dm-thin.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818
  1. /*
  2. * Copyright (C) 2011-2012 Red Hat UK.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "dm-bio-prison.h"
  8. #include "dm.h"
  9. #include <linux/device-mapper.h>
  10. #include <linux/dm-io.h>
  11. #include <linux/dm-kcopyd.h>
  12. #include <linux/list.h>
  13. #include <linux/init.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #define DM_MSG_PREFIX "thin"
  17. /*
  18. * Tunable constants
  19. */
  20. #define ENDIO_HOOK_POOL_SIZE 1024
  21. #define MAPPING_POOL_SIZE 1024
  22. #define PRISON_CELLS 1024
  23. #define COMMIT_PERIOD HZ
  24. /*
  25. * The block size of the device holding pool data must be
  26. * between 64KB and 1GB.
  27. */
  28. #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  29. #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  30. /*
  31. * Device id is restricted to 24 bits.
  32. */
  33. #define MAX_DEV_ID ((1 << 24) - 1)
  34. /*
  35. * How do we handle breaking sharing of data blocks?
  36. * =================================================
  37. *
  38. * We use a standard copy-on-write btree to store the mappings for the
  39. * devices (note I'm talking about copy-on-write of the metadata here, not
  40. * the data). When you take an internal snapshot you clone the root node
  41. * of the origin btree. After this there is no concept of an origin or a
  42. * snapshot. They are just two device trees that happen to point to the
  43. * same data blocks.
  44. *
  45. * When we get a write in we decide if it's to a shared data block using
  46. * some timestamp magic. If it is, we have to break sharing.
  47. *
  48. * Let's say we write to a shared block in what was the origin. The
  49. * steps are:
  50. *
  51. * i) plug io further to this physical block. (see bio_prison code).
  52. *
  53. * ii) quiesce any read io to that shared data block. Obviously
  54. * including all devices that share this block. (see dm_deferred_set code)
  55. *
  56. * iii) copy the data block to a newly allocate block. This step can be
  57. * missed out if the io covers the block. (schedule_copy).
  58. *
  59. * iv) insert the new mapping into the origin's btree
  60. * (process_prepared_mapping). This act of inserting breaks some
  61. * sharing of btree nodes between the two devices. Breaking sharing only
  62. * effects the btree of that specific device. Btrees for the other
  63. * devices that share the block never change. The btree for the origin
  64. * device as it was after the last commit is untouched, ie. we're using
  65. * persistent data structures in the functional programming sense.
  66. *
  67. * v) unplug io to this physical block, including the io that triggered
  68. * the breaking of sharing.
  69. *
  70. * Steps (ii) and (iii) occur in parallel.
  71. *
  72. * The metadata _doesn't_ need to be committed before the io continues. We
  73. * get away with this because the io is always written to a _new_ block.
  74. * If there's a crash, then:
  75. *
  76. * - The origin mapping will point to the old origin block (the shared
  77. * one). This will contain the data as it was before the io that triggered
  78. * the breaking of sharing came in.
  79. *
  80. * - The snap mapping still points to the old block. As it would after
  81. * the commit.
  82. *
  83. * The downside of this scheme is the timestamp magic isn't perfect, and
  84. * will continue to think that data block in the snapshot device is shared
  85. * even after the write to the origin has broken sharing. I suspect data
  86. * blocks will typically be shared by many different devices, so we're
  87. * breaking sharing n + 1 times, rather than n, where n is the number of
  88. * devices that reference this data block. At the moment I think the
  89. * benefits far, far outweigh the disadvantages.
  90. */
  91. /*----------------------------------------------------------------*/
  92. /*
  93. * Key building.
  94. */
  95. static void build_data_key(struct dm_thin_device *td,
  96. dm_block_t b, struct dm_cell_key *key)
  97. {
  98. key->virtual = 0;
  99. key->dev = dm_thin_dev_id(td);
  100. key->block = b;
  101. }
  102. static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
  103. struct dm_cell_key *key)
  104. {
  105. key->virtual = 1;
  106. key->dev = dm_thin_dev_id(td);
  107. key->block = b;
  108. }
  109. /*----------------------------------------------------------------*/
  110. /*
  111. * A pool device ties together a metadata device and a data device. It
  112. * also provides the interface for creating and destroying internal
  113. * devices.
