disk-io.c 105 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #ifdef CONFIG_X86
  49. #include <asm/cpufeature.h>
  50. #endif
  51. static struct extent_io_ops btree_extent_io_ops;
  52. static void end_workqueue_fn(struct btrfs_work *work);
  53. static void free_fs_root(struct btrfs_root *root);
  54. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  55. int read_only);
  56. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  57. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  58. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  59. struct btrfs_root *root);
  60. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  61. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  62. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  63. struct extent_io_tree *dirty_pages,
  64. int mark);
  65. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  66. struct extent_io_tree *pinned_extents);
  67. /*
  68. * end_io_wq structs are used to do processing in task context when an IO is
  69. * complete. This is used during reads to verify checksums, and it is used
  70. * by writes to insert metadata for new file extents after IO is complete.
  71. */
  72. struct end_io_wq {
  73. struct bio *bio;
  74. bio_end_io_t *end_io;
  75. void *private;
  76. struct btrfs_fs_info *info;
  77. int error;
  78. int metadata;
  79. struct list_head list;
  80. struct btrfs_work work;
  81. };
  82. /*
  83. * async submit bios are used to offload expensive checksumming
  84. * onto the worker threads. They checksum file and metadata bios
  85. * just before they are sent down the IO stack.
  86. */
  87. struct async_submit_bio {
  88. struct inode *inode;
  89. struct bio *bio;
  90. struct list_head list;
  91. extent_submit_bio_hook_t *submit_bio_start;
  92. extent_submit_bio_hook_t *submit_bio_done;
  93. int rw;
  94. int mirror_num;
  95. unsigned long bio_flags;
  96. /*
  97. * bio_offset is optional, can be used if the pages in the bio
  98. * can't tell us where in the file the bio should go
  99. */
  100. u64 bio_offset;
  101. struct btrfs_work work;
  102. int error;
  103. };
  104. /*
  105. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  106. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  107. * the level the eb occupies in the tree.
  108. *
  109. * Different roots are used for different purposes and may nest inside each
  110. * other and they require separate keysets. As lockdep keys should be
  111. * static, assign keysets according to the purpose of the root as indicated
  112. * by btrfs_root->objectid. This ensures that all special purpose roots
  113. * have separate keysets.
  114. *
  115. * Lock-nesting across peer nodes is always done with the immediate parent
  116. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  117. * subclass to avoid triggering lockdep warning in such cases.
  118. *
  119. * The key is set by the readpage_end_io_hook after the buffer has passed
  120. * csum validation but before the pages are unlocked. It is also set by
  121. * btrfs_init_new_buffer on freshly allocated blocks.
  122. *
  123. * We also add a check to make sure the highest level of the tree is the
  124. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  125. * needs update as well.
  126. */
  127. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  128. # if BTRFS_MAX_LEVEL != 8
  129. # error
  130. # endif
  131. static struct btrfs_lockdep_keyset {
  132. u64 id; /* root objectid */
  133. const char *name_stem; /* lock name stem */
  134. char names[BTRFS_MAX_LEVEL + 1][20];
  135. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  136. } btrfs_lockdep_keysets[] = {
  137. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  138. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  139. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  140. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  141. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  142. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  143. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  144. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  145. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  146. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  147. { .id = 0, .name_stem = "tree" },
  148. };
  149. void __init btrfs_init_lockdep(void)
  150. {
  151. int i, j;
  152. /* initialize lockdep class names */
  153. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  154. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  155. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  156. snprintf(ks->names[j], sizeof(ks->names[j]),
  157. "btrfs-%s-%02d", ks->name_stem, j);
  158. }
  159. }
  160. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  161. int level)
  162. {
  163. struct btrfs_lockdep_keyset *ks;
  164. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  165. /* find the matching keyset, id 0 is the default entry */
  166. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  167. if (ks->id == objectid)
  168. break;
  169. lockdep_set_class_and_name(&eb->lock,
  170. &ks->keys[level], ks->names[level]);
  171. }
  172. #endif
  173. /*
  174. * extents on the btree inode are pretty simple, there's one extent
  175. * that covers the entire device
  176. */
  177. static struct extent_map *btree_get_extent(struct inode *inode,
  178. struct page *page, size_t pg_offset, u64 start, u64 len,
  179. int create)
  180. {
  181. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  182. struct extent_map *em;
  183. int ret;
  184. read_lock(&em_tree->lock);
  185. em = lookup_extent_mapping(em_tree, start, len);
  186. if (em) {
  187. em->bdev =
  188. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  189. read_unlock(&em_tree->lock);
  190. goto out;
  191. }
  192. read_unlock(&em_tree->lock);
  193. em = alloc_extent_map();
  194. if (!em) {
  195. em = ERR_PTR(-ENOMEM);
  196. goto out;
  197. }
  198. em->start = 0;
  199. em->len = (u64)-1;
  200. em->block_len = (u64)-1;
  201. em->block_start = 0;
  202. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  203. write_lock(&em_tree->lock);
  204. ret = add_extent_mapping(em_tree, em);
  205. if (ret == -EEXIST) {
  206. free_extent_map(em);
  207. em = lookup_extent_mapping(em_tree, start, len);
  208. if (!em)
  209. em = ERR_PTR(-EIO);
  210. } else if (ret) {
  211. free_extent_map(em);
  212. em = ERR_PTR(ret);
  213. }
  214. write_unlock(&em_tree->lock);
  215. out:
  216. return em;
  217. }
  218. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  219. {
  220. return crc32c(seed, data, len);
  221. }
  222. void btrfs_csum_final(u32 crc, char *result)
  223. {
  224. put_unaligned_le32(~crc, result);
  225. }
  226. /*
  227. * compute the csum for a btree block, and either verify it or write it
  228. * into the csum field of the block.
  229. */
  230. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  231. int verify)
  232. {
  233. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  234. char *result = NULL;
  235. unsigned long len;
  236. unsigned long cur_len;
  237. unsigned long offset = BTRFS_CSUM_SIZE;
  238. char *kaddr;
  239. unsigned long map_start;
  240. unsigned long map_len;
  241. int err;
  242. u32 crc = ~(u32)0;
  243. unsigned long inline_result;
  244. len = buf->len - offset;
  245. while (len > 0) {
  246. err = map_private_extent_buffer(buf, offset, 32,
  247. &kaddr, &map_start, &map_len);
  248. if (err)
  249. return 1;
  250. cur_len = min(len, map_len - (offset - map_start));
  251. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  252. crc, cur_len);
  253. len -= cur_len;
  254. offset += cur_len;
  255. }
  256. if (csum_size > sizeof(inline_result)) {
  257. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  258. if (!result)
  259. return 1;
  260. } else {
  261. result = (char *)&inline_result;
  262. }
  263. btrfs_csum_final(crc, result);
  264. if (verify) {
  265. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  266. u32 val;
  267. u32 found = 0;
  268. memcpy(&found, result, csum_size);
  269. read_extent_buffer(buf, &val, 0, csum_size);
  270. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  271. "failed on %llu wanted %X found %X "
  272. "level %d\n",
  273. root->fs_info->sb->s_id,
  274. (unsigned long long)buf->start, val, found,
  275. btrfs_header_level(buf));
  276. if (result != (char *)&inline_result)
  277. kfree(result);
  278. return 1;
  279. }
  280. } else {
  281. write_extent_buffer(buf, result, 0, csum_size);
  282. }
  283. if (result != (char *)&inline_result)
  284. kfree(result);
  285. return 0;
  286. }
  287. /*
  288. * we can't consider a given block up to date unless the transid of the
  289. * block matches the transid in the parent node's pointer. This is how we
  290. * detect blocks that either didn't get written at all or got written
  291. * in the wrong place.
  292. */
  293. static int verify_parent_transid(struct extent_io_tree *io_tree,
  294. struct extent_buffer *eb, u64 parent_transid,
  295. int atomic)
  296. {
  297. struct extent_state *cached_state = NULL;
  298. int ret;
  299. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  300. return 0;
  301. if (atomic)
  302. return -EAGAIN;
  303. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  304. 0, &cached_state);
  305. if (extent_buffer_uptodate(eb) &&
  306. btrfs_header_generation(eb) == parent_transid) {
  307. ret = 0;
  308. goto out;
  309. }
  310. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  311. "found %llu\n",
  312. (unsigned long long)eb->start,
  313. (unsigned long long)parent_transid,
  314. (unsigned long long)btrfs_header_generation(eb));
  315. ret = 1;
  316. clear_extent_buffer_uptodate(eb);
  317. out:
  318. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  319. &cached_state, GFP_NOFS);
  320. return ret;
  321. }
  322. /*
  323. * helper to read a given tree block, doing retries as required when
  324. * the checksums don't match and we have alternate mirrors to try.
  325. */
  326. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  327. struct extent_buffer *eb,
  328. u64 start, u64 parent_transid)
  329. {
  330. struct extent_io_tree *io_tree;
  331. int failed = 0;
  332. int ret;
  333. int num_copies = 0;
  334. int mirror_num = 0;
  335. int failed_mirror = 0;
  336. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  337. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  338. while (1) {
  339. ret = read_extent_buffer_pages(io_tree, eb, start,
  340. WAIT_COMPLETE,
  341. btree_get_extent, mirror_num);
  342. if (!ret) {
  343. if (!verify_parent_transid(io_tree, eb,
  344. parent_transid, 0))
  345. break;
  346. else
  347. ret = -EIO;
  348. }
  349. /*
  350. * This buffer's crc is fine, but its contents are corrupted, so
  351. * there is no reason to read the other copies, they won't be
  352. * any less wrong.
  353. */
  354. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  355. break;
  356. num_copies = btrfs_num_copies(root->fs_info,
  357. eb->start, eb->len);
  358. if (num_copies == 1)
  359. break;
  360. if (!failed_mirror) {
  361. failed = 1;
  362. failed_mirror = eb->read_mirror;
  363. }
  364. mirror_num++;
  365. if (mirror_num == failed_mirror)
  366. mirror_num++;
  367. if (mirror_num > num_copies)
  368. break;
  369. }
  370. if (failed && !ret && failed_mirror)
  371. repair_eb_io_failure(root, eb, failed_mirror);
  372. return ret;
  373. }
  374. /*
  375. * checksum a dirty tree block before IO. This has extra checks to make sure
  376. * we only fill in the checksum field in the first page of a multi-page block
  377. */
  378. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  379. {
  380. struct extent_io_tree *tree;
  381. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  382. u64 found_start;
  383. struct extent_buffer *eb;
  384. tree = &BTRFS_I(page->mapping->host)->io_tree;
  385. eb = (struct extent_buffer *)page->private;
  386. if (page != eb->pages[0])
  387. return 0;
  388. found_start = btrfs_header_bytenr(eb);
  389. if (found_start != start) {
  390. WARN_ON(1);
  391. return 0;
  392. }
  393. if (!PageUptodate(page)) {
  394. WARN_ON(1);
  395. return 0;
  396. }
  397. csum_tree_block(root, eb, 0);
  398. return 0;
  399. }
  400. static int check_tree_block_fsid(struct btrfs_root *root,
  401. struct extent_buffer *eb)
  402. {
  403. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  404. u8 fsid[BTRFS_UUID_SIZE];
  405. int ret = 1;
  406. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  407. BTRFS_FSID_SIZE);
  408. while (fs_devices) {
  409. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  410. ret = 0;
  411. break;
  412. }
  413. fs_devices = fs_devices->seed;
  414. }
  415. return ret;
  416. }
  417. #define CORRUPT(reason, eb, root, slot) \
  418. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  419. "root=%llu, slot=%d\n", reason, \
  420. (unsigned long long)btrfs_header_bytenr(eb), \
  421. (unsigned long long)root->objectid, slot)
  422. static noinline int check_leaf(struct btrfs_root *root,
  423. struct extent_buffer *leaf)
  424. {
  425. struct btrfs_key key;
  426. struct btrfs_key leaf_key;
  427. u32 nritems = btrfs_header_nritems(leaf);
  428. int slot;
  429. if (nritems == 0)
  430. return 0;
  431. /* Check the 0 item */
  432. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  433. BTRFS_LEAF_DATA_SIZE(root)) {
  434. CORRUPT("invalid item offset size pair", leaf, root, 0);
  435. return -EIO;
  436. }
  437. /*
  438. * Check to make sure each items keys are in the correct order and their
  439. * offsets make sense. We only have to loop through nritems-1 because
  440. * we check the current slot against the next slot, which verifies the
  441. * next slot's offset+size makes sense and that the current's slot
  442. * offset is correct.
  443. */
  444. for (slot = 0; slot < nritems - 1; slot++) {
  445. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  446. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  447. /* Make sure the keys are in the right order */
  448. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  449. CORRUPT("bad key order", leaf, root, slot);
  450. return -EIO;
  451. }
  452. /*
  453. * Make sure the offset and ends are right, remember that the
  454. * item data starts at the end of the leaf and grows towards the
  455. * front.
  456. */
  457. if (btrfs_item_offset_nr(leaf, slot) !=
  458. btrfs_item_end_nr(leaf, slot + 1)) {
  459. CORRUPT("slot offset bad", leaf, root, slot);
  460. return -EIO;
  461. }
  462. /*
  463. * Check to make sure that we don't point outside of the leaf,
  464. * just incase all the items are consistent to eachother, but
  465. * all point outside of the leaf.
  466. */
  467. if (btrfs_item_end_nr(leaf, slot) >
  468. BTRFS_LEAF_DATA_SIZE(root)) {
  469. CORRUPT("slot end outside of leaf", leaf, root, slot);
  470. return -EIO;
  471. }
  472. }
  473. return 0;
  474. }
  475. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  476. struct page *page, int max_walk)
  477. {
  478. struct extent_buffer *eb;
  479. u64 start = page_offset(page);
  480. u64 target = start;
  481. u64 min_start;
  482. if (start < max_walk)
  483. min_start = 0;
  484. else
  485. min_start = start - max_walk;
  486. while (start >= min_start) {
  487. eb = find_extent_buffer(tree, start, 0);
  488. if (eb) {
  489. /*
  490. * we found an extent buffer and it contains our page
  491. * horray!
