crash_dump.c 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176
  1. /*
  2. * Routines for doing kexec-based kdump.
  3. *
  4. * Copyright (C) 2005, IBM Corp.
  5. *
  6. * Created by: Michael Ellerman
  7. *
  8. * This source code is licensed under the GNU General Public License,
  9. * Version 2. See the file COPYING for more details.
  10. */
  11. #undef DEBUG
  12. #include <linux/crash_dump.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/memblock.h>
  15. #include <asm/code-patching.h>
  16. #include <asm/kdump.h>
  17. #include <asm/prom.h>
  18. #include <asm/firmware.h>
  19. #include <asm/uaccess.h>
  20. #include <asm/rtas.h>
  21. #ifdef DEBUG
  22. #include <asm/udbg.h>
  23. #define DBG(fmt...) udbg_printf(fmt)
  24. #else
  25. #define DBG(fmt...)
  26. #endif
  27. /* Stores the physical address of elf header of crash image. */
  28. unsigned long long elfcorehdr_addr = ELFCORE_ADDR_MAX;
  29. #ifndef CONFIG_RELOCATABLE
  30. void __init reserve_kdump_trampoline(void)
  31. {
  32. memblock_reserve(0, KDUMP_RESERVE_LIMIT);
  33. }
  34. static void __init create_trampoline(unsigned long addr)
  35. {
  36. unsigned int *p = (unsigned int *)addr;
  37. /* The maximum range of a single instruction branch, is the current
  38. * instruction's address + (32 MB - 4) bytes. For the trampoline we
  39. * need to branch to current address + 32 MB. So we insert a nop at
  40. * the trampoline address, then the next instruction (+ 4 bytes)
  41. * does a branch to (32 MB - 4). The net effect is that when we
  42. * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
  43. * two instructions it doesn't require any registers.
  44. */
  45. patch_instruction(p, PPC_INST_NOP);
  46. patch_branch(++p, addr + PHYSICAL_START, 0);
  47. }
  48. void __init setup_kdump_trampoline(void)
  49. {
  50. unsigned long i;
  51. DBG(" -> setup_kdump_trampoline()\n");
  52. for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
  53. create_trampoline(i);
  54. }
  55. #ifdef CONFIG_PPC_PSERIES
  56. create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
  57. create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
  58. #endif /* CONFIG_PPC_PSERIES */
  59. DBG(" <- setup_kdump_trampoline()\n");
  60. }
  61. #endif /* CONFIG_RELOCATABLE */
  62. /*
  63. * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
  64. * is_kdump_kernel() to determine if we are booting after a panic. Hence
  65. * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
  66. */
  67. static int __init parse_elfcorehdr(char *p)
  68. {
  69. if (p)
  70. elfcorehdr_addr = memparse(p, &p);
  71. return 1;
  72. }
  73. __setup("elfcorehdr=", parse_elfcorehdr);
  74. static int __init parse_savemaxmem(char *p)
  75. {
  76. if (p)
  77. saved_max_pfn = (memparse(p, &p) >> PAGE_SHIFT) - 1;
  78. return 1;
  79. }
  80. __setup("savemaxmem=", parse_savemaxmem);
  81. static size_t copy_oldmem_vaddr(void *vaddr, char *buf, size_t csize,
  82. unsigned long offset, int userbuf)
  83. {
  84. if (userbuf) {
  85. if (copy_to_user((char __user *)buf, (vaddr + offset), csize))
  86. return -EFAULT;
  87. } else
  88. memcpy(buf, (vaddr + offset), csize);
  89. return csize;
  90. }
  91. /**
  92. * copy_oldmem_page - copy one page from "oldmem"
  93. * @pfn: page frame number to be copied
  94. * @buf: target memory address for the copy; this can be in kernel address
  95. * space or user address space (see @userbuf)
  96. * @csize: number of bytes to copy
  97. * @offset: offset in bytes into the page (based on pfn) to begin the copy
  98. * @userbuf: if set, @buf is in user address space, use copy_to_user(),
  99. * otherwise @buf is in kernel address space, use memcpy().
  100. *
  101. * Copy a page from "oldmem". For this page, there is no pte mapped
  102. * in the current kernel. We stitch up a pte, similar to kmap_atomic.
  103. */
  104. ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
  105. size_t csize, unsigned long offset, int userbuf)
  106. {
  107. void *vaddr;
  108. if (!csize)
  109. return 0;
  110. csize = min_t(size_t, csize, PAGE_SIZE);
  111. if ((min_low_pfn < pfn) && (pfn < max_pfn)) {
  112. vaddr = __va(pfn << PAGE_SHIFT);
  113. csize = copy_oldmem_vaddr(vaddr, buf, csize, offset, userbuf);
  114. } else {
  115. vaddr = __ioremap(pfn << PAGE_SHIFT, PAGE_SIZE, 0);
  116. csize = copy_oldmem_vaddr(vaddr, buf, csize, offset, userbuf);
  117. iounmap(vaddr);
  118. }
  119. return csize;
  120. }
  121. #ifdef CONFIG_PPC_RTAS
  122. /*
  123. * The crashkernel region will almost always overlap the RTAS region, so
  124. * we have to be careful when shrinking the crashkernel region.
  125. */
  126. void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
  127. {
  128. unsigned long addr;
  129. const u32 *basep, *sizep;
  130. unsigned int rtas_start = 0, rtas_end = 0;
  131. basep = of_get_property(rtas.dev, "linux,rtas-base", NULL);
  132. sizep = of_get_property(rtas.dev, "rtas-size", NULL);
  133. if (basep && sizep) {
  134. rtas_start = *basep;
  135. rtas_end = *basep + *sizep;
  136. }
  137. for (addr = begin; addr < end; addr += PAGE_SIZE) {
  138. /* Does this page overlap with the RTAS region? */
  139. if (addr <= rtas_end && ((addr + PAGE_SIZE) > rtas_start))
  140. continue;
  141. ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
  142. init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
  143. free_page((unsigned long)__va(addr));
  144. totalram_pages++;
  145. }
  146. }
  147. #endif