efi.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259
  1. /*
  2. * Extensible Firmware Interface
  3. *
  4. * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
  5. *
  6. * Copyright (C) 1999 VA Linux Systems
  7. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8. * Copyright (C) 1999-2003 Hewlett-Packard Co.
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. * Stephane Eranian <eranian@hpl.hp.com>
  11. * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  12. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  13. *
  14. * All EFI Runtime Services are not implemented yet as EFI only
  15. * supports physical mode addressing on SoftSDV. This is to be fixed
  16. * in a future version. --drummond 1999-07-20
  17. *
  18. * Implemented EFI runtime services and virtual mode calls. --davidm
  19. *
  20. * Goutham Rao: <goutham.rao@intel.com>
  21. * Skip non-WB memory and ignore empty memory ranges.
  22. */
  23. #include <linux/module.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/kernel.h>
  26. #include <linux/init.h>
  27. #include <linux/types.h>
  28. #include <linux/time.h>
  29. #include <linux/efi.h>
  30. #include <linux/kexec.h>
  31. #include <linux/mm.h>
  32. #include <asm/io.h>
  33. #include <asm/kregs.h>
  34. #include <asm/meminit.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/processor.h>
  37. #include <asm/mca.h>
  38. #define EFI_DEBUG 0
  39. extern efi_status_t efi_call_phys (void *, ...);
  40. struct efi efi;
  41. EXPORT_SYMBOL(efi);
  42. static efi_runtime_services_t *runtime;
  43. static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  44. #define efi_call_virt(f, args...) (*(f))(args)
  45. #define STUB_GET_TIME(prefix, adjust_arg) \
  46. static efi_status_t \
  47. prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
  48. { \
  49. struct ia64_fpreg fr[6]; \
  50. efi_time_cap_t *atc = NULL; \
  51. efi_status_t ret; \
  52. \
  53. if (tc) \
  54. atc = adjust_arg(tc); \
  55. ia64_save_scratch_fpregs(fr); \
  56. ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
  57. ia64_load_scratch_fpregs(fr); \
  58. return ret; \
  59. }
  60. #define STUB_SET_TIME(prefix, adjust_arg) \
  61. static efi_status_t \
  62. prefix##_set_time (efi_time_t *tm) \
  63. { \
  64. struct ia64_fpreg fr[6]; \
  65. efi_status_t ret; \
  66. \
  67. ia64_save_scratch_fpregs(fr); \
  68. ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
  69. ia64_load_scratch_fpregs(fr); \
  70. return ret; \
  71. }
  72. #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
  73. static efi_status_t \
  74. prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
  75. { \
  76. struct ia64_fpreg fr[6]; \
  77. efi_status_t ret; \
  78. \
  79. ia64_save_scratch_fpregs(fr); \
  80. ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
  81. adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
  82. ia64_load_scratch_fpregs(fr); \
  83. return ret; \
  84. }
  85. #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
  86. static efi_status_t \
  87. prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
  88. { \
  89. struct ia64_fpreg fr[6]; \
  90. efi_time_t *atm = NULL; \
  91. efi_status_t ret; \
  92. \
  93. if (tm) \
  94. atm = adjust_arg(tm); \
  95. ia64_save_scratch_fpregs(fr); \
  96. ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
  97. enabled, atm); \
  98. ia64_load_scratch_fpregs(fr); \
  99. return ret; \
  100. }
  101. #define STUB_GET_VARIABLE(prefix, adjust_arg) \
  102. static efi_status_t \
  103. prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
  104. unsigned long *data_size, void *data) \
  105. { \
  106. struct ia64_fpreg fr[6]; \
  107. u32 *aattr = NULL; \
  108. efi_status_t ret; \
  109. \
  110. if (attr) \
  111. aattr = adjust_arg(attr); \
  112. ia64_save_scratch_fpregs(fr); \
  113. ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
  114. adjust_arg(name), adjust_arg(vendor), aattr, \
  115. adjust_arg(data_size), adjust_arg(data)); \
  116. ia64_load_scratch_fpregs(fr); \
  117. return ret; \
  118. }
  119. #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
  120. static efi_status_t \
  121. prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
  122. { \
  123. struct ia64_fpreg fr[6]; \
  124. efi_status_t ret; \
  125. \
  126. ia64_save_scratch_fpregs(fr); \
  127. ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
  128. adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
  129. ia64_load_scratch_fpregs(fr); \
  130. return ret; \
  131. }
  132. #define STUB_SET_VARIABLE(prefix, adjust_arg) \
  133. static efi_status_t \
  134. prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
