process.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/pm.h>
  13. #include <linux/elf.h>
  14. #include <linux/errno.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/module.h>
  19. #include <linux/notifier.h>
  20. #include <linux/personality.h>
  21. #include <linux/sched.h>
  22. #include <linux/slab.h>
  23. #include <linux/stddef.h>
  24. #include <linux/thread_info.h>
  25. #include <linux/unistd.h>
  26. #include <linux/efi.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/delay.h>
  29. #include <linux/kdebug.h>
  30. #include <linux/utsname.h>
  31. #include <asm/cpu.h>
  32. #include <asm/delay.h>
  33. #include <asm/elf.h>
  34. #include <asm/ia32.h>
  35. #include <asm/irq.h>
  36. #include <asm/kexec.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/processor.h>
  39. #include <asm/sal.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/unwind.h>
  43. #include <asm/user.h>
  44. #include "entry.h"
  45. #ifdef CONFIG_PERFMON
  46. # include <asm/perfmon.h>
  47. #endif
  48. #include "sigframe.h"
  49. void (*ia64_mark_idle)(int);
  50. static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
  51. unsigned long boot_option_idle_override = 0;
  52. EXPORT_SYMBOL(boot_option_idle_override);
  53. void
  54. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  55. {
  56. unsigned long ip, sp, bsp;
  57. char buf[128]; /* don't make it so big that it overflows the stack! */
  58. printk("\nCall Trace:\n");
  59. do {
  60. unw_get_ip(info, &ip);
  61. if (ip == 0)
  62. break;
  63. unw_get_sp(info, &sp);
  64. unw_get_bsp(info, &bsp);
  65. snprintf(buf, sizeof(buf),
  66. " [<%016lx>] %%s\n"
  67. " sp=%016lx bsp=%016lx\n",
  68. ip, sp, bsp);
  69. print_symbol(buf, ip);
  70. } while (unw_unwind(info) >= 0);
  71. }
  72. void
  73. show_stack (struct task_struct *task, unsigned long *sp)
  74. {
  75. if (!task)
  76. unw_init_running(ia64_do_show_stack, NULL);
  77. else {
  78. struct unw_frame_info info;
  79. unw_init_from_blocked_task(&info, task);
  80. ia64_do_show_stack(&info, NULL);
  81. }
  82. }
  83. void
  84. dump_stack (void)
  85. {
  86. show_stack(NULL, NULL);
  87. }
  88. EXPORT_SYMBOL(dump_stack);
  89. void
  90. show_regs (struct pt_regs *regs)
  91. {
  92. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  93. print_modules();
  94. printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
  95. smp_processor_id(), current->comm);
  96. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
  97. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  98. init_utsname()->release);
  99. print_symbol("ip is at %s\n", ip);
  100. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  101. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  102. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  103. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  104. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  105. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  106. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  107. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  108. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  109. regs->f6.u.bits[1], regs->f6.u.bits[0],
  110. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  111. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  112. regs->f8.u.bits[1], regs->f8.u.bits[0],
  113. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  114. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  115. regs->f10.u.bits[1], regs->f10.u.bits[0],
  116. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  117. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  118. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  119. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  120. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  121. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  122. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  123. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  124. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  125. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  126. if (user_mode(regs)) {
  127. /* print the stacked registers */
  128. unsigned long val, *bsp, ndirty;
  129. int i, sof, is_nat = 0;
  130. sof = regs->cr_ifs & 0x7f; /* size of frame */
  131. ndirty = (regs->loadrs >> 19);
  132. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  133. for (i = 0; i < sof; ++i) {
  134. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  135. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  136. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  137. }
  138. } else
  139. show_stack(NULL, NULL);
  140. }
  141. void
  142. do_notify_resume_user (sigset_t *unused, struct sigscratch *scr, long in_syscall)
  143. {
  144. if (fsys_mode(current, &scr->pt)) {
  145. /* defer signal-handling etc. until we return to privilege-level 0. */
  146. if (!ia64_psr(&scr->pt)->lp)
  147. ia64_psr(&scr->pt)->lp = 1;
  148. return;
  149. }
  150. #ifdef CONFIG_PERFMON
  151. if (current->thread.pfm_needs_checking)
  152. pfm_handle_work();
  153. #endif
  154. /* deal with pending signal delivery */
  155. if (test_thread_flag(TIF_SIGPENDING)||test_thread_flag(TIF_RESTORE_SIGMASK))
  156. ia64_do_signal(scr, in_syscall);
  157. }
  158. static int pal_halt = 1;
  159. static int can_do_pal_halt = 1;
  160. static int __init nohalt_setup(char * str)
  161. {
  162. pal_halt = can_do_pal_halt = 0;
  163. return 1;
  164. }
  165. __setup("nohalt", nohalt_setup);
  166. void
  167. update_pal_halt_status(int status)
  168. {
  169. can_do_pal_halt = pal_halt && status;
  170. }
  171. /*
  172. * We use this if we don't have any better idle routine..