  492. */
  493. if (eb->start <= target &&
  494. eb->start + eb->len > target)
  495. return eb;
  496. /* we found an extent buffer that wasn't for us */
  497. free_extent_buffer(eb);
  498. return NULL;
  499. }
  500. if (start == 0)
  501. break;
  502. start -= PAGE_CACHE_SIZE;
  503. }
  504. return NULL;
  505. }
  506. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  507. struct extent_state *state, int mirror)
  508. {
  509. struct extent_io_tree *tree;
  510. u64 found_start;
  511. int found_level;
  512. struct extent_buffer *eb;
  513. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  514. int ret = 0;
  515. int reads_done;
  516. if (!page->private)
  517. goto out;
  518. tree = &BTRFS_I(page->mapping->host)->io_tree;
  519. eb = (struct extent_buffer *)page->private;
  520. /* the pending IO might have been the only thing that kept this buffer
  521. * in memory. Make sure we have a ref for all this other checks
  522. */
  523. extent_buffer_get(eb);
  524. reads_done = atomic_dec_and_test(&eb->io_pages);
  525. if (!reads_done)
  526. goto err;
  527. eb->read_mirror = mirror;
  528. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  529. ret = -EIO;
  530. goto err;
  531. }
  532. found_start = btrfs_header_bytenr(eb);
  533. if (found_start != eb->start) {
  534. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  535. "%llu %llu\n",
  536. (unsigned long long)found_start,
  537. (unsigned long long)eb->start);
  538. ret = -EIO;
  539. goto err;
  540. }
  541. if (check_tree_block_fsid(root, eb)) {
  542. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  543. (unsigned long long)eb->start);
  544. ret = -EIO;
  545. goto err;
  546. }
  547. found_level = btrfs_header_level(eb);
  548. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  549. eb, found_level);
  550. ret = csum_tree_block(root, eb, 1);
  551. if (ret) {
  552. ret = -EIO;
  553. goto err;
  554. }
  555. /*
  556. * If this is a leaf block and it is corrupt, set the corrupt bit so
  557. * that we don't try and read the other copies of this block, just
  558. * return -EIO.
  559. */
  560. if (found_level == 0 && check_leaf(root, eb)) {
  561. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  562. ret = -EIO;
  563. }
  564. if (!ret)
  565. set_extent_buffer_uptodate(eb);
  566. err:
  567. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  568. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  569. btree_readahead_hook(root, eb, eb->start, ret);
  570. }
  571. if (ret)
  572. clear_extent_buffer_uptodate(eb);
  573. free_extent_buffer(eb);
  574. out:
  575. return ret;
  576. }
  577. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  578. {
  579. struct extent_buffer *eb;
  580. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  581. eb = (struct extent_buffer *)page->private;
  582. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  583. eb->read_mirror = failed_mirror;
  584. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  585. btree_readahead_hook(root, eb, eb->start, -EIO);
  586. return -EIO; /* we fixed nothing */
  587. }
  588. static void end_workqueue_bio(struct bio *bio, int err)
  589. {
  590. struct end_io_wq *end_io_wq = bio->bi_private;
  591. struct btrfs_fs_info *fs_info;
  592. fs_info = end_io_wq->info;
  593. end_io_wq->error = err;
  594. end_io_wq->work.func = end_workqueue_fn;
  595. end_io_wq->work.flags = 0;
  596. if (bio->bi_rw & REQ_WRITE) {
  597. if (end_io_wq->metadata == 1)
  598. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  599. &end_io_wq->work);
  600. else if (end_io_wq->metadata == 2)
  601. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  602. &end_io_wq->work);
  603. else
  604. btrfs_queue_worker(&fs_info->endio_write_workers,
  605. &end_io_wq->work);
  606. } else {
  607. if (end_io_wq->metadata)
  608. btrfs_queue_worker(&fs_info->endio_meta_workers,
  609. &end_io_wq->work);
  610. else
  611. btrfs_queue_worker(&fs_info->endio_workers,
  612. &end_io_wq->work);
  613. }
  614. }
  615. /*
  616. * For the metadata arg you want
  617. *
  618. * 0 - if data
  619. * 1 - if normal metadta
  620. * 2 - if writing to the free space cache area
  621. */
  622. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  623. int metadata)
  624. {
  625. struct end_io_wq *end_io_wq;
  626. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  627. if (!end_io_wq)
  628. return -ENOMEM;
  629. end_io_wq->private = bio->bi_private;
  630. end_io_wq->end_io = bio->bi_end_io;
  631. end_io_wq->info = info;
  632. end_io_wq->error = 0;
  633. end_io_wq->bio = bio;
  634. end_io_wq->metadata = metadata;
  635. bio->bi_private = end_io_wq;
  636. bio->bi_end_io = end_workqueue_bio;
  637. return 0;
  638. }
  639. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  640. {
  641. unsigned long limit = min_t(unsigned long,
  642. info->workers.max_workers,
  643. info->fs_devices->open_devices);
  644. return 256 * limit;
  645. }
  646. static void run_one_async_start(struct btrfs_work *work)
  647. {
  648. struct async_submit_bio *async;
  649. int ret;
  650. async = container_of(work, struct async_submit_bio, work);
  651. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  652. async->mirror_num, async->bio_flags,
  653. async->bio_offset);
  654. if (ret)
  655. async->error = ret;
  656. }
  657. static void run_one_async_done(struct btrfs_work *work)
  658. {
  659. struct btrfs_fs_info *fs_info;
  660. struct async_submit_bio *async;
  661. int limit;
  662. async = container_of(work, struct async_submit_bio, work);
  663. fs_info = BTRFS_I(async->inode)->root->fs_info;
  664. limit = btrfs_async_submit_limit(fs_info);
  665. limit = limit * 2 / 3;
  666. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  667. waitqueue_active(&fs_info->async_submit_wait))
  668. wake_up(&fs_info->async_submit_wait);
  669. /* If an error occured we just want to clean up the bio and move on */
  670. if (async->error) {
  671. bio_endio(async->bio, async->error);
  672. return;
  673. }
  674. async->submit_bio_done(async->inode, async->rw, async->bio,
  675. async->mirror_num, async->bio_flags,
  676. async->bio_offset);
  677. }
  678. static void run_one_async_free(struct btrfs_work *work)
  679. {
  680. struct async_submit_bio *async;
  681. async = container_of(work, struct async_submit_bio, work);
  682. kfree(async);
  683. }
  684. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  685. int rw, struct bio *bio, int mirror_num,
  686. unsigned long bio_flags,
  687. u64 bio_offset,
  688. extent_submit_bio_hook_t *submit_bio_start,
  689. extent_submit_bio_hook_t *submit_bio_done)
  690. {
  691. struct async_submit_bio *async;
  692. async = kmalloc(sizeof(*async), GFP_NOFS);
  693. if (!async)
  694. return -ENOMEM;
  695. async->inode = inode;
  696. async->rw = rw;
  697. async->bio = bio;
  698. async->mirror_num = mirror_num;
  699. async->submit_bio_start = submit_bio_start;
  700. async->submit_bio_done = submit_bio_done;
  701. async->work.func = run_one_async_start;
  702. async->work.ordered_func = run_one_async_done;
  703. async->work.ordered_free = run_one_async_free;
  704. async->work.flags = 0;
  705. async->bio_flags = bio_flags;
  706. async->bio_offset = bio_offset;
  707. async->error = 0;
  708. atomic_inc(&fs_info->nr_async_submits);
  709. if (rw & REQ_SYNC)
  710. btrfs_set_work_high_prio(&async->work);
  711. btrfs_queue_worker(&fs_info->workers, &async->work);
  712. while (atomic_read(&fs_info->async_submit_draining) &&
  713. atomic_read(&fs_info->nr_async_submits)) {
  714. wait_event(fs_info->async_submit_wait,
  715. (atomic_read(&fs_info->nr_async_submits) == 0));
  716. }
  717. return 0;
  718. }
  719. static int btree_csum_one_bio(struct bio *bio)
  720. {
  721. struct bio_vec *bvec = bio->bi_io_vec;
  722. int bio_index = 0;
  723. struct btrfs_root *root;
  724. int ret = 0;
  725. WARN_ON(bio->bi_vcnt <= 0);
  726. while (bio_index < bio->bi_vcnt) {
  727. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  728. ret = csum_dirty_buffer(root, bvec->bv_page);
  729. if (ret)
  730. break;
  731. bio_index++;
  732. bvec++;
  733. }
  734. return ret;
  735. }
  736. static int __btree_submit_bio_start(struct inode *inode, int rw,
  737. struct bio *bio, int mirror_num,
  738. unsigned long bio_flags,
  739. u64 bio_offset)
  740. {
  741. /*
  742. * when we're called for a write, we're already in the async
  743. * submission context. Just jump into btrfs_map_bio
  744. */
  745. return btree_csum_one_bio(bio);
  746. }
  747. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  748. int mirror_num, unsigned long bio_flags,
  749. u64 bio_offset)
  750. {
  751. int ret;
  752. /*
  753. * when we're called for a write, we're already in the async
  754. * submission context. Just jump into btrfs_map_bio
  755. */
  756. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  757. if (ret)
  758. bio_endio(bio, ret);
  759. return ret;
  760. }
  761. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  762. {
  763. if (bio_flags & EXTENT_BIO_TREE_LOG)
  764. return 0;
  765. #ifdef CONFIG_X86
  766. if (cpu_has_xmm4_2)
  767. return 0;
  768. #endif
  769. return 1;
  770. }
  771. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  772. int mirror_num, unsigned long bio_flags,
  773. u64 bio_offset)
  774. {
  775. int async = check_async_write(inode, bio_flags);
  776. int ret;
  777. if (!(rw & REQ_WRITE)) {
  778. /*
  779. * called for a read, do the setup so that checksum validation
  780. * can happen in the async kernel threads
  781. */
  782. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  783. bio, 1);
  784. if (ret)
  785. goto out_w_error;
  786. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  787. mirror_num, 0);
  788. } else if (!async) {
  789. ret = btree_csum_one_bio(bio);
  790. if (ret)
  791. goto out_w_error;
  792. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  793. mirror_num, 0);
  794. } else {
  795. /*
  796. * kthread helpers are used to submit writes so that
  797. * checksumming can happen in parallel across all CPUs
  798. */
  799. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  800. inode, rw, bio, mirror_num, 0,
  801. bio_offset,
  802. __btree_submit_bio_start,
  803. __btree_submit_bio_done);
  804. }
  805. if (ret) {
  806. out_w_error:
  807. bio_endio(bio, ret);
  808. }
  809. return ret;
  810. }
  811. #ifdef CONFIG_MIGRATION
  812. static int btree_migratepage(struct address_space *mapping,
  813. struct page *newpage, struct page *page,
  814. enum migrate_mode mode)
  815. {
  816. /*
  817. * we can't safely write a btree page from here,
  818. * we haven't done the locking hook
  819. */
  820. if (PageDirty(page))
  821. return -EAGAIN;
  822. /*
  823. * Buffers may be managed in a filesystem specific way.
  824. * We must have no buffers or drop them.
  825. */
  826. if (page_has_private(page) &&
  827. !try_to_release_page(page, GFP_KERNEL))
  828. return -EAGAIN;
  829. return migrate_page(mapping, newpage, page, mode);
  830. }
  831. #endif
  832. static int btree_writepages(struct address_space *mapping,
  833. struct writeback_control *wbc)
  834. {
  835. struct extent_io_tree *tree;
  836. tree = &BTRFS_I(mapping->host)->io_tree;
  837. if (wbc->sync_mode == WB_SYNC_NONE) {
  838. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  839. u64 num_dirty;
  840. unsigned long thresh = 32 * 1024 * 1024;
  841. if (wbc->for_kupdate)
  842. return 0;
  843. /* this is a bit racy, but that's ok */
  844. num_dirty = root->fs_info->dirty_metadata_bytes;
  845. if (num_dirty < thresh)
  846. return 0;
  847. }
  848. return btree_write_cache_pages(mapping, wbc);
  849. }
  850. static int btree_readpage(struct file *file, struct page *page)
  851. {
  852. struct extent_io_tree *tree;
  853. tree = &BTRFS_I(page->mapping->host)->io_tree;
  854. return extent_read_full_page(tree, page, btree_get_extent, 0);
  855. }
  856. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  857. {
  858. if (PageWriteback(page) || PageDirty(page))
  859. return 0;
  860. /*
  861. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  862. * slab allocation from alloc_extent_state down the callchain where
  863. * it'd hit a BUG_ON as those flags are not allowed.
