transport.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776
  1. /*
  2. * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the BSD-type
  8. * license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or without
  11. * modification, are permitted provided that the following conditions
  12. * are met:
  13. *
  14. * Redistributions of source code must retain the above copyright
  15. * notice, this list of conditions and the following disclaimer.
  16. *
  17. * Redistributions in binary form must reproduce the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer in the documentation and/or other materials provided
  20. * with the distribution.
  21. *
  22. * Neither the name of the Network Appliance, Inc. nor the names of
  23. * its contributors may be used to endorse or promote products
  24. * derived from this software without specific prior written
  25. * permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  30. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  32. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  33. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  34. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  35. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  36. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  37. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38. */
  39. /*
  40. * transport.c
  41. *
  42. * This file contains the top-level implementation of an RPC RDMA
  43. * transport.
  44. *
  45. * Naming convention: functions beginning with xprt_ are part of the
  46. * transport switch. All others are RPC RDMA internal.
  47. */
  48. #include <linux/module.h>
  49. #include <linux/init.h>
  50. #include <linux/slab.h>
  51. #include <linux/seq_file.h>
  52. #include "xprt_rdma.h"
  53. #ifdef RPC_DEBUG
  54. # define RPCDBG_FACILITY RPCDBG_TRANS
  55. #endif
  56. MODULE_LICENSE("Dual BSD/GPL");
  57. MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
  58. MODULE_AUTHOR("Network Appliance, Inc.");
  59. /*
  60. * tunables
  61. */
  62. static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
  63. static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
  64. static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
  65. static unsigned int xprt_rdma_inline_write_padding;
  66. static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
  67. int xprt_rdma_pad_optimize = 0;
  68. #ifdef RPC_DEBUG
  69. static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
  70. static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
  71. static unsigned int zero;
  72. static unsigned int max_padding = PAGE_SIZE;
  73. static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
  74. static unsigned int max_memreg = RPCRDMA_LAST - 1;
  75. static struct ctl_table_header *sunrpc_table_header;
  76. static ctl_table xr_tunables_table[] = {
  77. {
  78. .procname = "rdma_slot_table_entries",
  79. .data = &xprt_rdma_slot_table_entries,
  80. .maxlen = sizeof(unsigned int),
  81. .mode = 0644,
  82. .proc_handler = proc_dointvec_minmax,
  83. .extra1 = &min_slot_table_size,
  84. .extra2 = &max_slot_table_size
  85. },
  86. {
  87. .procname = "rdma_max_inline_read",
  88. .data = &xprt_rdma_max_inline_read,
  89. .maxlen = sizeof(unsigned int),
  90. .mode = 0644,
  91. .proc_handler = proc_dointvec,
  92. },
  93. {
  94. .procname = "rdma_max_inline_write",
  95. .data = &xprt_rdma_max_inline_write,
  96. .maxlen = sizeof(unsigned int),
  97. .mode = 0644,
  98. .proc_handler = proc_dointvec,
  99. },
  100. {
  101. .procname = "rdma_inline_write_padding",
  102. .data = &xprt_rdma_inline_write_padding,
  103. .maxlen = sizeof(unsigned int),
  104. .mode = 0644,
  105. .proc_handler = proc_dointvec_minmax,
  106. .extra1 = &zero,
  107. .extra2 = &max_padding,
  108. },
  109. {
  110. .procname = "rdma_memreg_strategy",
  111. .data = &xprt_rdma_memreg_strategy,
  112. .maxlen = sizeof(unsigned int),
  113. .mode = 0644,
  114. .proc_handler = proc_dointvec_minmax,
  115. .extra1 = &min_memreg,
  116. .extra2 = &max_memreg,
  117. },
  118. {
  119. .procname = "rdma_pad_optimize",
  120. .data = &xprt_rdma_pad_optimize,
  121. .maxlen = sizeof(unsigned int),
  122. .mode = 0644,
  123. .proc_handler = proc_dointvec,
  124. },
  125. { },
  126. };
  127. static ctl_table sunrpc_table[] = {
  128. {
  129. .procname = "sunrpc",
  130. .mode = 0555,
  131. .child = xr_tunables_table
  132. },
  133. { },
  134. };
  135. #endif
  136. static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */
  137. static void
  138. xprt_rdma_format_addresses(struct rpc_xprt *xprt)
  139. {
  140. struct sockaddr *sap = (struct sockaddr *)
  141. &rpcx_to_rdmad(xprt).addr;
  142. struct sockaddr_in *sin = (struct sockaddr_in *)sap;
  143. char buf[64];
  144. (void)rpc_ntop(sap, buf, sizeof(buf));
  145. xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
  146. snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
  147. xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
  148. xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
  149. snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
  150. xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
  151. snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
  152. xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
  153. /* netid */
  154. xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
  155. }
  156. static void
  157. xprt_rdma_free_addresses(struct rpc_xprt *xprt)
  158. {
  159. unsigned int i;
  160. for (i = 0; i < RPC_DISPLAY_MAX; i++)
  161. switch (i) {
  162. case RPC_DISPLAY_PROTO:
  163. case RPC_DISPLAY_NETID:
  164. continue;
  165. default:
  166. kfree(xprt->address_strings[i]);
  167. }
  168. }
  169. static void
  170. xprt_rdma_connect_worker(struct work_struct *work)
  171. {
  172. struct rpcrdma_xprt *r_xprt =
  173. container_of(work, struct rpcrdma_xprt, rdma_connect.work);
  174. struct rpc_xprt *xprt = &r_xprt->xprt;
  175. int rc = 0;
  176. current->flags |= PF_FSTRANS;
  177. xprt_clear_connected(xprt);
  178. dprintk("RPC: %s: %sconnect\n", __func__,
  179. r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
  180. rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
  181. if (rc)
  182. xprt_wake_pending_tasks(xprt, rc);
  183. dprintk("RPC: %s: exit\n", __func__);
  184. xprt_clear_connecting(xprt);
  185. current->flags &= ~PF_FSTRANS;
  186. }
  187. /*
  188. * xprt_rdma_destroy
  189. *
  190. * Destroy the xprt.
  191. * Free all memory associated with the object, including its own.
  192. * NOTE: none of the *destroy methods free memory for their top-level
  193. * objects, even though they may have allocated it (they do free
  194. * private memory). It's up to the caller to handle it. In this
  195. * case (RDMA transport), all structure memory is inlined with the
  196. * struct rpcrdma_xprt.
  197. */
  198. static void
  199. xprt_rdma_destroy(struct rpc_xprt *xprt)
  200. {
  201. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  202. int rc;
  203. dprintk("RPC: %s: called\n", __func__);
  204. cancel_delayed_work_sync(&r_xprt->rdma_connect);
  205. xprt_clear_connected(xprt);
  206. rpcrdma_buffer_destroy(&r_xprt->rx_buf);
  207. rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
  208. if (rc)
  209. dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n",
  210. __func__, rc);
  211. rpcrdma_ia_close(&r_xprt->rx_ia);
  212. xprt_rdma_free_addresses(xprt);
  213. xprt_free(xprt);
  214. dprintk("RPC: %s: returning\n", __func__);
  215. module_put(THIS_MODULE);
  216. }
  217. static const struct rpc_timeout xprt_rdma_default_timeout = {
  218. .to_initval = 60 * HZ,
  219. .to_maxval = 60 * HZ,
  220. };
  221. /**
  222. * xprt_setup_rdma - Set up transport to use RDMA
  223. *
  224. * @args: rpc transport arguments
  225. */
  226. static struct rpc_xprt *
  227. xprt_setup_rdma(struct xprt_create *args)
  228. {
  229. struct rpcrdma_create_data_internal cdata;
  230. struct rpc_xprt *xprt;
  231. struct rpcrdma_xprt *new_xprt;
  232. struct rpcrdma_ep *new_ep;
  233. struct sockaddr_in *sin;
  234. int rc;
  235. if (args->addrlen > sizeof(xprt->addr)) {
  236. dprintk("RPC: %s: address too large\n", __func__);
  237. return ERR_PTR(-EBADF);
  238. }
  239. xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt),
  240. xprt_rdma_slot_table_entries,
  241. xprt_rdma_slot_table_entries);
  242. if (xprt == NULL) {
  243. dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
  244. __func__);
  245. return ERR_PTR(-ENOMEM);
  246. }
  247. /* 60 second timeout, no retries */
  248. xprt->timeout = &xprt_rdma_default_timeout;
  249. xprt->bind_timeout = (60U * HZ);
  250. xprt->reestablish_timeout = (5U * HZ);
  251. xprt->idle_timeout = (5U * 60 * HZ);
  252. xprt->resvport = 0; /* privileged port not needed */
  253. xprt->tsh_size = 0; /* RPC-RDMA handles framing */
  254. xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
  255. xprt->ops = &xprt_rdma_procs;
  256. /*
  257. * Set up RDMA-specific connect data.
