t4_hw.c 87 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/init.h>
  35. #include <linux/delay.h>
  36. #include "cxgb4.h"
  37. #include "t4_regs.h"
  38. #include "t4fw_api.h"
  39. /**
  40. * t4_wait_op_done_val - wait until an operation is completed
  41. * @adapter: the adapter performing the operation
  42. * @reg: the register to check for completion
  43. * @mask: a single-bit field within @reg that indicates completion
  44. * @polarity: the value of the field when the operation is completed
  45. * @attempts: number of check iterations
  46. * @delay: delay in usecs between iterations
  47. * @valp: where to store the value of the register at completion time
  48. *
  49. * Wait until an operation is completed by checking a bit in a register
  50. * up to @attempts times. If @valp is not NULL the value of the register
  51. * at the time it indicated completion is stored there. Returns 0 if the
  52. * operation completes and -EAGAIN otherwise.
  53. */
  54. static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  55. int polarity, int attempts, int delay, u32 *valp)
  56. {
  57. while (1) {
  58. u32 val = t4_read_reg(adapter, reg);
  59. if (!!(val & mask) == polarity) {
  60. if (valp)
  61. *valp = val;
  62. return 0;
  63. }
  64. if (--attempts == 0)
  65. return -EAGAIN;
  66. if (delay)
  67. udelay(delay);
  68. }
  69. }
  70. static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  71. int polarity, int attempts, int delay)
  72. {
  73. return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  74. delay, NULL);
  75. }
  76. /**
  77. * t4_set_reg_field - set a register field to a value
  78. * @adapter: the adapter to program
  79. * @addr: the register address
  80. * @mask: specifies the portion of the register to modify
  81. * @val: the new value for the register field
  82. *
  83. * Sets a register field specified by the supplied mask to the
  84. * given value.
  85. */
  86. void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  87. u32 val)
  88. {
  89. u32 v = t4_read_reg(adapter, addr) & ~mask;
  90. t4_write_reg(adapter, addr, v | val);
  91. (void) t4_read_reg(adapter, addr); /* flush */
  92. }
  93. /**
  94. * t4_read_indirect - read indirectly addressed registers
  95. * @adap: the adapter
  96. * @addr_reg: register holding the indirect address
  97. * @data_reg: register holding the value of the indirect register
  98. * @vals: where the read register values are stored
  99. * @nregs: how many indirect registers to read
  100. * @start_idx: index of first indirect register to read
  101. *
  102. * Reads registers that are accessed indirectly through an address/data
  103. * register pair.
  104. */
  105. static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
  106. unsigned int data_reg, u32 *vals,
  107. unsigned int nregs, unsigned int start_idx)
  108. {
  109. while (nregs--) {
  110. t4_write_reg(adap, addr_reg, start_idx);
  111. *vals++ = t4_read_reg(adap, data_reg);
  112. start_idx++;
  113. }
  114. }
  115. /*
  116. * Get the reply to a mailbox command and store it in @rpl in big-endian order.
  117. */
  118. static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
  119. u32 mbox_addr)
  120. {
  121. for ( ; nflit; nflit--, mbox_addr += 8)
  122. *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
  123. }
  124. /*
  125. * Handle a FW assertion reported in a mailbox.
  126. */
  127. static void fw_asrt(struct adapter *adap, u32 mbox_addr)
  128. {
  129. struct fw_debug_cmd asrt;
  130. get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
  131. dev_alert(adap->pdev_dev,
  132. "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
  133. asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
  134. ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
  135. }
  136. static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
  137. {
  138. dev_err(adap->pdev_dev,
  139. "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
  140. (unsigned long long)t4_read_reg64(adap, data_reg),
  141. (unsigned long long)t4_read_reg64(adap, data_reg + 8),
  142. (unsigned long long)t4_read_reg64(adap, data_reg + 16),
  143. (unsigned long long)t4_read_reg64(adap, data_reg + 24),
  144. (unsigned long long)t4_read_reg64(adap, data_reg + 32),
  145. (unsigned long long)t4_read_reg64(adap, data_reg + 40),
  146. (unsigned long long)t4_read_reg64(adap, data_reg + 48),
  147. (unsigned long long)t4_read_reg64(adap, data_reg + 56));
  148. }
  149. /**
  150. * t4_wr_mbox_meat - send a command to FW through the given mailbox
  151. * @adap: the adapter
  152. * @mbox: index of the mailbox to use
  153. * @cmd: the command to write
  154. * @size: command length in bytes
  155. * @rpl: where to optionally store the reply
  156. * @sleep_ok: if true we may sleep while awaiting command completion
  157. *
  158. * Sends the given command to FW through the selected mailbox and waits
  159. * for the FW to execute the command. If @rpl is not %NULL it is used to
  160. * store the FW's reply to the command. The command and its optional
  161. * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
  162. * to respond. @sleep_ok determines whether we may sleep while awaiting
  163. * the response. If sleeping is allowed we use progressive backoff
  164. * otherwise we spin.
  165. *
  166. * The return value is 0 on success or a negative errno on failure. A
  167. * failure can happen either because we are not able to execute the
  168. * command or FW executes it but signals an error. In the latter case
  169. * the return value is the error code indicated by FW (negated).
  170. */
  171. int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
  172. void *rpl, bool sleep_ok)
  173. {
  174. static const int delay[] = {
  175. 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
  176. };
  177. u32 v;
  178. u64 res;
  179. int i, ms, delay_idx;
  180. const __be64 *p = cmd;
  181. u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
  182. u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
  183. if ((size & 15) || size > MBOX_LEN)
  184. return -EINVAL;
  185. /*
  186. * If the device is off-line, as in EEH, commands will time out.
  187. * Fail them early so we don't waste time waiting.
  188. */
  189. if (adap->pdev->error_state != pci_channel_io_normal)
  190. return -EIO;
  191. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  192. for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
  193. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  194. if (v != MBOX_OWNER_DRV)
  195. return v ? -EBUSY : -ETIMEDOUT;
  196. for (i = 0; i < size; i += 8)
  197. t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
  198. t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
  199. t4_read_reg(adap, ctl_reg); /* flush write */
  200. delay_idx = 0;
  201. ms = delay[0];
  202. for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
  203. if (sleep_ok) {
  204. ms = delay[delay_idx]; /* last element may repeat */
  205. if (delay_idx < ARRAY_SIZE(delay) - 1)
  206. delay_idx++;
  207. msleep(ms);
  208. } else
  209. mdelay(ms);
  210. v = t4_read_reg(adap, ctl_reg);
  211. if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
  212. if (!(v & MBMSGVALID)) {
  213. t4_write_reg(adap, ctl_reg, 0);
  214. continue;
  215. }
  216. res = t4_read_reg64(adap, data_reg);
  217. if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
  218. fw_asrt(adap, data_reg);
  219. res = FW_CMD_RETVAL(EIO);
  220. } else if (rpl)
  221. get_mbox_rpl(adap, rpl, size / 8, data_reg);
  222. if (FW_CMD_RETVAL_GET((int)res))
  223. dump_mbox(adap, mbox, data_reg);
  224. t4_write_reg(adap, ctl_reg, 0);
  225. return -FW_CMD_RETVAL_GET((int)res);
  226. }
  227. }
  228. dump_mbox(adap, mbox, data_reg);
  229. dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
  230. *(const u8 *)cmd, mbox);
  231. return -ETIMEDOUT;
  232. }
  233. /**
  234. * t4_mc_read - read from MC through backdoor accesses
  235. * @adap: the adapter
  236. * @addr: address of first byte requested
  237. * @data: 64 bytes of data containing the requested address
  238. * @ecc: where to store the corresponding 64-bit ECC word
  239. *
  240. * Read 64 bytes of data from MC starting at a 64-byte-aligned address
  241. * that covers the requested address @addr. If @parity is not %NULL it
  242. * is assigned the 64-bit ECC word for the read data.
  243. */
  244. int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc)
  245. {
  246. int i;
  247. if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST)
  248. return -EBUSY;
  249. t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU);
  250. t4_write_reg(adap, MC_BIST_CMD_LEN, 64);
  251. t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc);
  252. t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST |
  253. BIST_CMD_GAP(1));
  254. i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1);
  255. if (i)
  256. return i;
  257. #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
  258. for (i = 15; i >= 0; i--)
  259. *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
  260. if (ecc)
  261. *ecc = t4_read_reg64(adap, MC_DATA(16));
  262. #undef MC_DATA
  263. return 0;
  264. }
  265. /**
  266. * t4_edc_read - read from EDC through backdoor accesses
  267. * @adap: the adapter
  268. * @idx: which EDC to access
  269. * @addr: address of first byte requested
  270. * @data: 64 bytes of data containing the requested address
  271. * @ecc: where to store the corresponding 64-bit ECC word
  272. *
  273. * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
  274. * that covers the requested address @addr. If @parity is not %NULL it
  275. * is assigned the 64-bit ECC word for the read data.
  276. */
  277. int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  278. {
  279. int i;
  280. idx *= EDC_STRIDE;
  281. if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST)
  282. return -EBUSY;
  283. t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU);
  284. t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64);
  285. t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc);
  286. t4_write_reg(adap, EDC_BIST_CMD + idx,
  287. BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
  288. i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1);
  289. if (i)
  290. return i;
  291. #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
  292. for (i = 15; i >= 0; i--)
  293. *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
  294. if (ecc)
  295. *ecc = t4_read_reg64(adap, EDC_DATA(16));
  296. #undef EDC_DATA
  297. return 0;
  298. }
  299. /*
  300. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  301. * VPD-R header.
  302. */
  303. struct t4_vpd_hdr {
  304. u8 id_tag;
  305. u8 id_len[2];
  306. u8 id_data[ID_LEN];
  307. u8 vpdr_tag;
  308. u8 vpdr_len[2];
  309. };
  310. #define EEPROM_STAT_ADDR 0x7bfc
  311. #define VPD_BASE 0
  312. #define VPD_LEN 512
  313. /**
  314. * t4_seeprom_wp - enable/disable EEPROM write protection
  315. * @adapter: the adapter
  316. * @enable: whether to enable or disable write protection
  317. *
  318. * Enables or disables write protection on the serial EEPROM.
  319. */
  320. int t4_seeprom_wp(struct adapter *adapter, bool enable)
  321. {
  322. unsigned int v = enable ? 0xc : 0;
  323. int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
  324. return ret < 0 ? ret : 0;
  325. }
  326. /**
  327. * get_vpd_params - read VPD parameters from VPD EEPROM
  328. * @adapter: adapter to read
  329. * @p: where to store the parameters
  330. *
  331. * Reads card parameters stored in VPD EEPROM.