  135. unsigned long data_size, void *data) \
  136. { \
  137. struct ia64_fpreg fr[6]; \
  138. efi_status_t ret; \
  139. \
  140. ia64_save_scratch_fpregs(fr); \
  141. ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
  142. adjust_arg(name), adjust_arg(vendor), attr, data_size, \
  143. adjust_arg(data)); \
  144. ia64_load_scratch_fpregs(fr); \
  145. return ret; \
  146. }
  147. #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
  148. static efi_status_t \
  149. prefix##_get_next_high_mono_count (u32 *count) \
  150. { \
  151. struct ia64_fpreg fr[6]; \
  152. efi_status_t ret; \
  153. \
  154. ia64_save_scratch_fpregs(fr); \
  155. ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
  156. __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
  157. ia64_load_scratch_fpregs(fr); \
  158. return ret; \
  159. }
  160. #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
  161. static void \
  162. prefix##_reset_system (int reset_type, efi_status_t status, \
  163. unsigned long data_size, efi_char16_t *data) \
  164. { \
  165. struct ia64_fpreg fr[6]; \
  166. efi_char16_t *adata = NULL; \
  167. \
  168. if (data) \
  169. adata = adjust_arg(data); \
  170. \
  171. ia64_save_scratch_fpregs(fr); \
  172. efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
  173. reset_type, status, data_size, adata); \
  174. /* should not return, but just in case... */ \
  175. ia64_load_scratch_fpregs(fr); \
  176. }
  177. #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
  178. STUB_GET_TIME(phys, phys_ptr)
  179. STUB_SET_TIME(phys, phys_ptr)
  180. STUB_GET_WAKEUP_TIME(phys, phys_ptr)
  181. STUB_SET_WAKEUP_TIME(phys, phys_ptr)
  182. STUB_GET_VARIABLE(phys, phys_ptr)
  183. STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
  184. STUB_SET_VARIABLE(phys, phys_ptr)
  185. STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
  186. STUB_RESET_SYSTEM(phys, phys_ptr)
  187. #define id(arg) arg
  188. STUB_GET_TIME(virt, id)
  189. STUB_SET_TIME(virt, id)
  190. STUB_GET_WAKEUP_TIME(virt, id)
  191. STUB_SET_WAKEUP_TIME(virt, id)
  192. STUB_GET_VARIABLE(virt, id)
  193. STUB_GET_NEXT_VARIABLE(virt, id)
  194. STUB_SET_VARIABLE(virt, id)
  195. STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
  196. STUB_RESET_SYSTEM(virt, id)
  197. void
  198. efi_gettimeofday (struct timespec *ts)
  199. {
  200. efi_time_t tm;
  201. if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
  202. memset(ts, 0, sizeof(*ts));
  203. return;
  204. }
  205. ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
  206. ts->tv_nsec = tm.nanosecond;
  207. }
  208. static int
  209. is_memory_available (efi_memory_desc_t *md)
  210. {
  211. if (!(md->attribute & EFI_MEMORY_WB))
  212. return 0;
  213. switch (md->type) {
  214. case EFI_LOADER_CODE:
  215. case EFI_LOADER_DATA:
  216. case EFI_BOOT_SERVICES_CODE:
  217. case EFI_BOOT_SERVICES_DATA:
  218. case EFI_CONVENTIONAL_MEMORY:
  219. return 1;
  220. }
  221. return 0;
  222. }
  223. typedef struct kern_memdesc {
  224. u64 attribute;
  225. u64 start;
  226. u64 num_pages;
  227. } kern_memdesc_t;
  228. static kern_memdesc_t *kern_memmap;
  229. #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
  230. static inline u64
  231. kmd_end(kern_memdesc_t *kmd)
  232. {
  233. return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
  234. }
  235. static inline u64
  236. efi_md_end(efi_memory_desc_t *md)
  237. {
  238. return (md->phys_addr + efi_md_size(md));
  239. }
  240. static inline int
  241. efi_wb(efi_memory_desc_t *md)
  242. {
  243. return (md->attribute & EFI_MEMORY_WB);
  244. }
  245. static inline int
  246. efi_uc(efi_memory_desc_t *md)
  247. {
  248. return (md->attribute & EFI_MEMORY_UC);
  249. }
  250. static void
  251. walk (efi_freemem_callback_t callback, void *arg, u64 attr)
  252. {
  253. kern_memdesc_t *k;
  254. u64 start, end, voff;
  255. voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
  256. for (k = kern_memmap; k->start != ~0UL; k++) {
  257. if (k->attribute != attr)
  258. continue;
  259. start = PAGE_ALIGN(k->start);
  260. end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
  261. if (start < end)
  262. if ((*callback)(start + voff, end + voff, arg) < 0)
  263. return;
  264. }
  265. }
  266. /*
  267. * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
  268. * has memory that is available for OS use.
  269. */
  270. void
  271. efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
  272. {
  273. walk(callback, arg, EFI_MEMORY_WB);
  274. }
  275. /*
  276. * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
  277. * has memory that is available for uncached allocator.