  114. */
  115. struct dm_thin_new_mapping;
  116. /*
  117. * The pool runs in 3 modes. Ordered in degraded order for comparisons.
  118. */
  119. enum pool_mode {
  120. PM_WRITE, /* metadata may be changed */
  121. PM_READ_ONLY, /* metadata may not be changed */
  122. PM_FAIL, /* all I/O fails */
  123. };
  124. struct pool_features {
  125. enum pool_mode mode;
  126. bool zero_new_blocks:1;
  127. bool discard_enabled:1;
  128. bool discard_passdown:1;
  129. };
  130. struct thin_c;
  131. typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
  132. typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
  133. struct pool {
  134. struct list_head list;
  135. struct dm_target *ti; /* Only set if a pool target is bound */
  136. struct mapped_device *pool_md;
  137. struct block_device *md_dev;
  138. struct dm_pool_metadata *pmd;
  139. dm_block_t low_water_blocks;
  140. uint32_t sectors_per_block;
  141. int sectors_per_block_shift;
  142. struct pool_features pf;
  143. unsigned low_water_triggered:1; /* A dm event has been sent */
  144. unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
  145. struct dm_bio_prison *prison;
  146. struct dm_kcopyd_client *copier;
  147. struct workqueue_struct *wq;
  148. struct work_struct worker;
  149. struct delayed_work waker;
  150. unsigned long last_commit_jiffies;
  151. unsigned ref_count;
  152. spinlock_t lock;
  153. struct bio_list deferred_bios;
  154. struct bio_list deferred_flush_bios;
  155. struct list_head prepared_mappings;
  156. struct list_head prepared_discards;
  157. struct bio_list retry_on_resume_list;
  158. struct dm_deferred_set *shared_read_ds;
  159. struct dm_deferred_set *all_io_ds;
  160. struct dm_thin_new_mapping *next_mapping;
  161. mempool_t *mapping_pool;
  162. process_bio_fn process_bio;
  163. process_bio_fn process_discard;
  164. process_mapping_fn process_prepared_mapping;
  165. process_mapping_fn process_prepared_discard;
  166. };
  167. static enum pool_mode get_pool_mode(struct pool *pool);
  168. static void set_pool_mode(struct pool *pool, enum pool_mode mode);
  169. /*
  170. * Target context for a pool.
  171. */
  172. struct pool_c {
  173. struct dm_target *ti;
  174. struct pool *pool;
  175. struct dm_dev *data_dev;
  176. struct dm_dev *metadata_dev;
  177. struct dm_target_callbacks callbacks;
  178. dm_block_t low_water_blocks;
  179. struct pool_features requested_pf; /* Features requested during table load */
  180. struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
  181. };
  182. /*
  183. * Target context for a thin.
  184. */
  185. struct thin_c {
  186. struct dm_dev *pool_dev;
  187. struct dm_dev *origin_dev;
  188. dm_thin_id dev_id;
  189. struct pool *pool;
  190. struct dm_thin_device *td;
  191. };
  192. /*----------------------------------------------------------------*/
  193. /*
  194. * A global list of pools that uses a struct mapped_device as a key.