  258. */
  259. /* Put server RDMA address in local cdata */
  260. memcpy(&cdata.addr, args->dstaddr, args->addrlen);
  261. /* Ensure xprt->addr holds valid server TCP (not RDMA)
  262. * address, for any side protocols which peek at it */
  263. xprt->prot = IPPROTO_TCP;
  264. xprt->addrlen = args->addrlen;
  265. memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
  266. sin = (struct sockaddr_in *)&cdata.addr;
  267. if (ntohs(sin->sin_port) != 0)
  268. xprt_set_bound(xprt);
  269. dprintk("RPC: %s: %pI4:%u\n",
  270. __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
  271. /* Set max requests */
  272. cdata.max_requests = xprt->max_reqs;
  273. /* Set some length limits */
  274. cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
  275. cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
  276. cdata.inline_wsize = xprt_rdma_max_inline_write;
  277. if (cdata.inline_wsize > cdata.wsize)
  278. cdata.inline_wsize = cdata.wsize;
  279. cdata.inline_rsize = xprt_rdma_max_inline_read;
  280. if (cdata.inline_rsize > cdata.rsize)
  281. cdata.inline_rsize = cdata.rsize;
  282. cdata.padding = xprt_rdma_inline_write_padding;
  283. /*
  284. * Create new transport instance, which includes initialized
  285. * o ia
  286. * o endpoint
  287. * o buffers
  288. */
  289. new_xprt = rpcx_to_rdmax(xprt);
  290. rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
  291. xprt_rdma_memreg_strategy);
  292. if (rc)
  293. goto out1;
  294. /*
  295. * initialize and create ep
  296. */
  297. new_xprt->rx_data = cdata;
  298. new_ep = &new_xprt->rx_ep;
  299. new_ep->rep_remote_addr = cdata.addr;
  300. rc = rpcrdma_ep_create(&new_xprt->rx_ep,
  301. &new_xprt->rx_ia, &new_xprt->rx_data);
  302. if (rc)
  303. goto out2;
  304. /*
  305. * Allocate pre-registered send and receive buffers for headers and
  306. * any inline data. Also specify any padding which will be provided
  307. * from a preregistered zero buffer.
  308. */
  309. rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
  310. &new_xprt->rx_data);
  311. if (rc)
  312. goto out3;
  313. /*
  314. * Register a callback for connection events. This is necessary because
  315. * connection loss notification is async. We also catch connection loss
  316. * when reaping receives.