  278. */
  279. void
  280. efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
  281. {
  282. walk(callback, arg, EFI_MEMORY_UC);
  283. }
  284. /*
  285. * Look for the PAL_CODE region reported by EFI and maps it using an
  286. * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
  287. * Abstraction Layer chapter 11 in ADAG
  288. */
  289. void *
  290. efi_get_pal_addr (void)
  291. {
  292. void *efi_map_start, *efi_map_end, *p;
  293. efi_memory_desc_t *md;
  294. u64 efi_desc_size;
  295. int pal_code_count = 0;
  296. u64 vaddr, mask;
  297. efi_map_start = __va(ia64_boot_param->efi_memmap);
  298. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  299. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  300. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  301. md = p;
  302. if (md->type != EFI_PAL_CODE)
  303. continue;
  304. if (++pal_code_count > 1) {
  305. printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
  306. md->phys_addr);
  307. continue;
  308. }
  309. /*
  310. * The only ITLB entry in region 7 that is used is the one installed by
  311. * __start(). That entry covers a 64MB range.
  312. */
  313. mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
  314. vaddr = PAGE_OFFSET + md->phys_addr;
  315. /*
  316. * We must check that the PAL mapping won't overlap with the kernel
  317. * mapping.
  318. *
  319. * PAL code is guaranteed to be aligned on a power of 2 between 4k and
  320. * 256KB and that only one ITR is needed to map it. This implies that the
  321. * PAL code is always aligned on its size, i.e., the closest matching page
  322. * size supported by the TLB. Therefore PAL code is guaranteed never to
  323. * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
  324. * now the following test is enough to determine whether or not we need a
  325. * dedicated ITR for the PAL code.
  326. */
  327. if ((vaddr & mask) == (KERNEL_START & mask)) {
  328. printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
  329. __FUNCTION__);
  330. continue;
  331. }
  332. if (efi_md_size(md) > IA64_GRANULE_SIZE)
  333. panic("Woah! PAL code size bigger than a granule!");
  334. #if EFI_DEBUG
  335. mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
  336. printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
  337. smp_processor_id(), md->phys_addr,
  338. md->phys_addr + efi_md_size(md),
  339. vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
  340. #endif
  341. return __va(md->phys_addr);
  342. }
  343. printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
  344. __FUNCTION__);
  345. return NULL;
  346. }
  347. void
  348. efi_map_pal_code (void)
  349. {
  350. void *pal_vaddr = efi_get_pal_addr ();
  351. u64 psr;
  352. if (!pal_vaddr)
  353. return;
  354. /*
  355. * Cannot write to CRx with PSR.ic=1
  356. */
  357. psr = ia64_clear_ic();
  358. ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
  359. pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
  360. IA64_GRANULE_SHIFT);
  361. ia64_set_psr(psr); /* restore psr */
  362. ia64_srlz_i();
  363. }
  364. void __init
  365. efi_init (void)
  366. {
  367. void *efi_map_start, *efi_map_end;
  368. efi_config_table_t *config_tables;
  369. efi_char16_t *c16;
  370. u64 efi_desc_size;
  371. char *cp, vendor[100] = "unknown";
  372. int i;
  373. /* it's too early to be able to use the standard kernel command line support... */
  374. for (cp = boot_command_line; *cp; ) {
  375. if (memcmp(cp, "mem=", 4) == 0) {
  376. mem_limit = memparse(cp + 4, &cp);
  377. } else if (memcmp(cp, "max_addr=", 9) == 0) {
  378. max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  379. } else if (memcmp(cp, "min_addr=", 9) == 0) {
  380. min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  381. } else {
  382. while (*cp != ' ' && *cp)
  383. ++cp;
  384. while (*cp == ' ')
  385. ++cp;
  386. }
  387. }
  388. if (min_addr != 0UL)
  389. printk(KERN_INFO "Ignoring memory below %luMB\n", min_addr >> 20);
  390. if (max_addr != ~0UL)
  391. printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
  392. efi.systab = __va(ia64_boot_param->efi_systab);
  393. /*
  394. * Verify the EFI Table
  395. */
  396. if (efi.systab == NULL)
  397. panic("Woah! Can't find EFI system table.\n");
  398. if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
  399. panic("Woah! EFI system table signature incorrect\n");
  400. if ((efi.systab->hdr.revision >> 16) == 0)
  401. printk(KERN_WARNING "Warning: EFI system table version "
  402. "%d.%02d, expected 1.00 or greater\n",
  403. efi.systab->hdr.revision >> 16,
  404. efi.systab->hdr.revision & 0xffff);
  405. config_tables = __va(efi.systab->tables);
  406. /* Show what we know for posterity */
  407. c16 = __va(efi.systab->fw_vendor);
  408. if (c16) {
  409. for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
  410. vendor[i] = *c16++;
  411. vendor[i] = '\0';
  412. }
  413. printk(KERN_INFO "EFI v%u.%.02u by %s:",
  414. efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
  415. efi.mps = EFI_INVALID_TABLE_ADDR;
