inode.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269
  1. /*
  2. * fs/f2fs/inode.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/writeback.h>
  15. #include "f2fs.h"
  16. #include "node.h"
  17. struct f2fs_iget_args {
  18. u64 ino;
  19. int on_free;
  20. };
  21. void f2fs_set_inode_flags(struct inode *inode)
  22. {
  23. unsigned int flags = F2FS_I(inode)->i_flags;
  24. inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE |
  25. S_NOATIME | S_DIRSYNC);
  26. if (flags & FS_SYNC_FL)
  27. inode->i_flags |= S_SYNC;
  28. if (flags & FS_APPEND_FL)
  29. inode->i_flags |= S_APPEND;
  30. if (flags & FS_IMMUTABLE_FL)
  31. inode->i_flags |= S_IMMUTABLE;
  32. if (flags & FS_NOATIME_FL)
  33. inode->i_flags |= S_NOATIME;
  34. if (flags & FS_DIRSYNC_FL)
  35. inode->i_flags |= S_DIRSYNC;
  36. }
  37. static int f2fs_iget_test(struct inode *inode, void *data)
  38. {
  39. struct f2fs_iget_args *args = data;
  40. if (inode->i_ino != args->ino)
  41. return 0;
  42. if (inode->i_state & (I_FREEING | I_WILL_FREE)) {
  43. args->on_free = 1;
  44. return 0;
  45. }
  46. return 1;
  47. }
  48. struct inode *f2fs_iget_nowait(struct super_block *sb, unsigned long ino)
  49. {
  50. struct f2fs_iget_args args = {
  51. .ino = ino,
  52. .on_free = 0
  53. };
  54. struct inode *inode = ilookup5(sb, ino, f2fs_iget_test, &args);
  55. if (inode)
  56. return inode;
  57. if (!args.on_free)
  58. return f2fs_iget(sb, ino);
  59. return ERR_PTR(-ENOENT);
  60. }
  61. static int do_read_inode(struct inode *inode)
  62. {
  63. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  64. struct f2fs_inode_info *fi = F2FS_I(inode);
  65. struct page *node_page;
  66. struct f2fs_node *rn;
  67. struct f2fs_inode *ri;
  68. /* Check if ino is within scope */
  69. check_nid_range(sbi, inode->i_ino);
  70. node_page = get_node_page(sbi, inode->i_ino);
  71. if (IS_ERR(node_page))
  72. return PTR_ERR(node_page);
  73. rn = page_address(node_page);
  74. ri = &(rn->i);
  75. inode->i_mode = le16_to_cpu(ri->i_mode);
  76. i_uid_write(inode, le32_to_cpu(ri->i_uid));
  77. i_gid_write(inode, le32_to_cpu(ri->i_gid));
  78. set_nlink(inode, le32_to_cpu(ri->i_links));
  79. inode->i_size = le64_to_cpu(ri->i_size);
  80. inode->i_blocks = le64_to_cpu(ri->i_blocks);
  81. inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
  82. inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
  83. inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
  84. inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  85. inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  86. inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  87. inode->i_generation = le32_to_cpu(ri->i_generation);
  88. fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
  89. fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
  90. fi->i_flags = le32_to_cpu(ri->i_flags);
  91. fi->flags = 0;
  92. fi->data_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver) - 1;
  93. fi->i_advise = ri->i_advise;
  94. fi->i_pino = le32_to_cpu(ri->i_pino);
  95. get_extent_info(&fi->ext, ri->i_ext);
  96. f2fs_put_page(node_page, 1);
  97. return 0;
  98. }
  99. struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
  100. {
  101. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  102. struct inode *inode;
  103. int ret;
  104. inode = iget_locked(sb, ino);
  105. if (!inode)
  106. return ERR_PTR(-ENOMEM);
  107. if (!(inode->i_state & I_NEW))
  108. return inode;
  109. if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
  110. goto make_now;
  111. ret = do_read_inode(inode);
  112. if (ret)
  113. goto bad_inode;
  114. if (!sbi->por_doing && inode->i_nlink == 0) {
  115. ret = -ENOENT;
  116. goto bad_inode;
  117. }
  118. make_now:
  119. if (ino == F2FS_NODE_INO(sbi)) {
  120. inode->i_mapping->a_ops = &f2fs_node_aops;
  121. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  122. } else if (ino == F2FS_META_INO(sbi)) {
  123. inode->i_mapping->a_ops = &f2fs_meta_aops;
  124. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  125. } else if (S_ISREG(inode->i_mode)) {