  173. */
  174. void
  175. default_idle (void)
  176. {
  177. local_irq_enable();
  178. while (!need_resched()) {
  179. if (can_do_pal_halt) {
  180. local_irq_disable();
  181. if (!need_resched()) {
  182. safe_halt();
  183. }
  184. local_irq_enable();
  185. } else
  186. cpu_relax();
  187. }
  188. }
  189. #ifdef CONFIG_HOTPLUG_CPU
  190. /* We don't actually take CPU down, just spin without interrupts. */
  191. static inline void play_dead(void)
  192. {
  193. extern void ia64_cpu_local_tick (void);
  194. unsigned int this_cpu = smp_processor_id();
  195. /* Ack it */
  196. __get_cpu_var(cpu_state) = CPU_DEAD;
  197. max_xtp();
  198. local_irq_disable();
  199. idle_task_exit();
  200. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  201. /*
  202. * The above is a point of no-return, the processor is
  203. * expected to be in SAL loop now.
  204. */
  205. BUG();
  206. }
  207. #else
  208. static inline void play_dead(void)
  209. {
  210. BUG();
  211. }
  212. #endif /* CONFIG_HOTPLUG_CPU */
  213. void cpu_idle_wait(void)
  214. {
  215. unsigned int cpu, this_cpu = get_cpu();
  216. cpumask_t map;
  217. cpumask_t tmp = current->cpus_allowed;
  218. set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
  219. put_cpu();
  220. cpus_clear(map);
  221. for_each_online_cpu(cpu) {
  222. per_cpu(cpu_idle_state, cpu) = 1;
  223. cpu_set(cpu, map);
  224. }
  225. __get_cpu_var(cpu_idle_state) = 0;
  226. wmb();
  227. do {
  228. ssleep(1);
  229. for_each_online_cpu(cpu) {
  230. if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
  231. cpu_clear(cpu, map);
  232. }
  233. cpus_and(map, map, cpu_online_map);
  234. } while (!cpus_empty(map));
  235. set_cpus_allowed(current, tmp);
  236. }
  237. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  238. void __attribute__((noreturn))
  239. cpu_idle (void)
  240. {
  241. void (*mark_idle)(int) = ia64_mark_idle;
  242. int cpu = smp_processor_id();
  243. /* endless idle loop with no priority at all */
  244. while (1) {
  245. if (can_do_pal_halt) {
  246. current_thread_info()->status &= ~TS_POLLING;
  247. /*
  248. * TS_POLLING-cleared state must be visible before we
  249. * test NEED_RESCHED:
  250. */
  251. smp_mb();
  252. } else {
  253. current_thread_info()->status |= TS_POLLING;
  254. }
  255. if (!need_resched()) {
  256. void (*idle)(void);
  257. #ifdef CONFIG_SMP
  258. min_xtp();
  259. #endif
  260. if (__get_cpu_var(cpu_idle_state))
  261. __get_cpu_var(cpu_idle_state) = 0;
  262. rmb();
  263. if (mark_idle)
  264. (*mark_idle)(1);
  265. idle = pm_idle;
  266. if (!idle)
  267. idle = default_idle;
  268. (*idle)();
  269. if (mark_idle)
  270. (*mark_idle)(0);
  271. #ifdef CONFIG_SMP
  272. normal_xtp();
  273. #endif
  274. }
  275. preempt_enable_no_resched();
  276. schedule();
  277. preempt_disable();
  278. check_pgt_cache();
