. {
  246. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  247. }
  248. /*
  249. * The head.S code sets up the kernel high mapping:
  250. *
  251. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  252. *
  253. * phys_addr holds the negative offset to the kernel, which is added
  254. * to the compile time generated pmds. This results in invalid pmds up
  255. * to the point where we hit the physaddr 0 mapping.
  256. *
  257. * We limit the mappings to the region from _text to _end. _end is
  258. * rounded up to the 2MB boundary. This catches the invalid pmds as
  259. * well, as they are located before _text:
  260. */
  261. void __init cleanup_highmap(void)
  262. {
  263. unsigned long vaddr = __START_KERNEL_map;
  264. unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
  265. pmd_t *pmd = level2_kernel_pgt;
  266. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  267. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  268. if (pmd_none(*pmd))
  269. continue;
  270. if (vaddr < (unsigned long) _text || vaddr > end)
  271. set_pmd(pmd, __pmd(0));
  272. }
  273. }
  274. static __ref void *alloc_low_page(unsigned long *phys)
  275. {
  276. unsigned long pfn = e820_table_end++;
  277. void *adr;
  278. if (after_bootmem) {
  279. adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  280. *phys = __pa(adr);
  281. return adr;
  282. }
  283. if (pfn >= e820_table_top)
  284. panic("alloc_low_page: ran out of memory");
  285. adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
  286. clear_page(adr);
  287. *phys = pfn * PAGE_SIZE;
  288. return adr;
  289. }
  290. static __ref void unmap_low_page(void *adr)
  291. {
  292. if (after_bootmem)
  293. return;
  294. early_iounmap(adr, PAGE_SIZE);
  295. }
  296. static unsigned long __meminit
  297. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  298. pgprot_t prot)
  299. {
  300. unsigned pages = 0;
  301. unsigned long last_map_addr = end;
  302. int i;
  303. pte_t *pte = pte_page + pte_index(addr);
  304. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  305. if (addr >= end) {
  306. if (!after_bootmem) {
  307. for(; i < PTRS_PER_PTE; i++, pte++)
  308. set_pte(pte, __pte(0));
  309. }
  310. break;
  311. }
  312. /*
  313. * We will re-use the existing mapping.
  314. * Xen for example has some special requirements, like mapping
  315. * pagetable pages as RO. So assume someone who pre-setup
  316. * these mappings are more intelligent.
  317. */
  318. if (pte_val(*pte)) {
  319. pages++;
  320. continue;
  321. }
  322. if (0)
  323. printk(" pte=%p addr=%lx pte=%016lx\n",
  324. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  325. pages++;
  326. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  327. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  328. }
  329. update_page_count(PG_LEVEL_4K, pages);
  330. return last_map_addr;
  331. }
  332. static unsigned long __meminit
  333. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
  334. pgprot_t prot)
  335. {
  336. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  337. return phys_pte_init(pte, address, end, prot);
  338. }
  339. static unsigned long __meminit
  340. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  341. unsigned long page_size_mask, pgprot_t prot)
  342. {
  343. unsigned long pages = 0;
  344. unsigned long last_map_addr = end;
  345. int i = pmd_index(address);
  346. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  347. unsigned long pte_phys;
  348. pmd_t *pmd = pmd_page + pmd_index(address);
  349. pte_t *pte;
  350. pgprot_t new_prot = prot;
  351. if (address >= end) {
  352. if (!after_bootmem) {
  353. for (; i < PTRS_PER_PMD; i++, pmd++)
  354. set_pmd(pmd, __pmd(0));
  355. }
  356. break;
  357. }
  358. if (pmd_val(*pmd)) {
  359. if (!pmd_large(*pmd)) {
  360. spin_lock(&init_mm.page_table_lock);
  361. last_map_addr = phys_pte_update(pmd, address,
  362. end, prot);
  363. spin_unlock(&init_mm.page_table_lock);
  364. continue;
  365. }
  366. /*
  367. * If we are ok with PG_LEVEL_2M mapping, then we will
  368. * use the existing mapping,
  369. *
  370. * Otherwise, we will split the large page mapping but
  371. * use the same existing protection bits except for
  372. * large page, so that we don't violate Intel's TLB
  373. * Application note (317080) which says, while changing
  374. * the page sizes, new and old translations should
  375. * not differ with respect to page frame and
  376. * attributes.