  195. */
  196. static struct dm_thin_pool_table {
  197. struct mutex mutex;
  198. struct list_head pools;
  199. } dm_thin_pool_table;
  200. static void pool_table_init(void)
  201. {
  202. mutex_init(&dm_thin_pool_table.mutex);
  203. INIT_LIST_HEAD(&dm_thin_pool_table.pools);
  204. }
  205. static void __pool_table_insert(struct pool *pool)
  206. {
  207. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  208. list_add(&pool->list, &dm_thin_pool_table.pools);
  209. }
  210. static void __pool_table_remove(struct pool *pool)
  211. {
  212. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  213. list_del(&pool->list);
  214. }
  215. static struct pool *__pool_table_lookup(struct mapped_device *md)
  216. {
  217. struct pool *pool = NULL, *tmp;
  218. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  219. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  220. if (tmp->pool_md == md) {
  221. pool = tmp;
  222. break;
  223. }
  224. }
  225. return pool;
  226. }
  227. static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
  228. {
  229. struct pool *pool = NULL, *tmp;
  230. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  231. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  232. if (tmp->md_dev == md_dev) {
  233. pool = tmp;
  234. break;
  235. }
  236. }
  237. return pool;
  238. }
  239. /*----------------------------------------------------------------*/
  240. struct dm_thin_endio_hook {
  241. struct thin_c *tc;
  242. struct dm_deferred_entry *shared_read_entry;
  243. struct dm_deferred_entry *all_io_entry;
  244. struct dm_thin_new_mapping *overwrite_mapping;
  245. };
  246. static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
  247. {
  248. struct bio *bio;
  249. struct bio_list bios;
  250. bio_list_init(&bios);
  251. bio_list_merge(&bios, master);
  252. bio_list_init(master);
  253. while ((bio = bio_list_pop(&bios))) {
  254. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  255. if (h->tc == tc)
  256. bio_endio(bio, DM_ENDIO_REQUEUE);
  257. else
  258. bio_list_add(master, bio);
  259. }
  260. }
  261. static void requeue_io(struct thin_c *tc)
  262. {
  263. struct pool *pool = tc->pool;
  264. unsigned long flags;
  265. spin_lock_irqsave(&pool->lock, flags);
  266. __requeue_bio_list(tc, &pool->deferred_bios);
  267. __requeue_bio_list(tc, &pool->retry_on_resume_list);
  268. spin_unlock_irqrestore(&pool->lock, flags);
  269. }
  270. /*
  271. * This section of code contains the logic for processing a thin device's IO.
  272. * Much of the code depends on pool object resources (lists, workqueues, etc)
  273. * but most is exclusively called from the thin target rather than the thin-pool
  274. * target.
  275. */
  276. static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
  277. {
  278. sector_t block_nr = bio->bi_sector;
  279. if (tc->pool->sectors_per_block_shift < 0)
  280. (void) sector_div(block_nr, tc->pool->sectors_per_block);
  281. else
  282. block_nr >>= tc->pool->sectors_per_block_shift;
  283. return block_nr;
  284. }
  285. static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
  286. {
  287. struct pool *pool = tc->pool;
  288. sector_t bi_sector = bio->bi_sector;
  289. bio->bi_bdev = tc->pool_dev->bdev;
  290. if (tc->pool->sectors_per_block_shift < 0)
  291. bio->bi_sector = (block * pool->sectors_per_block) +
  292. sector_div(bi_sector, pool->sectors_per_block);
  293. else
  294. bio->bi_sector = (block << pool->sectors_per_block_shift) |
  295. (bi_sector & (pool->sectors_per_block - 1));
  296. }
  297. static void remap_to_origin(struct thin_c *tc, struct bio *bio)
  298. {
  299. bio->bi_bdev = tc->origin_dev->bdev;
  300. }
  301. static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
  302. {
  303. return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
  304. dm_thin_changed_this_transaction(tc->td);
  305. }
  306. static void inc_all_io_entry(struct pool *pool, struct bio *bio)
  307. {
  308. struct dm_thin_endio_hook *h;
  309. if (bio->bi_rw & REQ_DISCARD)
  310. return;
  311. h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  312. h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
  313. }
  314. static void issue(struct thin_c *tc, struct bio *bio)
  315. {
  316. struct pool *pool = tc->pool;
  317. unsigned long flags;
  318. if (!bio_triggers_commit(tc, bio)) {
  319. generic_make_request(bio);
  320. return;
  321. }
  322. /*
  323. * Complete bio with an error if earlier I/O caused changes to
  324. * the metadata that can't be committed e.g, due to I/O errors
  325. * on the metadata device.
  326. */
  327. if (dm_thin_aborted_changes(tc->td)) {
  328. bio_io_error(bio);
  329. return;
  330. }
  331. /*
  332. * Batch together any bios that trigger commits and then issue a
  333. * single commit for them in process_deferred_bios().
