amba-pl08x.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059
  1. /*
  2. * Copyright (c) 2006 ARM Ltd.
  3. * Copyright (c) 2010 ST-Ericsson SA
  4. *
  5. * Author: Peter Pearse <peter.pearse@arm.com>
  6. * Author: Linus Walleij <linus.walleij@stericsson.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful, but WITHOUT
  14. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  16. * more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along with
  19. * this program; if not, write to the Free Software Foundation, Inc., 59
  20. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21. *
  22. * The full GNU General Public License is in this distribution in the
  23. * file called COPYING.
  24. *
  25. * Documentation: ARM DDI 0196G == PL080
  26. * Documentation: ARM DDI 0218E == PL081
  27. *
  28. * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
  29. * any channel.
  30. *
  31. * The PL080 has 8 channels available for simultaneous use, and the PL081
  32. * has only two channels. So on these DMA controllers the number of channels
  33. * and the number of incoming DMA signals are two totally different things.
  34. * It is usually not possible to theoretically handle all physical signals,
  35. * so a multiplexing scheme with possible denial of use is necessary.
  36. *
  37. * The PL080 has a dual bus master, PL081 has a single master.
  38. *
  39. * Memory to peripheral transfer may be visualized as
  40. * Get data from memory to DMAC
  41. * Until no data left
  42. * On burst request from peripheral
  43. * Destination burst from DMAC to peripheral
  44. * Clear burst request
  45. * Raise terminal count interrupt
  46. *
  47. * For peripherals with a FIFO:
  48. * Source burst size == half the depth of the peripheral FIFO
  49. * Destination burst size == the depth of the peripheral FIFO
  50. *
  51. * (Bursts are irrelevant for mem to mem transfers - there are no burst
  52. * signals, the DMA controller will simply facilitate its AHB master.)
  53. *
  54. * ASSUMES default (little) endianness for DMA transfers
  55. *
  56. * The PL08x has two flow control settings:
  57. * - DMAC flow control: the transfer size defines the number of transfers
  58. * which occur for the current LLI entry, and the DMAC raises TC at the
  59. * end of every LLI entry. Observed behaviour shows the DMAC listening
  60. * to both the BREQ and SREQ signals (contrary to documented),
  61. * transferring data if either is active. The LBREQ and LSREQ signals
  62. * are ignored.
  63. *
  64. * - Peripheral flow control: the transfer size is ignored (and should be
  65. * zero). The data is transferred from the current LLI entry, until
  66. * after the final transfer signalled by LBREQ or LSREQ. The DMAC
  67. * will then move to the next LLI entry.
  68. *
  69. * Only the former works sanely with scatter lists, so we only implement
  70. * the DMAC flow control method. However, peripherals which use the LBREQ
  71. * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
  72. * these hardware restrictions prevents them from using scatter DMA.
  73. *
  74. * Global TODO:
  75. * - Break out common code from arch/arm/mach-s3c64xx and share
  76. */
  77. #include <linux/device.h>
  78. #include <linux/init.h>
  79. #include <linux/module.h>
  80. #include <linux/interrupt.h>
  81. #include <linux/slab.h>
  82. #include <linux/dmapool.h>
  83. #include <linux/dmaengine.h>
  84. #include <linux/amba/bus.h>
  85. #include <linux/amba/pl08x.h>
  86. #include <linux/debugfs.h>
  87. #include <linux/seq_file.h>
  88. #include <asm/hardware/pl080.h>
  89. #define DRIVER_NAME "pl08xdmac"
  90. /**
  91. * struct vendor_data - vendor-specific config parameters
  92. * for PL08x derivatives
  93. * @channels: the number of channels available in this variant
  94. * @dualmaster: whether this version supports dual AHB masters
  95. * or not.
  96. */
  97. struct vendor_data {
  98. u8 channels;
  99. bool dualmaster;
  100. };
  101. /*
  102. * PL08X private data structures
  103. * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
  104. * start & end do not - their bus bit info is in cctl. Also note that these
  105. * are fixed 32-bit quantities.
  106. */
  107. struct pl08x_lli {
  108. u32 src;
  109. u32 dst;
  110. u32 lli;
  111. u32 cctl;
  112. };
  113. /**
  114. * struct pl08x_driver_data - the local state holder for the PL08x
  115. * @slave: slave engine for this instance
  116. * @memcpy: memcpy engine for this instance
  117. * @base: virtual memory base (remapped) for the PL08x
  118. * @adev: the corresponding AMBA (PrimeCell) bus entry
  119. * @vd: vendor data for this PL08x variant
  120. * @pd: platform data passed in from the platform/machine
  121. * @phy_chans: array of data for the physical channels
  122. * @pool: a pool for the LLI descriptors
  123. * @pool_ctr: counter of LLIs in the pool
  124. * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
  125. * @mem_buses: set to indicate memory transfers on AHB2.
  126. * @lock: a spinlock for this struct
  127. */
  128. struct pl08x_driver_data {
  129. struct dma_device slave;
  130. struct dma_device memcpy;
  131. void __iomem *base;
  132. struct amba_device *adev;
  133. const struct vendor_data *vd;
  134. struct pl08x_platform_data *pd;
  135. struct pl08x_phy_chan *phy_chans;
  136. struct dma_pool *pool;
  137. int pool_ctr;
  138. u8 lli_buses;
  139. u8 mem_buses;
  140. spinlock_t lock;
  141. };
  142. /*
  143. * PL08X specific defines
  144. */
  145. /*
  146. * Memory boundaries: the manual for PL08x says that the controller
  147. * cannot read past a 1KiB boundary, so these defines are used to
  148. * create transfer LLIs that do not cross such boundaries.
  149. */
  150. #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
  151. #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
  152. /* Minimum period between work queue runs */
  153. #define PL08X_WQ_PERIODMIN 20
  154. /* Size (bytes) of each LLI buffer allocated for one transfer */
  155. # define PL08X_LLI_TSFR_SIZE 0x2000
  156. /* Maximum times we call dma_pool_alloc on this pool without freeing */
  157. #define PL08X_MAX_ALLOCS 0x40
  158. #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
  159. #define PL08X_ALIGN 8
  160. static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
  161. {
  162. return container_of(chan, struct pl08x_dma_chan, chan);
  163. }
  164. /*
  165. * Physical channel handling
  166. */
  167. /* Whether a certain channel is busy or not */
  168. static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
  169. {
  170. unsigned int val;
  171. val = readl(ch->base + PL080_CH_CONFIG);
  172. return val & PL080_CONFIG_ACTIVE;
  173. }
  174. /*
  175. * Set the initial DMA register values i.e. those for the first LLI
  176. * The next LLI pointer and the configuration interrupt bit have
  177. * been set when the LLIs were constructed. Poke them into the hardware
  178. * and start the transfer.
  179. */
  180. static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
  181. struct pl08x_txd *txd)
  182. {
  183. struct pl08x_driver_data *pl08x = plchan->host;
  184. struct pl08x_phy_chan *phychan = plchan->phychan;
  185. struct pl08x_lli *lli = &txd->llis_va[0];
  186. u32 val;
  187. plchan->at = txd;
  188. /* Wait for channel inactive */
  189. while (pl08x_phy_channel_busy(phychan))
  190. cpu_relax();
  191. dev_vdbg(&pl08x->adev->dev,
  192. "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
  193. "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
  194. phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
  195. txd->ccfg);
  196. writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
  197. writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
  198. writel(lli->lli, phychan->base + PL080_CH_LLI);
  199. writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
  200. writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
  201. /* Enable the DMA channel */
  202. /* Do not access config register until channel shows as disabled */
  203. while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
  204. cpu_relax();
  205. /* Do not access config register until channel shows as inactive */
  206. val = readl(phychan->base + PL080_CH_CONFIG);
  207. while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
  208. val = readl(phychan->base + PL080_CH_CONFIG);
  209. writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
  210. }
  211. /*
  212. * Overall DMAC remains enabled always.
  213. *
  214. * Disabling individual channels could lose data.
