perf_event_amd.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410
  1. #ifdef CONFIG_CPU_SUP_AMD
  2. static __initconst const u64 amd_hw_cache_event_ids
  3. [PERF_COUNT_HW_CACHE_MAX]
  4. [PERF_COUNT_HW_CACHE_OP_MAX]
  5. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  6. {
  7. [ C(L1D) ] = {
  8. [ C(OP_READ) ] = {
  9. [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
  10. [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
  11. },
  12. [ C(OP_WRITE) ] = {
  13. [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
  14. [ C(RESULT_MISS) ] = 0,
  15. },
  16. [ C(OP_PREFETCH) ] = {
  17. [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
  18. [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
  19. },
  20. },
  21. [ C(L1I ) ] = {
  22. [ C(OP_READ) ] = {
  23. [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
  24. [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
  25. },
  26. [ C(OP_WRITE) ] = {
  27. [ C(RESULT_ACCESS) ] = -1,
  28. [ C(RESULT_MISS) ] = -1,
  29. },
  30. [ C(OP_PREFETCH) ] = {
  31. [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
  32. [ C(RESULT_MISS) ] = 0,
  33. },
  34. },
  35. [ C(LL ) ] = {
  36. [ C(OP_READ) ] = {
  37. [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
  38. [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
  39. },
  40. [ C(OP_WRITE) ] = {
  41. [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
  42. [ C(RESULT_MISS) ] = 0,
  43. },
  44. [ C(OP_PREFETCH) ] = {
  45. [ C(RESULT_ACCESS) ] = 0,
  46. [ C(RESULT_MISS) ] = 0,
  47. },
  48. },
  49. [ C(DTLB) ] = {
  50. [ C(OP_READ) ] = {
  51. [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
  52. [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
  53. },
  54. [ C(OP_WRITE) ] = {
  55. [ C(RESULT_ACCESS) ] = 0,
  56. [ C(RESULT_MISS) ] = 0,
  57. },
  58. [ C(OP_PREFETCH) ] = {
  59. [ C(RESULT_ACCESS) ] = 0,
  60. [ C(RESULT_MISS) ] = 0,
  61. },
  62. },
  63. [ C(ITLB) ] = {
  64. [ C(OP_READ) ] = {
  65. [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
  66. [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
  67. },
  68. [ C(OP_WRITE) ] = {
  69. [ C(RESULT_ACCESS) ] = -1,
  70. [ C(RESULT_MISS) ] = -1,
  71. },
  72. [ C(OP_PREFETCH) ] = {
  73. [ C(RESULT_ACCESS) ] = -1,
  74. [ C(RESULT_MISS) ] = -1,
  75. },
  76. },
  77. [ C(BPU ) ] = {
  78. [ C(OP_READ) ] = {
  79. [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
  80. [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
  81. },
  82. [ C(OP_WRITE) ] = {
  83. [ C(RESULT_ACCESS) ] = -1,
  84. [ C(RESULT_MISS) ] = -1,
  85. },
  86. [ C(OP_PREFETCH) ] = {
  87. [ C(RESULT_ACCESS) ] = -1,
  88. [ C(RESULT_MISS) ] = -1,
  89. },
  90. },
  91. };
  92. /*
  93. * AMD Performance Monitor K7 and later.
  94. */
  95. static const u64 amd_perfmon_event_map[] =
  96. {
  97. [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
  98. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  99. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
  100. [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
  101. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
  102. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
  103. };
  104. static u64 amd_pmu_event_map(int hw_event)
  105. {
  106. return amd_perfmon_event_map[hw_event];
  107. }
  108. static int amd_pmu_hw_config(struct perf_event *event)
  109. {
  110. int ret = x86_pmu_hw_config(event);
  111. if (ret)
  112. return ret;
  113. if (event->attr.type != PERF_TYPE_RAW)
  114. return 0;
  115. event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
  116. return 0;
  117. }
  118. /*
  119. * AMD64 events are detected based on their event codes.