  317. */
  318. INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
  319. new_ep->rep_func = rpcrdma_conn_func;
  320. new_ep->rep_xprt = xprt;
  321. xprt_rdma_format_addresses(xprt);
  322. if (!try_module_get(THIS_MODULE))
  323. goto out4;
  324. return xprt;
  325. out4:
  326. xprt_rdma_free_addresses(xprt);
  327. rc = -EINVAL;
  328. out3:
  329. (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
  330. out2:
  331. rpcrdma_ia_close(&new_xprt->rx_ia);
  332. out1:
  333. xprt_free(xprt);
  334. return ERR_PTR(rc);
  335. }
  336. /*
  337. * Close a connection, during shutdown or timeout/reconnect
  338. */
  339. static void
  340. xprt_rdma_close(struct rpc_xprt *xprt)
  341. {
  342. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  343. dprintk("RPC: %s: closing\n", __func__);
  344. if (r_xprt->rx_ep.rep_connected > 0)
  345. xprt->reestablish_timeout = 0;
  346. xprt_disconnect_done(xprt);
  347. (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
  348. }
  349. static void
  350. xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
  351. {
  352. struct sockaddr_in *sap;
  353. sap = (struct sockaddr_in *)&xprt->addr;
  354. sap->sin_port = htons(port);
  355. sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
  356. sap->sin_port = htons(port);
  357. dprintk("RPC: %s: %u\n", __func__, port);
  358. }
  359. static void
  360. xprt_rdma_connect(struct rpc_task *task)
  361. {
  362. struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
  363. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  364. if (r_xprt->rx_ep.rep_connected != 0) {
  365. /* Reconnect */
  366. schedule_delayed_work(&r_xprt->rdma_connect,
  367. xprt->reestablish_timeout);
  368. xprt->reestablish_timeout <<= 1;
  369. if (xprt->reestablish_timeout > (30 * HZ))
  370. xprt->reestablish_timeout = (30 * HZ);
  371. else if (xprt->reestablish_timeout < (5 * HZ))
  372. xprt->reestablish_timeout = (5 * HZ);
  373. } else {
  374. schedule_delayed_work(&r_xprt->rdma_connect, 0);
  375. if (!RPC_IS_ASYNC(task))
  376. flush_delayed_work(&r_xprt->rdma_connect);
  377. }
  378. }
  379. static int
  380. xprt_rdma_reserve_xprt(struct rpc_xprt *xprt, struct rpc_task *task)
  381. {
  382. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  383. int credits = atomic_read(&r_xprt->rx_buf.rb_credits);
  384. /* == RPC_CWNDSCALE @ init, but *after* setup */
  385. if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
  386. r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
  387. dprintk("RPC: %s: cwndscale %lu\n", __func__,
  388. r_xprt->rx_buf.rb_cwndscale);
  389. BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
  390. }
  391. xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
  392. return xprt_reserve_xprt_cong(xprt, task);
  393. }
  394. /*
  395. * The RDMA allocate/free functions need the task structure as a place
  396. * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
  397. * sequence. For this reason, the recv buffers are attached to send
  398. * buffers for portions of the RPC. Note that the RPC layer allocates
  399. * both send and receive buffers in the same call. We may register
  400. * the receive buffer portion when using reply chunks.
  401. */
  402. static void *
  403. xprt_rdma_allocate(struct rpc_task *task, size_t size)
  404. {
  405. struct rpc_xprt *xprt = task->tk_xprt;
  406. struct rpcrdma_req *req, *nreq;
  407. req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
  408. BUG_ON(NULL == req);
  409. if (size > req->rl_size) {
  410. dprintk("RPC: %s: size %zd too large for buffer[%zd]: "
  411. "prog %d vers %d proc %d\n",
  412. __func__, size, req->rl_size,
  413. task->tk_client->cl_prog, task->tk_client->cl_vers,
  414. task->tk_msg.rpc_proc->p_proc);
  415. /*
  416. * Outgoing length shortage. Our inline write max must have
  417. * been configured to perform direct i/o.
  418. *
  419. * This is therefore a large metadata operation, and the
  420. * allocate call was made on the maximum possible message,
  421. * e.g. containing long filename(s) or symlink data. In
  422. * fact, while these metadata operations *might* carry
  423. * large outgoing payloads, they rarely *do*. However, we
  424. * have to commit to the request here, so reallocate and
  425. * register it now. The data path will never require this
  426. * reallocation.
  427. *
  428. * If the allocation or registration fails, the RPC framework
  429. * will (doggedly) retry.