  215. *
  216. * Disable the peripheral DMA after disabling the DMAC
  217. * in order to allow the DMAC FIFO to drain, and
  218. * hence allow the channel to show inactive
  219. *
  220. */
  221. static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
  222. {
  223. u32 val;
  224. /* Set the HALT bit and wait for the FIFO to drain */
  225. val = readl(ch->base + PL080_CH_CONFIG);
  226. val |= PL080_CONFIG_HALT;
  227. writel(val, ch->base + PL080_CH_CONFIG);
  228. /* Wait for channel inactive */
  229. while (pl08x_phy_channel_busy(ch))
  230. cpu_relax();
  231. }
  232. static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
  233. {
  234. u32 val;
  235. /* Clear the HALT bit */
  236. val = readl(ch->base + PL080_CH_CONFIG);
  237. val &= ~PL080_CONFIG_HALT;
  238. writel(val, ch->base + PL080_CH_CONFIG);
  239. }
  240. /* Stops the channel */
  241. static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
  242. {
  243. u32 val;
  244. pl08x_pause_phy_chan(ch);
  245. /* Disable channel */
  246. val = readl(ch->base + PL080_CH_CONFIG);
  247. val &= ~PL080_CONFIG_ENABLE;
  248. val &= ~PL080_CONFIG_ERR_IRQ_MASK;
  249. val &= ~PL080_CONFIG_TC_IRQ_MASK;
  250. writel(val, ch->base + PL080_CH_CONFIG);
  251. }
  252. static inline u32 get_bytes_in_cctl(u32 cctl)
  253. {
  254. /* The source width defines the number of bytes */
  255. u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
  256. switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
  257. case PL080_WIDTH_8BIT:
  258. break;
  259. case PL080_WIDTH_16BIT:
  260. bytes *= 2;
  261. break;
  262. case PL080_WIDTH_32BIT:
  263. bytes *= 4;
  264. break;
  265. }
  266. return bytes;
  267. }
  268. /* The channel should be paused when calling this */
  269. static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
  270. {
  271. struct pl08x_phy_chan *ch;
  272. struct pl08x_txd *txd;
  273. unsigned long flags;
  274. size_t bytes = 0;
  275. spin_lock_irqsave(&plchan->lock, flags);
  276. ch = plchan->phychan;
  277. txd = plchan->at;
  278. /*
  279. * Follow the LLIs to get the number of remaining
  280. * bytes in the currently active transaction.
  281. */
  282. if (ch && txd) {
  283. u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
  284. /* First get the remaining bytes in the active transfer */
  285. bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
  286. if (clli) {
  287. struct pl08x_lli *llis_va = txd->llis_va;
  288. dma_addr_t llis_bus = txd->llis_bus;
  289. int index;
  290. BUG_ON(clli < llis_bus || clli >= llis_bus +
  291. sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
  292. /*
  293. * Locate the next LLI - as this is an array,
  294. * it's simple maths to find.
  295. */
  296. index = (clli - llis_bus) / sizeof(struct pl08x_lli);
  297. for (; index < MAX_NUM_TSFR_LLIS; index++) {
  298. bytes += get_bytes_in_cctl(llis_va[index].cctl);
  299. /*
  300. * A LLI pointer of 0 terminates the LLI list
  301. */
  302. if (!llis_va[index].lli)
  303. break;
  304. }
  305. }
  306. }
  307. /* Sum up all queued transactions */
  308. if (!list_empty(&plchan->desc_list)) {
  309. struct pl08x_txd *txdi;
  310. list_for_each_entry(txdi, &plchan->desc_list, node) {
  311. bytes += txdi->len;
  312. }
  313. }
  314. spin_unlock_irqrestore(&plchan->lock, flags);
  315. return bytes;
  316. }
  317. /*
  318. * Allocate a physical channel for a virtual channel
  319. */
  320. static struct pl08x_phy_chan *
  321. pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
  322. struct pl08x_dma_chan *virt_chan)
  323. {
  324. struct pl08x_phy_chan *ch = NULL;
  325. unsigned long flags;
  326. int i;
  327. /*
  328. * Try to locate a physical channel to be used for
  329. * this transfer. If all are taken return NULL and
  330. * the requester will have to cope by using some fallback
  331. * PIO mode or retrying later.
  332. */
  333. for (i = 0; i < pl08x->vd->channels; i++) {
  334. ch = &pl08x->phy_chans[i];
  335. spin_lock_irqsave(&ch->lock, flags);
  336. if (!ch->serving) {
  337. ch->serving = virt_chan;
  338. ch->signal = -1;
  339. spin_unlock_irqrestore(&ch->lock, flags);
  340. break;
  341. }
  342. spin_unlock_irqrestore(&ch->lock, flags);
  343. }
  344. if (i == pl08x->vd->channels) {
  345. /* No physical channel available, cope with it */
  346. return NULL;
  347. }
  348. return ch;
  349. }
  350. static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
  351. struct pl08x_phy_chan *ch)
  352. {
  353. unsigned long flags;
  354. /* Stop the channel and clear its interrupts */
  355. pl08x_stop_phy_chan(ch);
  356. writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
  357. writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
  358. /* Mark it as free */
  359. spin_lock_irqsave(&ch->lock, flags);
  360. ch->serving = NULL;
  361. spin_unlock_irqrestore(&ch->lock, flags);
  362. }
  363. /*
  364. * LLI handling
  365. */
  366. static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
  367. {
  368. switch (coded) {
  369. case PL080_WIDTH_8BIT:
  370. return 1;
  371. case PL080_WIDTH_16BIT:
  372. return 2;
  373. case PL080_WIDTH_32BIT:
  374. return 4;
  375. default:
  376. break;
  377. }
  378. BUG();
  379. return 0;
  380. }
  381. static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
  382. size_t tsize)
  383. {
  384. u32 retbits = cctl;
  385. /* Remove all src, dst and transfer size bits */
  386. retbits &= ~PL080_CONTROL_DWIDTH_MASK;
  387. retbits &= ~PL080_CONTROL_SWIDTH_MASK;
  388. retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
  389. /* Then set the bits according to the parameters */
  390. switch (srcwidth) {
  391. case 1:
  392. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
  393. break;
  394. case 2:
  395. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
  396. break;
  397. case 4:
  398. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
  399. break;
  400. default:
  401. BUG();
  402. break;
  403. }
  404. switch (dstwidth) {
  405. case 1:
  406. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
  407. break;
  408. case 2:
  409. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
  410. break;
  411. case 4:
  412. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
  413. break;
  414. default:
  415. BUG();
  416. break;
  417. }
  418. retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
  419. return retbits;
  420. }
  421. /*
  422. * Autoselect a master bus to use for the transfer
  423. * this prefers the destination bus if both available
  424. * if fixed address on one bus the other will be chosen
  425. */
  426. static void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus,
  427. struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus,
  428. struct pl08x_bus_data **sbus, u32 cctl)
  429. {
  430. if (!(cctl & PL080_CONTROL_DST_INCR)) {
  431. *mbus = src_bus;
  432. *sbus = dst_bus;
  433. } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
  434. *mbus = dst_bus;
  435. *sbus = src_bus;
  436. } else {
  437. if (dst_bus->buswidth == 4) {
  438. *mbus = dst_bus;
  439. *sbus = src_bus;
  440. } else if (src_bus->buswidth == 4) {
  441. *mbus = src_bus;
  442. *sbus = dst_bus;
  443. } else if (dst_bus->buswidth == 2) {
  444. *mbus = dst_bus;
  445. *sbus = src_bus;
  446. } else if (src_bus->buswidth == 2) {
  447. *mbus = src_bus;
  448. *sbus = dst_bus;
  449. } else {
  450. /* src_bus->buswidth == 1 */
  451. *mbus = dst_bus;
  452. *sbus = src_bus;
  453. }
  454. }
  455. }
  456. /*
  457. * Fills in one LLI for a certain transfer descriptor
  458. * and advance the counter
  459. */
  460. static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
  461. struct pl08x_txd *txd, int num_llis, int len, u32 cctl, u32 *remainder)
  462. {
  463. struct pl08x_lli *llis_va = txd->llis_va;
  464. dma_addr_t llis_bus = txd->llis_bus;
  465. BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
  466. llis_va[num_llis].cctl = cctl;
  467. llis_va[num_llis].src = txd->srcbus.addr;
  468. llis_va[num_llis].dst = txd->dstbus.addr;
  469. llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
  470. if (pl08x->lli_buses & PL08X_AHB2)
  471. llis_va[num_llis].lli |= PL080_LLI_LM_AHB2;
  472. if (cctl & PL080_CONTROL_SRC_INCR)
  473. txd->srcbus.addr += len;
  474. if (cctl & PL080_CONTROL_DST_INCR)