  377. */
  378. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  379. pages++;
  380. continue;
  381. }
  382. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  383. }
  384. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  385. pages++;
  386. spin_lock(&init_mm.page_table_lock);
  387. set_pte((pte_t *)pmd,
  388. pfn_pte(address >> PAGE_SHIFT,
  389. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  390. spin_unlock(&init_mm.page_table_lock);
  391. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  392. continue;
  393. }
  394. pte = alloc_low_page(&pte_phys);
  395. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  396. unmap_low_page(pte);
  397. spin_lock(&init_mm.page_table_lock);
  398. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  399. spin_unlock(&init_mm.page_table_lock);
  400. }
  401. update_page_count(PG_LEVEL_2M, pages);
  402. return last_map_addr;
  403. }
  404. static unsigned long __meminit
  405. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  406. unsigned long page_size_mask, pgprot_t prot)
  407. {
  408. pmd_t *pmd = pmd_offset(pud, 0);
  409. unsigned long last_map_addr;
  410. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
  411. __flush_tlb_all();
  412. return last_map_addr;
  413. }
  414. static unsigned long __meminit
  415. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  416. unsigned long page_size_mask)
  417. {
  418. unsigned long pages = 0;
  419. unsigned long last_map_addr = end;
  420. int i = pud_index(addr);
  421. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  422. unsigned long pmd_phys;
  423. pud_t *pud = pud_page + pud_index(addr);
  424. pmd_t *pmd;
  425. pgprot_t prot = PAGE_KERNEL;
  426. if (addr >= end)
  427. break;
  428. if (!after_bootmem &&
  429. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  430. set_pud(pud, __pud(0));
  431. continue;
  432. }
  433. if (pud_val(*pud)) {
  434. if (!pud_large(*pud)) {
  435. last_map_addr = phys_pmd_update(pud, addr, end,
  436. page_size_mask, prot);
  437. continue;
  438. }
  439. /*
  440. * If we are ok with PG_LEVEL_1G mapping, then we will
  441. * use the existing mapping.
  442. *
  443. * Otherwise, we will split the gbpage mapping but use
  444. * the same existing protection bits except for large
  445. * page, so that we don't violate Intel's TLB
  446. * Application note (317080) which says, while changing
  447. * the page sizes, new and old translations should
  448. * not differ with respect to page frame and
  449. * attributes.
  450. */
  451. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  452. pages++;
  453. continue;
  454. }
  455. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  456. }
  457. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  458. pages++;
  459. spin_lock(&init_mm.page_table_lock);
  460. set_pte((pte_t *)pud,
  461. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  462. spin_unlock(&init_mm.page_table_lock);
  463. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  464. continue;
  465. }
  466. pmd = alloc_low_page(&pmd_phys);
  467. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  468. prot);
  469. unmap_low_page(pmd);
  470. spin_lock(&init_mm.page_table_lock);
  471. pud_populate(&init_mm, pud, __va(pmd_phys));
  472. spin_unlock(&init_mm.page_table_lock);
  473. }
  474. __flush_tlb_all();
  475. update_page_count(PG_LEVEL_1G, pages);
  476. return last_map_addr;
  477. }
  478. static unsigned long __meminit
  479. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  480. unsigned long page_size_mask)
  481. {
  482. pud_t *pud;
  483. pud = (pud_t *)pgd_page_vaddr(*pgd);
  484. return phys_pud_init(pud, addr, end, page_size_mask);
  485. }
  486. unsigned long __meminit
  487. kernel_physical_mapping_init(unsigned long start,
  488. unsigned long end,
  489. unsigned long page_size_mask)
  490. {
  491. bool pgd_changed = false;
  492. unsigned long next, last_map_addr = end;