  430. */
  431. if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
  432. RPCRDMA_BOUNCEBUFFERS) {
  433. /* forced to "pure inline" */
  434. dprintk("RPC: %s: too much data (%zd) for inline "
  435. "(r/w max %d/%d)\n", __func__, size,
  436. rpcx_to_rdmad(xprt).inline_rsize,
  437. rpcx_to_rdmad(xprt).inline_wsize);
  438. size = req->rl_size;
  439. rpc_exit(task, -EIO); /* fail the operation */
  440. rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
  441. goto out;
  442. }
  443. if (task->tk_flags & RPC_TASK_SWAPPER)
  444. nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
  445. else
  446. nreq = kmalloc(sizeof *req + size, GFP_NOFS);
  447. if (nreq == NULL)
  448. goto outfail;
  449. if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
  450. nreq->rl_base, size + sizeof(struct rpcrdma_req)
  451. - offsetof(struct rpcrdma_req, rl_base),
  452. &nreq->rl_handle, &nreq->rl_iov)) {
  453. kfree(nreq);
  454. goto outfail;
  455. }
  456. rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
  457. nreq->rl_size = size;
  458. nreq->rl_niovs = 0;
  459. nreq->rl_nchunks = 0;
  460. nreq->rl_buffer = (struct rpcrdma_buffer *)req;
  461. nreq->rl_reply = req->rl_reply;
  462. memcpy(nreq->rl_segments,
  463. req->rl_segments, sizeof nreq->rl_segments);
  464. /* flag the swap with an unused field */
  465. nreq->rl_iov.length = 0;
  466. req->rl_reply = NULL;
  467. req = nreq;
  468. }
  469. dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
  470. out:
  471. req->rl_connect_cookie = 0; /* our reserved value */
  472. return req->rl_xdr_buf;
  473. outfail:
  474. rpcrdma_buffer_put(req);
  475. rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
  476. return NULL;
  477. }
  478. /*
  479. * This function returns all RDMA resources to the pool.
  480. */
  481. static void
  482. xprt_rdma_free(void *buffer)
  483. {
  484. struct rpcrdma_req *req;
  485. struct rpcrdma_xprt *r_xprt;
  486. struct rpcrdma_rep *rep;
  487. int i;
  488. if (buffer == NULL)
  489. return;
  490. req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
  491. if (req->rl_iov.length == 0) { /* see allocate above */
  492. r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
  493. struct rpcrdma_xprt, rx_buf);
  494. } else
  495. r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
  496. rep = req->rl_reply;
  497. dprintk("RPC: %s: called on 0x%p%s\n",
  498. __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
  499. /*
  500. * Finish the deregistration. When using mw bind, this was
  501. * begun in rpcrdma_reply_handler(). In all other modes, we
  502. * do it here, in thread context. The process is considered
  503. * complete when the rr_func vector becomes NULL - this
  504. * was put in place during rpcrdma_reply_handler() - the wait
  505. * call below will not block if the dereg is "done". If
  506. * interrupted, our framework will clean up.
  507. */
  508. for (i = 0; req->rl_nchunks;) {
  509. --req->rl_nchunks;
  510. i += rpcrdma_deregister_external(
  511. &req->rl_segments[i], r_xprt, NULL);
  512. }
  513. if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
  514. rep->rr_func = NULL; /* abandon the callback */
  515. req->rl_reply = NULL;
  516. }
  517. if (req->rl_iov.length == 0) { /* see allocate above */
  518. struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
  519. oreq->rl_reply = req->rl_reply;
  520. (void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
  521. req->rl_handle,
  522. &req->rl_iov);
  523. kfree(req);
  524. req = oreq;
  525. }
  526. /* Put back request+reply buffers */
  527. rpcrdma_buffer_put(req);
  528. }
  529. /*
  530. * send_request invokes the meat of RPC RDMA. It must do the following:
  531. * 1. Marshal the RPC request into an RPC RDMA request, which means
  532. * putting a header in front of data, and creating IOVs for RDMA
  533. * from those in the request.
  534. * 2. In marshaling, detect opportunities for RDMA, and use them.
  535. * 3. Post a recv message to set up asynch completion, then send
  536. * the request (rpcrdma_ep_post).