  475. txd->dstbus.addr += len;
  476. BUG_ON(*remainder < len);
  477. *remainder -= len;
  478. }
  479. /*
  480. * Return number of bytes to fill to boundary, or len
  481. */
  482. static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
  483. {
  484. u32 boundary;
  485. boundary = ((addr >> PL08X_BOUNDARY_SHIFT) + 1)
  486. << PL08X_BOUNDARY_SHIFT;
  487. if (boundary < addr + len)
  488. return boundary - addr;
  489. else
  490. return len;
  491. }
  492. /*
  493. * This fills in the table of LLIs for the transfer descriptor
  494. * Note that we assume we never have to change the burst sizes
  495. * Return 0 for error
  496. */
  497. static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
  498. struct pl08x_txd *txd)
  499. {
  500. struct pl08x_bus_data *mbus, *sbus;
  501. size_t remainder;
  502. int num_llis = 0;
  503. u32 cctl;
  504. size_t max_bytes_per_lli;
  505. size_t total_bytes = 0;
  506. struct pl08x_lli *llis_va;
  507. txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
  508. &txd->llis_bus);
  509. if (!txd->llis_va) {
  510. dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
  511. return 0;
  512. }
  513. pl08x->pool_ctr++;
  514. /* Get the default CCTL */
  515. cctl = txd->cctl;
  516. /* Find maximum width of the source bus */
  517. txd->srcbus.maxwidth =
  518. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
  519. PL080_CONTROL_SWIDTH_SHIFT);
  520. /* Find maximum width of the destination bus */
  521. txd->dstbus.maxwidth =
  522. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
  523. PL080_CONTROL_DWIDTH_SHIFT);
  524. /* Set up the bus widths to the maximum */
  525. txd->srcbus.buswidth = txd->srcbus.maxwidth;
  526. txd->dstbus.buswidth = txd->dstbus.maxwidth;
  527. dev_vdbg(&pl08x->adev->dev,
  528. "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
  529. __func__, txd->srcbus.buswidth, txd->dstbus.buswidth);
  530. /*
  531. * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
  532. */
  533. max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) *
  534. PL080_CONTROL_TRANSFER_SIZE_MASK;
  535. dev_vdbg(&pl08x->adev->dev,
  536. "%s max bytes per lli = %zu\n",
  537. __func__, max_bytes_per_lli);
  538. /* We need to count this down to zero */
  539. remainder = txd->len;
  540. dev_vdbg(&pl08x->adev->dev,
  541. "%s remainder = %zu\n",
  542. __func__, remainder);
  543. /*
  544. * Choose bus to align to
  545. * - prefers destination bus if both available
  546. * - if fixed address on one bus chooses other
  547. * - modifies cctl to choose an appropriate master
  548. */
  549. pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus,
  550. &mbus, &sbus, cctl);
  551. if (txd->len < mbus->buswidth) {
  552. /*
  553. * Less than a bus width available
  554. * - send as single bytes
  555. */
  556. while (remainder) {
  557. dev_vdbg(&pl08x->adev->dev,
  558. "%s single byte LLIs for a transfer of "
  559. "less than a bus width (remain 0x%08x)\n",
  560. __func__, remainder);
  561. cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
  562. pl08x_fill_lli_for_desc(pl08x, txd, num_llis++, 1,
  563. cctl, &remainder);
  564. total_bytes++;
  565. }
  566. } else {
  567. /*
  568. * Make one byte LLIs until master bus is aligned
  569. * - slave will then be aligned also
  570. */
  571. while ((mbus->addr) % (mbus->buswidth)) {
  572. dev_vdbg(&pl08x->adev->dev,
  573. "%s adjustment lli for less than bus width "
  574. "(remain 0x%08x)\n",
  575. __func__, remainder);
  576. cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
  577. pl08x_fill_lli_for_desc(pl08x, txd, num_llis++, 1,
  578. cctl, &remainder);
  579. total_bytes++;
  580. }
  581. /*
  582. * Master now aligned
  583. * - if slave is not then we must set its width down
  584. */
  585. if (sbus->addr % sbus->buswidth) {
  586. dev_dbg(&pl08x->adev->dev,
  587. "%s set down bus width to one byte\n",
  588. __func__);
  589. sbus->buswidth = 1;
  590. }
  591. /*
  592. * Make largest possible LLIs until less than one bus
  593. * width left
  594. */
  595. while (remainder > (mbus->buswidth - 1)) {
  596. size_t lli_len, target_len, tsize, odd_bytes;
  597. /*
  598. * If enough left try to send max possible,
  599. * otherwise try to send the remainder
  600. */
  601. target_len = remainder;
  602. if (remainder > max_bytes_per_lli)
  603. target_len = max_bytes_per_lli;
  604. /*
  605. * Set bus lengths for incrementing buses
  606. * to number of bytes which fill to next memory
  607. * boundary
  608. */
  609. if (cctl & PL080_CONTROL_SRC_INCR)
  610. txd->srcbus.fill_bytes =
  611. pl08x_pre_boundary(
  612. txd->srcbus.addr,
  613. remainder);
  614. else
  615. txd->srcbus.fill_bytes =
  616. max_bytes_per_lli;
  617. if (cctl & PL080_CONTROL_DST_INCR)
  618. txd->dstbus.fill_bytes =
  619. pl08x_pre_boundary(
  620. txd->dstbus.addr,
  621. remainder);
  622. else
  623. txd->dstbus.fill_bytes =
  624. max_bytes_per_lli;
  625. /*
  626. * Find the nearest
  627. */
  628. lli_len = min(txd->srcbus.fill_bytes,
  629. txd->dstbus.fill_bytes);
  630. BUG_ON(lli_len > remainder);
  631. if (lli_len <= 0) {
  632. dev_err(&pl08x->adev->dev,
  633. "%s lli_len is %zu, <= 0\n",
  634. __func__, lli_len);
  635. return 0;
  636. }
  637. if (lli_len == target_len) {
  638. /*
  639. * Can send what we wanted
  640. */
  641. /*
  642. * Maintain alignment
  643. */
  644. lli_len = (lli_len/mbus->buswidth) *
  645. mbus->buswidth;
  646. odd_bytes = 0;
  647. } else {
  648. /*
  649. * So now we know how many bytes to transfer
  650. * to get to the nearest boundary
  651. * The next LLI will past the boundary
  652. * - however we may be working to a boundary
  653. * on the slave bus
  654. * We need to ensure the master stays aligned
  655. */
  656. odd_bytes = lli_len % mbus->buswidth;
  657. /*
  658. * - and that we are working in multiples
  659. * of the bus widths
  660. */
  661. lli_len -= odd_bytes;
  662. }
  663. if (lli_len) {
  664. /*
  665. * Check against minimum bus alignment:
  666. * Calculate actual transfer size in relation
  667. * to bus width an get a maximum remainder of
  668. * the smallest bus width - 1
  669. */
  670. /* FIXME: use round_down()? */
  671. tsize = lli_len / min(mbus->buswidth,
  672. sbus->buswidth);
  673. lli_len = tsize * min(mbus->buswidth,
  674. sbus->buswidth);
  675. if (target_len != lli_len) {
  676. dev_vdbg(&pl08x->adev->dev,
  677. "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
  678. __func__, target_len, lli_len, txd->len);
  679. }
  680. cctl = pl08x_cctl_bits(cctl,
  681. txd->srcbus.buswidth,
  682. txd->dstbus.buswidth,
  683. tsize);
  684. dev_vdbg(&pl08x->adev->dev,
  685. "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
  686. __func__, lli_len, remainder);
  687. pl08x_fill_lli_for_desc(pl08x, txd, num_llis++,
  688. lli_len, cctl, &remainder);
  689. total_bytes += lli_len;
  690. }
  691. if (odd_bytes) {
  692. /*
  693. * Creep past the boundary,
  694. * maintaining master alignment
  695. */
  696. int j;
  697. for (j = 0; (j < mbus->buswidth)
  698. && (remainder); j++) {
  699. cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
  700. dev_vdbg(&pl08x->adev->dev,
  701. "%s align with boundary, single byte (remain 0x%08zx)\n",
  702. __func__, remainder);
  703. pl08x_fill_lli_for_desc(pl08x, txd,
  704. num_llis++, 1, cctl,
  705. &remainder);
  706. total_bytes++;
  707. }
  708. }
  709. }
  710. /*
  711. * Send any odd bytes
  712. */
  713. while (remainder) {
  714. cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
  715. dev_vdbg(&pl08x->adev->dev,
  716. "%s align with boundary, single odd byte (remain %zu)\n",
  717. __func__, remainder);
  718. pl08x_fill_lli_for_desc(pl08x, txd, num_llis++, 1,
  719. cctl, &remainder);
  720. total_bytes++;
  721. }
  722. }
  723. if (total_bytes != txd->len) {
  724. dev_err(&pl08x->adev->dev,
  725. "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
  726. __func__, total_bytes, txd->len);
  727. return 0;
  728. }
  729. if (num_llis >= MAX_NUM_TSFR_LLIS) {
  730. dev_err(&pl08x->adev->dev,
  731. "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
  732. __func__, (u32) MAX_NUM_TSFR_LLIS);
  733. return 0;
  734. }
  735. llis_va = txd->llis_va;
  736. /*
  737. * The final LLI terminates the LLI.