  493. unsigned long addr;
  494. start = (unsigned long)__va(start);
  495. end = (unsigned long)__va(end);
  496. addr = start;
  497. for (; start < end; start = next) {
  498. pgd_t *pgd = pgd_offset_k(start);
  499. unsigned long pud_phys;
  500. pud_t *pud;
  501. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  502. if (next > end)
  503. next = end;
  504. if (pgd_val(*pgd)) {
  505. last_map_addr = phys_pud_update(pgd, __pa(start),
  506. __pa(end), page_size_mask);
  507. continue;
  508. }
  509. pud = alloc_low_page(&pud_phys);
  510. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  511. page_size_mask);
  512. unmap_low_page(pud);
  513. spin_lock(&init_mm.page_table_lock);
  514. pgd_populate(&init_mm, pgd, __va(pud_phys));
  515. spin_unlock(&init_mm.page_table_lock);
  516. pgd_changed = true;
  517. }
  518. if (pgd_changed)
  519. sync_global_pgds(addr, end);
  520. __flush_tlb_all();
  521. return last_map_addr;
  522. }
  523. #ifndef CONFIG_NUMA
  524. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
  525. int acpi, int k8)
  526. {
  527. memblock_x86_register_active_regions(0, start_pfn, end_pfn);
  528. }
  529. #endif
  530. void __init paging_init(void)
  531. {
  532. unsigned long max_zone_pfns[MAX_NR_ZONES];
  533. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  534. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  535. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  536. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  537. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  538. sparse_init();
  539. /*
  540. * clear the default setting with node 0
  541. * note: don't use nodes_clear here, that is really clearing when
  542. * numa support is not compiled in, and later node_set_state
  543. * will not set it back.
  544. */
  545. node_clear_state(0, N_NORMAL_MEMORY);
  546. free_area_init_nodes(max_zone_pfns);
  547. }
  548. /*
  549. * Memory hotplug specific functions
  550. */
  551. #ifdef CONFIG_MEMORY_HOTPLUG
  552. /*
  553. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  554. * updating.
  555. */
  556. static void update_end_of_memory_vars(u64 start, u64 size)
  557. {
  558. unsigned long end_pfn = PFN_UP(start + size);
  559. if (end_pfn > max_pfn) {
  560. max_pfn = end_pfn;
  561. max_low_pfn = end_pfn;
  562. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  563. }
  564. }
  565. /*
  566. * Memory is added always to NORMAL zone. This means you will never get
  567. * additional DMA/DMA32 memory.
  568. */
  569. int arch_add_memory(int nid, u64 start, u64 size)
  570. {
  571. struct pglist_data *pgdat = NODE_DATA(nid);
  572. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  573. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  574. unsigned long nr_pages = size >> PAGE_SHIFT;
  575. int ret;
  576. last_mapped_pfn = init_memory_mapping(start, start + size);
  577. if (last_mapped_pfn > max_pfn_mapped)
  578. max_pfn_mapped = last_mapped_pfn;
  579. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  580. WARN_ON_ONCE(ret);
  581. /* update max_pfn, max_low_pfn and high_memory */
  582. update_end_of_memory_vars(start, size);
  583. return ret;
  584. }
  585. EXPORT_SYMBOL_GPL(arch_add_memory);
  586. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  587. int memory_add_physaddr_to_nid(u64 start)
  588. {
  589. return 0;
  590. }
  591. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  592. #endif
  593. #endif /* CONFIG_MEMORY_HOTPLUG */
  594. static struct kcore_list kcore_vsyscall;
  595. void __init mem_init(void)
  596. {
  597. long codesize, reservedpages, datasize, initsize;
  598. unsigned long absent_pages;
  599. pci_iommu_alloc();
  600. /* clear_bss() already clear the empty_zero_page */
  601. reservedpages = 0;
  602. /* this will put all low memory onto the freelists */
  603. #ifdef CONFIG_NUMA
  604. totalram_pages = numa_free_all_bootmem();
  605. #else