  279. if (cpu_is_offline(cpu))
  280. play_dead();
  281. }
  282. }
  283. void
  284. ia64_save_extra (struct task_struct *task)
  285. {
  286. #ifdef CONFIG_PERFMON
  287. unsigned long info;
  288. #endif
  289. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  290. ia64_save_debug_regs(&task->thread.dbr[0]);
  291. #ifdef CONFIG_PERFMON
  292. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  293. pfm_save_regs(task);
  294. info = __get_cpu_var(pfm_syst_info);
  295. if (info & PFM_CPUINFO_SYST_WIDE)
  296. pfm_syst_wide_update_task(task, info, 0);
  297. #endif
  298. #ifdef CONFIG_IA32_SUPPORT
  299. if (IS_IA32_PROCESS(task_pt_regs(task)))
  300. ia32_save_state(task);
  301. #endif
  302. }
  303. void
  304. ia64_load_extra (struct task_struct *task)
  305. {
  306. #ifdef CONFIG_PERFMON
  307. unsigned long info;
  308. #endif
  309. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  310. ia64_load_debug_regs(&task->thread.dbr[0]);
  311. #ifdef CONFIG_PERFMON
  312. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  313. pfm_load_regs(task);
  314. info = __get_cpu_var(pfm_syst_info);
  315. if (info & PFM_CPUINFO_SYST_WIDE)
  316. pfm_syst_wide_update_task(task, info, 1);
  317. #endif
  318. #ifdef CONFIG_IA32_SUPPORT
  319. if (IS_IA32_PROCESS(task_pt_regs(task)))
  320. ia32_load_state(task);
  321. #endif
  322. }
  323. /*
  324. * Copy the state of an ia-64 thread.
  325. *
  326. * We get here through the following call chain:
  327. *
  328. * from user-level: from kernel:
  329. *
  330. * <clone syscall> <some kernel call frames>
  331. * sys_clone :
  332. * do_fork do_fork
  333. * copy_thread copy_thread
  334. *
  335. * This means that the stack layout is as follows:
  336. *
  337. * +---------------------+ (highest addr)
  338. * | struct pt_regs |
  339. * +---------------------+
  340. * | struct switch_stack |
  341. * +---------------------+
  342. * | |
  343. * | memory stack |
  344. * | | <-- sp (lowest addr)
  345. * +---------------------+
  346. *
  347. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  348. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  349. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  350. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  351. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  352. * so there is nothing to worry about.
  353. */
  354. int
  355. copy_thread (int nr, unsigned long clone_flags,
  356. unsigned long user_stack_base, unsigned long user_stack_size,
  357. struct task_struct *p, struct pt_regs *regs)
  358. {
  359. extern char ia64_ret_from_clone, ia32_ret_from_clone;
  360. struct switch_stack *child_stack, *stack;
  361. unsigned long rbs, child_rbs, rbs_size;
  362. struct pt_regs *child_ptregs;
  363. int retval = 0;
  364. #ifdef CONFIG_SMP
  365. /*
  366. * For SMP idle threads, fork_by_hand() calls do_fork with
  367. * NULL regs.