  332. */
  333. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  334. {
  335. int i, ret;
  336. int ec, sn;
  337. u8 vpd[VPD_LEN], csum;
  338. unsigned int vpdr_len;
  339. const struct t4_vpd_hdr *v;
  340. ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(vpd), vpd);
  341. if (ret < 0)
  342. return ret;
  343. v = (const struct t4_vpd_hdr *)vpd;
  344. vpdr_len = pci_vpd_lrdt_size(&v->vpdr_tag);
  345. if (vpdr_len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
  346. dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
  347. return -EINVAL;
  348. }
  349. #define FIND_VPD_KW(var, name) do { \
  350. var = pci_vpd_find_info_keyword(&v->id_tag, sizeof(struct t4_vpd_hdr), \
  351. vpdr_len, name); \
  352. if (var < 0) { \
  353. dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
  354. return -EINVAL; \
  355. } \
  356. var += PCI_VPD_INFO_FLD_HDR_SIZE; \
  357. } while (0)
  358. FIND_VPD_KW(i, "RV");
  359. for (csum = 0; i >= 0; i--)
  360. csum += vpd[i];
  361. if (csum) {
  362. dev_err(adapter->pdev_dev,
  363. "corrupted VPD EEPROM, actual csum %u\n", csum);
  364. return -EINVAL;
  365. }
  366. FIND_VPD_KW(ec, "EC");
  367. FIND_VPD_KW(sn, "SN");
  368. #undef FIND_VPD_KW
  369. memcpy(p->id, v->id_data, ID_LEN);
  370. strim(p->id);
  371. memcpy(p->ec, vpd + ec, EC_LEN);
  372. strim(p->ec);
  373. i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
  374. memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
  375. strim(p->sn);
  376. return 0;
  377. }
  378. /* serial flash and firmware constants */
  379. enum {
  380. SF_ATTEMPTS = 10, /* max retries for SF operations */
  381. /* flash command opcodes */
  382. SF_PROG_PAGE = 2, /* program page */
  383. SF_WR_DISABLE = 4, /* disable writes */
  384. SF_RD_STATUS = 5, /* read status register */
  385. SF_WR_ENABLE = 6, /* enable writes */
  386. SF_RD_DATA_FAST = 0xb, /* read flash */
  387. SF_RD_ID = 0x9f, /* read ID */
  388. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  389. FW_MAX_SIZE = 512 * 1024,
  390. };
  391. /**
  392. * sf1_read - read data from the serial flash
  393. * @adapter: the adapter
  394. * @byte_cnt: number of bytes to read
  395. * @cont: whether another operation will be chained
  396. * @lock: whether to lock SF for PL access only
  397. * @valp: where to store the read data
  398. *
  399. * Reads up to 4 bytes of data from the serial flash. The location of
  400. * the read needs to be specified prior to calling this by issuing the
  401. * appropriate commands to the serial flash.
  402. */
  403. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  404. int lock, u32 *valp)
  405. {
  406. int ret;
  407. if (!byte_cnt || byte_cnt > 4)
  408. return -EINVAL;
  409. if (t4_read_reg(adapter, SF_OP) & BUSY)
  410. return -EBUSY;
  411. cont = cont ? SF_CONT : 0;
  412. lock = lock ? SF_LOCK : 0;
  413. t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
  414. ret = t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
  415. if (!ret)
  416. *valp = t4_read_reg(adapter, SF_DATA);
  417. return ret;
  418. }
  419. /**
  420. * sf1_write - write data to the serial flash
  421. * @adapter: the adapter
  422. * @byte_cnt: number of bytes to write
  423. * @cont: whether another operation will be chained
  424. * @lock: whether to lock SF for PL access only
  425. * @val: value to write
  426. *
  427. * Writes up to 4 bytes of data to the serial flash. The location of
  428. * the write needs to be specified prior to calling this by issuing the
  429. * appropriate commands to the serial flash.
  430. */
  431. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  432. int lock, u32 val)
  433. {
  434. if (!byte_cnt || byte_cnt > 4)
  435. return -EINVAL;
  436. if (t4_read_reg(adapter, SF_OP) & BUSY)
  437. return -EBUSY;
  438. cont = cont ? SF_CONT : 0;
  439. lock = lock ? SF_LOCK : 0;
  440. t4_write_reg(adapter, SF_DATA, val);
  441. t4_write_reg(adapter, SF_OP, lock |
  442. cont | BYTECNT(byte_cnt - 1) | OP_WR);
  443. return t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
  444. }
  445. /**
  446. * flash_wait_op - wait for a flash operation to complete
  447. * @adapter: the adapter
  448. * @attempts: max number of polls of the status register
  449. * @delay: delay between polls in ms
  450. *
  451. * Wait for a flash operation to complete by polling the status register.
  452. */
  453. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  454. {
  455. int ret;
  456. u32 status;
  457. while (1) {
  458. if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
  459. (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
  460. return ret;
  461. if (!(status & 1))
  462. return 0;
  463. if (--attempts == 0)
  464. return -EAGAIN;
  465. if (delay)
  466. msleep(delay);
  467. }
  468. }
  469. /**
  470. * t4_read_flash - read words from serial flash
  471. * @adapter: the adapter
  472. * @addr: the start address for the read
  473. * @nwords: how many 32-bit words to read
  474. * @data: where to store the read data
  475. * @byte_oriented: whether to store data as bytes or as words
  476. *
  477. * Read the specified number of 32-bit words from the serial flash.
  478. * If @byte_oriented is set the read data is stored as a byte array
  479. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  480. * natural endianess.
  481. */
  482. static int t4_read_flash(struct adapter *adapter, unsigned int addr,
  483. unsigned int nwords, u32 *data, int byte_oriented)
  484. {
  485. int ret;
  486. if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
  487. return -EINVAL;
  488. addr = swab32(addr) | SF_RD_DATA_FAST;
  489. if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
  490. (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
  491. return ret;
  492. for ( ; nwords; nwords--, data++) {
  493. ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
  494. if (nwords == 1)
  495. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  496. if (ret)
  497. return ret;
  498. if (byte_oriented)
  499. *data = htonl(*data);
  500. }
  501. return 0;
  502. }
  503. /**
  504. * t4_write_flash - write up to a page of data to the serial flash
  505. * @adapter: the adapter
  506. * @addr: the start address to write
  507. * @n: length of data to write in bytes
  508. * @data: the data to write
  509. *
  510. * Writes up to a page of data (256 bytes) to the serial flash starting
  511. * at the given address. All the data must be written to the same page.
  512. */
  513. static int t4_write_flash(struct adapter *adapter, unsigned int addr,
  514. unsigned int n, const u8 *data)
  515. {
  516. int ret;
  517. u32 buf[64];
  518. unsigned int i, c, left, val, offset = addr & 0xff;
  519. if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
  520. return -EINVAL;
  521. val = swab32(addr) | SF_PROG_PAGE;
  522. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  523. (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
  524. goto unlock;
  525. for (left = n; left; left -= c) {
  526. c = min(left, 4U);
  527. for (val = 0, i = 0; i < c; ++i)
  528. val = (val << 8) + *data++;
  529. ret = sf1_write(adapter, c, c != left, 1, val);
  530. if (ret)
  531. goto unlock;
  532. }
  533. ret = flash_wait_op(adapter, 8, 1);
  534. if (ret)
  535. goto unlock;
  536. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  537. /* Read the page to verify the write succeeded */
  538. ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  539. if (ret)
  540. return ret;
  541. if (memcmp(data - n, (u8 *)buf + offset, n)) {
  542. dev_err(adapter->pdev_dev,
  543. "failed to correctly write the flash page at %#x\n",
  544. addr);
  545. return -EIO;
  546. }
  547. return 0;
  548. unlock:
  549. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  550. return ret;
  551. }
  552. /**
  553. * get_fw_version - read the firmware version
  554. * @adapter: the adapter
  555. * @vers: where to place the version
  556. *
  557. * Reads the FW version from flash.
  558. */
  559. static int get_fw_version(struct adapter *adapter, u32 *vers)
  560. {
  561. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  562. offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
  563. }
  564. /**
  565. * get_tp_version - read the TP microcode version
  566. * @adapter: the adapter
  567. * @vers: where to place the version
  568. *
  569. * Reads the TP microcode version from flash.
  570. */
  571. static int get_tp_version(struct adapter *adapter, u32 *vers)
  572. {
  573. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  574. offsetof(struct fw_hdr, tp_microcode_ver),
  575. 1, vers, 0);
  576. }
  577. /**
  578. * t4_check_fw_version - check if the FW is compatible with this driver
  579. * @adapter: the adapter
  580. *
  581. * Checks if an adapter's FW is compatible with the driver. Returns 0
  582. * if there's exact match, a negative error if the version could not be
  583. * read or there's a major version mismatch, and a positive value if the
  584. * expected major version is found but there's a minor version mismatch.
  585. */
  586. int t4_check_fw_version(struct adapter *adapter)
  587. {
  588. u32 api_vers[2];
  589. int ret, major, minor, micro;
  590. ret = get_fw_version(adapter, &adapter->params.fw_vers);
  591. if (!ret)
  592. ret = get_tp_version(adapter, &adapter->params.tp_vers);
  593. if (!ret)
  594. ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
  595. offsetof(struct fw_hdr, intfver_nic),
  596. 2, api_vers, 1);
  597. if (ret)
  598. return ret;
  599. major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
  600. minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
  601. micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
  602. memcpy(adapter->params.api_vers, api_vers,
  603. sizeof(adapter->params.api_vers));
  604. if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */
  605. dev_err(adapter->pdev_dev,
  606. "card FW has major version %u, driver wants %u\n",
  607. major, FW_VERSION_MAJOR);
  608. return -EINVAL;
  609. }
  610. if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
  611. return 0; /* perfect match */
  612. /* Minor/micro version mismatch. Report it but often it's OK. */
  613. return 1;
  614. }
  615. /**
  616. * t4_flash_erase_sectors - erase a range of flash sectors
  617. * @adapter: the adapter
  618. * @start: the first sector to erase
  619. * @end: the last sector to erase
  620. *
  621. * Erases the sectors in the given inclusive range.
  622. */
  623. static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
  624. {
  625. int ret = 0;
  626. while (start <= end) {
  627. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  628. (ret = sf1_write(adapter, 4, 0, 1,
  629. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  630. (ret = flash_wait_op(adapter, 14, 500)) != 0) {
  631. dev_err(adapter->pdev_dev,
  632. "erase of flash sector %d failed, error %d\n",
  633. start, ret);
  634. break;
  635. }
  636. start++;
  637. }
  638. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  639. return ret;
  640. }
  641. /**
  642. * t4_load_fw - download firmware
  643. * @adap: the adapter
  644. * @fw_data: the firmware image to write
  645. * @size: image size
  646. *
  647. * Write the supplied firmware image to the card's serial flash.