  864. */
  865. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  866. return try_release_extent_buffer(page, gfp_flags);
  867. }
  868. static void btree_invalidatepage(struct page *page, unsigned long offset)
  869. {
  870. struct extent_io_tree *tree;
  871. tree = &BTRFS_I(page->mapping->host)->io_tree;
  872. extent_invalidatepage(tree, page, offset);
  873. btree_releasepage(page, GFP_NOFS);
  874. if (PagePrivate(page)) {
  875. printk(KERN_WARNING "btrfs warning page private not zero "
  876. "on page %llu\n", (unsigned long long)page_offset(page));
  877. ClearPagePrivate(page);
  878. set_page_private(page, 0);
  879. page_cache_release(page);
  880. }
  881. }
  882. static int btree_set_page_dirty(struct page *page)
  883. {
  884. #ifdef DEBUG
  885. struct extent_buffer *eb;
  886. BUG_ON(!PagePrivate(page));
  887. eb = (struct extent_buffer *)page->private;
  888. BUG_ON(!eb);
  889. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  890. BUG_ON(!atomic_read(&eb->refs));
  891. btrfs_assert_tree_locked(eb);
  892. #endif
  893. return __set_page_dirty_nobuffers(page);
  894. }
  895. static const struct address_space_operations btree_aops = {
  896. .readpage = btree_readpage,
  897. .writepages = btree_writepages,
  898. .releasepage = btree_releasepage,
  899. .invalidatepage = btree_invalidatepage,
  900. #ifdef CONFIG_MIGRATION
  901. .migratepage = btree_migratepage,
  902. #endif
  903. .set_page_dirty = btree_set_page_dirty,
  904. };
  905. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  906. u64 parent_transid)
  907. {
  908. struct extent_buffer *buf = NULL;
  909. struct inode *btree_inode = root->fs_info->btree_inode;
  910. int ret = 0;
  911. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  912. if (!buf)
  913. return 0;
  914. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  915. buf, 0, WAIT_NONE, btree_get_extent, 0);
  916. free_extent_buffer(buf);
  917. return ret;
  918. }
  919. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  920. int mirror_num, struct extent_buffer **eb)
  921. {
  922. struct extent_buffer *buf = NULL;
  923. struct inode *btree_inode = root->fs_info->btree_inode;
  924. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  925. int ret;
  926. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  927. if (!buf)
  928. return 0;
  929. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  930. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  931. btree_get_extent, mirror_num);
  932. if (ret) {
  933. free_extent_buffer(buf);
  934. return ret;
  935. }
  936. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  937. free_extent_buffer(buf);
  938. return -EIO;
  939. } else if (extent_buffer_uptodate(buf)) {
  940. *eb = buf;
  941. } else {
  942. free_extent_buffer(buf);
  943. }
  944. return 0;
  945. }
  946. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  947. u64 bytenr, u32 blocksize)
  948. {
  949. struct inode *btree_inode = root->fs_info->btree_inode;
  950. struct extent_buffer *eb;
  951. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  952. bytenr, blocksize);
  953. return eb;
  954. }
  955. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  956. u64 bytenr, u32 blocksize)
  957. {
  958. struct inode *btree_inode = root->fs_info->btree_inode;
  959. struct extent_buffer *eb;
  960. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  961. bytenr, blocksize);
  962. return eb;
  963. }
  964. int btrfs_write_tree_block(struct extent_buffer *buf)
  965. {
  966. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  967. buf->start + buf->len - 1);
  968. }
  969. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  970. {
  971. return filemap_fdatawait_range(buf->pages[0]->mapping,
  972. buf->start, buf->start + buf->len - 1);
  973. }
  974. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  975. u32 blocksize, u64 parent_transid)
  976. {
  977. struct extent_buffer *buf = NULL;
  978. int ret;
  979. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  980. if (!buf)
  981. return NULL;
  982. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  983. return buf;
  984. }
  985. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  986. struct extent_buffer *buf)
  987. {
  988. if (btrfs_header_generation(buf) ==
  989. root->fs_info->running_transaction->transid) {
  990. btrfs_assert_tree_locked(buf);
  991. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  992. spin_lock(&root->fs_info->delalloc_lock);
  993. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  994. root->fs_info->dirty_metadata_bytes -= buf->len;
  995. else {
  996. spin_unlock(&root->fs_info->delalloc_lock);
  997. btrfs_panic(root->fs_info, -EOVERFLOW,
  998. "Can't clear %lu bytes from "
  999. " dirty_mdatadata_bytes (%llu)",
  1000. buf->len,
  1001. root->fs_info->dirty_metadata_bytes);
  1002. }
  1003. spin_unlock(&root->fs_info->delalloc_lock);
  1004. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1005. btrfs_set_lock_blocking(buf);
  1006. clear_extent_buffer_dirty(buf);
  1007. }
  1008. }
  1009. }
  1010. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1011. u32 stripesize, struct btrfs_root *root,
  1012. struct btrfs_fs_info *fs_info,
  1013. u64 objectid)
  1014. {
  1015. root->node = NULL;
  1016. root->commit_root = NULL;
  1017. root->sectorsize = sectorsize;
  1018. root->nodesize = nodesize;
  1019. root->leafsize = leafsize;
  1020. root->stripesize = stripesize;
  1021. root->ref_cows = 0;
  1022. root->track_dirty = 0;
  1023. root->in_radix = 0;
  1024. root->orphan_item_inserted = 0;
  1025. root->orphan_cleanup_state = 0;
  1026. root->objectid = objectid;
  1027. root->last_trans = 0;
  1028. root->highest_objectid = 0;
  1029. root->name = NULL;
  1030. root->inode_tree = RB_ROOT;
  1031. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1032. root->block_rsv = NULL;
  1033. root->orphan_block_rsv = NULL;
  1034. INIT_LIST_HEAD(&root->dirty_list);
  1035. INIT_LIST_HEAD(&root->root_list);
  1036. spin_lock_init(&root->orphan_lock);
  1037. spin_lock_init(&root->inode_lock);
  1038. spin_lock_init(&root->accounting_lock);
  1039. mutex_init(&root->objectid_mutex);
  1040. mutex_init(&root->log_mutex);
  1041. init_waitqueue_head(&root->log_writer_wait);
  1042. init_waitqueue_head(&root->log_commit_wait[0]);
  1043. init_waitqueue_head(&root->log_commit_wait[1]);
  1044. atomic_set(&root->log_commit[0], 0);
  1045. atomic_set(&root->log_commit[1], 0);
  1046. atomic_set(&root->log_writers, 0);
  1047. atomic_set(&root->log_batch, 0);
  1048. atomic_set(&root->orphan_inodes, 0);
  1049. root->log_transid = 0;
  1050. root->last_log_commit = 0;
  1051. extent_io_tree_init(&root->dirty_log_pages,
  1052. fs_info->btree_inode->i_mapping);
  1053. memset(&root->root_key, 0, sizeof(root->root_key));
  1054. memset(&root->root_item, 0, sizeof(root->root_item));
  1055. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1056. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1057. root->defrag_trans_start = fs_info->generation;
  1058. init_completion(&root->kobj_unregister);
  1059. root->defrag_running = 0;
  1060. root->root_key.objectid = objectid;
  1061. root->anon_dev = 0;
  1062. spin_lock_init(&root->root_item_lock);
  1063. }
  1064. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1065. struct btrfs_fs_info *fs_info,
  1066. u64 objectid,
  1067. struct btrfs_root *root)
  1068. {
  1069. int ret;
  1070. u32 blocksize;
  1071. u64 generation;
  1072. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1073. tree_root->sectorsize, tree_root->stripesize,
  1074. root, fs_info, objectid);
  1075. ret = btrfs_find_last_root(tree_root, objectid,
  1076. &root->root_item, &root->root_key);
  1077. if (ret > 0)
  1078. return -ENOENT;
  1079. else if (ret < 0)
  1080. return ret;
  1081. generation = btrfs_root_generation(&root->root_item);
  1082. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1083. root->commit_root = NULL;
  1084. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1085. blocksize, generation);
  1086. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1087. free_extent_buffer(root->node);
  1088. root->node = NULL;
  1089. return -EIO;
  1090. }
  1091. root->commit_root = btrfs_root_node(root);
  1092. return 0;
  1093. }
  1094. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1095. {
  1096. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1097. if (root)
  1098. root->fs_info = fs_info;
  1099. return root;
  1100. }
  1101. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1102. struct btrfs_fs_info *fs_info,
  1103. u64 objectid)
  1104. {
  1105. struct extent_buffer *leaf;
  1106. struct btrfs_root *tree_root = fs_info->tree_root;
  1107. struct btrfs_root *root;
  1108. struct btrfs_key key;
  1109. int ret = 0;
  1110. u64 bytenr;
  1111. root = btrfs_alloc_root(fs_info);
  1112. if (!root)
  1113. return ERR_PTR(-ENOMEM);
  1114. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1115. tree_root->sectorsize, tree_root->stripesize,
  1116. root, fs_info, objectid);
  1117. root->root_key.objectid = objectid;
  1118. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1119. root->root_key.offset = 0;
  1120. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1121. 0, objectid, NULL, 0, 0, 0);
  1122. if (IS_ERR(leaf)) {
  1123. ret = PTR_ERR(leaf);
  1124. goto fail;
  1125. }
  1126. bytenr = leaf->start;
  1127. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1128. btrfs_set_header_bytenr(leaf, leaf->start);
  1129. btrfs_set_header_generation(leaf, trans->transid);
  1130. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1131. btrfs_set_header_owner(leaf, objectid);
  1132. root->node = leaf;
  1133. write_extent_buffer(leaf, fs_info->fsid,
  1134. (unsigned long)btrfs_header_fsid(leaf),
  1135. BTRFS_FSID_SIZE);
  1136. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1137. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1138. BTRFS_UUID_SIZE);
  1139. btrfs_mark_buffer_dirty(leaf);
  1140. root->commit_root = btrfs_root_node(root);
  1141. root->track_dirty = 1;
  1142. root->root_item.flags = 0;
  1143. root->root_item.byte_limit = 0;
  1144. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1145. btrfs_set_root_generation(&root->root_item, trans->transid);
  1146. btrfs_set_root_level(&root->root_item, 0);
  1147. btrfs_set_root_refs(&root->root_item, 1);
  1148. btrfs_set_root_used(&root->root_item, leaf->len);
  1149. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1150. btrfs_set_root_dirid(&root->root_item, 0);
  1151. root->root_item.drop_level = 0;
  1152. key.objectid = objectid;
  1153. key.type = BTRFS_ROOT_ITEM_KEY;
  1154. key.offset = 0;
  1155. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1156. if (ret)
  1157. goto fail;
  1158. btrfs_tree_unlock(leaf);
  1159. fail:
  1160. if (ret)
  1161. return ERR_PTR(ret);
  1162. return root;
  1163. }
  1164. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1165. struct btrfs_fs_info *fs_info)
  1166. {
  1167. struct btrfs_root *root;
  1168. struct btrfs_root *tree_root = fs_info->tree_root;
  1169. struct extent_buffer *leaf;
  1170. root = btrfs_alloc_root(fs_info);
  1171. if (!root)
  1172. return ERR_PTR(-ENOMEM);
  1173. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1174. tree_root->sectorsize, tree_root->stripesize,
  1175. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1176. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1177. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1178. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1179. /*
  1180. * log trees do not get reference counted because they go away
  1181. * before a real commit is actually done. They do store pointers
  1182. * to file data extents, and those reference counts still get
  1183. * updated (along with back refs to the log tree).
  1184. */
  1185. root->ref_cows = 0;
  1186. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1187. BTRFS_TREE_LOG_OBJECTID, NULL,
  1188. 0, 0, 0);
  1189. if (IS_ERR(leaf)) {
  1190. kfree(root);
  1191. return ERR_CAST(leaf);
  1192. }
  1193. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1194. btrfs_set_header_bytenr(leaf, leaf->start);
  1195. btrfs_set_header_generation(leaf, trans->transid);
  1196. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1197. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1198. root->node = leaf;
  1199. write_extent_buffer(root->node, root->fs_info->fsid,
  1200. (unsigned long)btrfs_header_fsid(root->node),
  1201. BTRFS_FSID_SIZE);
  1202. btrfs_mark_buffer_dirty(root->node);
  1203. btrfs_tree_unlock(root->node);
  1204. return root;
  1205. }
  1206. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1207. struct btrfs_fs_info *fs_info)
  1208. {
  1209. struct btrfs_root *log_root;
  1210. log_root = alloc_log_tree(trans, fs_info);
  1211. if (IS_ERR(log_root))
  1212. return PTR_ERR(log_root);
  1213. WARN_ON(fs_info->log_root_tree);
  1214. fs_info->log_root_tree = log_root;
  1215. return 0;
  1216. }
  1217. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1218. struct btrfs_root *root)
  1219. {
  1220. struct btrfs_root *log_root;
  1221. struct btrfs_inode_item *inode_item;
  1222. log_root = alloc_log_tree(trans, root->fs_info);
  1223. if (IS_ERR(log_root))
  1224. return PTR_ERR(log_root);
  1225. log_root->last_trans = trans->transid;
  1226. log_root->root_key.offset = root->root_key.objectid;
  1227. inode_item = &log_root->root_item.inode;
  1228. inode_item->generation = cpu_to_le64(1);
  1229. inode_item->size = cpu_to_le64(3);
  1230. inode_item->nlink = cpu_to_le32(1);
  1231. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1232. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1233. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1234. WARN_ON(root->log_root);
  1235. root->log_root = log_root;
  1236. root->log_transid = 0;
  1237. root->last_log_commit = 0;
  1238. return 0;
  1239. }
  1240. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1241. struct btrfs_key *location)
  1242. {
  1243. struct btrfs_root *root;
  1244. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1245. struct btrfs_path *path;
  1246. struct extent_buffer *l;
  1247. u64 generation;
  1248. u32 blocksize;
  1249. int ret = 0;
  1250. int slot;
  1251. root = btrfs_alloc_root(fs_info);
  1252. if (!root)
  1253. return ERR_PTR(-ENOMEM);
  1254. if (location->offset == (u64)-1) {
  1255. ret = find_and_setup_root(tree_root, fs_info,
  1256. location->objectid, root);
  1257. if (ret) {
  1258. kfree(root);
  1259. return ERR_PTR(ret);
  1260. }
  1261. goto out;
  1262. }
  1263. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1264. tree_root->sectorsize, tree_root->stripesize,
  1265. root, fs_info, location->objectid);
  1266. path = btrfs_alloc_path();
  1267. if (!path) {
  1268. kfree(root);
  1269. return ERR_PTR(-ENOMEM);
  1270. }
  1271. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1272. if (ret == 0) {
  1273. l = path->nodes[0];
  1274. slot = path->slots[0];
  1275. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1276. memcpy(&root->root_key, location, sizeof(*location));
  1277. }
  1278. btrfs_free_path(path);
  1279. if (ret) {
  1280. kfree(root);
  1281. if (ret > 0)
  1282. ret = -ENOENT;
  1283. return ERR_PTR(ret);
  1284. }
  1285. generation = btrfs_root_generation(&root->root_item);
  1286. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1287. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1288. blocksize, generation);
  1289. root->commit_root = btrfs_root_node(root);
  1290. BUG_ON(!root->node); /* -ENOMEM */
  1291. out:
  1292. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1293. root->ref_cows = 1;
  1294. btrfs_check_and_init_root_item(&root->root_item);
  1295. }
  1296. return root;
  1297. }
  1298. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1299. struct btrfs_key *location)
  1300. {
  1301. struct btrfs_root *root;
  1302. int ret;
  1303. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1304. return fs_info->tree_root;
  1305. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1306. return fs_info->extent_root;
  1307. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1308. return fs_info->chunk_root;
  1309. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1310. return fs_info->dev_root;
  1311. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1312. return fs_info->csum_root;
  1313. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1314. return fs_info->quota_root ? fs_info->quota_root :
  1315. ERR_PTR(-ENOENT);
  1316. again:
  1317. spin_lock(&fs_info->fs_roots_radix_lock);
  1318. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1319. (unsigned long)location->objectid);
  1320. spin_unlock(&fs_info->fs_roots_radix_lock);
  1321. if (root)
  1322. return root;
  1323. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1324. if (IS_ERR(root))
  1325. return root;
  1326. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1327. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1328. GFP_NOFS);
  1329. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1330. ret = -ENOMEM;
  1331. goto fail;
  1332. }
  1333. btrfs_init_free_ino_ctl(root);
  1334. mutex_init(&root->fs_commit_mutex);
  1335. spin_lock_init(&root->cache_lock);
  1336. init_waitqueue_head(&root->cache_wait);
  1337. ret = get_anon_bdev(&root->anon_dev);
  1338. if (ret)
  1339. goto fail;
  1340. if (btrfs_root_refs(&root->root_item) == 0) {
  1341. ret = -ENOENT;
  1342. goto fail;
  1343. }
  1344. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1345. if (ret < 0)
  1346. goto fail;
  1347. if (ret == 0)
  1348. root->orphan_item_inserted = 1;
  1349. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1350. if (ret)
  1351. goto fail;
  1352. spin_lock(&fs_info->fs_roots_radix_lock);
  1353. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1354. (unsigned long)root->root_key.objectid,
  1355. root);
  1356. if (ret == 0)
  1357. root->in_radix = 1;
  1358. spin_unlock(&fs_info->fs_roots_radix_lock);
  1359. radix_tree_preload_end();
  1360. if (ret) {
  1361. if (ret == -EEXIST) {
  1362. free_fs_root(root);
  1363. goto again;
  1364. }
  1365. goto fail;
  1366. }
  1367. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1368. root->root_key.objectid);
  1369. WARN_ON(ret);
  1370. return root;
  1371. fail:
  1372. free_fs_root(root);
  1373. return ERR_PTR(ret);
  1374. }
  1375. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1376. {
  1377. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1378. int ret = 0;
  1379. struct btrfs_device *device;
  1380. struct backing_dev_info *bdi;
  1381. rcu_read_lock();
  1382. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1383. if (!device->bdev)
  1384. continue;
  1385. bdi = blk_get_backing_dev_info(device->bdev);
  1386. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1387. ret = 1;
  1388. break;
  1389. }
  1390. }
  1391. rcu_read_unlock();
  1392. return ret;
  1393. }
  1394. /*
  1395. * If this fails, caller must call bdi_destroy() to get rid of the
  1396. * bdi again.