  738. */
  739. llis_va[num_llis - 1].lli = 0;
  740. /*
  741. * The final LLI element shall also fire an interrupt
  742. */
  743. llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
  744. #ifdef VERBOSE_DEBUG
  745. {
  746. int i;
  747. for (i = 0; i < num_llis; i++) {
  748. dev_vdbg(&pl08x->adev->dev,
  749. "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
  750. i,
  751. &llis_va[i],
  752. llis_va[i].src,
  753. llis_va[i].dst,
  754. llis_va[i].cctl,
  755. llis_va[i].lli
  756. );
  757. }
  758. }
  759. #endif
  760. return num_llis;
  761. }
  762. /* You should call this with the struct pl08x lock held */
  763. static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
  764. struct pl08x_txd *txd)
  765. {
  766. /* Free the LLI */
  767. dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
  768. pl08x->pool_ctr--;
  769. kfree(txd);
  770. }
  771. static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
  772. struct pl08x_dma_chan *plchan)
  773. {
  774. struct pl08x_txd *txdi = NULL;
  775. struct pl08x_txd *next;
  776. if (!list_empty(&plchan->desc_list)) {
  777. list_for_each_entry_safe(txdi,
  778. next, &plchan->desc_list, node) {
  779. list_del(&txdi->node);
  780. pl08x_free_txd(pl08x, txdi);
  781. }
  782. }
  783. }
  784. /*
  785. * The DMA ENGINE API
  786. */
  787. static int pl08x_alloc_chan_resources(struct dma_chan *chan)
  788. {
  789. return 0;
  790. }
  791. static void pl08x_free_chan_resources(struct dma_chan *chan)
  792. {
  793. }
  794. /*
  795. * This should be called with the channel plchan->lock held
  796. */
  797. static int prep_phy_channel(struct pl08x_dma_chan *plchan,
  798. struct pl08x_txd *txd)
  799. {
  800. struct pl08x_driver_data *pl08x = plchan->host;
  801. struct pl08x_phy_chan *ch;
  802. int ret;
  803. /* Check if we already have a channel */
  804. if (plchan->phychan)
  805. return 0;
  806. ch = pl08x_get_phy_channel(pl08x, plchan);
  807. if (!ch) {
  808. /* No physical channel available, cope with it */
  809. dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
  810. return -EBUSY;
  811. }
  812. /*
  813. * OK we have a physical channel: for memcpy() this is all we
  814. * need, but for slaves the physical signals may be muxed!
  815. * Can the platform allow us to use this channel?
  816. */
  817. if (plchan->slave &&
  818. ch->signal < 0 &&
  819. pl08x->pd->get_signal) {
  820. ret = pl08x->pd->get_signal(plchan);
  821. if (ret < 0) {
  822. dev_dbg(&pl08x->adev->dev,
  823. "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
  824. ch->id, plchan->name);
  825. /* Release physical channel & return */
  826. pl08x_put_phy_channel(pl08x, ch);
  827. return -EBUSY;
  828. }
  829. ch->signal = ret;
  830. /* Assign the flow control signal to this channel */
  831. if (txd->direction == DMA_TO_DEVICE)
  832. txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
  833. else if (txd->direction == DMA_FROM_DEVICE)
  834. txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
  835. }
  836. dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
  837. ch->id,
  838. ch->signal,
  839. plchan->name);
  840. plchan->phychan = ch;
  841. return 0;
  842. }
  843. static void release_phy_channel(struct pl08x_dma_chan *plchan)
  844. {
  845. struct pl08x_driver_data *pl08x = plchan->host;
  846. if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
  847. pl08x->pd->put_signal(plchan);
  848. plchan->phychan->signal = -1;
  849. }
  850. pl08x_put_phy_channel(pl08x, plchan->phychan);
  851. plchan->phychan = NULL;
  852. }
  853. static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
  854. {
  855. struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
  856. plchan->chan.cookie += 1;
  857. if (plchan->chan.cookie < 0)
  858. plchan->chan.cookie = 1;
  859. tx->cookie = plchan->chan.cookie;
  860. /* This unlock follows the lock in the prep() function */
  861. spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
  862. return tx->cookie;
  863. }
  864. static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
  865. struct dma_chan *chan, unsigned long flags)
  866. {
  867. struct dma_async_tx_descriptor *retval = NULL;
  868. return retval;
  869. }
  870. /*
  871. * Code accessing dma_async_is_complete() in a tight loop
  872. * may give problems - could schedule where indicated.