  334. */
  335. spin_lock_irqsave(&pool->lock, flags);
  336. bio_list_add(&pool->deferred_flush_bios, bio);
  337. spin_unlock_irqrestore(&pool->lock, flags);
  338. }
  339. static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
  340. {
  341. remap_to_origin(tc, bio);
  342. issue(tc, bio);
  343. }
  344. static void remap_and_issue(struct thin_c *tc, struct bio *bio,
  345. dm_block_t block)
  346. {
  347. remap(tc, bio, block);
  348. issue(tc, bio);
  349. }
  350. /*
  351. * wake_worker() is used when new work is queued and when pool_resume is
  352. * ready to continue deferred IO processing.
  353. */
  354. static void wake_worker(struct pool *pool)
  355. {
  356. queue_work(pool->wq, &pool->worker);
  357. }
  358. /*----------------------------------------------------------------*/
  359. /*
  360. * Bio endio functions.
  361. */
  362. struct dm_thin_new_mapping {
  363. struct list_head list;
  364. unsigned quiesced:1;
  365. unsigned prepared:1;
  366. unsigned pass_discard:1;
  367. struct thin_c *tc;
  368. dm_block_t virt_block;
  369. dm_block_t data_block;
  370. struct dm_bio_prison_cell *cell, *cell2;
  371. int err;
  372. /*
  373. * If the bio covers the whole area of a block then we can avoid
  374. * zeroing or copying. Instead this bio is hooked. The bio will
  375. * still be in the cell, so care has to be taken to avoid issuing
  376. * the bio twice.
  377. */
  378. struct bio *bio;
  379. bio_end_io_t *saved_bi_end_io;
  380. };
  381. static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
  382. {
  383. struct pool *pool = m->tc->pool;
  384. if (m->quiesced && m->prepared) {
  385. list_add(&m->list, &pool->prepared_mappings);
  386. wake_worker(pool);
  387. }
  388. }
  389. static void copy_complete(int read_err, unsigned long write_err, void *context)
  390. {
  391. unsigned long flags;
  392. struct dm_thin_new_mapping *m = context;
  393. struct pool *pool = m->tc->pool;
  394. m->err = read_err || write_err ? -EIO : 0;
  395. spin_lock_irqsave(&pool->lock, flags);
  396. m->prepared = 1;
  397. __maybe_add_mapping(m);
  398. spin_unlock_irqrestore(&pool->lock, flags);
  399. }
  400. static void overwrite_endio(struct bio *bio, int err)
  401. {
  402. unsigned long flags;
  403. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  404. struct dm_thin_new_mapping *m = h->overwrite_mapping;
  405. struct pool *pool = m->tc->pool;
  406. m->err = err;
  407. spin_lock_irqsave(&pool->lock, flags);
  408. m->prepared = 1;
  409. __maybe_add_mapping(m);
  410. spin_unlock_irqrestore(&pool->lock, flags);
  411. }
  412. /*----------------------------------------------------------------*/
  413. /*
  414. * Workqueue.
  415. */
  416. /*
  417. * Prepared mapping jobs.
  418. */
  419. /*
  420. * This sends the bios in the cell back to the deferred_bios list.
  421. */
  422. static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  423. {
  424. struct pool *pool = tc->pool;
  425. unsigned long flags;
  426. spin_lock_irqsave(&pool->lock, flags);
  427. dm_cell_release(cell, &pool->deferred_bios);
  428. spin_unlock_irqrestore(&tc->pool->lock, flags);
  429. wake_worker(pool);
  430. }
  431. /*
  432. * Same as cell_defer except it omits the original holder of the cell.
  433. */
  434. static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  435. {
  436. struct pool *pool = tc->pool;
  437. unsigned long flags;
  438. spin_lock_irqsave(&pool->lock, flags);
  439. dm_cell_release_no_holder(cell, &pool->deferred_bios);
  440. spin_unlock_irqrestore(&pool->lock, flags);
  441. wake_worker(pool);
  442. }
  443. static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
  444. {
  445. if (m->bio)
  446. m->bio->bi_end_io = m->saved_bi_end_io;
  447. dm_cell_error(m->cell);
  448. list_del(&m->list);
  449. mempool_free(m, m->tc->pool->mapping_pool);
  450. }
  451. static void process_prepared_mapping(struct dm_thin_new_mapping *m)
  452. {
  453. struct thin_c *tc = m->tc;
  454. struct bio *bio;
  455. int r;
  456. bio = m->bio;
  457. if (bio)
  458. bio->bi_end_io = m->saved_bi_end_io;
  459. if (m->err) {
  460. dm_cell_error(m->cell);
  461. goto out;
  462. }
  463. /*
  464. * Commit the prepared block into the mapping btree.