  1397. */
  1398. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1399. {
  1400. int err;
  1401. bdi->capabilities = BDI_CAP_MAP_COPY;
  1402. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1403. if (err)
  1404. return err;
  1405. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1406. bdi->congested_fn = btrfs_congested_fn;
  1407. bdi->congested_data = info;
  1408. return 0;
  1409. }
  1410. /*
  1411. * called by the kthread helper functions to finally call the bio end_io
  1412. * functions. This is where read checksum verification actually happens
  1413. */
  1414. static void end_workqueue_fn(struct btrfs_work *work)
  1415. {
  1416. struct bio *bio;
  1417. struct end_io_wq *end_io_wq;
  1418. struct btrfs_fs_info *fs_info;
  1419. int error;
  1420. end_io_wq = container_of(work, struct end_io_wq, work);
  1421. bio = end_io_wq->bio;
  1422. fs_info = end_io_wq->info;
  1423. error = end_io_wq->error;
  1424. bio->bi_private = end_io_wq->private;
  1425. bio->bi_end_io = end_io_wq->end_io;
  1426. kfree(end_io_wq);
  1427. bio_endio(bio, error);
  1428. }
  1429. static int cleaner_kthread(void *arg)
  1430. {
  1431. struct btrfs_root *root = arg;
  1432. do {
  1433. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1434. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1435. btrfs_run_delayed_iputs(root);
  1436. btrfs_clean_old_snapshots(root);
  1437. mutex_unlock(&root->fs_info->cleaner_mutex);
  1438. btrfs_run_defrag_inodes(root->fs_info);
  1439. }
  1440. if (!try_to_freeze()) {
  1441. set_current_state(TASK_INTERRUPTIBLE);
  1442. if (!kthread_should_stop())
  1443. schedule();
  1444. __set_current_state(TASK_RUNNING);
  1445. }
  1446. } while (!kthread_should_stop());
  1447. return 0;
  1448. }
  1449. static int transaction_kthread(void *arg)
  1450. {
  1451. struct btrfs_root *root = arg;
  1452. struct btrfs_trans_handle *trans;
  1453. struct btrfs_transaction *cur;
  1454. u64 transid;
  1455. unsigned long now;
  1456. unsigned long delay;
  1457. bool cannot_commit;
  1458. do {
  1459. cannot_commit = false;
  1460. delay = HZ * 30;
  1461. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1462. spin_lock(&root->fs_info->trans_lock);
  1463. cur = root->fs_info->running_transaction;
  1464. if (!cur) {
  1465. spin_unlock(&root->fs_info->trans_lock);
  1466. goto sleep;
  1467. }
  1468. now = get_seconds();
  1469. if (!cur->blocked &&
  1470. (now < cur->start_time || now - cur->start_time < 30)) {
  1471. spin_unlock(&root->fs_info->trans_lock);
  1472. delay = HZ * 5;
  1473. goto sleep;
  1474. }
  1475. transid = cur->transid;
  1476. spin_unlock(&root->fs_info->trans_lock);
  1477. /* If the file system is aborted, this will always fail. */
  1478. trans = btrfs_attach_transaction(root);
  1479. if (IS_ERR(trans)) {
  1480. if (PTR_ERR(trans) != -ENOENT)
  1481. cannot_commit = true;
  1482. goto sleep;
  1483. }
  1484. if (transid == trans->transid) {
  1485. btrfs_commit_transaction(trans, root);
  1486. } else {
  1487. btrfs_end_transaction(trans, root);
  1488. }
  1489. sleep:
  1490. wake_up_process(root->fs_info->cleaner_kthread);
  1491. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1492. if (!try_to_freeze()) {
  1493. set_current_state(TASK_INTERRUPTIBLE);
  1494. if (!kthread_should_stop() &&
  1495. (!btrfs_transaction_blocked(root->fs_info) ||
  1496. cannot_commit))
  1497. schedule_timeout(delay);
  1498. __set_current_state(TASK_RUNNING);
  1499. }
  1500. } while (!kthread_should_stop());
  1501. return 0;
  1502. }
  1503. /*
  1504. * this will find the highest generation in the array of
  1505. * root backups. The index of the highest array is returned,
  1506. * or -1 if we can't find anything.
  1507. *
  1508. * We check to make sure the array is valid by comparing the
  1509. * generation of the latest root in the array with the generation
  1510. * in the super block. If they don't match we pitch it.
  1511. */
  1512. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1513. {
  1514. u64 cur;
  1515. int newest_index = -1;
  1516. struct btrfs_root_backup *root_backup;
  1517. int i;
  1518. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1519. root_backup = info->super_copy->super_roots + i;
  1520. cur = btrfs_backup_tree_root_gen(root_backup);
  1521. if (cur == newest_gen)
  1522. newest_index = i;
  1523. }
  1524. /* check to see if we actually wrapped around */
  1525. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1526. root_backup = info->super_copy->super_roots;
  1527. cur = btrfs_backup_tree_root_gen(root_backup);
  1528. if (cur == newest_gen)
  1529. newest_index = 0;
  1530. }
  1531. return newest_index;
  1532. }
  1533. /*
  1534. * find the oldest backup so we know where to store new entries
  1535. * in the backup array. This will set the backup_root_index
  1536. * field in the fs_info struct
  1537. */
  1538. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1539. u64 newest_gen)
  1540. {
  1541. int newest_index = -1;
  1542. newest_index = find_newest_super_backup(info, newest_gen);
  1543. /* if there was garbage in there, just move along */
  1544. if (newest_index == -1) {
  1545. info->backup_root_index = 0;
  1546. } else {
  1547. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1548. }
  1549. }
  1550. /*
  1551. * copy all the root pointers into the super backup array.
  1552. * this will bump the backup pointer by one when it is
  1553. * done
  1554. */
  1555. static void backup_super_roots(struct btrfs_fs_info *info)
  1556. {
  1557. int next_backup;
  1558. struct btrfs_root_backup *root_backup;
  1559. int last_backup;
  1560. next_backup = info->backup_root_index;
  1561. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1562. BTRFS_NUM_BACKUP_ROOTS;
  1563. /*
  1564. * just overwrite the last backup if we're at the same generation
  1565. * this happens only at umount
  1566. */
  1567. root_backup = info->super_for_commit->super_roots + last_backup;
  1568. if (btrfs_backup_tree_root_gen(root_backup) ==
  1569. btrfs_header_generation(info->tree_root->node))
  1570. next_backup = last_backup;
  1571. root_backup = info->super_for_commit->super_roots + next_backup;
  1572. /*
  1573. * make sure all of our padding and empty slots get zero filled
  1574. * regardless of which ones we use today
  1575. */
  1576. memset(root_backup, 0, sizeof(*root_backup));
  1577. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1578. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1579. btrfs_set_backup_tree_root_gen(root_backup,
  1580. btrfs_header_generation(info->tree_root->node));
  1581. btrfs_set_backup_tree_root_level(root_backup,
  1582. btrfs_header_level(info->tree_root->node));
  1583. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1584. btrfs_set_backup_chunk_root_gen(root_backup,
  1585. btrfs_header_generation(info->chunk_root->node));
  1586. btrfs_set_backup_chunk_root_level(root_backup,
  1587. btrfs_header_level(info->chunk_root->node));
  1588. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1589. btrfs_set_backup_extent_root_gen(root_backup,
  1590. btrfs_header_generation(info->extent_root->node));
  1591. btrfs_set_backup_extent_root_level(root_backup,
  1592. btrfs_header_level(info->extent_root->node));
  1593. /*
  1594. * we might commit during log recovery, which happens before we set
  1595. * the fs_root. Make sure it is valid before we fill it in.
  1596. */
  1597. if (info->fs_root && info->fs_root->node) {
  1598. btrfs_set_backup_fs_root(root_backup,
  1599. info->fs_root->node->start);
  1600. btrfs_set_backup_fs_root_gen(root_backup,
  1601. btrfs_header_generation(info->fs_root->node));
  1602. btrfs_set_backup_fs_root_level(root_backup,
  1603. btrfs_header_level(info->fs_root->node));
  1604. }
  1605. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1606. btrfs_set_backup_dev_root_gen(root_backup,
  1607. btrfs_header_generation(info->dev_root->node));
  1608. btrfs_set_backup_dev_root_level(root_backup,
  1609. btrfs_header_level(info->dev_root->node));
  1610. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1611. btrfs_set_backup_csum_root_gen(root_backup,
  1612. btrfs_header_generation(info->csum_root->node));
  1613. btrfs_set_backup_csum_root_level(root_backup,
  1614. btrfs_header_level(info->csum_root->node));
  1615. btrfs_set_backup_total_bytes(root_backup,
  1616. btrfs_super_total_bytes(info->super_copy));
  1617. btrfs_set_backup_bytes_used(root_backup,
  1618. btrfs_super_bytes_used(info->super_copy));
  1619. btrfs_set_backup_num_devices(root_backup,
  1620. btrfs_super_num_devices(info->super_copy));
  1621. /*
  1622. * if we don't copy this out to the super_copy, it won't get remembered
  1623. * for the next commit
  1624. */
  1625. memcpy(&info->super_copy->super_roots,
  1626. &info->super_for_commit->super_roots,
  1627. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1628. }
  1629. /*
  1630. * this copies info out of the root backup array and back into
  1631. * the in-memory super block. It is meant to help iterate through
  1632. * the array, so you send it the number of backups you've already
  1633. * tried and the last backup index you used.
  1634. *
  1635. * this returns -1 when it has tried all the backups
  1636. */
  1637. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1638. struct btrfs_super_block *super,
  1639. int *num_backups_tried, int *backup_index)
  1640. {
  1641. struct btrfs_root_backup *root_backup;
  1642. int newest = *backup_index;
  1643. if (*num_backups_tried == 0) {
  1644. u64 gen = btrfs_super_generation(super);
  1645. newest = find_newest_super_backup(info, gen);
  1646. if (newest == -1)
  1647. return -1;
  1648. *backup_index = newest;
  1649. *num_backups_tried = 1;
  1650. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1651. /* we've tried all the backups, all done */
  1652. return -1;
  1653. } else {
  1654. /* jump to the next oldest backup */
  1655. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1656. BTRFS_NUM_BACKUP_ROOTS;
  1657. *backup_index = newest;
  1658. *num_backups_tried += 1;
  1659. }
  1660. root_backup = super->super_roots + newest;
  1661. btrfs_set_super_generation(super,
  1662. btrfs_backup_tree_root_gen(root_backup));
  1663. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1664. btrfs_set_super_root_level(super,
  1665. btrfs_backup_tree_root_level(root_backup));
  1666. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1667. /*
  1668. * fixme: the total bytes and num_devices need to match or we should
  1669. * need a fsck
  1670. */
  1671. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1672. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1673. return 0;
  1674. }
  1675. /* helper to cleanup tree roots */
  1676. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1677. {
  1678. free_extent_buffer(info->tree_root->node);
  1679. free_extent_buffer(info->tree_root->commit_root);
  1680. free_extent_buffer(info->dev_root->node);
  1681. free_extent_buffer(info->dev_root->commit_root);
  1682. free_extent_buffer(info->extent_root->node);
  1683. free_extent_buffer(info->extent_root->commit_root);
  1684. free_extent_buffer(info->csum_root->node);
  1685. free_extent_buffer(info->csum_root->commit_root);
  1686. if (info->quota_root) {
  1687. free_extent_buffer(info->quota_root->node);
  1688. free_extent_buffer(info->quota_root->commit_root);
  1689. }
  1690. info->tree_root->node = NULL;
  1691. info->tree_root->commit_root = NULL;
  1692. info->dev_root->node = NULL;
  1693. info->dev_root->commit_root = NULL;
  1694. info->extent_root->node = NULL;
  1695. info->extent_root->commit_root = NULL;
  1696. info->csum_root->node = NULL;
  1697. info->csum_root->commit_root = NULL;
  1698. if (info->quota_root) {
  1699. info->quota_root->node = NULL;
  1700. info->quota_root->commit_root = NULL;
  1701. }
  1702. if (chunk_root) {
  1703. free_extent_buffer(info->chunk_root->node);
  1704. free_extent_buffer(info->chunk_root->commit_root);
  1705. info->chunk_root->node = NULL;
  1706. info->chunk_root->commit_root = NULL;
  1707. }
  1708. }
  1709. int open_ctree(struct super_block *sb,
  1710. struct btrfs_fs_devices *fs_devices,
  1711. char *options)
  1712. {
  1713. u32 sectorsize;
  1714. u32 nodesize;
  1715. u32 leafsize;
  1716. u32 blocksize;
  1717. u32 stripesize;
  1718. u64 generation;
  1719. u64 features;
  1720. struct btrfs_key location;
  1721. struct buffer_head *bh;
  1722. struct btrfs_super_block *disk_super;
  1723. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1724. struct btrfs_root *tree_root;
  1725. struct btrfs_root *extent_root;
  1726. struct btrfs_root *csum_root;
  1727. struct btrfs_root *chunk_root;
  1728. struct btrfs_root *dev_root;
  1729. struct btrfs_root *quota_root;
  1730. struct btrfs_root *log_tree_root;
  1731. int ret;
  1732. int err = -EINVAL;
  1733. int num_backups_tried = 0;
  1734. int backup_index = 0;
  1735. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1736. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1737. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1738. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1739. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1740. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1741. if (!tree_root || !extent_root || !csum_root ||
  1742. !chunk_root || !dev_root || !quota_root) {
  1743. err = -ENOMEM;
  1744. goto fail;
  1745. }
  1746. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1747. if (ret) {
  1748. err = ret;
  1749. goto fail;
  1750. }
  1751. ret = setup_bdi(fs_info, &fs_info->bdi);
  1752. if (ret) {
  1753. err = ret;
  1754. goto fail_srcu;
  1755. }
  1756. fs_info->btree_inode = new_inode(sb);
  1757. if (!fs_info->btree_inode) {
  1758. err = -ENOMEM;
  1759. goto fail_bdi;
  1760. }
  1761. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1762. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1763. INIT_LIST_HEAD(&fs_info->trans_list);
  1764. INIT_LIST_HEAD(&fs_info->dead_roots);
  1765. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1766. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1767. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1768. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1769. spin_lock_init(&fs_info->delalloc_lock);
  1770. spin_lock_init(&fs_info->trans_lock);
  1771. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1772. spin_lock_init(&fs_info->delayed_iput_lock);
  1773. spin_lock_init(&fs_info->defrag_inodes_lock);
  1774. spin_lock_init(&fs_info->free_chunk_lock);
  1775. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1776. rwlock_init(&fs_info->tree_mod_log_lock);
  1777. mutex_init(&fs_info->reloc_mutex);
  1778. init_completion(&fs_info->kobj_unregister);
  1779. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1780. INIT_LIST_HEAD(&fs_info->space_info);
  1781. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1782. btrfs_mapping_init(&fs_info->mapping_tree);
  1783. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1784. BTRFS_BLOCK_RSV_GLOBAL);
  1785. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1786. BTRFS_BLOCK_RSV_DELALLOC);
  1787. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1788. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1789. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1790. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1791. BTRFS_BLOCK_RSV_DELOPS);
  1792. atomic_set(&fs_info->nr_async_submits, 0);
  1793. atomic_set(&fs_info->async_delalloc_pages, 0);
  1794. atomic_set(&fs_info->async_submit_draining, 0);
  1795. atomic_set(&fs_info->nr_async_bios, 0);
  1796. atomic_set(&fs_info->defrag_running, 0);
  1797. atomic_set(&fs_info->tree_mod_seq, 0);
  1798. fs_info->sb = sb;
  1799. fs_info->max_inline = 8192 * 1024;
  1800. fs_info->metadata_ratio = 0;
  1801. fs_info->defrag_inodes = RB_ROOT;
  1802. fs_info->trans_no_join = 0;
  1803. fs_info->free_chunk_space = 0;
  1804. fs_info->tree_mod_log = RB_ROOT;
  1805. /* readahead state */
  1806. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1807. spin_lock_init(&fs_info->reada_lock);
  1808. fs_info->thread_pool_size = min_t(unsigned long,
  1809. num_online_cpus() + 2, 8);
  1810. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1811. spin_lock_init(&fs_info->ordered_extent_lock);
  1812. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1813. GFP_NOFS);
  1814. if (!fs_info->delayed_root) {
  1815. err = -ENOMEM;
  1816. goto fail_iput;
  1817. }
  1818. btrfs_init_delayed_root(fs_info->delayed_root);
  1819. mutex_init(&fs_info->scrub_lock);
  1820. atomic_set(&fs_info->scrubs_running, 0);
  1821. atomic_set(&fs_info->scrub_pause_req, 0);
  1822. atomic_set(&fs_info->scrubs_paused, 0);
  1823. atomic_set(&fs_info->scrub_cancel_req, 0);
  1824. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1825. init_rwsem(&fs_info->scrub_super_lock);
  1826. fs_info->scrub_workers_refcnt = 0;
  1827. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1828. fs_info->check_integrity_print_mask = 0;
  1829. #endif
  1830. spin_lock_init(&fs_info->balance_lock);
  1831. mutex_init(&fs_info->balance_mutex);
  1832. atomic_set(&fs_info->balance_running, 0);
  1833. atomic_set(&fs_info->balance_pause_req, 0);
  1834. atomic_set(&fs_info->balance_cancel_req, 0);
  1835. fs_info->balance_ctl = NULL;
  1836. init_waitqueue_head(&fs_info->balance_wait_q);
  1837. sb->s_blocksize = 4096;
  1838. sb->s_blocksize_bits = blksize_bits(4096);
  1839. sb->s_bdi = &fs_info->bdi;
  1840. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1841. set_nlink(fs_info->btree_inode, 1);
  1842. /*
  1843. * we set the i_size on the btree inode to the max possible int.