  416. efi.acpi = EFI_INVALID_TABLE_ADDR;
  417. efi.acpi20 = EFI_INVALID_TABLE_ADDR;
  418. efi.smbios = EFI_INVALID_TABLE_ADDR;
  419. efi.sal_systab = EFI_INVALID_TABLE_ADDR;
  420. efi.boot_info = EFI_INVALID_TABLE_ADDR;
  421. efi.hcdp = EFI_INVALID_TABLE_ADDR;
  422. efi.uga = EFI_INVALID_TABLE_ADDR;
  423. for (i = 0; i < (int) efi.systab->nr_tables; i++) {
  424. if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
  425. efi.mps = config_tables[i].table;
  426. printk(" MPS=0x%lx", config_tables[i].table);
  427. } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
  428. efi.acpi20 = config_tables[i].table;
  429. printk(" ACPI 2.0=0x%lx", config_tables[i].table);
  430. } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
  431. efi.acpi = config_tables[i].table;
  432. printk(" ACPI=0x%lx", config_tables[i].table);
  433. } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
  434. efi.smbios = config_tables[i].table;
  435. printk(" SMBIOS=0x%lx", config_tables[i].table);
  436. } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
  437. efi.sal_systab = config_tables[i].table;
  438. printk(" SALsystab=0x%lx", config_tables[i].table);
  439. } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
  440. efi.hcdp = config_tables[i].table;
  441. printk(" HCDP=0x%lx", config_tables[i].table);
  442. }
  443. }
  444. printk("\n");
  445. runtime = __va(efi.systab->runtime);
  446. efi.get_time = phys_get_time;
  447. efi.set_time = phys_set_time;
  448. efi.get_wakeup_time = phys_get_wakeup_time;
  449. efi.set_wakeup_time = phys_set_wakeup_time;
  450. efi.get_variable = phys_get_variable;
  451. efi.get_next_variable = phys_get_next_variable;
  452. efi.set_variable = phys_set_variable;
  453. efi.get_next_high_mono_count = phys_get_next_high_mono_count;
  454. efi.reset_system = phys_reset_system;
  455. efi_map_start = __va(ia64_boot_param->efi_memmap);
  456. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  457. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  458. #if EFI_DEBUG
  459. /* print EFI memory map: */
  460. {
  461. efi_memory_desc_t *md;
  462. void *p;
  463. for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
  464. md = p;
  465. printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
  466. i, md->type, md->attribute, md->phys_addr,
  467. md->phys_addr + efi_md_size(md),
  468. md->num_pages >> (20 - EFI_PAGE_SHIFT));
  469. }
  470. }
  471. #endif
  472. efi_map_pal_code();
  473. efi_enter_virtual_mode();
  474. }
  475. void
  476. efi_enter_virtual_mode (void)
  477. {
  478. void *efi_map_start, *efi_map_end, *p;
  479. efi_memory_desc_t *md;
  480. efi_status_t status;
  481. u64 efi_desc_size;
  482. efi_map_start = __va(ia64_boot_param->efi_memmap);
  483. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  484. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  485. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  486. md = p;
  487. if (md->attribute & EFI_MEMORY_RUNTIME) {
  488. /*
  489. * Some descriptors have multiple bits set, so the order of
  490. * the tests is relevant.
  491. */
  492. if (md->attribute & EFI_MEMORY_WB) {
  493. md->virt_addr = (u64) __va(md->phys_addr);
  494. } else if (md->attribute & EFI_MEMORY_UC) {
  495. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  496. } else if (md->attribute & EFI_MEMORY_WC) {
  497. #if 0
  498. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  499. | _PAGE_D
  500. | _PAGE_MA_WC
  501. | _PAGE_PL_0
  502. | _PAGE_AR_RW));
  503. #else
  504. printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
  505. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  506. #endif
  507. } else if (md->attribute & EFI_MEMORY_WT) {
  508. #if 0
  509. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  510. | _PAGE_D | _PAGE_MA_WT
  511. | _PAGE_PL_0
  512. | _PAGE_AR_RW));
  513. #else
  514. printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
  515. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  516. #endif
  517. }
  518. }
  519. }
  520. status = efi_call_phys(__va(runtime->set_virtual_address_map),
  521. ia64_boot_param->efi_memmap_size,
  522. efi_desc_size, ia64_boot_param->efi_memdesc_version,
  523. ia64_boot_param->efi_memmap);
  524. if (status != EFI_SUCCESS) {
  525. printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
  526. "(status=%lu)\n", status);
  527. return;
  528. }
  529. /*
  530. * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
  531. */
  532. efi.get_time = virt_get_time;
  533. efi.set_time = virt_set_time;
  534. efi.get_wakeup_time = virt_get_wakeup_time;
  535. efi.set_wakeup_time = virt_set_wakeup_time;
  536. efi.get_variable = virt_get_variable;
  537. efi.get_next_variable = virt_get_next_variable;
  538. efi.set_variable = virt_set_variable;
  539. efi.get_next_high_mono_count = virt_get_next_high_mono_count;
  540. efi.reset_system = virt_reset_system;
  541. }
  542. /*
  543. * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
  544. * this type, other I/O port ranges should be described via ACPI.