  873. * If slaves are relying on interrupts to signal completion this
  874. * function must not be called with interrupts disabled
  875. */
  876. static enum dma_status
  877. pl08x_dma_tx_status(struct dma_chan *chan,
  878. dma_cookie_t cookie,
  879. struct dma_tx_state *txstate)
  880. {
  881. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  882. dma_cookie_t last_used;
  883. dma_cookie_t last_complete;
  884. enum dma_status ret;
  885. u32 bytesleft = 0;
  886. last_used = plchan->chan.cookie;
  887. last_complete = plchan->lc;
  888. ret = dma_async_is_complete(cookie, last_complete, last_used);
  889. if (ret == DMA_SUCCESS) {
  890. dma_set_tx_state(txstate, last_complete, last_used, 0);
  891. return ret;
  892. }
  893. /*
  894. * schedule(); could be inserted here
  895. */
  896. /*
  897. * This cookie not complete yet
  898. */
  899. last_used = plchan->chan.cookie;
  900. last_complete = plchan->lc;
  901. /* Get number of bytes left in the active transactions and queue */
  902. bytesleft = pl08x_getbytes_chan(plchan);
  903. dma_set_tx_state(txstate, last_complete, last_used,
  904. bytesleft);
  905. if (plchan->state == PL08X_CHAN_PAUSED)
  906. return DMA_PAUSED;
  907. /* Whether waiting or running, we're in progress */
  908. return DMA_IN_PROGRESS;
  909. }
  910. /* PrimeCell DMA extension */
  911. struct burst_table {
  912. int burstwords;
  913. u32 reg;
  914. };
  915. static const struct burst_table burst_sizes[] = {
  916. {
  917. .burstwords = 256,
  918. .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
  919. (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
  920. },
  921. {
  922. .burstwords = 128,
  923. .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
  924. (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
  925. },
  926. {
  927. .burstwords = 64,
  928. .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
  929. (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
  930. },
  931. {
  932. .burstwords = 32,
  933. .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
  934. (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
  935. },
  936. {
  937. .burstwords = 16,
  938. .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
  939. (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
  940. },
  941. {
  942. .burstwords = 8,
  943. .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
  944. (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
  945. },
  946. {
  947. .burstwords = 4,
  948. .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
  949. (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
  950. },
  951. {
  952. .burstwords = 1,
  953. .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
  954. (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
  955. },
  956. };
  957. static void dma_set_runtime_config(struct dma_chan *chan,
  958. struct dma_slave_config *config)
  959. {
  960. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  961. struct pl08x_driver_data *pl08x = plchan->host;
  962. struct pl08x_channel_data *cd = plchan->cd;
  963. enum dma_slave_buswidth addr_width;
  964. u32 maxburst;
  965. u32 cctl = 0;
  966. int i;
  967. /* Transfer direction */
  968. plchan->runtime_direction = config->direction;
  969. if (config->direction == DMA_TO_DEVICE) {
  970. plchan->runtime_addr = config->dst_addr;
  971. addr_width = config->dst_addr_width;
  972. maxburst = config->dst_maxburst;
  973. } else if (config->direction == DMA_FROM_DEVICE) {
  974. plchan->runtime_addr = config->src_addr;
  975. addr_width = config->src_addr_width;
  976. maxburst = config->src_maxburst;
  977. } else {
  978. dev_err(&pl08x->adev->dev,
  979. "bad runtime_config: alien transfer direction\n");
  980. return;
  981. }
  982. switch (addr_width) {
  983. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  984. cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
  985. (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
  986. break;
  987. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  988. cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
  989. (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
  990. break;
  991. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  992. cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
  993. (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
  994. break;
  995. default:
  996. dev_err(&pl08x->adev->dev,
  997. "bad runtime_config: alien address width\n");
  998. return;
  999. }
  1000. /*
  1001. * Now decide on a maxburst:
  1002. * If this channel will only request single transfers, set this
  1003. * down to ONE element. Also select one element if no maxburst
  1004. * is specified.
  1005. */
  1006. if (plchan->cd->single || maxburst == 0) {
  1007. cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
  1008. (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
  1009. } else {
  1010. for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
  1011. if (burst_sizes[i].burstwords <= maxburst)
  1012. break;
  1013. cctl |= burst_sizes[i].reg;
  1014. }
  1015. /* Modify the default channel data to fit PrimeCell request */
  1016. cd->cctl = cctl;
  1017. dev_dbg(&pl08x->adev->dev,
  1018. "configured channel %s (%s) for %s, data width %d, "
  1019. "maxburst %d words, LE, CCTL=0x%08x\n",
  1020. dma_chan_name(chan), plchan->name,
  1021. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1022. addr_width,
  1023. maxburst,
  1024. cctl);
  1025. }
  1026. /*
  1027. * Slave transactions callback to the slave device to allow
  1028. * synchronization of slave DMA signals with the DMAC enable
  1029. */
  1030. static void pl08x_issue_pending(struct dma_chan *chan)
  1031. {
  1032. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1033. unsigned long flags;
  1034. spin_lock_irqsave(&plchan->lock, flags);
  1035. /* Something is already active, or we're waiting for a channel... */
  1036. if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
  1037. spin_unlock_irqrestore(&plchan->lock, flags);
  1038. return;
  1039. }
  1040. /* Take the first element in the queue and execute it */
  1041. if (!list_empty(&plchan->desc_list)) {
  1042. struct pl08x_txd *next;
  1043. next = list_first_entry(&plchan->desc_list,
  1044. struct pl08x_txd,
  1045. node);
  1046. list_del(&next->node);
  1047. plchan->state = PL08X_CHAN_RUNNING;
  1048. pl08x_start_txd(plchan, next);
  1049. }
  1050. spin_unlock_irqrestore(&plchan->lock, flags);
  1051. }
  1052. static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
  1053. struct pl08x_txd *txd)
  1054. {
  1055. int num_llis;
  1056. struct pl08x_driver_data *pl08x = plchan->host;
  1057. int ret;
  1058. num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
  1059. if (!num_llis) {
  1060. kfree(txd);
  1061. return -EINVAL;
  1062. }
  1063. spin_lock_irqsave(&plchan->lock, plchan->lockflags);
  1064. list_add_tail(&txd->node, &plchan->desc_list);
  1065. /*
  1066. * See if we already have a physical channel allocated,
  1067. * else this is the time to try to get one.
  1068. */
  1069. ret = prep_phy_channel(plchan, txd);
  1070. if (ret) {
  1071. /*
  1072. * No physical channel available, we will
  1073. * stack up the memcpy channels until there is a channel
  1074. * available to handle it whereas slave transfers may
  1075. * have been denied due to platform channel muxing restrictions
  1076. * and since there is no guarantee that this will ever be
  1077. * resolved, and since the signal must be acquired AFTER
  1078. * acquiring the physical channel, we will let them be NACK:ed
  1079. * with -EBUSY here. The drivers can alway retry the prep()
  1080. * call if they are eager on doing this using DMA.
  1081. */
  1082. if (plchan->slave) {
  1083. pl08x_free_txd_list(pl08x, plchan);
  1084. spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
  1085. return -EBUSY;
  1086. }
  1087. /* Do this memcpy whenever there is a channel ready */
  1088. plchan->state = PL08X_CHAN_WAITING;
  1089. plchan->waiting = txd;
  1090. } else
  1091. /*
  1092. * Else we're all set, paused and ready to roll,
  1093. * status will switch to PL08X_CHAN_RUNNING when
  1094. * we call issue_pending(). If there is something
  1095. * running on the channel already we don't change
  1096. * its state.
  1097. */
  1098. if (plchan->state == PL08X_CHAN_IDLE)
  1099. plchan->state = PL08X_CHAN_PAUSED;
  1100. /*
  1101. * Notice that we leave plchan->lock locked on purpose:
  1102. * it will be unlocked in the subsequent tx_submit()
  1103. * call. This is a consequence of the current API.
  1104. */
  1105. return 0;
  1106. }
  1107. /*
  1108. * Given the source and destination available bus masks, select which
  1109. * will be routed to each port. We try to have source and destination
  1110. * on separate ports, but always respect the allowable settings.
  1111. */
  1112. static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst)
  1113. {
  1114. u32 cctl = 0;
  1115. if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
  1116. cctl |= PL080_CONTROL_DST_AHB2;
  1117. if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
  1118. cctl |= PL080_CONTROL_SRC_AHB2;
  1119. return cctl;
  1120. }
  1121. static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
  1122. {
  1123. struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
  1124. if (txd) {
  1125. dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
  1126. txd->tx.tx_submit = pl08x_tx_submit;
  1127. INIT_LIST_HEAD(&txd->node);
  1128. /* Always enable error and terminal interrupts */
  1129. txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
  1130. PL080_CONFIG_TC_IRQ_MASK;
  1131. }
  1132. return txd;
  1133. }
  1134. /*
  1135. * Initialize a descriptor to be used by memcpy submit
  1136. */
  1137. static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
  1138. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  1139. size_t len, unsigned long flags)
  1140. {
  1141. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1142. struct pl08x_driver_data *pl08x = plchan->host;
  1143. struct pl08x_txd *txd;
  1144. int ret;
  1145. txd = pl08x_get_txd(plchan);
  1146. if (!txd) {
  1147. dev_err(&pl08x->adev->dev,
  1148. "%s no memory for descriptor\n", __func__);
  1149. return NULL;
  1150. }
  1151. txd->direction = DMA_NONE;
  1152. txd->srcbus.addr = src;
  1153. txd->dstbus.addr = dest;
  1154. txd->len = len;
  1155. /* Set platform data for m2m */
  1156. txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1157. txd->cctl = pl08x->pd->memcpy_channel.cctl &
  1158. ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
  1159. /* Both to be incremented or the code will break */
  1160. txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
  1161. if (pl08x->vd->dualmaster)
  1162. txd->cctl |= pl08x_select_bus(pl08x,
  1163. pl08x->mem_buses, pl08x->mem_buses);
  1164. ret = pl08x_prep_channel_resources(plchan, txd);
  1165. if (ret)
  1166. return NULL;
  1167. /*
  1168. * NB: the channel lock is held at this point so tx_submit()
  1169. * must be called in direct succession.