  120. */
  121. static inline int amd_is_nb_event(struct hw_perf_event *hwc)
  122. {
  123. return (hwc->config & 0xe0) == 0xe0;
  124. }
  125. static inline int amd_has_nb(struct cpu_hw_events *cpuc)
  126. {
  127. struct amd_nb *nb = cpuc->amd_nb;
  128. return nb && nb->nb_id != -1;
  129. }
  130. static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
  131. struct perf_event *event)
  132. {
  133. struct hw_perf_event *hwc = &event->hw;
  134. struct amd_nb *nb = cpuc->amd_nb;
  135. int i;
  136. /*
  137. * only care about NB events
  138. */
  139. if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
  140. return;
  141. /*
  142. * need to scan whole list because event may not have
  143. * been assigned during scheduling
  144. *
  145. * no race condition possible because event can only
  146. * be removed on one CPU at a time AND PMU is disabled
  147. * when we come here
  148. */
  149. for (i = 0; i < x86_pmu.num_counters; i++) {
  150. if (nb->owners[i] == event) {
  151. cmpxchg(nb->owners+i, event, NULL);
  152. break;
  153. }
  154. }
  155. }
  156. /*
  157. * AMD64 NorthBridge events need special treatment because
  158. * counter access needs to be synchronized across all cores
  159. * of a package. Refer to BKDG section 3.12
  160. *
  161. * NB events are events measuring L3 cache, Hypertransport
  162. * traffic. They are identified by an event code >= 0xe00.
  163. * They measure events on the NorthBride which is shared
  164. * by all cores on a package. NB events are counted on a
  165. * shared set of counters. When a NB event is programmed
  166. * in a counter, the data actually comes from a shared
  167. * counter. Thus, access to those counters needs to be
  168. * synchronized.
  169. *
  170. * We implement the synchronization such that no two cores
  171. * can be measuring NB events using the same counters. Thus,
  172. * we maintain a per-NB allocation table. The available slot
  173. * is propagated using the event_constraint structure.
  174. *
  175. * We provide only one choice for each NB event based on
  176. * the fact that only NB events have restrictions. Consequently,
  177. * if a counter is available, there is a guarantee the NB event
  178. * will be assigned to it. If no slot is available, an empty
  179. * constraint is returned and scheduling will eventually fail
  180. * for this event.
  181. *
  182. * Note that all cores attached the same NB compete for the same
  183. * counters to host NB events, this is why we use atomic ops. Some
  184. * multi-chip CPUs may have more than one NB.
  185. *
  186. * Given that resources are allocated (cmpxchg), they must be
  187. * eventually freed for others to use. This is accomplished by
  188. * calling amd_put_event_constraints().
  189. *
  190. * Non NB events are not impacted by this restriction.
  191. */
  192. static struct event_constraint *
  193. amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  194. {
  195. struct hw_perf_event *hwc = &event->hw;
  196. struct amd_nb *nb = cpuc->amd_nb;
  197. struct perf_event *old = NULL;
  198. int max = x86_pmu.num_counters;
  199. int i, j, k = -1;
  200. /*
  201. * if not NB event or no NB, then no constraints
  202. */
  203. if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
  204. return &unconstrained;
  205. /*
  206. * detect if already present, if so reuse
  207. *
  208. * cannot merge with actual allocation
  209. * because of possible holes
  210. *
  211. * event can already be present yet not assigned (in hwc->idx)
  212. * because of successive calls to x86_schedule_events() from
  213. * hw_perf_group_sched_in() without hw_perf_enable()
  214. */
  215. for (i = 0; i < max; i++) {
  216. /*
  217. * keep track of first free slot
  218. */
  219. if (k == -1 && !nb->owners[i])
  220. k = i;
  221. /* already present, reuse */
  222. if (nb->owners[i] == event)
  223. goto done;
  224. }
  225. /*
  226. * not present, so grab a new slot