  606. totalram_pages = free_all_bootmem();
  607. #endif
  608. absent_pages = absent_pages_in_range(0, max_pfn);
  609. reservedpages = max_pfn - totalram_pages - absent_pages;
  610. after_bootmem = 1;
  611. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  612. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  613. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  614. /* Register memory areas for /proc/kcore */
  615. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  616. VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
  617. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  618. "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
  619. nr_free_pages() << (PAGE_SHIFT-10),
  620. max_pfn << (PAGE_SHIFT-10),
  621. codesize >> 10,
  622. absent_pages << (PAGE_SHIFT-10),
  623. reservedpages << (PAGE_SHIFT-10),
  624. datasize >> 10,
  625. initsize >> 10);
  626. }
  627. #ifdef CONFIG_DEBUG_RODATA
  628. const int rodata_test_data = 0xC3;
  629. EXPORT_SYMBOL_GPL(rodata_test_data);
  630. int kernel_set_to_readonly;
  631. void set_kernel_text_rw(void)
  632. {
  633. unsigned long start = PFN_ALIGN(_text);
  634. unsigned long end = PFN_ALIGN(__stop___ex_table);
  635. if (!kernel_set_to_readonly)
  636. return;
  637. pr_debug("Set kernel text: %lx - %lx for read write\n",
  638. start, end);
  639. /*
  640. * Make the kernel identity mapping for text RW. Kernel text
  641. * mapping will always be RO. Refer to the comment in
  642. * static_protections() in pageattr.c
  643. */
  644. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  645. }
  646. void set_kernel_text_ro(void)
  647. {
  648. unsigned long start = PFN_ALIGN(_text);
  649. unsigned long end = PFN_ALIGN(__stop___ex_table);
  650. if (!kernel_set_to_readonly)
  651. return;
  652. pr_debug("Set kernel text: %lx - %lx for read only\n",
  653. start, end);
  654. /*
  655. * Set the kernel identity mapping for text RO.
  656. */
  657. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  658. }
  659. void mark_rodata_ro(void)
  660. {
  661. unsigned long start = PFN_ALIGN(_text);
  662. unsigned long rodata_start =
  663. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  664. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  665. unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
  666. unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
  667. unsigned long data_start = (unsigned long) &_sdata;
  668. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  669. (end - start) >> 10);
  670. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  671. kernel_set_to_readonly = 1;
  672. /*
  673. * The rodata section (but not the kernel text!) should also be
  674. * not-executable.
  675. */
  676. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  677. rodata_test();
  678. #ifdef CONFIG_CPA_DEBUG
  679. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  680. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  681. printk(KERN_INFO "Testing CPA: again\n");
  682. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  683. #endif
  684. free_init_pages("unused kernel memory",
  685. (unsigned long) page_address(virt_to_page(text_end)),
  686. (unsigned long)
  687. page_address(virt_to_page(rodata_start)));
  688. free_init_pages("unused kernel memory",
  689. (unsigned long) page_address(virt_to_page(rodata_end)),
  690. (unsigned long) page_address(virt_to_page(data_start)));
  691. }
  692. #endif
  693. int kern_addr_valid(unsigned long addr)
  694. {
  695. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  696. pgd_t *pgd;
  697. pud_t *pud;
  698. pmd_t *pmd;
  699. pte_t *pte;
  700. if (above != 0 && above != -1UL)
  701. return 0;
  702. pgd = pgd_offset_k(addr);
  703. if (pgd_none(*pgd))
  704. return 0;
  705. pud = pud_offset(pgd, addr);
  706. if (pud_none(*pud))
  707. return 0;
  708. pmd = pmd_offset(pud, addr);
  709. if (pmd_none(*pmd))
  710. return 0;
  711. if (pmd_large(*pmd))