  1170. */
  1171. return &txd->tx;
  1172. }
  1173. static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
  1174. struct dma_chan *chan, struct scatterlist *sgl,
  1175. unsigned int sg_len, enum dma_data_direction direction,
  1176. unsigned long flags)
  1177. {
  1178. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1179. struct pl08x_driver_data *pl08x = plchan->host;
  1180. struct pl08x_txd *txd;
  1181. u8 src_buses, dst_buses;
  1182. int ret;
  1183. /*
  1184. * Current implementation ASSUMES only one sg
  1185. */
  1186. if (sg_len != 1) {
  1187. dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
  1188. __func__);
  1189. BUG();
  1190. }
  1191. dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
  1192. __func__, sgl->length, plchan->name);
  1193. txd = pl08x_get_txd(plchan);
  1194. if (!txd) {
  1195. dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
  1196. return NULL;
  1197. }
  1198. if (direction != plchan->runtime_direction)
  1199. dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
  1200. "the direction configured for the PrimeCell\n",
  1201. __func__);
  1202. /*
  1203. * Set up addresses, the PrimeCell configured address
  1204. * will take precedence since this may configure the
  1205. * channel target address dynamically at runtime.
  1206. */
  1207. txd->direction = direction;
  1208. txd->len = sgl->length;
  1209. txd->cctl = plchan->cd->cctl &
  1210. ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
  1211. PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
  1212. PL080_CONTROL_PROT_MASK);
  1213. /* Access the cell in privileged mode, non-bufferable, non-cacheable */
  1214. txd->cctl |= PL080_CONTROL_PROT_SYS;
  1215. if (direction == DMA_TO_DEVICE) {
  1216. txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1217. txd->cctl |= PL080_CONTROL_SRC_INCR;
  1218. txd->srcbus.addr = sgl->dma_address;
  1219. if (plchan->runtime_addr)
  1220. txd->dstbus.addr = plchan->runtime_addr;
  1221. else
  1222. txd->dstbus.addr = plchan->cd->addr;
  1223. src_buses = pl08x->mem_buses;
  1224. dst_buses = plchan->cd->periph_buses;
  1225. } else if (direction == DMA_FROM_DEVICE) {
  1226. txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1227. txd->cctl |= PL080_CONTROL_DST_INCR;
  1228. if (plchan->runtime_addr)
  1229. txd->srcbus.addr = plchan->runtime_addr;
  1230. else
  1231. txd->srcbus.addr = plchan->cd->addr;
  1232. txd->dstbus.addr = sgl->dma_address;
  1233. src_buses = plchan->cd->periph_buses;
  1234. dst_buses = pl08x->mem_buses;
  1235. } else {
  1236. dev_err(&pl08x->adev->dev,
  1237. "%s direction unsupported\n", __func__);
  1238. return NULL;
  1239. }
  1240. txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses);
  1241. ret = pl08x_prep_channel_resources(plchan, txd);
  1242. if (ret)
  1243. return NULL;
  1244. /*
  1245. * NB: the channel lock is held at this point so tx_submit()
  1246. * must be called in direct succession.
  1247. */
  1248. return &txd->tx;
  1249. }
  1250. static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1251. unsigned long arg)
  1252. {
  1253. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1254. struct pl08x_driver_data *pl08x = plchan->host;
  1255. unsigned long flags;
  1256. int ret = 0;
  1257. /* Controls applicable to inactive channels */
  1258. if (cmd == DMA_SLAVE_CONFIG) {
  1259. dma_set_runtime_config(chan,
  1260. (struct dma_slave_config *)
  1261. arg);
  1262. return 0;
  1263. }
  1264. /*
  1265. * Anything succeeds on channels with no physical allocation and
  1266. * no queued transfers.
  1267. */
  1268. spin_lock_irqsave(&plchan->lock, flags);
  1269. if (!plchan->phychan && !plchan->at) {
  1270. spin_unlock_irqrestore(&plchan->lock, flags);
  1271. return 0;
  1272. }
  1273. switch (cmd) {
  1274. case DMA_TERMINATE_ALL:
  1275. plchan->state = PL08X_CHAN_IDLE;
  1276. if (plchan->phychan) {
  1277. pl08x_stop_phy_chan(plchan->phychan);
  1278. /*
  1279. * Mark physical channel as free and free any slave
  1280. * signal
  1281. */
  1282. release_phy_channel(plchan);
  1283. }
  1284. /* Dequeue jobs and free LLIs */
  1285. if (plchan->at) {
  1286. pl08x_free_txd(pl08x, plchan->at);
  1287. plchan->at = NULL;
  1288. }
  1289. /* Dequeue jobs not yet fired as well */
  1290. pl08x_free_txd_list(pl08x, plchan);
  1291. break;
  1292. case DMA_PAUSE:
  1293. pl08x_pause_phy_chan(plchan->phychan);
  1294. plchan->state = PL08X_CHAN_PAUSED;
  1295. break;
  1296. case DMA_RESUME:
  1297. pl08x_resume_phy_chan(plchan->phychan);
  1298. plchan->state = PL08X_CHAN_RUNNING;
  1299. break;
  1300. default:
  1301. /* Unknown command */
  1302. ret = -ENXIO;
  1303. break;
  1304. }
  1305. spin_unlock_irqrestore(&plchan->lock, flags);
  1306. return ret;
  1307. }
  1308. bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
  1309. {
  1310. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1311. char *name = chan_id;
  1312. /* Check that the channel is not taken! */
  1313. if (!strcmp(plchan->name, name))
  1314. return true;
  1315. return false;
  1316. }
  1317. /*
  1318. * Just check that the device is there and active
  1319. * TODO: turn this bit on/off depending on the number of
  1320. * physical channels actually used, if it is zero... well
  1321. * shut it off. That will save some power. Cut the clock
  1322. * at the same time.
  1323. */
  1324. static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
  1325. {
  1326. u32 val;
  1327. val = readl(pl08x->base + PL080_CONFIG);
  1328. val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
  1329. /* We implicitly clear bit 1 and that means little-endian mode */
  1330. val |= PL080_CONFIG_ENABLE;
  1331. writel(val, pl08x->base + PL080_CONFIG);
  1332. }
  1333. static void pl08x_tasklet(unsigned long data)
  1334. {
  1335. struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
  1336. struct pl08x_driver_data *pl08x = plchan->host;
  1337. struct pl08x_txd *txd;
  1338. dma_async_tx_callback callback = NULL;
  1339. void *callback_param = NULL;
  1340. unsigned long flags;
  1341. spin_lock_irqsave(&plchan->lock, flags);
  1342. txd = plchan->at;
  1343. plchan->at = NULL;
  1344. if (txd) {
  1345. callback = txd->tx.callback;
  1346. callback_param = txd->tx.callback_param;
  1347. /*
  1348. * Update last completed
  1349. */
  1350. plchan->lc = txd->tx.cookie;
  1351. /*
  1352. * Free the descriptor
  1353. */
  1354. pl08x_free_txd(pl08x, txd);
  1355. }
  1356. /*
  1357. * If a new descriptor is queued, set it up
  1358. * plchan->at is NULL here
  1359. */
  1360. if (!list_empty(&plchan->desc_list)) {
  1361. struct pl08x_txd *next;
  1362. next = list_first_entry(&plchan->desc_list,
  1363. struct pl08x_txd,
  1364. node);
  1365. list_del(&next->node);
  1366. pl08x_start_txd(plchan, next);
  1367. } else {
  1368. struct pl08x_dma_chan *waiting = NULL;
  1369. /*
  1370. * No more jobs, so free up the physical channel
  1371. * Free any allocated signal on slave transfers too
  1372. */
  1373. release_phy_channel(plchan);
  1374. plchan->state = PL08X_CHAN_IDLE;
  1375. /*
  1376. * And NOW before anyone else can grab that free:d
  1377. * up physical channel, see if there is some memcpy
  1378. * pending that seriously needs to start because of
  1379. * being stacked up while we were choking the
  1380. * physical channels with data.
