setup.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419
  1. /*
  2. * arch/sh/kernel/setup.c
  3. *
  4. * This file handles the architecture-dependent parts of initialization
  5. *
  6. * Copyright (C) 1999 Niibe Yutaka
  7. * Copyright (C) 2002 - 2007 Paul Mundt
  8. */
  9. #include <linux/screen_info.h>
  10. #include <linux/ioport.h>
  11. #include <linux/init.h>
  12. #include <linux/initrd.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/console.h>
  15. #include <linux/seq_file.h>
  16. #include <linux/root_dev.h>
  17. #include <linux/utsname.h>
  18. #include <linux/nodemask.h>
  19. #include <linux/cpu.h>
  20. #include <linux/pfn.h>
  21. #include <linux/fs.h>
  22. #include <linux/mm.h>
  23. #include <linux/kexec.h>
  24. #include <linux/module.h>
  25. #include <linux/smp.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/io.h>
  28. #include <asm/page.h>
  29. #include <asm/sections.h>
  30. #include <asm/irq.h>
  31. #include <asm/setup.h>
  32. #include <asm/clock.h>
  33. #include <asm/mmu_context.h>
  34. /*
  35. * Initialize loops_per_jiffy as 10000000 (1000MIPS).
  36. * This value will be used at the very early stage of serial setup.
  37. * The bigger value means no problem.
  38. */
  39. struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
  40. [0] = {
  41. .type = CPU_SH_NONE,
  42. .loops_per_jiffy = 10000000,
  43. },
  44. };
  45. EXPORT_SYMBOL(cpu_data);
  46. /*
  47. * The machine vector. First entry in .machvec.init, or clobbered by
  48. * sh_mv= on the command line, prior to .machvec.init teardown.
  49. */
  50. struct sh_machine_vector sh_mv = { .mv_name = "generic", };
  51. #ifdef CONFIG_VT
  52. struct screen_info screen_info;
  53. #endif
  54. extern int root_mountflags;
  55. #define RAMDISK_IMAGE_START_MASK 0x07FF
  56. #define RAMDISK_PROMPT_FLAG 0x8000
  57. #define RAMDISK_LOAD_FLAG 0x4000
  58. static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
  59. static struct resource code_resource = {
  60. .name = "Kernel code",
  61. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  62. };
  63. static struct resource data_resource = {
  64. .name = "Kernel data",
  65. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  66. };
  67. unsigned long memory_start;
  68. EXPORT_SYMBOL(memory_start);
  69. unsigned long memory_end = 0;
  70. EXPORT_SYMBOL(memory_end);
  71. static int __init early_parse_mem(char *p)
  72. {
  73. unsigned long size;
  74. memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
  75. size = memparse(p, &p);
  76. memory_end = memory_start + size;
  77. return 0;
  78. }
  79. early_param("mem", early_parse_mem);
  80. /*
  81. * Register fully available low RAM pages with the bootmem allocator.
  82. */
  83. static void __init register_bootmem_low_pages(void)
  84. {
  85. unsigned long curr_pfn, last_pfn, pages;
  86. /*
  87. * We are rounding up the start address of usable memory:
  88. */
  89. curr_pfn = PFN_UP(__MEMORY_START);
  90. /*
  91. * ... and at the end of the usable range downwards:
  92. */
  93. last_pfn = PFN_DOWN(__pa(memory_end));
  94. if (last_pfn > max_low_pfn)
  95. last_pfn = max_low_pfn;
  96. pages = last_pfn - curr_pfn;
  97. free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
  98. }
  99. #ifdef CONFIG_KEXEC
  100. static void __init reserve_crashkernel(void)
  101. {
  102. unsigned long long free_mem;
  103. unsigned long long crash_size, crash_base;
  104. int ret;
  105. free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  106. ret = parse_crashkernel(boot_command_line, free_mem,
  107. &crash_size, &crash_base);
  108. if (ret == 0 && crash_size) {
  109. if (crash_base > 0) {
  110. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  111. "for crashkernel (System RAM: %ldMB)\n",
  112. (unsigned long)(crash_size >> 20),
  113. (unsigned long)(crash_base >> 20),
  114. (unsigned long)(free_mem >> 20));
  115. crashk_res.start = crash_base;
  116. crashk_res.end = crash_base + crash_size - 1;
  117. reserve_bootmem(crash_base, crash_size);
  118. } else
  119. printk(KERN_INFO "crashkernel reservation failed - "
  120. "you have to specify a base address\n");
  121. }
  122. }
  123. #else
  124. static inline void __init reserve_crashkernel(void)
  125. {}
  126. #endif
  127. void __init setup_bootmem_allocator(unsigned long free_pfn)
  128. {
  129. unsigned long bootmap_size;
  130. /*
  131. * Find a proper area for the bootmem bitmap. After this
  132. * bootstrap step all allocations (until the page allocator
  133. * is intact) must be done via bootmem_alloc().