  545. */
  546. u64
  547. efi_get_iobase (void)
  548. {
  549. void *efi_map_start, *efi_map_end, *p;
  550. efi_memory_desc_t *md;
  551. u64 efi_desc_size;
  552. efi_map_start = __va(ia64_boot_param->efi_memmap);
  553. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  554. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  555. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  556. md = p;
  557. if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
  558. if (md->attribute & EFI_MEMORY_UC)
  559. return md->phys_addr;
  560. }
  561. }
  562. return 0;
  563. }
  564. static struct kern_memdesc *
  565. kern_memory_descriptor (unsigned long phys_addr)
  566. {
  567. struct kern_memdesc *md;
  568. for (md = kern_memmap; md->start != ~0UL; md++) {
  569. if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
  570. return md;
  571. }
  572. return NULL;
  573. }
  574. static efi_memory_desc_t *
  575. efi_memory_descriptor (unsigned long phys_addr)
  576. {
  577. void *efi_map_start, *efi_map_end, *p;
  578. efi_memory_desc_t *md;
  579. u64 efi_desc_size;
  580. efi_map_start = __va(ia64_boot_param->efi_memmap);
  581. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  582. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  583. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  584. md = p;
  585. if (phys_addr - md->phys_addr < efi_md_size(md))
  586. return md;
  587. }
  588. return NULL;
  589. }
  590. static int
  591. efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
  592. {
  593. void *efi_map_start, *efi_map_end, *p;
  594. efi_memory_desc_t *md;
  595. u64 efi_desc_size;
  596. unsigned long end;
  597. efi_map_start = __va(ia64_boot_param->efi_memmap);
  598. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  599. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  600. end = phys_addr + size;
  601. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  602. md = p;
  603. if (md->phys_addr < end && efi_md_end(md) > phys_addr)
  604. return 1;
  605. }
  606. return 0;
  607. }
  608. u32
  609. efi_mem_type (unsigned long phys_addr)
  610. {
  611. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  612. if (md)
  613. return md->type;
  614. return 0;
  615. }
  616. u64
  617. efi_mem_attributes (unsigned long phys_addr)
  618. {
  619. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  620. if (md)
  621. return md->attribute;
  622. return 0;
  623. }
  624. EXPORT_SYMBOL(efi_mem_attributes);
  625. u64
  626. efi_mem_attribute (unsigned long phys_addr, unsigned long size)
  627. {
  628. unsigned long end = phys_addr + size;
  629. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  630. u64 attr;
  631. if (!md)
  632. return 0;
  633. /*
  634. * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
  635. * the kernel that firmware needs this region mapped.
  636. */
  637. attr = md->attribute & ~EFI_MEMORY_RUNTIME;
  638. do {
  639. unsigned long md_end = efi_md_end(md);
  640. if (end <= md_end)
  641. return attr;
  642. md = efi_memory_descriptor(md_end);
  643. if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
  644. return 0;
  645. } while (md);
  646. return 0;
  647. }
  648. u64
  649. kern_mem_attribute (unsigned long phys_addr, unsigned long size)
  650. {
  651. unsigned long end = phys_addr + size;
  652. struct kern_memdesc *md;
  653. u64 attr;
  654. /*
  655. * This is a hack for ioremap calls before we set up kern_memmap.
  656. * Maybe we should do efi_memmap_init() earlier instead.
  657. */
  658. if (!kern_memmap) {
  659. attr = efi_mem_attribute(phys_addr, size);
  660. if (attr & EFI_MEMORY_WB)
  661. return EFI_MEMORY_WB;
  662. return 0;
  663. }
  664. md = kern_memory_descriptor(phys_addr);
  665. if (!md)
  666. return 0;
  667. attr = md->attribute;
  668. do {
  669. unsigned long md_end = kmd_end(md);
  670. if (end <= md_end)
  671. return attr;
  672. md = kern_memory_descriptor(md_end);
  673. if (!md || md->attribute != attr)
  674. return 0;
  675. } while (md);
  676. return 0;
  677. }
  678. EXPORT_SYMBOL(kern_mem_attribute);
  679. int
  680. valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
  681. {
  682. u64 attr;
  683. /*
  684. * /dev/mem reads and writes use copy_to_user(), which implicitly
  685. * uses a granule-sized kernel identity mapping. It's really
  686. * only safe to do this for regions in kern_memmap. For more
  687. * details, see Documentation/ia64/aliasing.txt.