  1844. * the real end of the address space is determined by all of
  1845. * the devices in the system
  1846. */
  1847. fs_info->btree_inode->i_size = OFFSET_MAX;
  1848. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1849. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1850. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1851. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1852. fs_info->btree_inode->i_mapping);
  1853. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1854. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1855. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1856. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1857. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1858. sizeof(struct btrfs_key));
  1859. set_bit(BTRFS_INODE_DUMMY,
  1860. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1861. insert_inode_hash(fs_info->btree_inode);
  1862. spin_lock_init(&fs_info->block_group_cache_lock);
  1863. fs_info->block_group_cache_tree = RB_ROOT;
  1864. extent_io_tree_init(&fs_info->freed_extents[0],
  1865. fs_info->btree_inode->i_mapping);
  1866. extent_io_tree_init(&fs_info->freed_extents[1],
  1867. fs_info->btree_inode->i_mapping);
  1868. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1869. fs_info->do_barriers = 1;
  1870. mutex_init(&fs_info->ordered_operations_mutex);
  1871. mutex_init(&fs_info->tree_log_mutex);
  1872. mutex_init(&fs_info->chunk_mutex);
  1873. mutex_init(&fs_info->transaction_kthread_mutex);
  1874. mutex_init(&fs_info->cleaner_mutex);
  1875. mutex_init(&fs_info->volume_mutex);
  1876. init_rwsem(&fs_info->extent_commit_sem);
  1877. init_rwsem(&fs_info->cleanup_work_sem);
  1878. init_rwsem(&fs_info->subvol_sem);
  1879. fs_info->dev_replace.lock_owner = 0;
  1880. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1881. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1882. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1883. mutex_init(&fs_info->dev_replace.lock);
  1884. spin_lock_init(&fs_info->qgroup_lock);
  1885. fs_info->qgroup_tree = RB_ROOT;
  1886. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1887. fs_info->qgroup_seq = 1;
  1888. fs_info->quota_enabled = 0;
  1889. fs_info->pending_quota_state = 0;
  1890. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1891. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1892. init_waitqueue_head(&fs_info->transaction_throttle);
  1893. init_waitqueue_head(&fs_info->transaction_wait);
  1894. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1895. init_waitqueue_head(&fs_info->async_submit_wait);
  1896. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1897. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1898. invalidate_bdev(fs_devices->latest_bdev);
  1899. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1900. if (!bh) {
  1901. err = -EINVAL;
  1902. goto fail_alloc;
  1903. }
  1904. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1905. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1906. sizeof(*fs_info->super_for_commit));
  1907. brelse(bh);
  1908. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1909. disk_super = fs_info->super_copy;
  1910. if (!btrfs_super_root(disk_super))
  1911. goto fail_alloc;
  1912. /* check FS state, whether FS is broken. */
  1913. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1914. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1915. if (ret) {
  1916. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1917. err = ret;
  1918. goto fail_alloc;
  1919. }
  1920. /*
  1921. * run through our array of backup supers and setup
  1922. * our ring pointer to the oldest one
  1923. */
  1924. generation = btrfs_super_generation(disk_super);
  1925. find_oldest_super_backup(fs_info, generation);
  1926. /*
  1927. * In the long term, we'll store the compression type in the super
  1928. * block, and it'll be used for per file compression control.
  1929. */
  1930. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1931. ret = btrfs_parse_options(tree_root, options);
  1932. if (ret) {
  1933. err = ret;
  1934. goto fail_alloc;
  1935. }
  1936. features = btrfs_super_incompat_flags(disk_super) &
  1937. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1938. if (features) {
  1939. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1940. "unsupported optional features (%Lx).\n",
  1941. (unsigned long long)features);
  1942. err = -EINVAL;
  1943. goto fail_alloc;
  1944. }
  1945. if (btrfs_super_leafsize(disk_super) !=
  1946. btrfs_super_nodesize(disk_super)) {
  1947. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1948. "blocksizes don't match. node %d leaf %d\n",
  1949. btrfs_super_nodesize(disk_super),
  1950. btrfs_super_leafsize(disk_super));
  1951. err = -EINVAL;
  1952. goto fail_alloc;
  1953. }
  1954. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1955. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1956. "blocksize (%d) was too large\n",
  1957. btrfs_super_leafsize(disk_super));
  1958. err = -EINVAL;
  1959. goto fail_alloc;
  1960. }
  1961. features = btrfs_super_incompat_flags(disk_super);
  1962. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1963. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  1964. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1965. /*
  1966. * flag our filesystem as having big metadata blocks if
  1967. * they are bigger than the page size
  1968. */
  1969. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1970. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1971. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1972. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1973. }
  1974. nodesize = btrfs_super_nodesize(disk_super);
  1975. leafsize = btrfs_super_leafsize(disk_super);
  1976. sectorsize = btrfs_super_sectorsize(disk_super);
  1977. stripesize = btrfs_super_stripesize(disk_super);
  1978. /*
  1979. * mixed block groups end up with duplicate but slightly offset
  1980. * extent buffers for the same range. It leads to corruptions
  1981. */
  1982. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  1983. (sectorsize != leafsize)) {
  1984. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  1985. "are not allowed for mixed block groups on %s\n",
  1986. sb->s_id);
  1987. goto fail_alloc;
  1988. }
  1989. btrfs_set_super_incompat_flags(disk_super, features);
  1990. features = btrfs_super_compat_ro_flags(disk_super) &
  1991. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1992. if (!(sb->s_flags & MS_RDONLY) && features) {
  1993. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1994. "unsupported option features (%Lx).\n",
  1995. (unsigned long long)features);
  1996. err = -EINVAL;
  1997. goto fail_alloc;
  1998. }
  1999. btrfs_init_workers(&fs_info->generic_worker,
  2000. "genwork", 1, NULL);
  2001. btrfs_init_workers(&fs_info->workers, "worker",
  2002. fs_info->thread_pool_size,
  2003. &fs_info->generic_worker);
  2004. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2005. fs_info->thread_pool_size,
  2006. &fs_info->generic_worker);
  2007. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2008. fs_info->thread_pool_size,
  2009. &fs_info->generic_worker);
  2010. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2011. min_t(u64, fs_devices->num_devices,
  2012. fs_info->thread_pool_size),
  2013. &fs_info->generic_worker);
  2014. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2015. 2, &fs_info->generic_worker);
  2016. /* a higher idle thresh on the submit workers makes it much more
  2017. * likely that bios will be send down in a sane order to the
  2018. * devices
  2019. */
  2020. fs_info->submit_workers.idle_thresh = 64;
  2021. fs_info->workers.idle_thresh = 16;
  2022. fs_info->workers.ordered = 1;
  2023. fs_info->delalloc_workers.idle_thresh = 2;
  2024. fs_info->delalloc_workers.ordered = 1;
  2025. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2026. &fs_info->generic_worker);
  2027. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2028. fs_info->thread_pool_size,
  2029. &fs_info->generic_worker);
  2030. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2031. fs_info->thread_pool_size,
  2032. &fs_info->generic_worker);
  2033. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2034. "endio-meta-write", fs_info->thread_pool_size,
  2035. &fs_info->generic_worker);
  2036. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2037. fs_info->thread_pool_size,
  2038. &fs_info->generic_worker);
  2039. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2040. 1, &fs_info->generic_worker);
  2041. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2042. fs_info->thread_pool_size,
  2043. &fs_info->generic_worker);
  2044. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2045. fs_info->thread_pool_size,
  2046. &fs_info->generic_worker);
  2047. /*
  2048. * endios are largely parallel and should have a very
  2049. * low idle thresh
  2050. */
  2051. fs_info->endio_workers.idle_thresh = 4;
  2052. fs_info->endio_meta_workers.idle_thresh = 4;
  2053. fs_info->endio_write_workers.idle_thresh = 2;
  2054. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2055. fs_info->readahead_workers.idle_thresh = 2;
  2056. /*
  2057. * btrfs_start_workers can really only fail because of ENOMEM so just
  2058. * return -ENOMEM if any of these fail.