  368. */
  369. if (!regs)
  370. return 0;
  371. #endif
  372. stack = ((struct switch_stack *) regs) - 1;
  373. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  374. child_stack = (struct switch_stack *) child_ptregs - 1;
  375. /* copy parent's switch_stack & pt_regs to child: */
  376. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  377. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  378. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  379. rbs_size = stack->ar_bspstore - rbs;
  380. /* copy the parent's register backing store to the child: */
  381. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  382. if (likely(user_mode(child_ptregs))) {
  383. if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
  384. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  385. if (user_stack_base) {
  386. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  387. child_ptregs->ar_bspstore = user_stack_base;
  388. child_ptregs->ar_rnat = 0;
  389. child_ptregs->loadrs = 0;
  390. }
  391. } else {
  392. /*
  393. * Note: we simply preserve the relative position of
  394. * the stack pointer here. There is no need to
  395. * allocate a scratch area here, since that will have
  396. * been taken care of by the caller of sys_clone()
  397. * already.
  398. */
  399. child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
  400. child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
  401. }
  402. child_stack->ar_bspstore = child_rbs + rbs_size;
  403. if (IS_IA32_PROCESS(regs))
  404. child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
  405. else
  406. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  407. /* copy parts of thread_struct: */
  408. p->thread.ksp = (unsigned long) child_stack - 16;
  409. /* stop some PSR bits from being inherited.
  410. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  411. * therefore we must specify them explicitly here and not include them in
  412. * IA64_PSR_BITS_TO_CLEAR.
  413. */
  414. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  415. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  416. /*
  417. * NOTE: The calling convention considers all floating point
  418. * registers in the high partition (fph) to be scratch. Since
  419. * the only way to get to this point is through a system call,
  420. * we know that the values in fph are all dead. Hence, there
  421. * is no need to inherit the fph state from the parent to the
  422. * child and all we have to do is to make sure that
  423. * IA64_THREAD_FPH_VALID is cleared in the child.
  424. *
  425. * XXX We could push this optimization a bit further by
  426. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  427. * However, it's not clear this is worth doing. Also, it
  428. * would be a slight deviation from the normal Linux system
  429. * call behavior where scratch registers are preserved across
  430. * system calls (unless used by the system call itself).
  431. */
  432. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  433. | IA64_THREAD_PM_VALID)
  434. # define THREAD_FLAGS_TO_SET 0
  435. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  436. | THREAD_FLAGS_TO_SET);
  437. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  438. #ifdef CONFIG_IA32_SUPPORT
  439. /*
  440. * If we're cloning an IA32 task then save the IA32 extra
  441. * state from the current task to the new task
  442. */
  443. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  444. ia32_save_state(p);
  445. if (clone_flags & CLONE_SETTLS)
  446. retval = ia32_clone_tls(p, child_ptregs);
  447. /* Copy partially mapped page list */
  448. if (!retval)
  449. retval = ia32_copy_ia64_partial_page_list(p,
  450. clone_flags);
  451. }
  452. #endif
  453. #ifdef CONFIG_PERFMON
  454. if (current->thread.pfm_context)
  455. pfm_inherit(p, child_ptregs);
  456. #endif
  457. return retval;
  458. }
  459. static void
  460. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  461. {
  462. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  463. unsigned long uninitialized_var(ip); /* GCC be quiet */
  464. elf_greg_t *dst = arg;
  465. struct pt_regs *pt;
  466. char nat;
  467. int i;
  468. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  469. if (unw_unwind_to_user(info) < 0)
  470. return;
  471. unw_get_sp(info, &sp);
  472. pt = (struct pt_regs *) (sp + 16);
  473. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  474. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  475. return;
  476. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  477. &ar_rnat);
  478. /*
  479. * coredump format:
  480. * r0-r31
  481. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  482. * predicate registers (p0-p63)
  483. * b0-b7
  484. * ip cfm user-mask
  485. * ar.rsc ar.bsp ar.bspstore ar.rnat
  486. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  487. */
  488. /* r0 is zero */
  489. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  490. unw_get_gr(info, i, &dst[i], &nat);
  491. if (nat)
  492. nat_bits |= mask;