  648. */
  649. int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
  650. {
  651. u32 csum;
  652. int ret, addr;
  653. unsigned int i;
  654. u8 first_page[SF_PAGE_SIZE];
  655. const u32 *p = (const u32 *)fw_data;
  656. const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
  657. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  658. unsigned int fw_img_start = adap->params.sf_fw_start;
  659. unsigned int fw_start_sec = fw_img_start / sf_sec_size;
  660. if (!size) {
  661. dev_err(adap->pdev_dev, "FW image has no data\n");
  662. return -EINVAL;
  663. }
  664. if (size & 511) {
  665. dev_err(adap->pdev_dev,
  666. "FW image size not multiple of 512 bytes\n");
  667. return -EINVAL;
  668. }
  669. if (ntohs(hdr->len512) * 512 != size) {
  670. dev_err(adap->pdev_dev,
  671. "FW image size differs from size in FW header\n");
  672. return -EINVAL;
  673. }
  674. if (size > FW_MAX_SIZE) {
  675. dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
  676. FW_MAX_SIZE);
  677. return -EFBIG;
  678. }
  679. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  680. csum += ntohl(p[i]);
  681. if (csum != 0xffffffff) {
  682. dev_err(adap->pdev_dev,
  683. "corrupted firmware image, checksum %#x\n", csum);
  684. return -EINVAL;
  685. }
  686. i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
  687. ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
  688. if (ret)
  689. goto out;
  690. /*
  691. * We write the correct version at the end so the driver can see a bad
  692. * version if the FW write fails. Start by writing a copy of the
  693. * first page with a bad version.
  694. */
  695. memcpy(first_page, fw_data, SF_PAGE_SIZE);
  696. ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
  697. ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
  698. if (ret)
  699. goto out;
  700. addr = fw_img_start;
  701. for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
  702. addr += SF_PAGE_SIZE;
  703. fw_data += SF_PAGE_SIZE;
  704. ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
  705. if (ret)
  706. goto out;
  707. }
  708. ret = t4_write_flash(adap,
  709. fw_img_start + offsetof(struct fw_hdr, fw_ver),
  710. sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
  711. out:
  712. if (ret)
  713. dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
  714. ret);
  715. return ret;
  716. }
  717. #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
  718. FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
  719. /**
  720. * t4_link_start - apply link configuration to MAC/PHY
  721. * @phy: the PHY to setup
  722. * @mac: the MAC to setup
  723. * @lc: the requested link configuration
  724. *
  725. * Set up a port's MAC and PHY according to a desired link configuration.
  726. * - If the PHY can auto-negotiate first decide what to advertise, then
  727. * enable/disable auto-negotiation as desired, and reset.
  728. * - If the PHY does not auto-negotiate just reset it.
  729. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  730. * otherwise do it later based on the outcome of auto-negotiation.
  731. */
  732. int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
  733. struct link_config *lc)
  734. {
  735. struct fw_port_cmd c;
  736. unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
  737. lc->link_ok = 0;
  738. if (lc->requested_fc & PAUSE_RX)
  739. fc |= FW_PORT_CAP_FC_RX;
  740. if (lc->requested_fc & PAUSE_TX)
  741. fc |= FW_PORT_CAP_FC_TX;
  742. memset(&c, 0, sizeof(c));
  743. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  744. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  745. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  746. FW_LEN16(c));
  747. if (!(lc->supported & FW_PORT_CAP_ANEG)) {
  748. c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
  749. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  750. } else if (lc->autoneg == AUTONEG_DISABLE) {
  751. c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
  752. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  753. } else
  754. c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
  755. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  756. }
  757. /**
  758. * t4_restart_aneg - restart autonegotiation
  759. * @adap: the adapter
  760. * @mbox: mbox to use for the FW command
  761. * @port: the port id
  762. *
  763. * Restarts autonegotiation for the selected port.
  764. */
  765. int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
  766. {
  767. struct fw_port_cmd c;
  768. memset(&c, 0, sizeof(c));
  769. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  770. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  771. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  772. FW_LEN16(c));
  773. c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
  774. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  775. }
  776. struct intr_info {
  777. unsigned int mask; /* bits to check in interrupt status */
  778. const char *msg; /* message to print or NULL */
  779. short stat_idx; /* stat counter to increment or -1 */
  780. unsigned short fatal; /* whether the condition reported is fatal */
  781. };
  782. /**
  783. * t4_handle_intr_status - table driven interrupt handler
  784. * @adapter: the adapter that generated the interrupt
  785. * @reg: the interrupt status register to process
  786. * @acts: table of interrupt actions
  787. *
  788. * A table driven interrupt handler that applies a set of masks to an
  789. * interrupt status word and performs the corresponding actions if the
  790. * interrupts described by the mask have occured. The actions include
  791. * optionally emitting a warning or alert message. The table is terminated
  792. * by an entry specifying mask 0. Returns the number of fatal interrupt
  793. * conditions.
  794. */
  795. static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
  796. const struct intr_info *acts)
  797. {
  798. int fatal = 0;
  799. unsigned int mask = 0;
  800. unsigned int status = t4_read_reg(adapter, reg);
  801. for ( ; acts->mask; ++acts) {
  802. if (!(status & acts->mask))
  803. continue;
  804. if (acts->fatal) {
  805. fatal++;
  806. dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  807. status & acts->mask);
  808. } else if (acts->msg && printk_ratelimit())
  809. dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  810. status & acts->mask);
  811. mask |= acts->mask;
  812. }
  813. status &= mask;
  814. if (status) /* clear processed interrupts */
  815. t4_write_reg(adapter, reg, status);
  816. return fatal;
  817. }
  818. /*
  819. * Interrupt handler for the PCIE module.
  820. */
  821. static void pcie_intr_handler(struct adapter *adapter)
  822. {
  823. static const struct intr_info sysbus_intr_info[] = {
  824. { RNPP, "RXNP array parity error", -1, 1 },
  825. { RPCP, "RXPC array parity error", -1, 1 },
  826. { RCIP, "RXCIF array parity error", -1, 1 },
  827. { RCCP, "Rx completions control array parity error", -1, 1 },
  828. { RFTP, "RXFT array parity error", -1, 1 },
  829. { 0 }
  830. };
  831. static const struct intr_info pcie_port_intr_info[] = {
  832. { TPCP, "TXPC array parity error", -1, 1 },
  833. { TNPP, "TXNP array parity error", -1, 1 },
  834. { TFTP, "TXFT array parity error", -1, 1 },
  835. { TCAP, "TXCA array parity error", -1, 1 },
  836. { TCIP, "TXCIF array parity error", -1, 1 },
  837. { RCAP, "RXCA array parity error", -1, 1 },
  838. { OTDD, "outbound request TLP discarded", -1, 1 },
  839. { RDPE, "Rx data parity error", -1, 1 },
  840. { TDUE, "Tx uncorrectable data error", -1, 1 },
  841. { 0 }
  842. };
  843. static const struct intr_info pcie_intr_info[] = {
  844. { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
  845. { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
  846. { MSIDATAPERR, "MSI data parity error", -1, 1 },
  847. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  848. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  849. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  850. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  851. { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
  852. { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
  853. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  854. { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
  855. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  856. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  857. { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
  858. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  859. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  860. { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
  861. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  862. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  863. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  864. { FIDPERR, "PCI FID parity error", -1, 1 },
  865. { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
  866. { MATAGPERR, "PCI MA tag parity error", -1, 1 },
  867. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  868. { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
  869. { RXWRPERR, "PCI Rx write parity error", -1, 1 },
  870. { RPLPERR, "PCI replay buffer parity error", -1, 1 },
  871. { PCIESINT, "PCI core secondary fault", -1, 1 },
  872. { PCIEPINT, "PCI core primary fault", -1, 1 },
  873. { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
  874. { 0 }
  875. };
  876. int fat;
  877. fat = t4_handle_intr_status(adapter,
  878. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  879. sysbus_intr_info) +
  880. t4_handle_intr_status(adapter,
  881. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  882. pcie_port_intr_info) +
  883. t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info);
  884. if (fat)
  885. t4_fatal_err(adapter);
  886. }
  887. /*
  888. * TP interrupt handler.
  889. */
  890. static void tp_intr_handler(struct adapter *adapter)
  891. {
  892. static const struct intr_info tp_intr_info[] = {
  893. { 0x3fffffff, "TP parity error", -1, 1 },
  894. { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
  895. { 0 }
  896. };
  897. if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
  898. t4_fatal_err(adapter);
  899. }
  900. /*
  901. * SGE interrupt handler.
  902. */
  903. static void sge_intr_handler(struct adapter *adapter)
  904. {
  905. u64 v;
  906. static const struct intr_info sge_intr_info[] = {
  907. { ERR_CPL_EXCEED_IQE_SIZE,
  908. "SGE received CPL exceeding IQE size", -1, 1 },
  909. { ERR_INVALID_CIDX_INC,
  910. "SGE GTS CIDX increment too large", -1, 0 },
  911. { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
  912. { ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
  913. { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
  914. "SGE IQID > 1023 received CPL for FL", -1, 0 },
  915. { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
  916. 0 },
  917. { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
  918. 0 },
  919. { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
  920. 0 },
  921. { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
  922. 0 },
  923. { ERR_ING_CTXT_PRIO,
  924. "SGE too many priority ingress contexts", -1, 0 },
  925. { ERR_EGR_CTXT_PRIO,
  926. "SGE too many priority egress contexts", -1, 0 },
  927. { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
  928. { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
  929. { 0 }
  930. };
  931. v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
  932. ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
  933. if (v) {
  934. dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
  935. (unsigned long long)v);
  936. t4_write_reg(adapter, SGE_INT_CAUSE1, v);
  937. t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
  938. }
  939. if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
  940. v != 0)
  941. t4_fatal_err(adapter);
  942. }
  943. /*
  944. * CIM interrupt handler.
  945. */
  946. static void cim_intr_handler(struct adapter *adapter)
  947. {
  948. static const struct intr_info cim_intr_info[] = {
  949. { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
  950. { OBQPARERR, "CIM OBQ parity error", -1, 1 },
  951. { IBQPARERR, "CIM IBQ parity error", -1, 1 },
  952. { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
  953. { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
  954. { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
  955. { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
  956. { 0 }
  957. };
  958. static const struct intr_info cim_upintr_info[] = {
  959. { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
  960. { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
  961. { ILLWRINT, "CIM illegal write", -1, 1 },
  962. { ILLRDINT, "CIM illegal read", -1, 1 },
  963. { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
  964. { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
  965. { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
  966. { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
  967. { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
  968. { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
  969. { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
  970. { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
  971. { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
  972. { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
  973. { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
  974. { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
  975. { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
  976. { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
  977. { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
  978. { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
  979. { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
  980. { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
  981. { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
  982. { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
  983. { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
  984. { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
  985. { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
  986. { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
  987. { 0 }
  988. };
  989. int fat;
  990. fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
  991. cim_intr_info) +
  992. t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
  993. cim_upintr_info);
  994. if (fat)
  995. t4_fatal_err(adapter);
  996. }
  997. /*
  998. * ULP RX interrupt handler.
  999. */
  1000. static void ulprx_intr_handler(struct adapter *adapter)
  1001. {
  1002. static const struct intr_info ulprx_intr_info[] = {
  1003. { 0x1800000, "ULPRX context error", -1, 1 },
  1004. { 0x7fffff, "ULPRX parity error", -1, 1 },
  1005. { 0 }
  1006. };
  1007. if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
  1008. t4_fatal_err(adapter);
  1009. }
  1010. /*
  1011. * ULP TX interrupt handler.