  134. */
  135. bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
  136. min_low_pfn, max_low_pfn);
  137. add_active_range(0, min_low_pfn, max_low_pfn);
  138. register_bootmem_low_pages();
  139. node_set_online(0);
  140. /*
  141. * Reserve the kernel text and
  142. * Reserve the bootmem bitmap. We do this in two steps (first step
  143. * was init_bootmem()), because this catches the (definitely buggy)
  144. * case of us accidentally initializing the bootmem allocator with
  145. * an invalid RAM area.
  146. */
  147. reserve_bootmem(__MEMORY_START+PAGE_SIZE,
  148. (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
  149. /*
  150. * reserve physical page 0 - it's a special BIOS page on many boxes,
  151. * enabling clean reboots, SMP operation, laptop functions.
  152. */
  153. reserve_bootmem(__MEMORY_START, PAGE_SIZE);
  154. sparse_memory_present_with_active_regions(0);
  155. #ifdef CONFIG_BLK_DEV_INITRD
  156. ROOT_DEV = Root_RAM0;
  157. if (LOADER_TYPE && INITRD_START) {
  158. if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
  159. reserve_bootmem(INITRD_START + __MEMORY_START,
  160. INITRD_SIZE);
  161. initrd_start = INITRD_START + PAGE_OFFSET +
  162. __MEMORY_START;
  163. initrd_end = initrd_start + INITRD_SIZE;
  164. } else {
  165. printk("initrd extends beyond end of memory "
  166. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  167. INITRD_START + INITRD_SIZE,
  168. max_low_pfn << PAGE_SHIFT);
  169. initrd_start = 0;
  170. }
  171. }
  172. #endif
  173. reserve_crashkernel();
  174. }
  175. #ifndef CONFIG_NEED_MULTIPLE_NODES
  176. static void __init setup_memory(void)
  177. {
  178. unsigned long start_pfn;
  179. /*
  180. * Partially used pages are not usable - thus
  181. * we are rounding upwards:
  182. */
  183. start_pfn = PFN_UP(__pa(_end));
  184. setup_bootmem_allocator(start_pfn);
  185. }
  186. #else
  187. extern void __init setup_memory(void);
  188. #endif
  189. void __init setup_arch(char **cmdline_p)
  190. {
  191. enable_mmu();
  192. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  193. #ifdef CONFIG_BLK_DEV_RAM
  194. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  195. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  196. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  197. #endif
  198. if (!MOUNT_ROOT_RDONLY)
  199. root_mountflags &= ~MS_RDONLY;
  200. init_mm.start_code = (unsigned long) _text;
  201. init_mm.end_code = (unsigned long) _etext;
  202. init_mm.end_data = (unsigned long) _edata;
  203. init_mm.brk = (unsigned long) _end;
  204. code_resource.start = virt_to_phys(_text);
  205. code_resource.end = virt_to_phys(_etext)-1;
  206. data_resource.start = virt_to_phys(_etext);
  207. data_resource.end = virt_to_phys(_edata)-1;
  208. memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
  209. if (!memory_end)
  210. memory_end = memory_start + __MEMORY_SIZE;
  211. #ifdef CONFIG_CMDLINE_BOOL
  212. strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
  213. #else
  214. strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
  215. #endif
  216. /* Save unparsed command line copy for /proc/cmdline */
  217. memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
  218. *cmdline_p = command_line;
  219. parse_early_param();
  220. sh_mv_setup();
  221. /*
  222. * Find the highest page frame number we have available
  223. */
  224. max_pfn = PFN_DOWN(__pa(memory_end));
  225. /*
  226. * Determine low and high memory ranges:
  227. */
  228. max_low_pfn = max_pfn;
  229. min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
  230. nodes_clear(node_online_map);
  231. /* Setup bootmem with available RAM */
  232. setup_memory();
  233. sparse_init();
  234. #ifdef CONFIG_DUMMY_CONSOLE
  235. conswitchp = &dummy_con;
  236. #endif
  237. /* Perform the machine specific initialisation */
  238. if (likely(sh_mv.mv_setup))
  239. sh_mv.mv_setup(cmdline_p);