  493. mask <<= 1;
  494. }
  495. dst[32] = nat_bits;
  496. unw_get_pr(info, &dst[33]);
  497. for (i = 0; i < 8; ++i)
  498. unw_get_br(info, i, &dst[34 + i]);
  499. unw_get_rp(info, &ip);
  500. dst[42] = ip + ia64_psr(pt)->ri;
  501. dst[43] = cfm;
  502. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  503. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  504. /*
  505. * For bsp and bspstore, unw_get_ar() would return the kernel
  506. * addresses, but we need the user-level addresses instead:
  507. */
  508. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  509. dst[47] = pt->ar_bspstore;
  510. dst[48] = ar_rnat;
  511. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  512. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  513. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  514. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  515. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  516. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  517. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  518. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  519. }
  520. void
  521. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  522. {
  523. elf_fpreg_t *dst = arg;
  524. int i;
  525. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  526. if (unw_unwind_to_user(info) < 0)
  527. return;
  528. /* f0 is 0.0, f1 is 1.0 */
  529. for (i = 2; i < 32; ++i)
  530. unw_get_fr(info, i, dst + i);
  531. ia64_flush_fph(task);
  532. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  533. memcpy(dst + 32, task->thread.fph, 96*16);
  534. }
  535. void
  536. do_copy_regs (struct unw_frame_info *info, void *arg)
  537. {
  538. do_copy_task_regs(current, info, arg);
  539. }
  540. void
  541. do_dump_fpu (struct unw_frame_info *info, void *arg)
  542. {
  543. do_dump_task_fpu(current, info, arg);
  544. }
  545. int
  546. dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
  547. {
  548. struct unw_frame_info tcore_info;
  549. if (current == task) {
  550. unw_init_running(do_copy_regs, regs);
  551. } else {
  552. memset(&tcore_info, 0, sizeof(tcore_info));
  553. unw_init_from_blocked_task(&tcore_info, task);
  554. do_copy_task_regs(task, &tcore_info, regs);
  555. }
  556. return 1;
  557. }
  558. void
  559. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  560. {
  561. unw_init_running(do_copy_regs, dst);
  562. }
  563. int
  564. dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
  565. {
  566. struct unw_frame_info tcore_info;
  567. if (current == task) {
  568. unw_init_running(do_dump_fpu, dst);
  569. } else {
  570. memset(&tcore_info, 0, sizeof(tcore_info));
  571. unw_init_from_blocked_task(&tcore_info, task);
  572. do_dump_task_fpu(task, &tcore_info, dst);
  573. }
  574. return 1;
  575. }
  576. int
  577. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  578. {
  579. unw_init_running(do_dump_fpu, dst);
  580. return 1; /* f0-f31 are always valid so we always return 1 */
  581. }
  582. long
  583. sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
  584. struct pt_regs *regs)
  585. {
  586. char *fname;
  587. int error;
  588. fname = getname(filename);
  589. error = PTR_ERR(fname);
  590. if (IS_ERR(fname))
  591. goto out;
  592. error = do_execve(fname, argv, envp, regs);
  593. putname(fname);
  594. out:
  595. return error;
  596. }
  597. pid_t
  598. kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
  599. {
  600. extern void start_kernel_thread (void);
  601. unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
  602. struct {
  603. struct switch_stack sw;
  604. struct pt_regs pt;
  605. } regs;
  606. memset(&regs, 0, sizeof(regs));
  607. regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
  608. regs.pt.r1 = helper_fptr[1]; /* set GP */
  609. regs.pt.r9 = (unsigned long) fn; /* 1st argument */
  610. regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
  611. /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
  612. regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  613. regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
  614. regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
  615. regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
  616. regs.sw.pr = (1 << PRED_KERNEL_STACK);
  617. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
  618. }
  619. EXPORT_SYMBOL(kernel_thread);
  620. /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
  621. int
  622. kernel_thread_helper (int (*fn)(void *), void *arg)
  623. {
  624. #ifdef CONFIG_IA32_SUPPORT
  625. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  626. /* A kernel thread is always a 64-bit process. */
  627. current->thread.map_base = DEFAULT_MAP_BASE;
  628. current->thread.task_size = DEFAULT_TASK_SIZE;
  629. ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
  630. ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
  631. }
  632. #endif
  633. return (*fn)(arg);
  634. }
  635. /*
  636. * Flush thread state. This is called when a thread does an execve().