  2059. */
  2060. ret = btrfs_start_workers(&fs_info->workers);
  2061. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2062. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2063. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2064. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2065. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2066. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2067. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2068. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2069. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2070. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2071. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2072. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2073. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2074. if (ret) {
  2075. err = -ENOMEM;
  2076. goto fail_sb_buffer;
  2077. }
  2078. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2079. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2080. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2081. tree_root->nodesize = nodesize;
  2082. tree_root->leafsize = leafsize;
  2083. tree_root->sectorsize = sectorsize;
  2084. tree_root->stripesize = stripesize;
  2085. sb->s_blocksize = sectorsize;
  2086. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2087. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  2088. sizeof(disk_super->magic))) {
  2089. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2090. goto fail_sb_buffer;
  2091. }
  2092. if (sectorsize != PAGE_SIZE) {
  2093. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2094. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2095. goto fail_sb_buffer;
  2096. }
  2097. mutex_lock(&fs_info->chunk_mutex);
  2098. ret = btrfs_read_sys_array(tree_root);
  2099. mutex_unlock(&fs_info->chunk_mutex);
  2100. if (ret) {
  2101. printk(KERN_WARNING "btrfs: failed to read the system "
  2102. "array on %s\n", sb->s_id);
  2103. goto fail_sb_buffer;
  2104. }
  2105. blocksize = btrfs_level_size(tree_root,
  2106. btrfs_super_chunk_root_level(disk_super));
  2107. generation = btrfs_super_chunk_root_generation(disk_super);
  2108. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2109. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2110. chunk_root->node = read_tree_block(chunk_root,
  2111. btrfs_super_chunk_root(disk_super),
  2112. blocksize, generation);
  2113. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2114. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2115. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2116. sb->s_id);
  2117. goto fail_tree_roots;
  2118. }
  2119. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2120. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2121. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2122. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2123. BTRFS_UUID_SIZE);
  2124. ret = btrfs_read_chunk_tree(chunk_root);
  2125. if (ret) {
  2126. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2127. sb->s_id);
  2128. goto fail_tree_roots;
  2129. }
  2130. /*
  2131. * keep the device that is marked to be the target device for the
  2132. * dev_replace procedure
  2133. */
  2134. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2135. if (!fs_devices->latest_bdev) {
  2136. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2137. sb->s_id);
  2138. goto fail_tree_roots;
  2139. }
  2140. retry_root_backup:
  2141. blocksize = btrfs_level_size(tree_root,
  2142. btrfs_super_root_level(disk_super));
  2143. generation = btrfs_super_generation(disk_super);
  2144. tree_root->node = read_tree_block(tree_root,
  2145. btrfs_super_root(disk_super),
  2146. blocksize, generation);
  2147. if (!tree_root->node ||
  2148. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2149. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2150. sb->s_id);
  2151. goto recovery_tree_root;
  2152. }
  2153. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2154. tree_root->commit_root = btrfs_root_node(tree_root);
  2155. ret = find_and_setup_root(tree_root, fs_info,
  2156. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2157. if (ret)
  2158. goto recovery_tree_root;
  2159. extent_root->track_dirty = 1;
  2160. ret = find_and_setup_root(tree_root, fs_info,
  2161. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2162. if (ret)
  2163. goto recovery_tree_root;
  2164. dev_root->track_dirty = 1;
  2165. ret = find_and_setup_root(tree_root, fs_info,
  2166. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2167. if (ret)
  2168. goto recovery_tree_root;
  2169. csum_root->track_dirty = 1;
  2170. ret = find_and_setup_root(tree_root, fs_info,
  2171. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2172. if (ret) {
  2173. kfree(quota_root);
  2174. quota_root = fs_info->quota_root = NULL;
  2175. } else {
  2176. quota_root->track_dirty = 1;
  2177. fs_info->quota_enabled = 1;
  2178. fs_info->pending_quota_state = 1;
  2179. }
  2180. fs_info->generation = generation;
  2181. fs_info->last_trans_committed = generation;
  2182. ret = btrfs_recover_balance(fs_info);
  2183. if (ret) {
  2184. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2185. goto fail_block_groups;
  2186. }
  2187. ret = btrfs_init_dev_stats(fs_info);
  2188. if (ret) {
  2189. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2190. ret);
  2191. goto fail_block_groups;
  2192. }
  2193. ret = btrfs_init_dev_replace(fs_info);
  2194. if (ret) {
  2195. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2196. goto fail_block_groups;
  2197. }
  2198. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2199. ret = btrfs_init_space_info(fs_info);
  2200. if (ret) {
  2201. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2202. goto fail_block_groups;
  2203. }
  2204. ret = btrfs_read_block_groups(extent_root);
  2205. if (ret) {
  2206. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2207. goto fail_block_groups;
  2208. }
  2209. fs_info->num_tolerated_disk_barrier_failures =
  2210. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2211. if (fs_info->fs_devices->missing_devices >
  2212. fs_info->num_tolerated_disk_barrier_failures &&
  2213. !(sb->s_flags & MS_RDONLY)) {
  2214. printk(KERN_WARNING
  2215. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2216. goto fail_block_groups;
  2217. }
  2218. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2219. "btrfs-cleaner");
  2220. if (IS_ERR(fs_info->cleaner_kthread))
  2221. goto fail_block_groups;
  2222. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2223. tree_root,
  2224. "btrfs-transaction");
  2225. if (IS_ERR(fs_info->transaction_kthread))
  2226. goto fail_cleaner;
  2227. if (!btrfs_test_opt(tree_root, SSD) &&
  2228. !btrfs_test_opt(tree_root, NOSSD) &&
  2229. !fs_info->fs_devices->rotating) {
  2230. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2231. "mode\n");
  2232. btrfs_set_opt(fs_info->mount_opt, SSD);
  2233. }
  2234. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2235. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2236. ret = btrfsic_mount(tree_root, fs_devices,
  2237. btrfs_test_opt(tree_root,
  2238. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2239. 1 : 0,
  2240. fs_info->check_integrity_print_mask);
  2241. if (ret)
  2242. printk(KERN_WARNING "btrfs: failed to initialize"
  2243. " integrity check module %s\n", sb->s_id);
  2244. }
  2245. #endif
  2246. ret = btrfs_read_qgroup_config(fs_info);
  2247. if (ret)
  2248. goto fail_trans_kthread;
  2249. /* do not make disk changes in broken FS */
  2250. if (btrfs_super_log_root(disk_super) != 0) {
  2251. u64 bytenr = btrfs_super_log_root(disk_super);
  2252. if (fs_devices->rw_devices == 0) {
  2253. printk(KERN_WARNING "Btrfs log replay required "
  2254. "on RO media\n");
  2255. err = -EIO;
  2256. goto fail_qgroup;
  2257. }
  2258. blocksize =
  2259. btrfs_level_size(tree_root,
  2260. btrfs_super_log_root_level(disk_super));
  2261. log_tree_root = btrfs_alloc_root(fs_info);
  2262. if (!log_tree_root) {
  2263. err = -ENOMEM;
  2264. goto fail_qgroup;
  2265. }
  2266. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2267. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2268. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2269. blocksize,
  2270. generation + 1);
  2271. /* returns with log_tree_root freed on success */
  2272. ret = btrfs_recover_log_trees(log_tree_root);
  2273. if (ret) {
  2274. btrfs_error(tree_root->fs_info, ret,
  2275. "Failed to recover log tree");
  2276. free_extent_buffer(log_tree_root->node);
  2277. kfree(log_tree_root);
  2278. goto fail_trans_kthread;
  2279. }
  2280. if (sb->s_flags & MS_RDONLY) {
  2281. ret = btrfs_commit_super(tree_root);
  2282. if (ret)
  2283. goto fail_trans_kthread;
  2284. }
  2285. }
  2286. ret = btrfs_find_orphan_roots(tree_root);
  2287. if (ret)
  2288. goto fail_trans_kthread;
  2289. if (!(sb->s_flags & MS_RDONLY)) {
  2290. ret = btrfs_cleanup_fs_roots(fs_info);
  2291. if (ret)
  2292. goto fail_trans_kthread;
  2293. ret = btrfs_recover_relocation(tree_root);
  2294. if (ret < 0) {
  2295. printk(KERN_WARNING
  2296. "btrfs: failed to recover relocation\n");
  2297. err = -EINVAL;
  2298. goto fail_qgroup;
  2299. }
  2300. }
  2301. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2302. location.type = BTRFS_ROOT_ITEM_KEY;
  2303. location.offset = (u64)-1;
  2304. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2305. if (!fs_info->fs_root)
  2306. goto fail_qgroup;
  2307. if (IS_ERR(fs_info->fs_root)) {
  2308. err = PTR_ERR(fs_info->fs_root);
  2309. goto fail_qgroup;
  2310. }
  2311. if (sb->s_flags & MS_RDONLY)
  2312. return 0;
  2313. down_read(&fs_info->cleanup_work_sem);
  2314. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2315. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2316. up_read(&fs_info->cleanup_work_sem);
  2317. close_ctree(tree_root);
  2318. return ret;
  2319. }
  2320. up_read(&fs_info->cleanup_work_sem);
  2321. ret = btrfs_resume_balance_async(fs_info);
  2322. if (ret) {
  2323. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2324. close_ctree(tree_root);
  2325. return ret;
  2326. }
  2327. ret = btrfs_resume_dev_replace_async(fs_info);
  2328. if (ret) {
  2329. pr_warn("btrfs: failed to resume dev_replace\n");
  2330. close_ctree(tree_root);
  2331. return ret;
  2332. }
  2333. return 0;
  2334. fail_qgroup:
  2335. btrfs_free_qgroup_config(fs_info);
  2336. fail_trans_kthread:
  2337. kthread_stop(fs_info->transaction_kthread);
  2338. fail_cleaner:
  2339. kthread_stop(fs_info->cleaner_kthread);
  2340. /*
  2341. * make sure we're done with the btree inode before we stop our
  2342. * kthreads
  2343. */
  2344. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2345. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2346. fail_block_groups:
  2347. btrfs_free_block_groups(fs_info);
  2348. fail_tree_roots:
  2349. free_root_pointers(fs_info, 1);
  2350. fail_sb_buffer:
  2351. btrfs_stop_workers(&fs_info->generic_worker);
  2352. btrfs_stop_workers(&fs_info->readahead_workers);
  2353. btrfs_stop_workers(&fs_info->fixup_workers);
  2354. btrfs_stop_workers(&fs_info->delalloc_workers);
  2355. btrfs_stop_workers(&fs_info->workers);
  2356. btrfs_stop_workers(&fs_info->endio_workers);
  2357. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2358. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2359. btrfs_stop_workers(&fs_info->endio_write_workers);
  2360. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2361. btrfs_stop_workers(&fs_info->submit_workers);
  2362. btrfs_stop_workers(&fs_info->delayed_workers);
  2363. btrfs_stop_workers(&fs_info->caching_workers);
  2364. btrfs_stop_workers(&fs_info->flush_workers);
  2365. fail_alloc:
  2366. fail_iput:
  2367. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2368. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2369. iput(fs_info->btree_inode);
  2370. fail_bdi:
  2371. bdi_destroy(&fs_info->bdi);
  2372. fail_srcu:
  2373. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2374. fail:
  2375. btrfs_close_devices(fs_info->fs_devices);
  2376. return err;
  2377. recovery_tree_root:
  2378. if (!btrfs_test_opt(tree_root, RECOVERY))
  2379. goto fail_tree_roots;
  2380. free_root_pointers(fs_info, 0);
  2381. /* don't use the log in recovery mode, it won't be valid */
  2382. btrfs_set_super_log_root(disk_super, 0);
  2383. /* we can't trust the free space cache either */
  2384. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2385. ret = next_root_backup(fs_info, fs_info->super_copy,
  2386. &num_backups_tried, &backup_index);
  2387. if (ret == -1)
  2388. goto fail_block_groups;
  2389. goto retry_root_backup;
  2390. }
  2391. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2392. {
  2393. if (uptodate) {
  2394. set_buffer_uptodate(bh);
  2395. } else {
  2396. struct btrfs_device *device = (struct btrfs_device *)
  2397. bh->b_private;
  2398. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2399. "I/O error on %s\n",
  2400. rcu_str_deref(device->name));
  2401. /* note, we dont' set_buffer_write_io_error because we have
  2402. * our own ways of dealing with the IO errors
  2403. */
  2404. clear_buffer_uptodate(bh);
  2405. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2406. }
  2407. unlock_buffer(bh);
  2408. put_bh(bh);
  2409. }
  2410. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2411. {
  2412. struct buffer_head *bh;
  2413. struct buffer_head *latest = NULL;
  2414. struct btrfs_super_block *super;
  2415. int i;
  2416. u64 transid = 0;
  2417. u64 bytenr;
  2418. /* we would like to check all the supers, but that would make
  2419. * a btrfs mount succeed after a mkfs from a different FS.
  2420. * So, we need to add a special mount option to scan for
  2421. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2422. */
  2423. for (i = 0; i < 1; i++) {
  2424. bytenr = btrfs_sb_offset(i);
  2425. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2426. break;
  2427. bh = __bread(bdev, bytenr / 4096, 4096);
  2428. if (!bh)
  2429. continue;
  2430. super = (struct btrfs_super_block *)bh->b_data;
  2431. if (btrfs_super_bytenr(super) != bytenr ||
  2432. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2433. sizeof(super->magic))) {
  2434. brelse(bh);
  2435. continue;
  2436. }
  2437. if (!latest || btrfs_super_generation(super) > transid) {
  2438. brelse(latest);
  2439. latest = bh;
  2440. transid = btrfs_super_generation(super);
  2441. } else {
  2442. brelse(bh);
  2443. }
  2444. }
  2445. return latest;
  2446. }
  2447. /*
  2448. * this should be called twice, once with wait == 0 and
  2449. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2450. * we write are pinned.
  2451. *
  2452. * They are released when wait == 1 is done.
  2453. * max_mirrors must be the same for both runs, and it indicates how
  2454. * many supers on this one device should be written.
  2455. *
  2456. * max_mirrors == 0 means to write them all.
  2457. */
  2458. static int write_dev_supers(struct btrfs_device *device,
  2459. struct btrfs_super_block *sb,
  2460. int do_barriers, int wait, int max_mirrors)
  2461. {
  2462. struct buffer_head *bh;
  2463. int i;
  2464. int ret;
  2465. int errors = 0;
  2466. u32 crc;
  2467. u64 bytenr;
  2468. if (max_mirrors == 0)
  2469. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2470. for (i = 0; i < max_mirrors; i++) {
  2471. bytenr = btrfs_sb_offset(i);
  2472. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2473. break;
  2474. if (wait) {
  2475. bh = __find_get_block(device->bdev, bytenr / 4096,
  2476. BTRFS_SUPER_INFO_SIZE);
  2477. BUG_ON(!bh);
  2478. wait_on_buffer(bh);
  2479. if (!buffer_uptodate(bh))
  2480. errors++;
  2481. /* drop our reference */
  2482. brelse(bh);
  2483. /* drop the reference from the wait == 0 run */
  2484. brelse(bh);
  2485. continue;
  2486. } else {
  2487. btrfs_set_super_bytenr(sb, bytenr);
  2488. crc = ~(u32)0;
  2489. crc = btrfs_csum_data(NULL, (char *)sb +
  2490. BTRFS_CSUM_SIZE, crc,
  2491. BTRFS_SUPER_INFO_SIZE -
  2492. BTRFS_CSUM_SIZE);
  2493. btrfs_csum_final(crc, sb->csum);
  2494. /*
  2495. * one reference for us, and we leave it for the
  2496. * caller
  2497. */
  2498. bh = __getblk(device->bdev, bytenr / 4096,
  2499. BTRFS_SUPER_INFO_SIZE);
  2500. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2501. /* one reference for submit_bh */
  2502. get_bh(bh);
  2503. set_buffer_uptodate(bh);
  2504. lock_buffer(bh);
  2505. bh->b_end_io = btrfs_end_buffer_write_sync;
  2506. bh->b_private = device;
  2507. }
  2508. /*
  2509. * we fua the first super. The others we allow
  2510. * to go down lazy.
  2511. */
  2512. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2513. if (ret)
  2514. errors++;
  2515. }
  2516. return errors < i ? 0 : -1;
  2517. }
  2518. /*
  2519. * endio for the write_dev_flush, this will wake anyone waiting
  2520. * for the barrier when it is done
  2521. */
  2522. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2523. {
  2524. if (err) {
  2525. if (err == -EOPNOTSUPP)
  2526. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2527. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2528. }
  2529. if (bio->bi_private)
  2530. complete(bio->bi_private);
  2531. bio_put(bio);
  2532. }
  2533. /*
  2534. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2535. * sent down. With wait == 1, it waits for the previous flush.