  227. * starting either at:
  228. */
  229. if (hwc->idx != -1) {
  230. /* previous assignment */
  231. i = hwc->idx;
  232. } else if (k != -1) {
  233. /* start from free slot found */
  234. i = k;
  235. } else {
  236. /*
  237. * event not found, no slot found in
  238. * first pass, try again from the
  239. * beginning
  240. */
  241. i = 0;
  242. }
  243. j = i;
  244. do {
  245. old = cmpxchg(nb->owners+i, NULL, event);
  246. if (!old)
  247. break;
  248. if (++i == max)
  249. i = 0;
  250. } while (i != j);
  251. done:
  252. if (!old)
  253. return &nb->event_constraints[i];
  254. return &emptyconstraint;
  255. }
  256. static struct amd_nb *amd_alloc_nb(int cpu)
  257. {
  258. struct amd_nb *nb;
  259. int i;
  260. nb = kmalloc_node(sizeof(struct amd_nb), GFP_KERNEL | __GFP_ZERO,
  261. cpu_to_node(cpu));
  262. if (!nb)
  263. return NULL;
  264. nb->nb_id = -1;
  265. /*
  266. * initialize all possible NB constraints
  267. */
  268. for (i = 0; i < x86_pmu.num_counters; i++) {
  269. __set_bit(i, nb->event_constraints[i].idxmsk);
  270. nb->event_constraints[i].weight = 1;
  271. }
  272. return nb;
  273. }
  274. static int amd_pmu_cpu_prepare(int cpu)
  275. {
  276. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  277. WARN_ON_ONCE(cpuc->amd_nb);
  278. if (boot_cpu_data.x86_max_cores < 2)
  279. return NOTIFY_OK;
  280. cpuc->amd_nb = amd_alloc_nb(cpu);
  281. if (!cpuc->amd_nb)
  282. return NOTIFY_BAD;
  283. return NOTIFY_OK;
  284. }
  285. static void amd_pmu_cpu_starting(int cpu)
  286. {
  287. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  288. struct amd_nb *nb;
  289. int i, nb_id;
  290. if (boot_cpu_data.x86_max_cores < 2)
  291. return;
  292. nb_id = amd_get_nb_id(cpu);
  293. WARN_ON_ONCE(nb_id == BAD_APICID);
  294. for_each_online_cpu(i) {
  295. nb = per_cpu(cpu_hw_events, i).amd_nb;
  296. if (WARN_ON_ONCE(!nb))
  297. continue;
  298. if (nb->nb_id == nb_id) {
  299. kfree(cpuc->amd_nb);
  300. cpuc->amd_nb = nb;
  301. break;
  302. }
  303. }
  304. cpuc->amd_nb->nb_id = nb_id;
  305. cpuc->amd_nb->refcnt++;
  306. }
  307. static void amd_pmu_cpu_dead(int cpu)
  308. {
  309. struct cpu_hw_events *cpuhw;
  310. if (boot_cpu_data.x86_max_cores < 2)
  311. return;
  312. cpuhw = &per_cpu(cpu_hw_events, cpu);
  313. if (cpuhw->amd_nb) {
  314. struct amd_nb *nb = cpuhw->amd_nb;
  315. if (nb->nb_id == -1 || --nb->refcnt == 0)
  316. kfree(nb);
  317. cpuhw->amd_nb = NULL;
  318. }
  319. }
  320. static __initconst const struct x86_pmu amd_pmu = {
  321. .name = "AMD",
  322. .handle_irq = x86_pmu_handle_irq,
  323. .disable_all = x86_pmu_disable_all,
  324. .enable_all = x86_pmu_enable_all,
  325. .enable = x86_pmu_enable_event,
  326. .disable = x86_pmu_disable_event,
  327. .hw_config = amd_pmu_hw_config,
  328. .schedule_events = x86_schedule_events,
  329. .eventsel = MSR_K7_EVNTSEL0,
  330. .perfctr = MSR_K7_PERFCTR0,
  331. .event_map = amd_pmu_event_map,
  332. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  333. .num_counters = 4,
  334. .cntval_bits = 48,
  335. .cntval_mask = (1ULL << 48) - 1,
  336. .apic = 1,
  337. /* use highest bit to detect overflow */
  338. .max_period = (1ULL << 47) - 1,
  339. .get_event_constraints = amd_get_event_constraints,
  340. .put_event_constraints = amd_put_event_constraints,
  341. .cpu_prepare = amd_pmu_cpu_prepare,
  342. .cpu_starting = amd_pmu_cpu_starting,
  343. .cpu_dead = amd_pmu_cpu_dead,
  344. };
  345. static __init int amd_pmu_init(void)
  346. {
  347. /* Performance-monitoring supported from K7 and later: */
  348. if (boot_cpu_data.x86 < 6)
  349. return -ENODEV;
  350. x86_pmu = amd_pmu;
  351. /* Events are common for all AMDs */
  352. memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
  353. sizeof(hw_cache_event_ids));
  354. return 0;
  355. }
  356. #else /* CONFIG_CPU_SUP_AMD */
  357. static int amd_pmu_init(void)
  358. {
  359. return 0;
  360. }
  361. #endif