  637. */
  638. void
  639. flush_thread (void)
  640. {
  641. /* drop floating-point and debug-register state if it exists: */
  642. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  643. ia64_drop_fpu(current);
  644. #ifdef CONFIG_IA32_SUPPORT
  645. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  646. ia32_drop_ia64_partial_page_list(current);
  647. current->thread.task_size = IA32_PAGE_OFFSET;
  648. set_fs(USER_DS);
  649. memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array));
  650. }
  651. #endif
  652. }
  653. /*
  654. * Clean up state associated with current thread. This is called when
  655. * the thread calls exit().
  656. */
  657. void
  658. exit_thread (void)
  659. {
  660. ia64_drop_fpu(current);
  661. #ifdef CONFIG_PERFMON
  662. /* if needed, stop monitoring and flush state to perfmon context */
  663. if (current->thread.pfm_context)
  664. pfm_exit_thread(current);
  665. /* free debug register resources */
  666. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  667. pfm_release_debug_registers(current);
  668. #endif
  669. if (IS_IA32_PROCESS(task_pt_regs(current)))
  670. ia32_drop_ia64_partial_page_list(current);
  671. }
  672. unsigned long
  673. get_wchan (struct task_struct *p)
  674. {
  675. struct unw_frame_info info;
  676. unsigned long ip;
  677. int count = 0;
  678. if (!p || p == current || p->state == TASK_RUNNING)
  679. return 0;
  680. /*
  681. * Note: p may not be a blocked task (it could be current or
  682. * another process running on some other CPU. Rather than
  683. * trying to determine if p is really blocked, we just assume
  684. * it's blocked and rely on the unwind routines to fail
  685. * gracefully if the process wasn't really blocked after all.
  686. * --davidm 99/12/15
  687. */
  688. unw_init_from_blocked_task(&info, p);
  689. do {
  690. if (p->state == TASK_RUNNING)
  691. return 0;
  692. if (unw_unwind(&info) < 0)
  693. return 0;
  694. unw_get_ip(&info, &ip);
  695. if (!in_sched_functions(ip))
  696. return ip;
  697. } while (count++ < 16);
  698. return 0;
  699. }
  700. void
  701. cpu_halt (void)
  702. {
  703. pal_power_mgmt_info_u_t power_info[8];
  704. unsigned long min_power;
  705. int i, min_power_state;
  706. if (ia64_pal_halt_info(power_info) != 0)
  707. return;
  708. min_power_state = 0;
  709. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  710. for (i = 1; i < 8; ++i)
  711. if (power_info[i].pal_power_mgmt_info_s.im
  712. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  713. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  714. min_power_state = i;
  715. }
  716. while (1)
  717. ia64_pal_halt(min_power_state);
  718. }
  719. void machine_shutdown(void)
  720. {
  721. #ifdef CONFIG_HOTPLUG_CPU
  722. int cpu;
  723. for_each_online_cpu(cpu) {
  724. if (cpu != smp_processor_id())
  725. cpu_down(cpu);
  726. }
  727. #endif
  728. #ifdef CONFIG_KEXEC
  729. kexec_disable_iosapic();
  730. #endif
  731. }
  732. void
  733. machine_restart (char *restart_cmd)
  734. {
  735. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  736. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  737. }
  738. void
  739. machine_halt (void)
  740. {
  741. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  742. cpu_halt();
  743. }
  744. void
  745. machine_power_off (void)
  746. {
  747. if (pm_power_off)
  748. pm_power_off();
  749. machine_halt();
  750. }