  688. */
  689. attr = kern_mem_attribute(phys_addr, size);
  690. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  691. return 1;
  692. return 0;
  693. }
  694. int
  695. valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
  696. {
  697. unsigned long phys_addr = pfn << PAGE_SHIFT;
  698. u64 attr;
  699. attr = efi_mem_attribute(phys_addr, size);
  700. /*
  701. * /dev/mem mmap uses normal user pages, so we don't need the entire
  702. * granule, but the entire region we're mapping must support the same
  703. * attribute.
  704. */
  705. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  706. return 1;
  707. /*
  708. * Intel firmware doesn't tell us about all the MMIO regions, so
  709. * in general we have to allow mmap requests. But if EFI *does*
  710. * tell us about anything inside this region, we should deny it.
  711. * The user can always map a smaller region to avoid the overlap.
  712. */
  713. if (efi_memmap_intersects(phys_addr, size))
  714. return 0;
  715. return 1;
  716. }
  717. pgprot_t
  718. phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
  719. pgprot_t vma_prot)
  720. {
  721. unsigned long phys_addr = pfn << PAGE_SHIFT;
  722. u64 attr;
  723. /*
  724. * For /dev/mem mmap, we use user mappings, but if the region is
  725. * in kern_memmap (and hence may be covered by a kernel mapping),
  726. * we must use the same attribute as the kernel mapping.
  727. */
  728. attr = kern_mem_attribute(phys_addr, size);
  729. if (attr & EFI_MEMORY_WB)
  730. return pgprot_cacheable(vma_prot);
  731. else if (attr & EFI_MEMORY_UC)
  732. return pgprot_noncached(vma_prot);
  733. /*
  734. * Some chipsets don't support UC access to memory. If
  735. * WB is supported, we prefer that.
  736. */
  737. if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
  738. return pgprot_cacheable(vma_prot);
  739. return pgprot_noncached(vma_prot);
  740. }
  741. int __init
  742. efi_uart_console_only(void)
  743. {
  744. efi_status_t status;
  745. char *s, name[] = "ConOut";
  746. efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
  747. efi_char16_t *utf16, name_utf16[32];
  748. unsigned char data[1024];
  749. unsigned long size = sizeof(data);
  750. struct efi_generic_dev_path *hdr, *end_addr;
  751. int uart = 0;
  752. /* Convert to UTF-16 */
  753. utf16 = name_utf16;
  754. s = name;
  755. while (*s)
  756. *utf16++ = *s++ & 0x7f;
  757. *utf16 = 0;
  758. status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
  759. if (status != EFI_SUCCESS) {
  760. printk(KERN_ERR "No EFI %s variable?\n", name);
  761. return 0;
  762. }
  763. hdr = (struct efi_generic_dev_path *) data;
  764. end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
  765. while (hdr < end_addr) {
  766. if (hdr->type == EFI_DEV_MSG &&
  767. hdr->sub_type == EFI_DEV_MSG_UART)
  768. uart = 1;
  769. else if (hdr->type == EFI_DEV_END_PATH ||
  770. hdr->type == EFI_DEV_END_PATH2) {
  771. if (!uart)
  772. return 0;
  773. if (hdr->sub_type == EFI_DEV_END_ENTIRE)
  774. return 1;
  775. uart = 0;
  776. }
  777. hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
  778. }
  779. printk(KERN_ERR "Malformed %s value\n", name);
  780. return 0;
  781. }
  782. /*
  783. * Look for the first granule aligned memory descriptor memory
  784. * that is big enough to hold EFI memory map. Make sure this
  785. * descriptor is atleast granule sized so it does not get trimmed
  786. */
  787. struct kern_memdesc *
  788. find_memmap_space (void)
  789. {
  790. u64 contig_low=0, contig_high=0;
  791. u64 as = 0, ae;
  792. void *efi_map_start, *efi_map_end, *p, *q;
  793. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  794. u64 space_needed, efi_desc_size;
  795. unsigned long total_mem = 0;
  796. efi_map_start = __va(ia64_boot_param->efi_memmap);
  797. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  798. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  799. /*
  800. * Worst case: we need 3 kernel descriptors for each efi descriptor
  801. * (if every entry has a WB part in the middle, and UC head and tail),
  802. * plus one for the end marker.
  803. */
  804. space_needed = sizeof(kern_memdesc_t) *
  805. (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
  806. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  807. md = p;
  808. if (!efi_wb(md)) {
  809. continue;
  810. }
  811. if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
  812. contig_low = GRANULEROUNDUP(md->phys_addr);
  813. contig_high = efi_md_end(md);
  814. for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
  815. check_md = q;
  816. if (!efi_wb(check_md))
  817. break;
  818. if (contig_high != check_md->phys_addr)
  819. break;
  820. contig_high = efi_md_end(check_md);
  821. }
  822. contig_high = GRANULEROUNDDOWN(contig_high);
  823. }
  824. if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
  825. continue;
  826. /* Round ends inward to granule boundaries */
  827. as = max(contig_low, md->phys_addr);
  828. ae = min(contig_high, efi_md_end(md));
  829. /* keep within max_addr= and min_addr= command line arg */
  830. as = max(as, min_addr);
  831. ae = min(ae, max_addr);
  832. if (ae <= as)
  833. continue;
  834. /* avoid going over mem= command line arg */
  835. if (total_mem + (ae - as) > mem_limit)
  836. ae -= total_mem + (ae - as) - mem_limit;
  837. if (ae <= as)
  838. continue;
  839. if (ae - as > space_needed)
  840. break;
  841. }
  842. if (p >= efi_map_end)
  843. panic("Can't allocate space for kernel memory descriptors");
  844. return __va(as);
  845. }
  846. /*
  847. * Walk the EFI memory map and gather all memory available for kernel
  848. * to use. We can allocate partial granules only if the unavailable
  849. * parts exist, and are WB.