  1012. */
  1013. static void ulptx_intr_handler(struct adapter *adapter)
  1014. {
  1015. static const struct intr_info ulptx_intr_info[] = {
  1016. { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
  1017. 0 },
  1018. { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
  1019. 0 },
  1020. { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
  1021. 0 },
  1022. { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
  1023. 0 },
  1024. { 0xfffffff, "ULPTX parity error", -1, 1 },
  1025. { 0 }
  1026. };
  1027. if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
  1028. t4_fatal_err(adapter);
  1029. }
  1030. /*
  1031. * PM TX interrupt handler.
  1032. */
  1033. static void pmtx_intr_handler(struct adapter *adapter)
  1034. {
  1035. static const struct intr_info pmtx_intr_info[] = {
  1036. { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
  1037. { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
  1038. { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
  1039. { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
  1040. { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
  1041. { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
  1042. { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
  1043. { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
  1044. { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
  1045. { 0 }
  1046. };
  1047. if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
  1048. t4_fatal_err(adapter);
  1049. }
  1050. /*
  1051. * PM RX interrupt handler.
  1052. */
  1053. static void pmrx_intr_handler(struct adapter *adapter)
  1054. {
  1055. static const struct intr_info pmrx_intr_info[] = {
  1056. { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
  1057. { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
  1058. { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
  1059. { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
  1060. { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
  1061. { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
  1062. { 0 }
  1063. };
  1064. if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
  1065. t4_fatal_err(adapter);
  1066. }
  1067. /*
  1068. * CPL switch interrupt handler.
  1069. */
  1070. static void cplsw_intr_handler(struct adapter *adapter)
  1071. {
  1072. static const struct intr_info cplsw_intr_info[] = {
  1073. { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
  1074. { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
  1075. { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
  1076. { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
  1077. { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
  1078. { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
  1079. { 0 }
  1080. };
  1081. if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
  1082. t4_fatal_err(adapter);
  1083. }
  1084. /*
  1085. * LE interrupt handler.
  1086. */
  1087. static void le_intr_handler(struct adapter *adap)
  1088. {
  1089. static const struct intr_info le_intr_info[] = {
  1090. { LIPMISS, "LE LIP miss", -1, 0 },
  1091. { LIP0, "LE 0 LIP error", -1, 0 },
  1092. { PARITYERR, "LE parity error", -1, 1 },
  1093. { UNKNOWNCMD, "LE unknown command", -1, 1 },
  1094. { REQQPARERR, "LE request queue parity error", -1, 1 },
  1095. { 0 }
  1096. };
  1097. if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
  1098. t4_fatal_err(adap);
  1099. }
  1100. /*
  1101. * MPS interrupt handler.
  1102. */
  1103. static void mps_intr_handler(struct adapter *adapter)
  1104. {
  1105. static const struct intr_info mps_rx_intr_info[] = {
  1106. { 0xffffff, "MPS Rx parity error", -1, 1 },
  1107. { 0 }
  1108. };
  1109. static const struct intr_info mps_tx_intr_info[] = {
  1110. { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
  1111. { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
  1112. { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
  1113. { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
  1114. { BUBBLE, "MPS Tx underflow", -1, 1 },
  1115. { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
  1116. { FRMERR, "MPS Tx framing error", -1, 1 },
  1117. { 0 }
  1118. };
  1119. static const struct intr_info mps_trc_intr_info[] = {
  1120. { FILTMEM, "MPS TRC filter parity error", -1, 1 },
  1121. { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
  1122. { MISCPERR, "MPS TRC misc parity error", -1, 1 },
  1123. { 0 }
  1124. };
  1125. static const struct intr_info mps_stat_sram_intr_info[] = {
  1126. { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
  1127. { 0 }
  1128. };
  1129. static const struct intr_info mps_stat_tx_intr_info[] = {
  1130. { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
  1131. { 0 }
  1132. };
  1133. static const struct intr_info mps_stat_rx_intr_info[] = {
  1134. { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
  1135. { 0 }
  1136. };
  1137. static const struct intr_info mps_cls_intr_info[] = {
  1138. { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
  1139. { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
  1140. { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
  1141. { 0 }
  1142. };
  1143. int fat;
  1144. fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
  1145. mps_rx_intr_info) +
  1146. t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
  1147. mps_tx_intr_info) +
  1148. t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
  1149. mps_trc_intr_info) +
  1150. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
  1151. mps_stat_sram_intr_info) +
  1152. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
  1153. mps_stat_tx_intr_info) +
  1154. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
  1155. mps_stat_rx_intr_info) +
  1156. t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
  1157. mps_cls_intr_info);
  1158. t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
  1159. RXINT | TXINT | STATINT);
  1160. t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
  1161. if (fat)
  1162. t4_fatal_err(adapter);
  1163. }
  1164. #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
  1165. /*
  1166. * EDC/MC interrupt handler.
  1167. */
  1168. static void mem_intr_handler(struct adapter *adapter, int idx)
  1169. {
  1170. static const char name[3][5] = { "EDC0", "EDC1", "MC" };
  1171. unsigned int addr, cnt_addr, v;
  1172. if (idx <= MEM_EDC1) {
  1173. addr = EDC_REG(EDC_INT_CAUSE, idx);
  1174. cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
  1175. } else {
  1176. addr = MC_INT_CAUSE;
  1177. cnt_addr = MC_ECC_STATUS;
  1178. }
  1179. v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
  1180. if (v & PERR_INT_CAUSE)
  1181. dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
  1182. name[idx]);
  1183. if (v & ECC_CE_INT_CAUSE) {
  1184. u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
  1185. t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
  1186. if (printk_ratelimit())
  1187. dev_warn(adapter->pdev_dev,
  1188. "%u %s correctable ECC data error%s\n",
  1189. cnt, name[idx], cnt > 1 ? "s" : "");
  1190. }
  1191. if (v & ECC_UE_INT_CAUSE)
  1192. dev_alert(adapter->pdev_dev,
  1193. "%s uncorrectable ECC data error\n", name[idx]);
  1194. t4_write_reg(adapter, addr, v);
  1195. if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
  1196. t4_fatal_err(adapter);
  1197. }
  1198. /*
  1199. * MA interrupt handler.
  1200. */
  1201. static void ma_intr_handler(struct adapter *adap)
  1202. {
  1203. u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
  1204. if (status & MEM_PERR_INT_CAUSE)
  1205. dev_alert(adap->pdev_dev,
  1206. "MA parity error, parity status %#x\n",
  1207. t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
  1208. if (status & MEM_WRAP_INT_CAUSE) {
  1209. v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
  1210. dev_alert(adap->pdev_dev, "MA address wrap-around error by "
  1211. "client %u to address %#x\n",
  1212. MEM_WRAP_CLIENT_NUM_GET(v),
  1213. MEM_WRAP_ADDRESS_GET(v) << 4);
  1214. }
  1215. t4_write_reg(adap, MA_INT_CAUSE, status);
  1216. t4_fatal_err(adap);
  1217. }
  1218. /*
  1219. * SMB interrupt handler.
  1220. */
  1221. static void smb_intr_handler(struct adapter *adap)
  1222. {
  1223. static const struct intr_info smb_intr_info[] = {
  1224. { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
  1225. { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
  1226. { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
  1227. { 0 }
  1228. };
  1229. if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
  1230. t4_fatal_err(adap);
  1231. }
  1232. /*
  1233. * NC-SI interrupt handler.
  1234. */
  1235. static void ncsi_intr_handler(struct adapter *adap)
  1236. {
  1237. static const struct intr_info ncsi_intr_info[] = {
  1238. { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
  1239. { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
  1240. { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
  1241. { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
  1242. { 0 }
  1243. };
  1244. if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
  1245. t4_fatal_err(adap);
  1246. }
  1247. /*
  1248. * XGMAC interrupt handler.
  1249. */
  1250. static void xgmac_intr_handler(struct adapter *adap, int port)
  1251. {
  1252. u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
  1253. v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
  1254. if (!v)
  1255. return;
  1256. if (v & TXFIFO_PRTY_ERR)
  1257. dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
  1258. port);
  1259. if (v & RXFIFO_PRTY_ERR)
  1260. dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
  1261. port);
  1262. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
  1263. t4_fatal_err(adap);
  1264. }
  1265. /*
  1266. * PL interrupt handler.
  1267. */
  1268. static void pl_intr_handler(struct adapter *adap)
  1269. {
  1270. static const struct intr_info pl_intr_info[] = {
  1271. { FATALPERR, "T4 fatal parity error", -1, 1 },
  1272. { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
  1273. { 0 }
  1274. };
  1275. if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
  1276. t4_fatal_err(adap);
  1277. }
  1278. #define PF_INTR_MASK (PFSW)
  1279. #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
  1280. EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
  1281. CPL_SWITCH | SGE | ULP_TX)
  1282. /**
  1283. * t4_slow_intr_handler - control path interrupt handler
  1284. * @adapter: the adapter
  1285. *
  1286. * T4 interrupt handler for non-data global interrupt events, e.g., errors.
  1287. * The designation 'slow' is because it involves register reads, while
  1288. * data interrupts typically don't involve any MMIOs.
  1289. */
  1290. int t4_slow_intr_handler(struct adapter *adapter)
  1291. {
  1292. u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
  1293. if (!(cause & GLBL_INTR_MASK))
  1294. return 0;
  1295. if (cause & CIM)
  1296. cim_intr_handler(adapter);
  1297. if (cause & MPS)
  1298. mps_intr_handler(adapter);
  1299. if (cause & NCSI)
  1300. ncsi_intr_handler(adapter);
  1301. if (cause & PL)
  1302. pl_intr_handler(adapter);
  1303. if (cause & SMB)
  1304. smb_intr_handler(adapter);
  1305. if (cause & XGMAC0)
  1306. xgmac_intr_handler(adapter, 0);
  1307. if (cause & XGMAC1)
  1308. xgmac_intr_handler(adapter, 1);
  1309. if (cause & XGMAC_KR0)
  1310. xgmac_intr_handler(adapter, 2);
  1311. if (cause & XGMAC_KR1)
  1312. xgmac_intr_handler(adapter, 3);
  1313. if (cause & PCIE)
  1314. pcie_intr_handler(adapter);
  1315. if (cause & MC)
  1316. mem_intr_handler(adapter, MEM_MC);
  1317. if (cause & EDC0)
  1318. mem_intr_handler(adapter, MEM_EDC0);
  1319. if (cause & EDC1)
  1320. mem_intr_handler(adapter, MEM_EDC1);
  1321. if (cause & LE)
  1322. le_intr_handler(adapter);
  1323. if (cause & TP)
  1324. tp_intr_handler(adapter);
  1325. if (cause & MA)
  1326. ma_intr_handler(adapter);
  1327. if (cause & PM_TX)
  1328. pmtx_intr_handler(adapter);
  1329. if (cause & PM_RX)
  1330. pmrx_intr_handler(adapter);
  1331. if (cause & ULP_RX)
  1332. ulprx_intr_handler(adapter);
  1333. if (cause & CPL_SWITCH)
  1334. cplsw_intr_handler(adapter);
  1335. if (cause & SGE)
  1336. sge_intr_handler(adapter);
  1337. if (cause & ULP_TX)
  1338. ulptx_intr_handler(adapter);
  1339. /* Clear the interrupts just processed for which we are the master. */
  1340. t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
  1341. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1342. return 1;
  1343. }
  1344. /**
  1345. * t4_intr_enable - enable interrupts
  1346. * @adapter: the adapter whose interrupts should be enabled
  1347. *
  1348. * Enable PF-specific interrupts for the calling function and the top-level
  1349. * interrupt concentrator for global interrupts. Interrupts are already
  1350. * enabled at each module, here we just enable the roots of the interrupt
  1351. * hierarchies.