  2536. *
  2537. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2538. * capable
  2539. */
  2540. static int write_dev_flush(struct btrfs_device *device, int wait)
  2541. {
  2542. struct bio *bio;
  2543. int ret = 0;
  2544. if (device->nobarriers)
  2545. return 0;
  2546. if (wait) {
  2547. bio = device->flush_bio;
  2548. if (!bio)
  2549. return 0;
  2550. wait_for_completion(&device->flush_wait);
  2551. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2552. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2553. rcu_str_deref(device->name));
  2554. device->nobarriers = 1;
  2555. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2556. ret = -EIO;
  2557. btrfs_dev_stat_inc_and_print(device,
  2558. BTRFS_DEV_STAT_FLUSH_ERRS);
  2559. }
  2560. /* drop the reference from the wait == 0 run */
  2561. bio_put(bio);
  2562. device->flush_bio = NULL;
  2563. return ret;
  2564. }
  2565. /*
  2566. * one reference for us, and we leave it for the
  2567. * caller
  2568. */
  2569. device->flush_bio = NULL;
  2570. bio = bio_alloc(GFP_NOFS, 0);
  2571. if (!bio)
  2572. return -ENOMEM;
  2573. bio->bi_end_io = btrfs_end_empty_barrier;
  2574. bio->bi_bdev = device->bdev;
  2575. init_completion(&device->flush_wait);
  2576. bio->bi_private = &device->flush_wait;
  2577. device->flush_bio = bio;
  2578. bio_get(bio);
  2579. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2580. return 0;
  2581. }
  2582. /*
  2583. * send an empty flush down to each device in parallel,
  2584. * then wait for them
  2585. */
  2586. static int barrier_all_devices(struct btrfs_fs_info *info)
  2587. {
  2588. struct list_head *head;
  2589. struct btrfs_device *dev;
  2590. int errors_send = 0;
  2591. int errors_wait = 0;
  2592. int ret;
  2593. /* send down all the barriers */
  2594. head = &info->fs_devices->devices;
  2595. list_for_each_entry_rcu(dev, head, dev_list) {
  2596. if (!dev->bdev) {
  2597. errors_send++;
  2598. continue;
  2599. }
  2600. if (!dev->in_fs_metadata || !dev->writeable)
  2601. continue;
  2602. ret = write_dev_flush(dev, 0);
  2603. if (ret)
  2604. errors_send++;
  2605. }
  2606. /* wait for all the barriers */
  2607. list_for_each_entry_rcu(dev, head, dev_list) {
  2608. if (!dev->bdev) {
  2609. errors_wait++;
  2610. continue;
  2611. }
  2612. if (!dev->in_fs_metadata || !dev->writeable)
  2613. continue;
  2614. ret = write_dev_flush(dev, 1);
  2615. if (ret)
  2616. errors_wait++;
  2617. }
  2618. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2619. errors_wait > info->num_tolerated_disk_barrier_failures)
  2620. return -EIO;
  2621. return 0;
  2622. }
  2623. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2624. struct btrfs_fs_info *fs_info)
  2625. {
  2626. struct btrfs_ioctl_space_info space;
  2627. struct btrfs_space_info *sinfo;
  2628. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2629. BTRFS_BLOCK_GROUP_SYSTEM,
  2630. BTRFS_BLOCK_GROUP_METADATA,
  2631. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2632. int num_types = 4;
  2633. int i;
  2634. int c;
  2635. int num_tolerated_disk_barrier_failures =
  2636. (int)fs_info->fs_devices->num_devices;
  2637. for (i = 0; i < num_types; i++) {
  2638. struct btrfs_space_info *tmp;
  2639. sinfo = NULL;
  2640. rcu_read_lock();
  2641. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2642. if (tmp->flags == types[i]) {
  2643. sinfo = tmp;
  2644. break;
  2645. }
  2646. }
  2647. rcu_read_unlock();
  2648. if (!sinfo)
  2649. continue;
  2650. down_read(&sinfo->groups_sem);
  2651. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2652. if (!list_empty(&sinfo->block_groups[c])) {
  2653. u64 flags;
  2654. btrfs_get_block_group_info(
  2655. &sinfo->block_groups[c], &space);
  2656. if (space.total_bytes == 0 ||
  2657. space.used_bytes == 0)
  2658. continue;
  2659. flags = space.flags;
  2660. /*
  2661. * return
  2662. * 0: if dup, single or RAID0 is configured for
  2663. * any of metadata, system or data, else
  2664. * 1: if RAID5 is configured, or if RAID1 or
  2665. * RAID10 is configured and only two mirrors
  2666. * are used, else
  2667. * 2: if RAID6 is configured, else
  2668. * num_mirrors - 1: if RAID1 or RAID10 is
  2669. * configured and more than
  2670. * 2 mirrors are used.
  2671. */
  2672. if (num_tolerated_disk_barrier_failures > 0 &&
  2673. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2674. BTRFS_BLOCK_GROUP_RAID0)) ||
  2675. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2676. == 0)))
  2677. num_tolerated_disk_barrier_failures = 0;
  2678. else if (num_tolerated_disk_barrier_failures > 1
  2679. &&
  2680. (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2681. BTRFS_BLOCK_GROUP_RAID10)))
  2682. num_tolerated_disk_barrier_failures = 1;
  2683. }
  2684. }
  2685. up_read(&sinfo->groups_sem);
  2686. }
  2687. return num_tolerated_disk_barrier_failures;
  2688. }
  2689. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2690. {
  2691. struct list_head *head;
  2692. struct btrfs_device *dev;
  2693. struct btrfs_super_block *sb;
  2694. struct btrfs_dev_item *dev_item;
  2695. int ret;
  2696. int do_barriers;
  2697. int max_errors;
  2698. int total_errors = 0;
  2699. u64 flags;
  2700. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2701. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2702. backup_super_roots(root->fs_info);
  2703. sb = root->fs_info->super_for_commit;
  2704. dev_item = &sb->dev_item;
  2705. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2706. head = &root->fs_info->fs_devices->devices;
  2707. if (do_barriers) {
  2708. ret = barrier_all_devices(root->fs_info);
  2709. if (ret) {
  2710. mutex_unlock(
  2711. &root->fs_info->fs_devices->device_list_mutex);
  2712. btrfs_error(root->fs_info, ret,
  2713. "errors while submitting device barriers.");
  2714. return ret;
  2715. }
  2716. }
  2717. list_for_each_entry_rcu(dev, head, dev_list) {
  2718. if (!dev->bdev) {
  2719. total_errors++;
  2720. continue;
  2721. }
  2722. if (!dev->in_fs_metadata || !dev->writeable)
  2723. continue;
  2724. btrfs_set_stack_device_generation(dev_item, 0);
  2725. btrfs_set_stack_device_type(dev_item, dev->type);
  2726. btrfs_set_stack_device_id(dev_item, dev->devid);
  2727. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2728. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2729. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2730. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2731. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2732. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2733. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2734. flags = btrfs_super_flags(sb);
  2735. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2736. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2737. if (ret)
  2738. total_errors++;
  2739. }
  2740. if (total_errors > max_errors) {
  2741. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2742. total_errors);
  2743. /* This shouldn't happen. FUA is masked off if unsupported */
  2744. BUG();
  2745. }
  2746. total_errors = 0;
  2747. list_for_each_entry_rcu(dev, head, dev_list) {
  2748. if (!dev->bdev)
  2749. continue;
  2750. if (!dev->in_fs_metadata || !dev->writeable)
  2751. continue;
  2752. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2753. if (ret)
  2754. total_errors++;
  2755. }
  2756. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2757. if (total_errors > max_errors) {
  2758. btrfs_error(root->fs_info, -EIO,
  2759. "%d errors while writing supers", total_errors);
  2760. return -EIO;
  2761. }
  2762. return 0;
  2763. }
  2764. int write_ctree_super(struct btrfs_trans_handle *trans,
  2765. struct btrfs_root *root, int max_mirrors)
  2766. {
  2767. int ret;
  2768. ret = write_all_supers(root, max_mirrors);
  2769. return ret;
  2770. }
  2771. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2772. {
  2773. spin_lock(&fs_info->fs_roots_radix_lock);
  2774. radix_tree_delete(&fs_info->fs_roots_radix,
  2775. (unsigned long)root->root_key.objectid);
  2776. spin_unlock(&fs_info->fs_roots_radix_lock);
  2777. if (btrfs_root_refs(&root->root_item) == 0)
  2778. synchronize_srcu(&fs_info->subvol_srcu);
  2779. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2780. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2781. free_fs_root(root);
  2782. }
  2783. static void free_fs_root(struct btrfs_root *root)
  2784. {
  2785. iput(root->cache_inode);
  2786. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2787. if (root->anon_dev)
  2788. free_anon_bdev(root->anon_dev);
  2789. free_extent_buffer(root->node);
  2790. free_extent_buffer(root->commit_root);
  2791. kfree(root->free_ino_ctl);
  2792. kfree(root->free_ino_pinned);
  2793. kfree(root->name);
  2794. kfree(root);
  2795. }
  2796. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2797. {
  2798. int ret;
  2799. struct btrfs_root *gang[8];
  2800. int i;
  2801. while (!list_empty(&fs_info->dead_roots)) {
  2802. gang[0] = list_entry(fs_info->dead_roots.next,
  2803. struct btrfs_root, root_list);
  2804. list_del(&gang[0]->root_list);
  2805. if (gang[0]->in_radix) {
  2806. btrfs_free_fs_root(fs_info, gang[0]);
  2807. } else {
  2808. free_extent_buffer(gang[0]->node);
  2809. free_extent_buffer(gang[0]->commit_root);
  2810. kfree(gang[0]);
  2811. }
  2812. }
  2813. while (1) {
  2814. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2815. (void **)gang, 0,
  2816. ARRAY_SIZE(gang));
  2817. if (!ret)
  2818. break;
  2819. for (i = 0; i < ret; i++)
  2820. btrfs_free_fs_root(fs_info, gang[i]);
  2821. }
  2822. }
  2823. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2824. {
  2825. u64 root_objectid = 0;
  2826. struct btrfs_root *gang[8];
  2827. int i;
  2828. int ret;
  2829. while (1) {
  2830. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2831. (void **)gang, root_objectid,
  2832. ARRAY_SIZE(gang));
  2833. if (!ret)
  2834. break;
  2835. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2836. for (i = 0; i < ret; i++) {
  2837. int err;
  2838. root_objectid = gang[i]->root_key.objectid;
  2839. err = btrfs_orphan_cleanup(gang[i]);
  2840. if (err)
  2841. return err;
  2842. }
  2843. root_objectid++;
  2844. }
  2845. return 0;
  2846. }
  2847. int btrfs_commit_super(struct btrfs_root *root)
  2848. {
  2849. struct btrfs_trans_handle *trans;
  2850. int ret;
  2851. mutex_lock(&root->fs_info->cleaner_mutex);
  2852. btrfs_run_delayed_iputs(root);
  2853. btrfs_clean_old_snapshots(root);
  2854. mutex_unlock(&root->fs_info->cleaner_mutex);
  2855. /* wait until ongoing cleanup work done */
  2856. down_write(&root->fs_info->cleanup_work_sem);
  2857. up_write(&root->fs_info->cleanup_work_sem);
  2858. trans = btrfs_join_transaction(root);
  2859. if (IS_ERR(trans))
  2860. return PTR_ERR(trans);
  2861. ret = btrfs_commit_transaction(trans, root);
  2862. if (ret)
  2863. return ret;
  2864. /* run commit again to drop the original snapshot */
  2865. trans = btrfs_join_transaction(root);
  2866. if (IS_ERR(trans))
  2867. return PTR_ERR(trans);
  2868. ret = btrfs_commit_transaction(trans, root);
  2869. if (ret)
  2870. return ret;
  2871. ret = btrfs_write_and_wait_transaction(NULL, root);
  2872. if (ret) {
  2873. btrfs_error(root->fs_info, ret,
  2874. "Failed to sync btree inode to disk.");
  2875. return ret;
  2876. }
  2877. ret = write_ctree_super(NULL, root, 0);
  2878. return ret;
  2879. }
  2880. int close_ctree(struct btrfs_root *root)
  2881. {
  2882. struct btrfs_fs_info *fs_info = root->fs_info;
  2883. int ret;
  2884. fs_info->closing = 1;
  2885. smp_mb();
  2886. /* pause restriper - we want to resume on mount */
  2887. btrfs_pause_balance(fs_info);
  2888. btrfs_dev_replace_suspend_for_unmount(fs_info);
  2889. btrfs_scrub_cancel(fs_info);
  2890. /* wait for any defraggers to finish */
  2891. wait_event(fs_info->transaction_wait,
  2892. (atomic_read(&fs_info->defrag_running) == 0));
  2893. /* clear out the rbtree of defraggable inodes */
  2894. btrfs_cleanup_defrag_inodes(fs_info);
  2895. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2896. ret = btrfs_commit_super(root);
  2897. if (ret)
  2898. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2899. }
  2900. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2901. btrfs_error_commit_super(root);
  2902. btrfs_put_block_group_cache(fs_info);
  2903. kthread_stop(fs_info->transaction_kthread);
  2904. kthread_stop(fs_info->cleaner_kthread);
  2905. fs_info->closing = 2;
  2906. smp_mb();
  2907. btrfs_free_qgroup_config(root->fs_info);
  2908. if (fs_info->delalloc_bytes) {
  2909. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2910. (unsigned long long)fs_info->delalloc_bytes);
  2911. }
  2912. free_extent_buffer(fs_info->extent_root->node);
  2913. free_extent_buffer(fs_info->extent_root->commit_root);
  2914. free_extent_buffer(fs_info->tree_root->node);
  2915. free_extent_buffer(fs_info->tree_root->commit_root);
  2916. free_extent_buffer(fs_info->chunk_root->node);
  2917. free_extent_buffer(fs_info->chunk_root->commit_root);
  2918. free_extent_buffer(fs_info->dev_root->node);
  2919. free_extent_buffer(fs_info->dev_root->commit_root);
  2920. free_extent_buffer(fs_info->csum_root->node);
  2921. free_extent_buffer(fs_info->csum_root->commit_root);
  2922. if (fs_info->quota_root) {
  2923. free_extent_buffer(fs_info->quota_root->node);
  2924. free_extent_buffer(fs_info->quota_root->commit_root);
  2925. }
  2926. btrfs_free_block_groups(fs_info);
  2927. del_fs_roots(fs_info);
  2928. iput(fs_info->btree_inode);
  2929. btrfs_stop_workers(&fs_info->generic_worker);
  2930. btrfs_stop_workers(&fs_info->fixup_workers);
  2931. btrfs_stop_workers(&fs_info->delalloc_workers);
  2932. btrfs_stop_workers(&fs_info->workers);
  2933. btrfs_stop_workers(&fs_info->endio_workers);
  2934. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2935. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2936. btrfs_stop_workers(&fs_info->endio_write_workers);
  2937. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2938. btrfs_stop_workers(&fs_info->submit_workers);
  2939. btrfs_stop_workers(&fs_info->delayed_workers);