  850. */
  851. unsigned long
  852. efi_memmap_init(unsigned long *s, unsigned long *e)
  853. {
  854. struct kern_memdesc *k, *prev = NULL;
  855. u64 contig_low=0, contig_high=0;
  856. u64 as, ae, lim;
  857. void *efi_map_start, *efi_map_end, *p, *q;
  858. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  859. u64 efi_desc_size;
  860. unsigned long total_mem = 0;
  861. k = kern_memmap = find_memmap_space();
  862. efi_map_start = __va(ia64_boot_param->efi_memmap);
  863. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  864. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  865. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  866. md = p;
  867. if (!efi_wb(md)) {
  868. if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
  869. md->type == EFI_BOOT_SERVICES_DATA)) {
  870. k->attribute = EFI_MEMORY_UC;
  871. k->start = md->phys_addr;
  872. k->num_pages = md->num_pages;
  873. k++;
  874. }
  875. continue;
  876. }
  877. if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
  878. contig_low = GRANULEROUNDUP(md->phys_addr);
  879. contig_high = efi_md_end(md);
  880. for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
  881. check_md = q;
  882. if (!efi_wb(check_md))
  883. break;
  884. if (contig_high != check_md->phys_addr)
  885. break;
  886. contig_high = efi_md_end(check_md);
  887. }
  888. contig_high = GRANULEROUNDDOWN(contig_high);
  889. }
  890. if (!is_memory_available(md))
  891. continue;
  892. #ifdef CONFIG_CRASH_DUMP
  893. /* saved_max_pfn should ignore max_addr= command line arg */
  894. if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
  895. saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
  896. #endif
  897. /*
  898. * Round ends inward to granule boundaries
  899. * Give trimmings to uncached allocator
  900. */
  901. if (md->phys_addr < contig_low) {
  902. lim = min(efi_md_end(md), contig_low);
  903. if (efi_uc(md)) {
  904. if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
  905. kmd_end(k-1) == md->phys_addr) {
  906. (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
  907. } else {
  908. k->attribute = EFI_MEMORY_UC;
  909. k->start = md->phys_addr;
  910. k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
  911. k++;
  912. }
  913. }
  914. as = contig_low;
  915. } else
  916. as = md->phys_addr;
  917. if (efi_md_end(md) > contig_high) {
  918. lim = max(md->phys_addr, contig_high);
  919. if (efi_uc(md)) {
  920. if (lim == md->phys_addr && k > kern_memmap &&
  921. (k-1)->attribute == EFI_MEMORY_UC &&
  922. kmd_end(k-1) == md->phys_addr) {
  923. (k-1)->num_pages += md->num_pages;
  924. } else {
  925. k->attribute = EFI_MEMORY_UC;
  926. k->start = lim;
  927. k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
  928. k++;
  929. }
  930. }
  931. ae = contig_high;
  932. } else
  933. ae = efi_md_end(md);
  934. /* keep within max_addr= and min_addr= command line arg */
  935. as = max(as, min_addr);
  936. ae = min(ae, max_addr);
  937. if (ae <= as)
  938. continue;
  939. /* avoid going over mem= command line arg */
  940. if (total_mem + (ae - as) > mem_limit)
  941. ae -= total_mem + (ae - as) - mem_limit;
  942. if (ae <= as)
  943. continue;
  944. if (prev && kmd_end(prev) == md->phys_addr) {
  945. prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
  946. total_mem += ae - as;
  947. continue;
  948. }
  949. k->attribute = EFI_MEMORY_WB;
  950. k->start = as;
  951. k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
  952. total_mem += ae - as;
  953. prev = k++;
  954. }
  955. k->start = ~0L; /* end-marker */
  956. /* reserve the memory we are using for kern_memmap */
  957. *s = (u64)kern_memmap;
  958. *e = (u64)++k;
  959. return total_mem;
  960. }
  961. void
  962. efi_initialize_iomem_resources(struct resource *code_resource,
  963. struct resource *data_resource,
  964. struct resource *bss_resource)
  965. {
  966. struct resource *res;
  967. void *efi_map_start, *efi_map_end, *p;
  968. efi_memory_desc_t *md;
  969. u64 efi_desc_size;
  970. char *name;
  971. unsigned long flags;
  972. efi_map_start = __va(ia64_boot_param->efi_memmap);
  973. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  974. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  975. res = NULL;