  1352. *
  1353. * Note: this function should be called only when the driver manages
  1354. * non PF-specific interrupts from the various HW modules. Only one PCI
  1355. * function at a time should be doing this.
  1356. */
  1357. void t4_intr_enable(struct adapter *adapter)
  1358. {
  1359. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1360. t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
  1361. ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
  1362. ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
  1363. ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
  1364. ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
  1365. ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
  1366. ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
  1367. EGRESS_SIZE_ERR);
  1368. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
  1369. t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
  1370. }
  1371. /**
  1372. * t4_intr_disable - disable interrupts
  1373. * @adapter: the adapter whose interrupts should be disabled
  1374. *
  1375. * Disable interrupts. We only disable the top-level interrupt
  1376. * concentrators. The caller must be a PCI function managing global
  1377. * interrupts.
  1378. */
  1379. void t4_intr_disable(struct adapter *adapter)
  1380. {
  1381. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1382. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
  1383. t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
  1384. }
  1385. /**
  1386. * hash_mac_addr - return the hash value of a MAC address
  1387. * @addr: the 48-bit Ethernet MAC address
  1388. *
  1389. * Hashes a MAC address according to the hash function used by HW inexact
  1390. * (hash) address matching.
  1391. */
  1392. static int hash_mac_addr(const u8 *addr)
  1393. {
  1394. u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
  1395. u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
  1396. a ^= b;
  1397. a ^= (a >> 12);
  1398. a ^= (a >> 6);
  1399. return a & 0x3f;
  1400. }
  1401. /**
  1402. * t4_config_rss_range - configure a portion of the RSS mapping table
  1403. * @adapter: the adapter
  1404. * @mbox: mbox to use for the FW command
  1405. * @viid: virtual interface whose RSS subtable is to be written
  1406. * @start: start entry in the table to write
  1407. * @n: how many table entries to write
  1408. * @rspq: values for the response queue lookup table
  1409. * @nrspq: number of values in @rspq
  1410. *
  1411. * Programs the selected part of the VI's RSS mapping table with the
  1412. * provided values. If @nrspq < @n the supplied values are used repeatedly
  1413. * until the full table range is populated.
  1414. *
  1415. * The caller must ensure the values in @rspq are in the range allowed for
  1416. * @viid.
  1417. */
  1418. int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
  1419. int start, int n, const u16 *rspq, unsigned int nrspq)
  1420. {
  1421. int ret;
  1422. const u16 *rsp = rspq;
  1423. const u16 *rsp_end = rspq + nrspq;
  1424. struct fw_rss_ind_tbl_cmd cmd;
  1425. memset(&cmd, 0, sizeof(cmd));
  1426. cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
  1427. FW_CMD_REQUEST | FW_CMD_WRITE |
  1428. FW_RSS_IND_TBL_CMD_VIID(viid));
  1429. cmd.retval_len16 = htonl(FW_LEN16(cmd));
  1430. /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
  1431. while (n > 0) {
  1432. int nq = min(n, 32);
  1433. __be32 *qp = &cmd.iq0_to_iq2;
  1434. cmd.niqid = htons(nq);
  1435. cmd.startidx = htons(start);
  1436. start += nq;
  1437. n -= nq;
  1438. while (nq > 0) {
  1439. unsigned int v;
  1440. v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
  1441. if (++rsp >= rsp_end)
  1442. rsp = rspq;
  1443. v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
  1444. if (++rsp >= rsp_end)
  1445. rsp = rspq;
  1446. v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
  1447. if (++rsp >= rsp_end)
  1448. rsp = rspq;
  1449. *qp++ = htonl(v);
  1450. nq -= 3;
  1451. }
  1452. ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
  1453. if (ret)
  1454. return ret;
  1455. }
  1456. return 0;
  1457. }
  1458. /**
  1459. * t4_config_glbl_rss - configure the global RSS mode
  1460. * @adapter: the adapter
  1461. * @mbox: mbox to use for the FW command
  1462. * @mode: global RSS mode
  1463. * @flags: mode-specific flags
  1464. *
  1465. * Sets the global RSS mode.
  1466. */
  1467. int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
  1468. unsigned int flags)
  1469. {
  1470. struct fw_rss_glb_config_cmd c;
  1471. memset(&c, 0, sizeof(c));
  1472. c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
  1473. FW_CMD_REQUEST | FW_CMD_WRITE);
  1474. c.retval_len16 = htonl(FW_LEN16(c));
  1475. if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
  1476. c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1477. } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
  1478. c.u.basicvirtual.mode_pkd =
  1479. htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1480. c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
  1481. } else
  1482. return -EINVAL;
  1483. return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
  1484. }
  1485. /**
  1486. * t4_tp_get_tcp_stats - read TP's TCP MIB counters
  1487. * @adap: the adapter
  1488. * @v4: holds the TCP/IP counter values
  1489. * @v6: holds the TCP/IPv6 counter values
  1490. *
  1491. * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
  1492. * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
  1493. */
  1494. void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
  1495. struct tp_tcp_stats *v6)
  1496. {
  1497. u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
  1498. #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
  1499. #define STAT(x) val[STAT_IDX(x)]
  1500. #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
  1501. if (v4) {
  1502. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1503. ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
  1504. v4->tcpOutRsts = STAT(OUT_RST);
  1505. v4->tcpInSegs = STAT64(IN_SEG);
  1506. v4->tcpOutSegs = STAT64(OUT_SEG);
  1507. v4->tcpRetransSegs = STAT64(RXT_SEG);
  1508. }
  1509. if (v6) {
  1510. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1511. ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
  1512. v6->tcpOutRsts = STAT(OUT_RST);
  1513. v6->tcpInSegs = STAT64(IN_SEG);
  1514. v6->tcpOutSegs = STAT64(OUT_SEG);
  1515. v6->tcpRetransSegs = STAT64(RXT_SEG);
  1516. }
  1517. #undef STAT64
  1518. #undef STAT
  1519. #undef STAT_IDX
  1520. }
  1521. /**
  1522. * t4_read_mtu_tbl - returns the values in the HW path MTU table
  1523. * @adap: the adapter
  1524. * @mtus: where to store the MTU values
  1525. * @mtu_log: where to store the MTU base-2 log (may be %NULL)
  1526. *
  1527. * Reads the HW path MTU table.
  1528. */
  1529. void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
  1530. {
  1531. u32 v;
  1532. int i;
  1533. for (i = 0; i < NMTUS; ++i) {
  1534. t4_write_reg(adap, TP_MTU_TABLE,
  1535. MTUINDEX(0xff) | MTUVALUE(i));
  1536. v = t4_read_reg(adap, TP_MTU_TABLE);
  1537. mtus[i] = MTUVALUE_GET(v);
  1538. if (mtu_log)
  1539. mtu_log[i] = MTUWIDTH_GET(v);
  1540. }
  1541. }
  1542. /**
  1543. * init_cong_ctrl - initialize congestion control parameters
  1544. * @a: the alpha values for congestion control
  1545. * @b: the beta values for congestion control
  1546. *
  1547. * Initialize the congestion control parameters.
  1548. */
  1549. static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
  1550. {
  1551. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  1552. a[9] = 2;
  1553. a[10] = 3;
  1554. a[11] = 4;
  1555. a[12] = 5;
  1556. a[13] = 6;
  1557. a[14] = 7;
  1558. a[15] = 8;
  1559. a[16] = 9;
  1560. a[17] = 10;
  1561. a[18] = 14;
  1562. a[19] = 17;
  1563. a[20] = 21;
  1564. a[21] = 25;
  1565. a[22] = 30;
  1566. a[23] = 35;
  1567. a[24] = 45;
  1568. a[25] = 60;
  1569. a[26] = 80;
  1570. a[27] = 100;
  1571. a[28] = 200;
  1572. a[29] = 300;
  1573. a[30] = 400;
  1574. a[31] = 500;
  1575. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  1576. b[9] = b[10] = 1;
  1577. b[11] = b[12] = 2;
  1578. b[13] = b[14] = b[15] = b[16] = 3;
  1579. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  1580. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  1581. b[28] = b[29] = 6;
  1582. b[30] = b[31] = 7;
  1583. }
  1584. /* The minimum additive increment value for the congestion control table */
  1585. #define CC_MIN_INCR 2U
  1586. /**
  1587. * t4_load_mtus - write the MTU and congestion control HW tables
  1588. * @adap: the adapter
  1589. * @mtus: the values for the MTU table
  1590. * @alpha: the values for the congestion control alpha parameter
  1591. * @beta: the values for the congestion control beta parameter
  1592. *
  1593. * Write the HW MTU table with the supplied MTUs and the high-speed
  1594. * congestion control table with the supplied alpha, beta, and MTUs.
  1595. * We write the two tables together because the additive increments
  1596. * depend on the MTUs.
  1597. */
  1598. void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
  1599. const unsigned short *alpha, const unsigned short *beta)
  1600. {
  1601. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  1602. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  1603. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  1604. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  1605. };
  1606. unsigned int i, w;
  1607. for (i = 0; i < NMTUS; ++i) {
  1608. unsigned int mtu = mtus[i];
  1609. unsigned int log2 = fls(mtu);
  1610. if (!(mtu & ((1 << log2) >> 2))) /* round */
  1611. log2--;
  1612. t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
  1613. MTUWIDTH(log2) | MTUVALUE(mtu));
  1614. for (w = 0; w < NCCTRL_WIN; ++w) {
  1615. unsigned int inc;
  1616. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  1617. CC_MIN_INCR);
  1618. t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
  1619. (w << 16) | (beta[w] << 13) | inc);
  1620. }
  1621. }
  1622. }
  1623. /**
  1624. * get_mps_bg_map - return the buffer groups associated with a port
  1625. * @adap: the adapter
  1626. * @idx: the port index
  1627. *
  1628. * Returns a bitmap indicating which MPS buffer groups are associated
  1629. * with the given port. Bit i is set if buffer group i is used by the
  1630. * port.
  1631. */
  1632. static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
  1633. {
  1634. u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
  1635. if (n == 0)
  1636. return idx == 0 ? 0xf : 0;
  1637. if (n == 1)
  1638. return idx < 2 ? (3 << (2 * idx)) : 0;
  1639. return 1 << idx;
  1640. }
  1641. /**
  1642. * t4_get_port_stats - collect port statistics
  1643. * @adap: the adapter
  1644. * @idx: the port index
  1645. * @p: the stats structure to fill
  1646. *
  1647. * Collect statistics related to the given port from HW.