  712. return pfn_valid(pmd_pfn(*pmd));
  713. pte = pte_offset_kernel(pmd, addr);
  714. if (pte_none(*pte))
  715. return 0;
  716. return pfn_valid(pte_pfn(*pte));
  717. }
  718. /*
  719. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  720. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  721. * not need special handling anymore:
  722. */
  723. static struct vm_area_struct gate_vma = {
  724. .vm_start = VSYSCALL_START,
  725. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  726. .vm_page_prot = PAGE_READONLY_EXEC,
  727. .vm_flags = VM_READ | VM_EXEC
  728. };
  729. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  730. {
  731. #ifdef CONFIG_IA32_EMULATION
  732. if (test_tsk_thread_flag(tsk, TIF_IA32))
  733. return NULL;
  734. #endif
  735. return &gate_vma;
  736. }
  737. int in_gate_area(struct task_struct *task, unsigned long addr)
  738. {
  739. struct vm_area_struct *vma = get_gate_vma(task);
  740. if (!vma)
  741. return 0;
  742. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  743. }
  744. /*
  745. * Use this when you have no reliable task/vma, typically from interrupt
  746. * context. It is less reliable than using the task's vma and may give
  747. * false positives:
  748. */
  749. int in_gate_area_no_task(unsigned long addr)
  750. {
  751. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  752. }
  753. const char *arch_vma_name(struct vm_area_struct *vma)
  754. {
  755. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  756. return "[vdso]";
  757. if (vma == &gate_vma)
  758. return "[vsyscall]";
  759. return NULL;
  760. }
  761. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  762. /*
  763. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  764. */
  765. static long __meminitdata addr_start, addr_end;
  766. static void __meminitdata *p_start, *p_end;
  767. static int __meminitdata node_start;
  768. int __meminit
  769. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  770. {
  771. unsigned long addr = (unsigned long)start_page;
  772. unsigned long end = (unsigned long)(start_page + size);
  773. unsigned long next;
  774. pgd_t *pgd;
  775. pud_t *pud;
  776. pmd_t *pmd;
  777. for (; addr < end; addr = next) {
  778. void *p = NULL;
  779. pgd = vmemmap_pgd_populate(addr, node);
  780. if (!pgd)
  781. return -ENOMEM;
  782. pud = vmemmap_pud_populate(pgd, addr, node);
  783. if (!pud)
  784. return -ENOMEM;
  785. if (!cpu_has_pse) {
  786. next = (addr + PAGE_SIZE) & PAGE_MASK;
  787. pmd = vmemmap_pmd_populate(pud, addr, node);
  788. if (!pmd)
  789. return -ENOMEM;
  790. p = vmemmap_pte_populate(pmd, addr, node);
  791. if (!p)
  792. return -ENOMEM;
  793. addr_end = addr + PAGE_SIZE;
  794. p_end = p + PAGE_SIZE;
  795. } else {
  796. next = pmd_addr_end(addr, end);
  797. pmd = pmd_offset(pud, addr);
  798. if (pmd_none(*pmd)) {
  799. pte_t entry;
  800. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  801. if (!p)
  802. return -ENOMEM;
  803. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  804. PAGE_KERNEL_LARGE);
  805. set_pmd(pmd, __pmd(pte_val(entry)));
  806. /* check to see if we have contiguous blocks */
  807. if (p_end != p || node_start != node) {
  808. if (p_start)
  809. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  810. addr_start, addr_end-1, p_start, p_end-1, node_start);
  811. addr_start = addr;
  812. node_start = node;
  813. p_start = p;
  814. }
  815. addr_end = addr + PMD_SIZE;
  816. p_end = p + PMD_SIZE;
  817. } else
  818. vmemmap_verify((pte_t *)pmd, node, addr, next);
  819. }
  820. }
  821. sync_global_pgds((unsigned long)start_page, end);
  822. return 0;
  823. }
  824. void __meminit vmemmap_populate_print_last(void)
  825. {
  826. if (p_start) {
  827. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  828. addr_start, addr_end-1, p_start, p_end-1, node_start);
  829. p_start = NULL;
  830. p_end = NULL;
  831. node_start = 0;
  832. }
  833. }
  834. #endif