  1381. */
  1382. list_for_each_entry(waiting, &pl08x->memcpy.channels,
  1383. chan.device_node) {
  1384. if (waiting->state == PL08X_CHAN_WAITING &&
  1385. waiting->waiting != NULL) {
  1386. int ret;
  1387. /* This should REALLY not fail now */
  1388. ret = prep_phy_channel(waiting,
  1389. waiting->waiting);
  1390. BUG_ON(ret);
  1391. waiting->state = PL08X_CHAN_RUNNING;
  1392. waiting->waiting = NULL;
  1393. pl08x_issue_pending(&waiting->chan);
  1394. break;
  1395. }
  1396. }
  1397. }
  1398. spin_unlock_irqrestore(&plchan->lock, flags);
  1399. /* Callback to signal completion */
  1400. if (callback)
  1401. callback(callback_param);
  1402. }
  1403. static irqreturn_t pl08x_irq(int irq, void *dev)
  1404. {
  1405. struct pl08x_driver_data *pl08x = dev;
  1406. u32 mask = 0;
  1407. u32 val;
  1408. int i;
  1409. val = readl(pl08x->base + PL080_ERR_STATUS);
  1410. if (val) {
  1411. /*
  1412. * An error interrupt (on one or more channels)
  1413. */
  1414. dev_err(&pl08x->adev->dev,
  1415. "%s error interrupt, register value 0x%08x\n",
  1416. __func__, val);
  1417. /*
  1418. * Simply clear ALL PL08X error interrupts,
  1419. * regardless of channel and cause
  1420. * FIXME: should be 0x00000003 on PL081 really.
  1421. */
  1422. writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
  1423. }
  1424. val = readl(pl08x->base + PL080_INT_STATUS);
  1425. for (i = 0; i < pl08x->vd->channels; i++) {
  1426. if ((1 << i) & val) {
  1427. /* Locate physical channel */
  1428. struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
  1429. struct pl08x_dma_chan *plchan = phychan->serving;
  1430. /* Schedule tasklet on this channel */
  1431. tasklet_schedule(&plchan->tasklet);
  1432. mask |= (1 << i);
  1433. }
  1434. }
  1435. /*
  1436. * Clear only the terminal interrupts on channels we processed
  1437. */
  1438. writel(mask, pl08x->base + PL080_TC_CLEAR);
  1439. return mask ? IRQ_HANDLED : IRQ_NONE;
  1440. }
  1441. /*
  1442. * Initialise the DMAC memcpy/slave channels.
  1443. * Make a local wrapper to hold required data
  1444. */
  1445. static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
  1446. struct dma_device *dmadev,
  1447. unsigned int channels,
  1448. bool slave)
  1449. {
  1450. struct pl08x_dma_chan *chan;
  1451. int i;
  1452. INIT_LIST_HEAD(&dmadev->channels);
  1453. /*
  1454. * Register as many many memcpy as we have physical channels,
  1455. * we won't always be able to use all but the code will have
  1456. * to cope with that situation.
  1457. */
  1458. for (i = 0; i < channels; i++) {
  1459. chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
  1460. if (!chan) {
  1461. dev_err(&pl08x->adev->dev,
  1462. "%s no memory for channel\n", __func__);
  1463. return -ENOMEM;
  1464. }
  1465. chan->host = pl08x;
  1466. chan->state = PL08X_CHAN_IDLE;
  1467. if (slave) {
  1468. chan->slave = true;
  1469. chan->name = pl08x->pd->slave_channels[i].bus_id;
  1470. chan->cd = &pl08x->pd->slave_channels[i];
  1471. } else {
  1472. chan->cd = &pl08x->pd->memcpy_channel;
  1473. chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
  1474. if (!chan->name) {
  1475. kfree(chan);
  1476. return -ENOMEM;
  1477. }
  1478. }
  1479. if (chan->cd->circular_buffer) {
  1480. dev_err(&pl08x->adev->dev,
  1481. "channel %s: circular buffers not supported\n",
  1482. chan->name);
  1483. kfree(chan);
  1484. continue;
  1485. }
  1486. dev_info(&pl08x->adev->dev,
  1487. "initialize virtual channel \"%s\"\n",
  1488. chan->name);
  1489. chan->chan.device = dmadev;
  1490. chan->chan.cookie = 0;
  1491. chan->lc = 0;
  1492. spin_lock_init(&chan->lock);
  1493. INIT_LIST_HEAD(&chan->desc_list);
  1494. tasklet_init(&chan->tasklet, pl08x_tasklet,
  1495. (unsigned long) chan);
  1496. list_add_tail(&chan->chan.device_node, &dmadev->channels);
  1497. }
  1498. dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
  1499. i, slave ? "slave" : "memcpy");
  1500. return i;
  1501. }
  1502. static void pl08x_free_virtual_channels(struct dma_device *dmadev)
  1503. {
  1504. struct pl08x_dma_chan *chan = NULL;
  1505. struct pl08x_dma_chan *next;
  1506. list_for_each_entry_safe(chan,
  1507. next, &dmadev->channels, chan.device_node) {
  1508. list_del(&chan->chan.device_node);
  1509. kfree(chan);
  1510. }
  1511. }
  1512. #ifdef CONFIG_DEBUG_FS
  1513. static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
  1514. {
  1515. switch (state) {
  1516. case PL08X_CHAN_IDLE:
  1517. return "idle";
  1518. case PL08X_CHAN_RUNNING:
  1519. return "running";
  1520. case PL08X_CHAN_PAUSED:
  1521. return "paused";
  1522. case PL08X_CHAN_WAITING:
  1523. return "waiting";
  1524. default:
  1525. break;
  1526. }
  1527. return "UNKNOWN STATE";
  1528. }
  1529. static int pl08x_debugfs_show(struct seq_file *s, void *data)
  1530. {
  1531. struct pl08x_driver_data *pl08x = s->private;
  1532. struct pl08x_dma_chan *chan;
  1533. struct pl08x_phy_chan *ch;
  1534. unsigned long flags;
  1535. int i;
  1536. seq_printf(s, "PL08x physical channels:\n");
  1537. seq_printf(s, "CHANNEL:\tUSER:\n");
  1538. seq_printf(s, "--------\t-----\n");
  1539. for (i = 0; i < pl08x->vd->channels; i++) {
  1540. struct pl08x_dma_chan *virt_chan;
  1541. ch = &pl08x->phy_chans[i];
  1542. spin_lock_irqsave(&ch->lock, flags);
  1543. virt_chan = ch->serving;
  1544. seq_printf(s, "%d\t\t%s\n",
  1545. ch->id, virt_chan ? virt_chan->name : "(none)");
  1546. spin_unlock_irqrestore(&ch->lock, flags);
  1547. }
  1548. seq_printf(s, "\nPL08x virtual memcpy channels:\n");
  1549. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1550. seq_printf(s, "--------\t------\n");
  1551. list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
  1552. seq_printf(s, "%s\t\t%s\n", chan->name,
  1553. pl08x_state_str(chan->state));
  1554. }
  1555. seq_printf(s, "\nPL08x virtual slave channels:\n");
  1556. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1557. seq_printf(s, "--------\t------\n");
  1558. list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
  1559. seq_printf(s, "%s\t\t%s\n", chan->name,
  1560. pl08x_state_str(chan->state));
  1561. }
  1562. return 0;
  1563. }
  1564. static int pl08x_debugfs_open(struct inode *inode, struct file *file)
  1565. {
  1566. return single_open(file, pl08x_debugfs_show, inode->i_private);
  1567. }
  1568. static const struct file_operations pl08x_debugfs_operations = {
  1569. .open = pl08x_debugfs_open,
  1570. .read = seq_read,
  1571. .llseek = seq_lseek,
  1572. .release = single_release,
  1573. };
  1574. static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1575. {
  1576. /* Expose a simple debugfs interface to view all clocks */
  1577. (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
  1578. NULL, pl08x,
  1579. &pl08x_debugfs_operations);
  1580. }
  1581. #else
  1582. static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1583. {
  1584. }
  1585. #endif
  1586. static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
  1587. {
  1588. struct pl08x_driver_data *pl08x;
  1589. const struct vendor_data *vd = id->data;