  1648. */
  1649. void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
  1650. {
  1651. u32 bgmap = get_mps_bg_map(adap, idx);
  1652. #define GET_STAT(name) \
  1653. t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L))
  1654. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  1655. p->tx_octets = GET_STAT(TX_PORT_BYTES);
  1656. p->tx_frames = GET_STAT(TX_PORT_FRAMES);
  1657. p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
  1658. p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
  1659. p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
  1660. p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
  1661. p->tx_frames_64 = GET_STAT(TX_PORT_64B);
  1662. p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
  1663. p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
  1664. p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
  1665. p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
  1666. p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
  1667. p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
  1668. p->tx_drop = GET_STAT(TX_PORT_DROP);
  1669. p->tx_pause = GET_STAT(TX_PORT_PAUSE);
  1670. p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
  1671. p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
  1672. p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
  1673. p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
  1674. p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
  1675. p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
  1676. p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
  1677. p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
  1678. p->rx_octets = GET_STAT(RX_PORT_BYTES);
  1679. p->rx_frames = GET_STAT(RX_PORT_FRAMES);
  1680. p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
  1681. p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
  1682. p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
  1683. p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
  1684. p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
  1685. p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
  1686. p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
  1687. p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
  1688. p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
  1689. p->rx_frames_64 = GET_STAT(RX_PORT_64B);
  1690. p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
  1691. p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
  1692. p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
  1693. p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
  1694. p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
  1695. p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
  1696. p->rx_pause = GET_STAT(RX_PORT_PAUSE);
  1697. p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
  1698. p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
  1699. p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
  1700. p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
  1701. p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
  1702. p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
  1703. p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
  1704. p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
  1705. p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
  1706. p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
  1707. p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
  1708. p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
  1709. p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
  1710. p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
  1711. p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
  1712. p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
  1713. #undef GET_STAT
  1714. #undef GET_STAT_COM
  1715. }
  1716. /**
  1717. * t4_wol_magic_enable - enable/disable magic packet WoL
  1718. * @adap: the adapter
  1719. * @port: the physical port index
  1720. * @addr: MAC address expected in magic packets, %NULL to disable
  1721. *
  1722. * Enables/disables magic packet wake-on-LAN for the selected port.
  1723. */
  1724. void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
  1725. const u8 *addr)
  1726. {
  1727. if (addr) {
  1728. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO),
  1729. (addr[2] << 24) | (addr[3] << 16) |
  1730. (addr[4] << 8) | addr[5]);
  1731. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI),
  1732. (addr[0] << 8) | addr[1]);
  1733. }
  1734. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN,
  1735. addr ? MAGICEN : 0);
  1736. }
  1737. /**
  1738. * t4_wol_pat_enable - enable/disable pattern-based WoL
  1739. * @adap: the adapter
  1740. * @port: the physical port index
  1741. * @map: bitmap of which HW pattern filters to set
  1742. * @mask0: byte mask for bytes 0-63 of a packet
  1743. * @mask1: byte mask for bytes 64-127 of a packet
  1744. * @crc: Ethernet CRC for selected bytes
  1745. * @enable: enable/disable switch
  1746. *
  1747. * Sets the pattern filters indicated in @map to mask out the bytes
  1748. * specified in @mask0/@mask1 in received packets and compare the CRC of
  1749. * the resulting packet against @crc. If @enable is %true pattern-based
  1750. * WoL is enabled, otherwise disabled.
  1751. */
  1752. int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
  1753. u64 mask0, u64 mask1, unsigned int crc, bool enable)
  1754. {
  1755. int i;
  1756. if (!enable) {
  1757. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2),
  1758. PATEN, 0);
  1759. return 0;
  1760. }
  1761. if (map > 0xff)
  1762. return -EINVAL;
  1763. #define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name)
  1764. t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
  1765. t4_write_reg(adap, EPIO_REG(DATA2), mask1);
  1766. t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
  1767. for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
  1768. if (!(map & 1))
  1769. continue;
  1770. /* write byte masks */
  1771. t4_write_reg(adap, EPIO_REG(DATA0), mask0);
  1772. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
  1773. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  1774. if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
  1775. return -ETIMEDOUT;
  1776. /* write CRC */
  1777. t4_write_reg(adap, EPIO_REG(DATA0), crc);
  1778. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
  1779. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  1780. if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
  1781. return -ETIMEDOUT;
  1782. }
  1783. #undef EPIO_REG
  1784. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
  1785. return 0;
  1786. }
  1787. #define INIT_CMD(var, cmd, rd_wr) do { \
  1788. (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
  1789. FW_CMD_REQUEST | FW_CMD_##rd_wr); \
  1790. (var).retval_len16 = htonl(FW_LEN16(var)); \
  1791. } while (0)
  1792. /**
  1793. * t4_mdio_rd - read a PHY register through MDIO
  1794. * @adap: the adapter
  1795. * @mbox: mailbox to use for the FW command
  1796. * @phy_addr: the PHY address
  1797. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  1798. * @reg: the register to read
  1799. * @valp: where to store the value
  1800. *
  1801. * Issues a FW command through the given mailbox to read a PHY register.
  1802. */
  1803. int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  1804. unsigned int mmd, unsigned int reg, u16 *valp)
  1805. {
  1806. int ret;
  1807. struct fw_ldst_cmd c;
  1808. memset(&c, 0, sizeof(c));
  1809. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  1810. FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  1811. c.cycles_to_len16 = htonl(FW_LEN16(c));
  1812. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  1813. FW_LDST_CMD_MMD(mmd));
  1814. c.u.mdio.raddr = htons(reg);
  1815. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  1816. if (ret == 0)
  1817. *valp = ntohs(c.u.mdio.rval);
  1818. return ret;
  1819. }
  1820. /**
  1821. * t4_mdio_wr - write a PHY register through MDIO
  1822. * @adap: the adapter
  1823. * @mbox: mailbox to use for the FW command
  1824. * @phy_addr: the PHY address
  1825. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  1826. * @reg: the register to write
  1827. * @valp: value to write
  1828. *
  1829. * Issues a FW command through the given mailbox to write a PHY register.
  1830. */
  1831. int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  1832. unsigned int mmd, unsigned int reg, u16 val)
  1833. {
  1834. struct fw_ldst_cmd c;
  1835. memset(&c, 0, sizeof(c));
  1836. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  1837. FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  1838. c.cycles_to_len16 = htonl(FW_LEN16(c));
  1839. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  1840. FW_LDST_CMD_MMD(mmd));
  1841. c.u.mdio.raddr = htons(reg);
  1842. c.u.mdio.rval = htons(val);
  1843. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1844. }
  1845. /**
  1846. * t4_fw_hello - establish communication with FW
  1847. * @adap: the adapter
  1848. * @mbox: mailbox to use for the FW command
  1849. * @evt_mbox: mailbox to receive async FW events
  1850. * @master: specifies the caller's willingness to be the device master
  1851. * @state: returns the current device state
  1852. *
  1853. * Issues a command to establish communication with FW.
  1854. */
  1855. int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
  1856. enum dev_master master, enum dev_state *state)
  1857. {
  1858. int ret;
  1859. struct fw_hello_cmd c;
  1860. INIT_CMD(c, HELLO, WRITE);
  1861. c.err_to_mbasyncnot = htonl(
  1862. FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
  1863. FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
  1864. FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : 0xff) |
  1865. FW_HELLO_CMD_MBASYNCNOT(evt_mbox));
  1866. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  1867. if (ret == 0 && state) {
  1868. u32 v = ntohl(c.err_to_mbasyncnot);
  1869. if (v & FW_HELLO_CMD_INIT)
  1870. *state = DEV_STATE_INIT;
  1871. else if (v & FW_HELLO_CMD_ERR)
  1872. *state = DEV_STATE_ERR;
  1873. else
  1874. *state = DEV_STATE_UNINIT;
  1875. }
  1876. return ret;
  1877. }
  1878. /**
  1879. * t4_fw_bye - end communication with FW
  1880. * @adap: the adapter
  1881. * @mbox: mailbox to use for the FW command
  1882. *
  1883. * Issues a command to terminate communication with FW.
  1884. */
  1885. int t4_fw_bye(struct adapter *adap, unsigned int mbox)
  1886. {
  1887. struct fw_bye_cmd c;
  1888. INIT_CMD(c, BYE, WRITE);
  1889. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1890. }
  1891. /**
  1892. * t4_init_cmd - ask FW to initialize the device
  1893. * @adap: the adapter
  1894. * @mbox: mailbox to use for the FW command
  1895. *
  1896. * Issues a command to FW to partially initialize the device. This
  1897. * performs initialization that generally doesn't depend on user input.
  1898. */
  1899. int t4_early_init(struct adapter *adap, unsigned int mbox)
  1900. {
  1901. struct fw_initialize_cmd c;
  1902. INIT_CMD(c, INITIALIZE, WRITE);
  1903. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1904. }
  1905. /**
  1906. * t4_fw_reset - issue a reset to FW
  1907. * @adap: the adapter
  1908. * @mbox: mailbox to use for the FW command
  1909. * @reset: specifies the type of reset to perform
  1910. *
  1911. * Issues a reset command of the specified type to FW.
  1912. */
  1913. int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
  1914. {
  1915. struct fw_reset_cmd c;
  1916. INIT_CMD(c, RESET, WRITE);
  1917. c.val = htonl(reset);
  1918. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1919. }
  1920. /**
  1921. * t4_query_params - query FW or device parameters
  1922. * @adap: the adapter
  1923. * @mbox: mailbox to use for the FW command
  1924. * @pf: the PF
  1925. * @vf: the VF
  1926. * @nparams: the number of parameters
  1927. * @params: the parameter names
  1928. * @val: the parameter values
  1929. *
  1930. * Reads the value of FW or device parameters. Up to 7 parameters can be
  1931. * queried at once.
  1932. */
  1933. int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  1934. unsigned int vf, unsigned int nparams, const u32 *params,
  1935. u32 *val)
  1936. {
  1937. int i, ret;
  1938. struct fw_params_cmd c;
  1939. __be32 *p = &c.param[0].mnem;
  1940. if (nparams > 7)
  1941. return -EINVAL;
  1942. memset(&c, 0, sizeof(c));
  1943. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  1944. FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
  1945. FW_PARAMS_CMD_VFN(vf));
  1946. c.retval_len16 = htonl(FW_LEN16(c));
  1947. for (i = 0; i < nparams; i++, p += 2)
  1948. *p = htonl(*params++);
  1949. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  1950. if (ret == 0)
  1951. for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
  1952. *val++ = ntohl(*p);
  1953. return ret;
  1954. }
  1955. /**
  1956. * t4_set_params - sets FW or device parameters
  1957. * @adap: the adapter
  1958. * @mbox: mailbox to use for the FW command
  1959. * @pf: the PF
  1960. * @vf: the VF
  1961. * @nparams: the number of parameters
  1962. * @params: the parameter names
  1963. * @val: the parameter values
  1964. *
  1965. * Sets the value of FW or device parameters. Up to 7 parameters can be
  1966. * specified at once.