  2940. btrfs_stop_workers(&fs_info->caching_workers);
  2941. btrfs_stop_workers(&fs_info->readahead_workers);
  2942. btrfs_stop_workers(&fs_info->flush_workers);
  2943. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2944. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2945. btrfsic_unmount(root, fs_info->fs_devices);
  2946. #endif
  2947. btrfs_close_devices(fs_info->fs_devices);
  2948. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2949. bdi_destroy(&fs_info->bdi);
  2950. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2951. return 0;
  2952. }
  2953. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  2954. int atomic)
  2955. {
  2956. int ret;
  2957. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2958. ret = extent_buffer_uptodate(buf);
  2959. if (!ret)
  2960. return ret;
  2961. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2962. parent_transid, atomic);
  2963. if (ret == -EAGAIN)
  2964. return ret;
  2965. return !ret;
  2966. }
  2967. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2968. {
  2969. return set_extent_buffer_uptodate(buf);
  2970. }
  2971. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2972. {
  2973. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2974. u64 transid = btrfs_header_generation(buf);
  2975. int was_dirty;
  2976. btrfs_assert_tree_locked(buf);
  2977. if (transid != root->fs_info->generation)
  2978. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2979. "found %llu running %llu\n",
  2980. (unsigned long long)buf->start,
  2981. (unsigned long long)transid,
  2982. (unsigned long long)root->fs_info->generation);
  2983. was_dirty = set_extent_buffer_dirty(buf);
  2984. if (!was_dirty) {
  2985. spin_lock(&root->fs_info->delalloc_lock);
  2986. root->fs_info->dirty_metadata_bytes += buf->len;
  2987. spin_unlock(&root->fs_info->delalloc_lock);
  2988. }
  2989. }
  2990. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  2991. int flush_delayed)
  2992. {
  2993. /*
  2994. * looks as though older kernels can get into trouble with
  2995. * this code, they end up stuck in balance_dirty_pages forever
  2996. */
  2997. u64 num_dirty;
  2998. unsigned long thresh = 32 * 1024 * 1024;
  2999. if (current->flags & PF_MEMALLOC)
  3000. return;
  3001. if (flush_delayed)
  3002. btrfs_balance_delayed_items(root);
  3003. num_dirty = root->fs_info->dirty_metadata_bytes;
  3004. if (num_dirty > thresh) {
  3005. balance_dirty_pages_ratelimited(
  3006. root->fs_info->btree_inode->i_mapping);
  3007. }
  3008. return;
  3009. }
  3010. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3011. {
  3012. __btrfs_btree_balance_dirty(root, 1);
  3013. }
  3014. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3015. {
  3016. __btrfs_btree_balance_dirty(root, 0);
  3017. }
  3018. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3019. {
  3020. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3021. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3022. }
  3023. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3024. int read_only)
  3025. {
  3026. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  3027. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  3028. return -EINVAL;
  3029. }
  3030. if (read_only)
  3031. return 0;
  3032. return 0;
  3033. }
  3034. void btrfs_error_commit_super(struct btrfs_root *root)
  3035. {
  3036. mutex_lock(&root->fs_info->cleaner_mutex);
  3037. btrfs_run_delayed_iputs(root);
  3038. mutex_unlock(&root->fs_info->cleaner_mutex);
  3039. down_write(&root->fs_info->cleanup_work_sem);
  3040. up_write(&root->fs_info->cleanup_work_sem);
  3041. /* cleanup FS via transaction */
  3042. btrfs_cleanup_transaction(root);
  3043. }
  3044. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  3045. {
  3046. struct btrfs_inode *btrfs_inode;
  3047. struct list_head splice;
  3048. INIT_LIST_HEAD(&splice);
  3049. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3050. spin_lock(&root->fs_info->ordered_extent_lock);
  3051. list_splice_init(&root->fs_info->ordered_operations, &splice);
  3052. while (!list_empty(&splice)) {
  3053. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3054. ordered_operations);
  3055. list_del_init(&btrfs_inode->ordered_operations);
  3056. btrfs_invalidate_inodes(btrfs_inode->root);
  3057. }
  3058. spin_unlock(&root->fs_info->ordered_extent_lock);
  3059. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3060. }
  3061. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3062. {
  3063. struct list_head splice;
  3064. struct btrfs_ordered_extent *ordered;
  3065. struct inode *inode;
  3066. INIT_LIST_HEAD(&splice);
  3067. spin_lock(&root->fs_info->ordered_extent_lock);
  3068. list_splice_init(&root->fs_info->ordered_extents, &splice);
  3069. while (!list_empty(&splice)) {
  3070. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  3071. root_extent_list);
  3072. list_del_init(&ordered->root_extent_list);
  3073. atomic_inc(&ordered->refs);
  3074. /* the inode may be getting freed (in sys_unlink path). */
  3075. inode = igrab(ordered->inode);
  3076. spin_unlock(&root->fs_info->ordered_extent_lock);
  3077. if (inode)
  3078. iput(inode);
  3079. atomic_set(&ordered->refs, 1);
  3080. btrfs_put_ordered_extent(ordered);
  3081. spin_lock(&root->fs_info->ordered_extent_lock);
  3082. }
  3083. spin_unlock(&root->fs_info->ordered_extent_lock);
  3084. }
  3085. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3086. struct btrfs_root *root)
  3087. {
  3088. struct rb_node *node;
  3089. struct btrfs_delayed_ref_root *delayed_refs;
  3090. struct btrfs_delayed_ref_node *ref;
  3091. int ret = 0;
  3092. delayed_refs = &trans->delayed_refs;
  3093. spin_lock(&delayed_refs->lock);
  3094. if (delayed_refs->num_entries == 0) {
  3095. spin_unlock(&delayed_refs->lock);
  3096. printk(KERN_INFO "delayed_refs has NO entry\n");
  3097. return ret;
  3098. }
  3099. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3100. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3101. atomic_set(&ref->refs, 1);
  3102. if (btrfs_delayed_ref_is_head(ref)) {
  3103. struct btrfs_delayed_ref_head *head;
  3104. head = btrfs_delayed_node_to_head(ref);
  3105. if (!mutex_trylock(&head->mutex)) {
  3106. atomic_inc(&ref->refs);
  3107. spin_unlock(&delayed_refs->lock);
  3108. /* Need to wait for the delayed ref to run */
  3109. mutex_lock(&head->mutex);
  3110. mutex_unlock(&head->mutex);
  3111. btrfs_put_delayed_ref(ref);
  3112. spin_lock(&delayed_refs->lock);
  3113. continue;
  3114. }
  3115. kfree(head->extent_op);
  3116. delayed_refs->num_heads--;
  3117. if (list_empty(&head->cluster))
  3118. delayed_refs->num_heads_ready--;
  3119. list_del_init(&head->cluster);
  3120. }
  3121. ref->in_tree = 0;
  3122. rb_erase(&ref->rb_node, &delayed_refs->root);
  3123. delayed_refs->num_entries--;
  3124. spin_unlock(&delayed_refs->lock);
  3125. btrfs_put_delayed_ref(ref);
  3126. cond_resched();
  3127. spin_lock(&delayed_refs->lock);
  3128. }
  3129. spin_unlock(&delayed_refs->lock);
  3130. return ret;
  3131. }
  3132. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  3133. {
  3134. struct btrfs_pending_snapshot *snapshot;
  3135. struct list_head splice;
  3136. INIT_LIST_HEAD(&splice);
  3137. list_splice_init(&t->pending_snapshots, &splice);
  3138. while (!list_empty(&splice)) {
  3139. snapshot = list_entry(splice.next,
  3140. struct btrfs_pending_snapshot,
  3141. list);
  3142. list_del_init(&snapshot->list);
  3143. kfree(snapshot);
  3144. }
  3145. }
  3146. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3147. {
  3148. struct btrfs_inode *btrfs_inode;
  3149. struct list_head splice;
  3150. INIT_LIST_HEAD(&splice);
  3151. spin_lock(&root->fs_info->delalloc_lock);
  3152. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3153. while (!list_empty(&splice)) {
  3154. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3155. delalloc_inodes);
  3156. list_del_init(&btrfs_inode->delalloc_inodes);
  3157. btrfs_invalidate_inodes(btrfs_inode->root);
  3158. }
  3159. spin_unlock(&root->fs_info->delalloc_lock);
  3160. }
  3161. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3162. struct extent_io_tree *dirty_pages,
  3163. int mark)
  3164. {
  3165. int ret;
  3166. struct page *page;
  3167. struct inode *btree_inode = root->fs_info->btree_inode;
  3168. struct extent_buffer *eb;
  3169. u64 start = 0;
  3170. u64 end;
  3171. u64 offset;
  3172. unsigned long index;
  3173. while (1) {
  3174. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3175. mark, NULL);
  3176. if (ret)
  3177. break;
  3178. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3179. while (start <= end) {
  3180. index = start >> PAGE_CACHE_SHIFT;
  3181. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3182. page = find_get_page(btree_inode->i_mapping, index);
  3183. if (!page)
  3184. continue;
  3185. offset = page_offset(page);
  3186. spin_lock(&dirty_pages->buffer_lock);
  3187. eb = radix_tree_lookup(
  3188. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3189. offset >> PAGE_CACHE_SHIFT);
  3190. spin_unlock(&dirty_pages->buffer_lock);
  3191. if (eb)
  3192. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3193. &eb->bflags);
  3194. if (PageWriteback(page))
  3195. end_page_writeback(page);
  3196. lock_page(page);
  3197. if (PageDirty(page)) {
  3198. clear_page_dirty_for_io(page);
  3199. spin_lock_irq(&page->mapping->tree_lock);
  3200. radix_tree_tag_clear(&page->mapping->page_tree,
  3201. page_index(page),
  3202. PAGECACHE_TAG_DIRTY);
  3203. spin_unlock_irq(&page->mapping->tree_lock);
  3204. }
  3205. unlock_page(page);
  3206. page_cache_release(page);
  3207. }
  3208. }
  3209. return ret;
  3210. }
  3211. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3212. struct extent_io_tree *pinned_extents)
  3213. {
  3214. struct extent_io_tree *unpin;
  3215. u64 start;
  3216. u64 end;
  3217. int ret;
  3218. bool loop = true;
  3219. unpin = pinned_extents;
  3220. again:
  3221. while (1) {
  3222. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3223. EXTENT_DIRTY, NULL);
  3224. if (ret)
  3225. break;
  3226. /* opt_discard */
  3227. if (btrfs_test_opt(root, DISCARD))
  3228. ret = btrfs_error_discard_extent(root, start,
  3229. end + 1 - start,
  3230. NULL);
  3231. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3232. btrfs_error_unpin_extent_range(root, start, end);
  3233. cond_resched();
  3234. }
  3235. if (loop) {
  3236. if (unpin == &root->fs_info->freed_extents[0])
  3237. unpin = &root->fs_info->freed_extents[1];
  3238. else
  3239. unpin = &root->fs_info->freed_extents[0];
  3240. loop = false;
  3241. goto again;
  3242. }
  3243. return 0;
  3244. }
  3245. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3246. struct btrfs_root *root)
  3247. {
  3248. btrfs_destroy_delayed_refs(cur_trans, root);
  3249. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3250. cur_trans->dirty_pages.dirty_bytes);
  3251. /* FIXME: cleanup wait for commit */
  3252. cur_trans->in_commit = 1;
  3253. cur_trans->blocked = 1;
  3254. wake_up(&root->fs_info->transaction_blocked_wait);
  3255. cur_trans->blocked = 0;
  3256. wake_up(&root->fs_info->transaction_wait);
  3257. cur_trans->commit_done = 1;
  3258. wake_up(&cur_trans->commit_wait);
  3259. btrfs_destroy_delayed_inodes(root);
  3260. btrfs_assert_delayed_root_empty(root);
  3261. btrfs_destroy_pending_snapshots(cur_trans);
  3262. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3263. EXTENT_DIRTY);
  3264. btrfs_destroy_pinned_extent(root,
  3265. root->fs_info->pinned_extents);
  3266. /*
  3267. memset(cur_trans, 0, sizeof(*cur_trans));
  3268. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3269. */
  3270. }
  3271. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3272. {
  3273. struct btrfs_transaction *t;
  3274. LIST_HEAD(list);
  3275. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3276. spin_lock(&root->fs_info->trans_lock);
  3277. list_splice_init(&root->fs_info->trans_list, &list);
  3278. root->fs_info->trans_no_join = 1;
  3279. spin_unlock(&root->fs_info->trans_lock);
  3280. while (!list_empty(&list)) {
  3281. t = list_entry(list.next, struct btrfs_transaction, list);
  3282. if (!t)
  3283. break;
  3284. btrfs_destroy_ordered_operations(root);
  3285. btrfs_destroy_ordered_extents(root);
  3286. btrfs_destroy_delayed_refs(t, root);
  3287. btrfs_block_rsv_release(root,
  3288. &root->fs_info->trans_block_rsv,
  3289. t->dirty_pages.dirty_bytes);
  3290. /* FIXME: cleanup wait for commit */
  3291. t->in_commit = 1;
  3292. t->blocked = 1;
  3293. smp_mb();
  3294. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3295. wake_up(&root->fs_info->transaction_blocked_wait);
  3296. t->blocked = 0;
  3297. smp_mb();
  3298. if (waitqueue_active(&root->fs_info->transaction_wait))
  3299. wake_up(&root->fs_info->transaction_wait);
  3300. t->commit_done = 1;
  3301. smp_mb();
  3302. if (waitqueue_active(&t->commit_wait))
  3303. wake_up(&t->commit_wait);
  3304. btrfs_destroy_delayed_inodes(root);
  3305. btrfs_assert_delayed_root_empty(root);
  3306. btrfs_destroy_pending_snapshots(t);
  3307. btrfs_destroy_delalloc_inodes(root);
  3308. spin_lock(&root->fs_info->trans_lock);
  3309. root->fs_info->running_transaction = NULL;
  3310. spin_unlock(&root->fs_info->trans_lock);
  3311. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3312. EXTENT_DIRTY);
  3313. btrfs_destroy_pinned_extent(root,
  3314. root->fs_info->pinned_extents);
  3315. atomic_set(&t->use_count, 0);
  3316. list_del_init(&t->list);
  3317. memset(t, 0, sizeof(*t));
  3318. kmem_cache_free(btrfs_transaction_cachep, t);
  3319. }
  3320. spin_lock(&root->fs_info->trans_lock);
  3321. root->fs_info->trans_no_join = 0;
  3322. spin_unlock(&root->fs_info->trans_lock);
  3323. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3324. return 0;
  3325. }
  3326. static struct extent_io_ops btree_extent_io_ops = {
  3327. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3328. .readpage_io_failed_hook = btree_io_failed_hook,
  3329. .submit_bio_hook = btree_submit_bio_hook,
  3330. /* note we're sharing with inode.c for the merge bio hook */
  3331. .merge_bio_hook = btrfs_merge_bio_hook,
  3332. };