  1590. int ret = 0;
  1591. int i;
  1592. ret = amba_request_regions(adev, NULL);
  1593. if (ret)
  1594. return ret;
  1595. /* Create the driver state holder */
  1596. pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
  1597. if (!pl08x) {
  1598. ret = -ENOMEM;
  1599. goto out_no_pl08x;
  1600. }
  1601. /* Initialize memcpy engine */
  1602. dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
  1603. pl08x->memcpy.dev = &adev->dev;
  1604. pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1605. pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
  1606. pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
  1607. pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1608. pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
  1609. pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
  1610. pl08x->memcpy.device_control = pl08x_control;
  1611. /* Initialize slave engine */
  1612. dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
  1613. pl08x->slave.dev = &adev->dev;
  1614. pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1615. pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
  1616. pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1617. pl08x->slave.device_tx_status = pl08x_dma_tx_status;
  1618. pl08x->slave.device_issue_pending = pl08x_issue_pending;
  1619. pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
  1620. pl08x->slave.device_control = pl08x_control;
  1621. /* Get the platform data */
  1622. pl08x->pd = dev_get_platdata(&adev->dev);
  1623. if (!pl08x->pd) {
  1624. dev_err(&adev->dev, "no platform data supplied\n");
  1625. goto out_no_platdata;
  1626. }
  1627. /* Assign useful pointers to the driver state */
  1628. pl08x->adev = adev;
  1629. pl08x->vd = vd;
  1630. /* By default, AHB1 only. If dualmaster, from platform */
  1631. pl08x->lli_buses = PL08X_AHB1;
  1632. pl08x->mem_buses = PL08X_AHB1;
  1633. if (pl08x->vd->dualmaster) {
  1634. pl08x->lli_buses = pl08x->pd->lli_buses;
  1635. pl08x->mem_buses = pl08x->pd->mem_buses;
  1636. }
  1637. /* A DMA memory pool for LLIs, align on 1-byte boundary */
  1638. pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
  1639. PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
  1640. if (!pl08x->pool) {
  1641. ret = -ENOMEM;
  1642. goto out_no_lli_pool;
  1643. }
  1644. spin_lock_init(&pl08x->lock);
  1645. pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
  1646. if (!pl08x->base) {
  1647. ret = -ENOMEM;
  1648. goto out_no_ioremap;
  1649. }
  1650. /* Turn on the PL08x */
  1651. pl08x_ensure_on(pl08x);
  1652. /*
  1653. * Attach the interrupt handler
  1654. */
  1655. writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
  1656. writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
  1657. ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
  1658. DRIVER_NAME, pl08x);
  1659. if (ret) {
  1660. dev_err(&adev->dev, "%s failed to request interrupt %d\n",
  1661. __func__, adev->irq[0]);
  1662. goto out_no_irq;
  1663. }
  1664. /* Initialize physical channels */
  1665. pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
  1666. GFP_KERNEL);
  1667. if (!pl08x->phy_chans) {
  1668. dev_err(&adev->dev, "%s failed to allocate "
  1669. "physical channel holders\n",
  1670. __func__);
  1671. goto out_no_phychans;
  1672. }
  1673. for (i = 0; i < vd->channels; i++) {
  1674. struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
  1675. ch->id = i;
  1676. ch->base = pl08x->base + PL080_Cx_BASE(i);
  1677. spin_lock_init(&ch->lock);
  1678. ch->serving = NULL;
  1679. ch->signal = -1;
  1680. dev_info(&adev->dev,
  1681. "physical channel %d is %s\n", i,
  1682. pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
  1683. }
  1684. /* Register as many memcpy channels as there are physical channels */
  1685. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
  1686. pl08x->vd->channels, false);
  1687. if (ret <= 0) {
  1688. dev_warn(&pl08x->adev->dev,
  1689. "%s failed to enumerate memcpy channels - %d\n",
  1690. __func__, ret);
  1691. goto out_no_memcpy;
  1692. }
  1693. pl08x->memcpy.chancnt = ret;
  1694. /* Register slave channels */
  1695. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
  1696. pl08x->pd->num_slave_channels,
  1697. true);
  1698. if (ret <= 0) {
  1699. dev_warn(&pl08x->adev->dev,
  1700. "%s failed to enumerate slave channels - %d\n",
  1701. __func__, ret);
  1702. goto out_no_slave;
  1703. }
  1704. pl08x->slave.chancnt = ret;
  1705. ret = dma_async_device_register(&pl08x->memcpy);
  1706. if (ret) {
  1707. dev_warn(&pl08x->adev->dev,
  1708. "%s failed to register memcpy as an async device - %d\n",
  1709. __func__, ret);
  1710. goto out_no_memcpy_reg;
  1711. }
  1712. ret = dma_async_device_register(&pl08x->slave);
  1713. if (ret) {
  1714. dev_warn(&pl08x->adev->dev,
  1715. "%s failed to register slave as an async device - %d\n",
  1716. __func__, ret);
  1717. goto out_no_slave_reg;
  1718. }
  1719. amba_set_drvdata(adev, pl08x);
  1720. init_pl08x_debugfs(pl08x);
  1721. dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
  1722. amba_part(adev), amba_rev(adev),
  1723. (unsigned long long)adev->res.start, adev->irq[0]);
  1724. return 0;
  1725. out_no_slave_reg:
  1726. dma_async_device_unregister(&pl08x->memcpy);
  1727. out_no_memcpy_reg:
  1728. pl08x_free_virtual_channels(&pl08x->slave);
  1729. out_no_slave:
  1730. pl08x_free_virtual_channels(&pl08x->memcpy);
  1731. out_no_memcpy:
  1732. kfree(pl08x->phy_chans);
  1733. out_no_phychans:
  1734. free_irq(adev->irq[0], pl08x);
  1735. out_no_irq:
  1736. iounmap(pl08x->base);
  1737. out_no_ioremap:
  1738. dma_pool_destroy(pl08x->pool);
  1739. out_no_lli_pool:
  1740. out_no_platdata:
  1741. kfree(pl08x);
  1742. out_no_pl08x:
  1743. amba_release_regions(adev);
  1744. return ret;
  1745. }
  1746. /* PL080 has 8 channels and the PL080 have just 2 */
  1747. static struct vendor_data vendor_pl080 = {
  1748. .channels = 8,
  1749. .dualmaster = true,
  1750. };
  1751. static struct vendor_data vendor_pl081 = {
  1752. .channels = 2,
  1753. .dualmaster = false,
  1754. };
  1755. static struct amba_id pl08x_ids[] = {
  1756. /* PL080 */
  1757. {
  1758. .id = 0x00041080,
  1759. .mask = 0x000fffff,
  1760. .data = &vendor_pl080,
  1761. },
  1762. /* PL081 */
  1763. {
  1764. .id = 0x00041081,
  1765. .mask = 0x000fffff,
  1766. .data = &vendor_pl081,
  1767. },
  1768. /* Nomadik 8815 PL080 variant */
  1769. {
  1770. .id = 0x00280880,
  1771. .mask = 0x00ffffff,
  1772. .data = &vendor_pl080,
  1773. },
  1774. { 0, 0 },
  1775. };
  1776. static struct amba_driver pl08x_amba_driver = {
  1777. .drv.name = DRIVER_NAME,
  1778. .id_table = pl08x_ids,
  1779. .probe = pl08x_probe,
  1780. };
  1781. static int __init pl08x_init(void)
  1782. {
  1783. int retval;
  1784. retval = amba_driver_register(&pl08x_amba_driver);
  1785. if (retval)
  1786. printk(KERN_WARNING DRIVER_NAME
  1787. "failed to register as an AMBA device (%d)\n",
  1788. retval);
  1789. return retval;
  1790. }
  1791. subsys_initcall(pl08x_init);