  1967. */
  1968. int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  1969. unsigned int vf, unsigned int nparams, const u32 *params,
  1970. const u32 *val)
  1971. {
  1972. struct fw_params_cmd c;
  1973. __be32 *p = &c.param[0].mnem;
  1974. if (nparams > 7)
  1975. return -EINVAL;
  1976. memset(&c, 0, sizeof(c));
  1977. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  1978. FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
  1979. FW_PARAMS_CMD_VFN(vf));
  1980. c.retval_len16 = htonl(FW_LEN16(c));
  1981. while (nparams--) {
  1982. *p++ = htonl(*params++);
  1983. *p++ = htonl(*val++);
  1984. }
  1985. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1986. }
  1987. /**
  1988. * t4_cfg_pfvf - configure PF/VF resource limits
  1989. * @adap: the adapter
  1990. * @mbox: mailbox to use for the FW command
  1991. * @pf: the PF being configured
  1992. * @vf: the VF being configured
  1993. * @txq: the max number of egress queues
  1994. * @txq_eth_ctrl: the max number of egress Ethernet or control queues
  1995. * @rxqi: the max number of interrupt-capable ingress queues
  1996. * @rxq: the max number of interruptless ingress queues
  1997. * @tc: the PCI traffic class
  1998. * @vi: the max number of virtual interfaces
  1999. * @cmask: the channel access rights mask for the PF/VF
  2000. * @pmask: the port access rights mask for the PF/VF
  2001. * @nexact: the maximum number of exact MPS filters
  2002. * @rcaps: read capabilities
  2003. * @wxcaps: write/execute capabilities
  2004. *
  2005. * Configures resource limits and capabilities for a physical or virtual
  2006. * function.
  2007. */
  2008. int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2009. unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
  2010. unsigned int rxqi, unsigned int rxq, unsigned int tc,
  2011. unsigned int vi, unsigned int cmask, unsigned int pmask,
  2012. unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
  2013. {
  2014. struct fw_pfvf_cmd c;
  2015. memset(&c, 0, sizeof(c));
  2016. c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
  2017. FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
  2018. FW_PFVF_CMD_VFN(vf));
  2019. c.retval_len16 = htonl(FW_LEN16(c));
  2020. c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
  2021. FW_PFVF_CMD_NIQ(rxq));
  2022. c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
  2023. FW_PFVF_CMD_PMASK(pmask) |
  2024. FW_PFVF_CMD_NEQ(txq));
  2025. c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
  2026. FW_PFVF_CMD_NEXACTF(nexact));
  2027. c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
  2028. FW_PFVF_CMD_WX_CAPS(wxcaps) |
  2029. FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
  2030. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2031. }
  2032. /**
  2033. * t4_alloc_vi - allocate a virtual interface
  2034. * @adap: the adapter
  2035. * @mbox: mailbox to use for the FW command
  2036. * @port: physical port associated with the VI
  2037. * @pf: the PF owning the VI
  2038. * @vf: the VF owning the VI
  2039. * @nmac: number of MAC addresses needed (1 to 5)
  2040. * @mac: the MAC addresses of the VI
  2041. * @rss_size: size of RSS table slice associated with this VI
  2042. *
  2043. * Allocates a virtual interface for the given physical port. If @mac is
  2044. * not %NULL it contains the MAC addresses of the VI as assigned by FW.
  2045. * @mac should be large enough to hold @nmac Ethernet addresses, they are
  2046. * stored consecutively so the space needed is @nmac * 6 bytes.
  2047. * Returns a negative error number or the non-negative VI id.
  2048. */
  2049. int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
  2050. unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
  2051. unsigned int *rss_size)
  2052. {
  2053. int ret;
  2054. struct fw_vi_cmd c;
  2055. memset(&c, 0, sizeof(c));
  2056. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  2057. FW_CMD_WRITE | FW_CMD_EXEC |
  2058. FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
  2059. c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
  2060. c.portid_pkd = FW_VI_CMD_PORTID(port);
  2061. c.nmac = nmac - 1;
  2062. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2063. if (ret)
  2064. return ret;
  2065. if (mac) {
  2066. memcpy(mac, c.mac, sizeof(c.mac));
  2067. switch (nmac) {
  2068. case 5:
  2069. memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
  2070. case 4:
  2071. memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
  2072. case 3:
  2073. memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
  2074. case 2:
  2075. memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
  2076. }
  2077. }
  2078. if (rss_size)
  2079. *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
  2080. return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
  2081. }
  2082. /**
  2083. * t4_set_rxmode - set Rx properties of a virtual interface
  2084. * @adap: the adapter
  2085. * @mbox: mailbox to use for the FW command
  2086. * @viid: the VI id
  2087. * @mtu: the new MTU or -1
  2088. * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
  2089. * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
  2090. * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
  2091. * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
  2092. * @sleep_ok: if true we may sleep while awaiting command completion
  2093. *
  2094. * Sets Rx properties of a virtual interface.
  2095. */
  2096. int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2097. int mtu, int promisc, int all_multi, int bcast, int vlanex,
  2098. bool sleep_ok)
  2099. {
  2100. struct fw_vi_rxmode_cmd c;
  2101. /* convert to FW values */
  2102. if (mtu < 0)
  2103. mtu = FW_RXMODE_MTU_NO_CHG;
  2104. if (promisc < 0)
  2105. promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
  2106. if (all_multi < 0)
  2107. all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
  2108. if (bcast < 0)
  2109. bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
  2110. if (vlanex < 0)
  2111. vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
  2112. memset(&c, 0, sizeof(c));
  2113. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
  2114. FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
  2115. c.retval_len16 = htonl(FW_LEN16(c));
  2116. c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
  2117. FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
  2118. FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
  2119. FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
  2120. FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
  2121. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2122. }
  2123. /**
  2124. * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
  2125. * @adap: the adapter
  2126. * @mbox: mailbox to use for the FW command
  2127. * @viid: the VI id
  2128. * @free: if true any existing filters for this VI id are first removed
  2129. * @naddr: the number of MAC addresses to allocate filters for (up to 7)
  2130. * @addr: the MAC address(es)
  2131. * @idx: where to store the index of each allocated filter
  2132. * @hash: pointer to hash address filter bitmap
  2133. * @sleep_ok: call is allowed to sleep
  2134. *
  2135. * Allocates an exact-match filter for each of the supplied addresses and
  2136. * sets it to the corresponding address. If @idx is not %NULL it should
  2137. * have at least @naddr entries, each of which will be set to the index of
  2138. * the filter allocated for the corresponding MAC address. If a filter
  2139. * could not be allocated for an address its index is set to 0xffff.
  2140. * If @hash is not %NULL addresses that fail to allocate an exact filter
  2141. * are hashed and update the hash filter bitmap pointed at by @hash.
  2142. *
  2143. * Returns a negative error number or the number of filters allocated.
  2144. */
  2145. int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
  2146. unsigned int viid, bool free, unsigned int naddr,
  2147. const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
  2148. {
  2149. int i, ret;
  2150. struct fw_vi_mac_cmd c;
  2151. struct fw_vi_mac_exact *p;
  2152. if (naddr > 7)
  2153. return -EINVAL;
  2154. memset(&c, 0, sizeof(c));
  2155. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2156. FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
  2157. FW_VI_MAC_CMD_VIID(viid));
  2158. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
  2159. FW_CMD_LEN16((naddr + 2) / 2));
  2160. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2161. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2162. FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
  2163. memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
  2164. }
  2165. ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
  2166. if (ret)
  2167. return ret;
  2168. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2169. u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2170. if (idx)
  2171. idx[i] = index >= NEXACT_MAC ? 0xffff : index;
  2172. if (index < NEXACT_MAC)
  2173. ret++;
  2174. else if (hash)
  2175. *hash |= (1ULL << hash_mac_addr(addr[i]));
  2176. }
  2177. return ret;
  2178. }
  2179. /**
  2180. * t4_change_mac - modifies the exact-match filter for a MAC address
  2181. * @adap: the adapter
  2182. * @mbox: mailbox to use for the FW command
  2183. * @viid: the VI id
  2184. * @idx: index of existing filter for old value of MAC address, or -1
  2185. * @addr: the new MAC address value
  2186. * @persist: whether a new MAC allocation should be persistent
  2187. * @add_smt: if true also add the address to the HW SMT
  2188. *
  2189. * Modifies an exact-match filter and sets it to the new MAC address.
  2190. * Note that in general it is not possible to modify the value of a given
  2191. * filter so the generic way to modify an address filter is to free the one
  2192. * being used by the old address value and allocate a new filter for the
  2193. * new address value. @idx can be -1 if the address is a new addition.
  2194. *
  2195. * Returns a negative error number or the index of the filter with the new
  2196. * MAC value.
  2197. */
  2198. int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2199. int idx, const u8 *addr, bool persist, bool add_smt)
  2200. {
  2201. int ret, mode;
  2202. struct fw_vi_mac_cmd c;
  2203. struct fw_vi_mac_exact *p = c.u.exact;
  2204. if (idx < 0) /* new allocation */
  2205. idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
  2206. mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
  2207. memset(&c, 0, sizeof(c));
  2208. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2209. FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
  2210. c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
  2211. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2212. FW_VI_MAC_CMD_SMAC_RESULT(mode) |
  2213. FW_VI_MAC_CMD_IDX(idx));
  2214. memcpy(p->macaddr, addr, sizeof(p->macaddr));
  2215. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2216. if (ret == 0) {
  2217. ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2218. if (ret >= NEXACT_MAC)
  2219. ret = -ENOMEM;
  2220. }
  2221. return ret;
  2222. }
  2223. /**
  2224. * t4_set_addr_hash - program the MAC inexact-match hash filter
  2225. * @adap: the adapter
  2226. * @mbox: mailbox to use for the FW command
  2227. * @viid: the VI id
  2228. * @ucast: whether the hash filter should also match unicast addresses
  2229. * @vec: the value to be written to the hash filter
  2230. * @sleep_ok: call is allowed to sleep
  2231. *
  2232. * Sets the 64-bit inexact-match hash filter for a virtual interface.
  2233. */
  2234. int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2235. bool ucast, u64 vec, bool sleep_ok)
  2236. {
  2237. struct fw_vi_mac_cmd c;
  2238. memset(&c, 0, sizeof(c));
  2239. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2240. FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
  2241. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
  2242. FW_VI_MAC_CMD_HASHUNIEN(ucast) |
  2243. FW_CMD_LEN16(1));
  2244. c.u.hash.hashvec = cpu_to_be64(vec);
  2245. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2246. }
  2247. /**
  2248. * t4_enable_vi - enable/disable a virtual interface
  2249. * @adap: the adapter
  2250. * @mbox: mailbox to use for the FW command
  2251. * @viid: the VI id
  2252. * @rx_en: 1=enable Rx, 0=disable Rx
  2253. * @tx_en: 1=enable Tx, 0=disable Tx
  2254. *
  2255. * Enables/disables a virtual interface.