  537. * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
  538. */
  539. static int
  540. xprt_rdma_send_request(struct rpc_task *task)
  541. {
  542. struct rpc_rqst *rqst = task->tk_rqstp;
  543. struct rpc_xprt *xprt = task->tk_xprt;
  544. struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
  545. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  546. /* marshal the send itself */
  547. if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
  548. r_xprt->rx_stats.failed_marshal_count++;
  549. dprintk("RPC: %s: rpcrdma_marshal_req failed\n",
  550. __func__);
  551. return -EIO;
  552. }
  553. if (req->rl_reply == NULL) /* e.g. reconnection */
  554. rpcrdma_recv_buffer_get(req);
  555. if (req->rl_reply) {
  556. req->rl_reply->rr_func = rpcrdma_reply_handler;
  557. /* this need only be done once, but... */
  558. req->rl_reply->rr_xprt = xprt;
  559. }
  560. /* Must suppress retransmit to maintain credits */
  561. if (req->rl_connect_cookie == xprt->connect_cookie)
  562. goto drop_connection;
  563. req->rl_connect_cookie = xprt->connect_cookie;
  564. if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
  565. goto drop_connection;
  566. rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
  567. rqst->rq_bytes_sent = 0;
  568. return 0;
  569. drop_connection:
  570. xprt_disconnect_done(xprt);
  571. return -ENOTCONN; /* implies disconnect */
  572. }
  573. static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
  574. {
  575. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  576. long idle_time = 0;
  577. if (xprt_connected(xprt))
  578. idle_time = (long)(jiffies - xprt->last_used) / HZ;
  579. seq_printf(seq,
  580. "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
  581. "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
  582. 0, /* need a local port? */
  583. xprt->stat.bind_count,
  584. xprt->stat.connect_count,
  585. xprt->stat.connect_time,
  586. idle_time,
  587. xprt->stat.sends,
  588. xprt->stat.recvs,
  589. xprt->stat.bad_xids,
  590. xprt->stat.req_u,
  591. xprt->stat.bklog_u,
  592. r_xprt->rx_stats.read_chunk_count,
  593. r_xprt->rx_stats.write_chunk_count,
  594. r_xprt->rx_stats.reply_chunk_count,
  595. r_xprt->rx_stats.total_rdma_request,
  596. r_xprt->rx_stats.total_rdma_reply,
  597. r_xprt->rx_stats.pullup_copy_count,
  598. r_xprt->rx_stats.fixup_copy_count,
  599. r_xprt->rx_stats.hardway_register_count,
  600. r_xprt->rx_stats.failed_marshal_count,
  601. r_xprt->rx_stats.bad_reply_count);
  602. }
  603. /*
  604. * Plumbing for rpc transport switch and kernel module
  605. */
  606. static struct rpc_xprt_ops xprt_rdma_procs = {
  607. .reserve_xprt = xprt_rdma_reserve_xprt,
  608. .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
  609. .alloc_slot = xprt_alloc_slot,
  610. .release_request = xprt_release_rqst_cong, /* ditto */
  611. .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
  612. .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
  613. .set_port = xprt_rdma_set_port,
  614. .connect = xprt_rdma_connect,
  615. .buf_alloc = xprt_rdma_allocate,
  616. .buf_free = xprt_rdma_free,
  617. .send_request = xprt_rdma_send_request,
  618. .close = xprt_rdma_close,
  619. .destroy = xprt_rdma_destroy,
  620. .print_stats = xprt_rdma_print_stats
  621. };
  622. static struct xprt_class xprt_rdma = {
  623. .list = LIST_HEAD_INIT(xprt_rdma.list),
  624. .name = "rdma",
  625. .owner = THIS_MODULE,
  626. .ident = XPRT_TRANSPORT_RDMA,
  627. .setup = xprt_setup_rdma,
  628. };
  629. static void __exit xprt_rdma_cleanup(void)
  630. {
  631. int rc;
  632. dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n");
  633. #ifdef RPC_DEBUG
  634. if (sunrpc_table_header) {
  635. unregister_sysctl_table(sunrpc_table_header);
  636. sunrpc_table_header = NULL;
  637. }
  638. #endif
  639. rc = xprt_unregister_transport(&xprt_rdma);
  640. if (rc)
  641. dprintk("RPC: %s: xprt_unregister returned %i\n",
  642. __func__, rc);
  643. }
  644. static int __init xprt_rdma_init(void)
  645. {
  646. int rc;
  647. rc = xprt_register_transport(&xprt_rdma);
  648. if (rc)
  649. return rc;
  650. dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");
  651. dprintk(KERN_INFO "Defaults:\n");
  652. dprintk(KERN_INFO "\tSlots %d\n"
  653. "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
  654. xprt_rdma_slot_table_entries,
  655. xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
  656. dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
  657. xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
  658. #ifdef RPC_DEBUG
  659. if (!sunrpc_table_header)
  660. sunrpc_table_header = register_sysctl_table(sunrpc_table);
  661. #endif
  662. return 0;
  663. }
  664. module_init(xprt_rdma_init);
  665. module_exit(xprt_rdma_cleanup);