  976. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  977. md = p;
  978. if (md->num_pages == 0) /* should not happen */
  979. continue;
  980. flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  981. switch (md->type) {
  982. case EFI_MEMORY_MAPPED_IO:
  983. case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
  984. continue;
  985. case EFI_LOADER_CODE:
  986. case EFI_LOADER_DATA:
  987. case EFI_BOOT_SERVICES_DATA:
  988. case EFI_BOOT_SERVICES_CODE:
  989. case EFI_CONVENTIONAL_MEMORY:
  990. if (md->attribute & EFI_MEMORY_WP) {
  991. name = "System ROM";
  992. flags |= IORESOURCE_READONLY;
  993. } else {
  994. name = "System RAM";
  995. }
  996. break;
  997. case EFI_ACPI_MEMORY_NVS:
  998. name = "ACPI Non-volatile Storage";
  999. break;
  1000. case EFI_UNUSABLE_MEMORY:
  1001. name = "reserved";
  1002. flags |= IORESOURCE_DISABLED;
  1003. break;
  1004. case EFI_RESERVED_TYPE:
  1005. case EFI_RUNTIME_SERVICES_CODE:
  1006. case EFI_RUNTIME_SERVICES_DATA:
  1007. case EFI_ACPI_RECLAIM_MEMORY:
  1008. default:
  1009. name = "reserved";
  1010. break;
  1011. }
  1012. if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
  1013. printk(KERN_ERR "failed to alocate resource for iomem\n");
  1014. return;
  1015. }
  1016. res->name = name;
  1017. res->start = md->phys_addr;
  1018. res->end = md->phys_addr + efi_md_size(md) - 1;
  1019. res->flags = flags;
  1020. if (insert_resource(&iomem_resource, res) < 0)
  1021. kfree(res);
  1022. else {
  1023. /*
  1024. * We don't know which region contains
  1025. * kernel data so we try it repeatedly and
  1026. * let the resource manager test it.
  1027. */
  1028. insert_resource(res, code_resource);
  1029. insert_resource(res, data_resource);
  1030. insert_resource(res, bss_resource);
  1031. #ifdef CONFIG_KEXEC
  1032. insert_resource(res, &efi_memmap_res);
  1033. insert_resource(res, &boot_param_res);
  1034. if (crashk_res.end > crashk_res.start)
  1035. insert_resource(res, &crashk_res);
  1036. #endif
  1037. }
  1038. }
  1039. }
  1040. #ifdef CONFIG_KEXEC
  1041. /* find a block of memory aligned to 64M exclude reserved regions
  1042. rsvd_regions are sorted
  1043. */
  1044. unsigned long __init
  1045. kdump_find_rsvd_region (unsigned long size,
  1046. struct rsvd_region *r, int n)
  1047. {
  1048. int i;
  1049. u64 start, end;
  1050. u64 alignment = 1UL << _PAGE_SIZE_64M;
  1051. void *efi_map_start, *efi_map_end, *p;
  1052. efi_memory_desc_t *md;
  1053. u64 efi_desc_size;
  1054. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1055. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1056. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1057. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1058. md = p;
  1059. if (!efi_wb(md))
  1060. continue;
  1061. start = ALIGN(md->phys_addr, alignment);
  1062. end = efi_md_end(md);
  1063. for (i = 0; i < n; i++) {
  1064. if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
  1065. if (__pa(r[i].start) > start + size)
  1066. return start;
  1067. start = ALIGN(__pa(r[i].end), alignment);
  1068. if (i < n-1 && __pa(r[i+1].start) < start + size)
  1069. continue;
  1070. else
  1071. break;
  1072. }
  1073. }
  1074. if (end > start + size)
  1075. return start;
  1076. }
  1077. printk(KERN_WARNING "Cannot reserve 0x%lx byte of memory for crashdump\n",
  1078. size);
  1079. return ~0UL;
  1080. }
  1081. #endif
  1082. #ifdef CONFIG_PROC_VMCORE
  1083. /* locate the size find a the descriptor at a certain address */
  1084. unsigned long __init
  1085. vmcore_find_descriptor_size (unsigned long address)
  1086. {
  1087. void *efi_map_start, *efi_map_end, *p;
  1088. efi_memory_desc_t *md;
  1089. u64 efi_desc_size;
  1090. unsigned long ret = 0;
  1091. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1092. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1093. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1094. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1095. md = p;
  1096. if (efi_wb(md) && md->type == EFI_LOADER_DATA
  1097. && md->phys_addr == address) {
  1098. ret = efi_md_size(md);
  1099. break;
  1100. }
  1101. }
  1102. if (ret == 0)
  1103. printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
  1104. return ret;
  1105. }
  1106. #endif