  2256. */
  2257. int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2258. bool rx_en, bool tx_en)
  2259. {
  2260. struct fw_vi_enable_cmd c;
  2261. memset(&c, 0, sizeof(c));
  2262. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2263. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2264. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
  2265. FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
  2266. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2267. }
  2268. /**
  2269. * t4_identify_port - identify a VI's port by blinking its LED
  2270. * @adap: the adapter
  2271. * @mbox: mailbox to use for the FW command
  2272. * @viid: the VI id
  2273. * @nblinks: how many times to blink LED at 2.5 Hz
  2274. *
  2275. * Identifies a VI's port by blinking its LED.
  2276. */
  2277. int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2278. unsigned int nblinks)
  2279. {
  2280. struct fw_vi_enable_cmd c;
  2281. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2282. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2283. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
  2284. c.blinkdur = htons(nblinks);
  2285. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2286. }
  2287. /**
  2288. * t4_iq_free - free an ingress queue and its FLs
  2289. * @adap: the adapter
  2290. * @mbox: mailbox to use for the FW command
  2291. * @pf: the PF owning the queues
  2292. * @vf: the VF owning the queues
  2293. * @iqtype: the ingress queue type
  2294. * @iqid: ingress queue id
  2295. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  2296. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  2297. *
  2298. * Frees an ingress queue and its associated FLs, if any.
  2299. */
  2300. int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2301. unsigned int vf, unsigned int iqtype, unsigned int iqid,
  2302. unsigned int fl0id, unsigned int fl1id)
  2303. {
  2304. struct fw_iq_cmd c;
  2305. memset(&c, 0, sizeof(c));
  2306. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  2307. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  2308. FW_IQ_CMD_VFN(vf));
  2309. c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
  2310. c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
  2311. c.iqid = htons(iqid);
  2312. c.fl0id = htons(fl0id);
  2313. c.fl1id = htons(fl1id);
  2314. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2315. }
  2316. /**
  2317. * t4_eth_eq_free - free an Ethernet egress queue
  2318. * @adap: the adapter
  2319. * @mbox: mailbox to use for the FW command
  2320. * @pf: the PF owning the queue
  2321. * @vf: the VF owning the queue
  2322. * @eqid: egress queue id
  2323. *
  2324. * Frees an Ethernet egress queue.
  2325. */
  2326. int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2327. unsigned int vf, unsigned int eqid)
  2328. {
  2329. struct fw_eq_eth_cmd c;
  2330. memset(&c, 0, sizeof(c));
  2331. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
  2332. FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
  2333. FW_EQ_ETH_CMD_VFN(vf));
  2334. c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
  2335. c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
  2336. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2337. }
  2338. /**
  2339. * t4_ctrl_eq_free - free a control egress queue
  2340. * @adap: the adapter
  2341. * @mbox: mailbox to use for the FW command
  2342. * @pf: the PF owning the queue
  2343. * @vf: the VF owning the queue
  2344. * @eqid: egress queue id
  2345. *
  2346. * Frees a control egress queue.
  2347. */
  2348. int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2349. unsigned int vf, unsigned int eqid)
  2350. {
  2351. struct fw_eq_ctrl_cmd c;
  2352. memset(&c, 0, sizeof(c));
  2353. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
  2354. FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
  2355. FW_EQ_CTRL_CMD_VFN(vf));
  2356. c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
  2357. c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
  2358. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2359. }
  2360. /**
  2361. * t4_ofld_eq_free - free an offload egress queue
  2362. * @adap: the adapter
  2363. * @mbox: mailbox to use for the FW command
  2364. * @pf: the PF owning the queue
  2365. * @vf: the VF owning the queue
  2366. * @eqid: egress queue id
  2367. *
  2368. * Frees a control egress queue.
  2369. */
  2370. int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2371. unsigned int vf, unsigned int eqid)
  2372. {
  2373. struct fw_eq_ofld_cmd c;
  2374. memset(&c, 0, sizeof(c));
  2375. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
  2376. FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
  2377. FW_EQ_OFLD_CMD_VFN(vf));
  2378. c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
  2379. c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
  2380. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2381. }
  2382. /**
  2383. * t4_handle_fw_rpl - process a FW reply message
  2384. * @adap: the adapter
  2385. * @rpl: start of the FW message
  2386. *
  2387. * Processes a FW message, such as link state change messages.
  2388. */
  2389. int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
  2390. {
  2391. u8 opcode = *(const u8 *)rpl;
  2392. if (opcode == FW_PORT_CMD) { /* link/module state change message */
  2393. int speed = 0, fc = 0;
  2394. const struct fw_port_cmd *p = (void *)rpl;
  2395. int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
  2396. int port = adap->chan_map[chan];
  2397. struct port_info *pi = adap2pinfo(adap, port);
  2398. struct link_config *lc = &pi->link_cfg;
  2399. u32 stat = ntohl(p->u.info.lstatus_to_modtype);
  2400. int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
  2401. u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
  2402. if (stat & FW_PORT_CMD_RXPAUSE)
  2403. fc |= PAUSE_RX;
  2404. if (stat & FW_PORT_CMD_TXPAUSE)
  2405. fc |= PAUSE_TX;
  2406. if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
  2407. speed = SPEED_100;
  2408. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
  2409. speed = SPEED_1000;
  2410. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
  2411. speed = SPEED_10000;
  2412. if (link_ok != lc->link_ok || speed != lc->speed ||
  2413. fc != lc->fc) { /* something changed */
  2414. lc->link_ok = link_ok;
  2415. lc->speed = speed;
  2416. lc->fc = fc;
  2417. t4_os_link_changed(adap, port, link_ok);
  2418. }
  2419. if (mod != pi->mod_type) {
  2420. pi->mod_type = mod;
  2421. t4_os_portmod_changed(adap, port);
  2422. }
  2423. }
  2424. return 0;
  2425. }
  2426. static void __devinit get_pci_mode(struct adapter *adapter,
  2427. struct pci_params *p)
  2428. {
  2429. u16 val;
  2430. u32 pcie_cap = pci_pcie_cap(adapter->pdev);
  2431. if (pcie_cap) {
  2432. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  2433. &val);
  2434. p->speed = val & PCI_EXP_LNKSTA_CLS;
  2435. p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
  2436. }
  2437. }
  2438. /**
  2439. * init_link_config - initialize a link's SW state
  2440. * @lc: structure holding the link state
  2441. * @caps: link capabilities
  2442. *
  2443. * Initializes the SW state maintained for each link, including the link's
  2444. * capabilities and default speed/flow-control/autonegotiation settings.
  2445. */
  2446. static void __devinit init_link_config(struct link_config *lc,
  2447. unsigned int caps)
  2448. {
  2449. lc->supported = caps;
  2450. lc->requested_speed = 0;
  2451. lc->speed = 0;
  2452. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  2453. if (lc->supported & FW_PORT_CAP_ANEG) {
  2454. lc->advertising = lc->supported & ADVERT_MASK;
  2455. lc->autoneg = AUTONEG_ENABLE;
  2456. lc->requested_fc |= PAUSE_AUTONEG;
  2457. } else {
  2458. lc->advertising = 0;
  2459. lc->autoneg = AUTONEG_DISABLE;
  2460. }
  2461. }
  2462. int t4_wait_dev_ready(struct adapter *adap)
  2463. {
  2464. if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
  2465. return 0;
  2466. msleep(500);
  2467. return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
  2468. }
  2469. static int __devinit get_flash_params(struct adapter *adap)
  2470. {
  2471. int ret;
  2472. u32 info;
  2473. ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
  2474. if (!ret)
  2475. ret = sf1_read(adap, 3, 0, 1, &info);
  2476. t4_write_reg(adap, SF_OP, 0); /* unlock SF */
  2477. if (ret)
  2478. return ret;
  2479. if ((info & 0xff) != 0x20) /* not a Numonix flash */
  2480. return -EINVAL;
  2481. info >>= 16; /* log2 of size */
  2482. if (info >= 0x14 && info < 0x18)
  2483. adap->params.sf_nsec = 1 << (info - 16);
  2484. else if (info == 0x18)
  2485. adap->params.sf_nsec = 64;
  2486. else
  2487. return -EINVAL;
  2488. adap->params.sf_size = 1 << info;
  2489. adap->params.sf_fw_start =
  2490. t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
  2491. return 0;
  2492. }
  2493. /**
  2494. * t4_prep_adapter - prepare SW and HW for operation
  2495. * @adapter: the adapter
  2496. * @reset: if true perform a HW reset
  2497. *
  2498. * Initialize adapter SW state for the various HW modules, set initial
  2499. * values for some adapter tunables, take PHYs out of reset, and
  2500. * initialize the MDIO interface.
  2501. */
  2502. int __devinit t4_prep_adapter(struct adapter *adapter)
  2503. {
  2504. int ret;
  2505. ret = t4_wait_dev_ready(adapter);
  2506. if (ret < 0)
  2507. return ret;
  2508. get_pci_mode(adapter, &adapter->params.pci);
  2509. adapter->params.rev = t4_read_reg(adapter, PL_REV);
  2510. ret = get_flash_params(adapter);
  2511. if (ret < 0) {
  2512. dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
  2513. return ret;
  2514. }
  2515. ret = get_vpd_params(adapter, &adapter->params.vpd);
  2516. if (ret < 0)
  2517. return ret;
  2518. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  2519. /*
  2520. * Default port for debugging in case we can't reach FW.
  2521. */
  2522. adapter->params.nports = 1;
  2523. adapter->params.portvec = 1;
  2524. return 0;
  2525. }
  2526. int __devinit t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
  2527. {
  2528. u8 addr[6];
  2529. int ret, i, j = 0;
  2530. struct fw_port_cmd c;
  2531. struct fw_rss_vi_config_cmd rvc;
  2532. memset(&c, 0, sizeof(c));
  2533. memset(&rvc, 0, sizeof(rvc));
  2534. for_each_port(adap, i) {
  2535. unsigned int rss_size;
  2536. struct port_info *p = adap2pinfo(adap, i);
  2537. while ((adap->params.portvec & (1 << j)) == 0)
  2538. j++;
  2539. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
  2540. FW_CMD_REQUEST | FW_CMD_READ |
  2541. FW_PORT_CMD_PORTID(j));
  2542. c.action_to_len16 = htonl(
  2543. FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
  2544. FW_LEN16(c));
  2545. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2546. if (ret)
  2547. return ret;
  2548. ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
  2549. if (ret < 0)
  2550. return ret;
  2551. p->viid = ret;
  2552. p->tx_chan = j;
  2553. p->lport = j;
  2554. p->rss_size = rss_size;
  2555. memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
  2556. memcpy(adap->port[i]->perm_addr, addr, ETH_ALEN);
  2557. adap->port[i]->dev_id = j;
  2558. ret = ntohl(c.u.info.lstatus_to_modtype);
  2559. p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
  2560. FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
  2561. p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
  2562. p->mod_type = FW_PORT_MOD_TYPE_NA;
  2563. rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
  2564. FW_CMD_REQUEST | FW_CMD_READ |
  2565. FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
  2566. rvc.retval_len16 = htonl(FW_LEN16(rvc));
  2567. ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
  2568. if (ret)
  2569. return ret;
  2570. p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
  2571. init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
  2572. j++;
  2573. }
  2574. return 0;
  2575. }