  126. inode->i_op = &f2fs_file_inode_operations;
  127. inode->i_fop = &f2fs_file_operations;
  128. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  129. } else if (S_ISDIR(inode->i_mode)) {
  130. inode->i_op = &f2fs_dir_inode_operations;
  131. inode->i_fop = &f2fs_dir_operations;
  132. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  133. mapping_set_gfp_mask(inode->i_mapping, GFP_HIGHUSER_MOVABLE |
  134. __GFP_ZERO);
  135. } else if (S_ISLNK(inode->i_mode)) {
  136. inode->i_op = &f2fs_symlink_inode_operations;
  137. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  138. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  139. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  140. inode->i_op = &f2fs_special_inode_operations;
  141. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  142. } else {
  143. ret = -EIO;
  144. goto bad_inode;
  145. }
  146. unlock_new_inode(inode);
  147. return inode;
  148. bad_inode:
  149. iget_failed(inode);
  150. return ERR_PTR(ret);
  151. }
  152. void update_inode(struct inode *inode, struct page *node_page)
  153. {
  154. struct f2fs_node *rn;
  155. struct f2fs_inode *ri;
  156. wait_on_page_writeback(node_page);
  157. rn = page_address(node_page);
  158. ri = &(rn->i);
  159. ri->i_mode = cpu_to_le16(inode->i_mode);
  160. ri->i_advise = F2FS_I(inode)->i_advise;
  161. ri->i_uid = cpu_to_le32(i_uid_read(inode));
  162. ri->i_gid = cpu_to_le32(i_gid_read(inode));
  163. ri->i_links = cpu_to_le32(inode->i_nlink);
  164. ri->i_size = cpu_to_le64(i_size_read(inode));
  165. ri->i_blocks = cpu_to_le64(inode->i_blocks);
  166. set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext);
  167. ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
  168. ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
  169. ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
  170. ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
  171. ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
  172. ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  173. ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
  174. ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
  175. ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
  176. ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
  177. ri->i_generation = cpu_to_le32(inode->i_generation);
  178. set_cold_node(inode, node_page);
  179. set_page_dirty(node_page);
  180. }
  181. int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
  182. {
  183. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  184. struct page *node_page;
  185. bool need_lock = false;
  186. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  187. inode->i_ino == F2FS_META_INO(sbi))
  188. return 0;
  189. node_page = get_node_page(sbi, inode->i_ino);
  190. if (IS_ERR(node_page))
  191. return PTR_ERR(node_page);
  192. if (!PageDirty(node_page)) {
  193. need_lock = true;
  194. f2fs_put_page(node_page, 1);
  195. mutex_lock(&sbi->write_inode);
  196. node_page = get_node_page(sbi, inode->i_ino);
  197. if (IS_ERR(node_page)) {
  198. mutex_unlock(&sbi->write_inode);
  199. return PTR_ERR(node_page);
  200. }
  201. }
  202. update_inode(inode, node_page);
  203. f2fs_put_page(node_page, 1);
  204. if (need_lock)
  205. mutex_unlock(&sbi->write_inode);
  206. return 0;
  207. }
  208. /*
  209. * Called at the last iput() if i_nlink is zero
  210. */
  211. void f2fs_evict_inode(struct inode *inode)
  212. {
  213. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  214. truncate_inode_pages(&inode->i_data, 0);
  215. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  216. inode->i_ino == F2FS_META_INO(sbi))
  217. goto no_delete;
  218. BUG_ON(atomic_read(&F2FS_I(inode)->dirty_dents));
  219. remove_dirty_dir_inode(inode);
  220. if (inode->i_nlink || is_bad_inode(inode))
  221. goto no_delete;
  222. set_inode_flag(F2FS_I(inode), FI_NO_ALLOC);
  223. i_size_write(inode, 0);
  224. if (F2FS_HAS_BLOCKS(inode))
  225. f2fs_truncate(inode);
  226. remove_inode_page(inode);
  227. no_delete:
  228. clear_inode(inode);
  229. }