  240. paging_init();
  241. #ifdef CONFIG_SMP
  242. plat_smp_setup();
  243. #endif
  244. }
  245. static const char *cpu_name[] = {
  246. [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
  247. [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
  248. [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
  249. [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
  250. [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
  251. [CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750",
  252. [CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R",
  253. [CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R",
  254. [CPU_SH7760] = "SH7760",
  255. [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
  256. [CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780",
  257. [CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343",
  258. [CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722",
  259. [CPU_SHX3] = "SH-X3", [CPU_SH_NONE] = "Unknown"
  260. };
  261. const char *get_cpu_subtype(struct sh_cpuinfo *c)
  262. {
  263. return cpu_name[c->type];
  264. }
  265. #ifdef CONFIG_PROC_FS
  266. /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
  267. static const char *cpu_flags[] = {
  268. "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
  269. "ptea", "llsc", "l2", "op32", NULL
  270. };
  271. static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
  272. {
  273. unsigned long i;
  274. seq_printf(m, "cpu flags\t:");
  275. if (!c->flags) {
  276. seq_printf(m, " %s\n", cpu_flags[0]);
  277. return;
  278. }
  279. for (i = 0; cpu_flags[i]; i++)
  280. if ((c->flags & (1 << i)))
  281. seq_printf(m, " %s", cpu_flags[i+1]);
  282. seq_printf(m, "\n");
  283. }
  284. static void show_cacheinfo(struct seq_file *m, const char *type,
  285. struct cache_info info)
  286. {
  287. unsigned int cache_size;
  288. cache_size = info.ways * info.sets * info.linesz;
  289. seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
  290. type, cache_size >> 10, info.ways);
  291. }
  292. /*
  293. * Get CPU information for use by the procfs.
  294. */
  295. static int show_cpuinfo(struct seq_file *m, void *v)
  296. {
  297. struct sh_cpuinfo *c = v;
  298. unsigned int cpu = c - cpu_data;
  299. if (!cpu_online(cpu))
  300. return 0;
  301. if (cpu == 0)
  302. seq_printf(m, "machine\t\t: %s\n", get_system_type());
  303. seq_printf(m, "processor\t: %d\n", cpu);
  304. seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
  305. seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
  306. show_cpuflags(m, c);
  307. seq_printf(m, "cache type\t: ");
  308. /*
  309. * Check for what type of cache we have, we support both the
  310. * unified cache on the SH-2 and SH-3, as well as the harvard
  311. * style cache on the SH-4.
  312. */
  313. if (c->icache.flags & SH_CACHE_COMBINED) {
  314. seq_printf(m, "unified\n");
  315. show_cacheinfo(m, "cache", c->icache);
  316. } else {
  317. seq_printf(m, "split (harvard)\n");
  318. show_cacheinfo(m, "icache", c->icache);
  319. show_cacheinfo(m, "dcache", c->dcache);
  320. }
  321. /* Optional secondary cache */
  322. if (c->flags & CPU_HAS_L2_CACHE)
  323. show_cacheinfo(m, "scache", c->scache);
  324. seq_printf(m, "bogomips\t: %lu.%02lu\n",
  325. c->loops_per_jiffy/(500000/HZ),
  326. (c->loops_per_jiffy/(5000/HZ)) % 100);
  327. return 0;
  328. }
  329. static void *c_start(struct seq_file *m, loff_t *pos)
  330. {
  331. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  332. }
  333. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  334. {
  335. ++*pos;
  336. return c_start(m, pos);
  337. }
  338. static void c_stop(struct seq_file *m, void *v)
  339. {
  340. }
  341. struct seq_operations cpuinfo_op = {
  342. .start = c_start,
  343. .next = c_next,
  344. .stop = c_stop,
  345. .show = show_cpuinfo,
  346. };
  347. #endif /* CONFIG_PROC_FS */