  465. * Any I/O for this block arriving after this point will get
  466. * remapped to it directly.
  467. */
  468. r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
  469. if (r) {
  470. DMERR_LIMIT("dm_thin_insert_block() failed");
  471. dm_cell_error(m->cell);
  472. goto out;
  473. }
  474. /*
  475. * Release any bios held while the block was being provisioned.
  476. * If we are processing a write bio that completely covers the block,
  477. * we already processed it so can ignore it now when processing
  478. * the bios in the cell.
  479. */
  480. if (bio) {
  481. cell_defer_no_holder(tc, m->cell);
  482. bio_endio(bio, 0);
  483. } else
  484. cell_defer(tc, m->cell);
  485. out:
  486. list_del(&m->list);
  487. mempool_free(m, tc->pool->mapping_pool);
  488. }
  489. static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
  490. {
  491. struct thin_c *tc = m->tc;
  492. bio_io_error(m->bio);
  493. cell_defer_no_holder(tc, m->cell);
  494. cell_defer_no_holder(tc, m->cell2);
  495. mempool_free(m, tc->pool->mapping_pool);
  496. }
  497. static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
  498. {
  499. struct thin_c *tc = m->tc;
  500. inc_all_io_entry(tc->pool, m->bio);
  501. cell_defer_no_holder(tc, m->cell);
  502. cell_defer_no_holder(tc, m->cell2);
  503. if (m->pass_discard)
  504. remap_and_issue(tc, m->bio, m->data_block);
  505. else
  506. bio_endio(m->bio, 0);
  507. mempool_free(m, tc->pool->mapping_pool);
  508. }
  509. static void process_prepared_discard(struct dm_thin_new_mapping *m)
  510. {
  511. int r;
  512. struct thin_c *tc = m->tc;
  513. r = dm_thin_remove_block(tc->td, m->virt_block);
  514. if (r)
  515. DMERR_LIMIT("dm_thin_remove_block() failed");
  516. process_prepared_discard_passdown(m);
  517. }
  518. static void process_prepared(struct pool *pool, struct list_head *head,
  519. process_mapping_fn *fn)
  520. {
  521. unsigned long flags;
  522. struct list_head maps;
  523. struct dm_thin_new_mapping *m, *tmp;
  524. INIT_LIST_HEAD(&maps);
  525. spin_lock_irqsave(&pool->lock, flags);
  526. list_splice_init(head, &maps);
  527. spin_unlock_irqrestore(&pool->lock, flags);
  528. list_for_each_entry_safe(m, tmp, &maps, list)
  529. (*fn)(m);
  530. }
  531. /*
  532. * Deferred bio jobs.
  533. */
  534. static int io_overlaps_block(struct pool *pool, struct bio *bio)
  535. {
  536. return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
  537. }
  538. static int io_overwrites_block(struct pool *pool, struct bio *bio)
  539. {
  540. return (bio_data_dir(bio) == WRITE) &&
  541. io_overlaps_block(pool, bio);
  542. }
  543. static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
  544. bio_end_io_t *fn)
  545. {
  546. *save = bio->bi_end_io;
  547. bio->bi_end_io = fn;
  548. }
  549. static int ensure_next_mapping(struct pool *pool)
  550. {
  551. if (pool->next_mapping)
  552. return 0;
  553. pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
  554. return pool->next_mapping ? 0 : -ENOMEM;
  555. }
  556. static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
  557. {
  558. struct dm_thin_new_mapping *r = pool->next_mapping;
  559. BUG_ON(!pool->next_mapping);
  560. pool->next_mapping = NULL;
  561. return r;
  562. }
  563. static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
  564. struct dm_dev *origin, dm_block_t data_origin,
  565. dm_block_t data_dest,
  566. struct dm_bio_prison_cell *cell, struct bio *bio)
  567. {
  568. int r;
  569. struct pool *pool = tc->pool;
  570. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  571. INIT_LIST_HEAD(&m->list);
  572. m->quiesced = 0;
  573. m->prepared = 0;
  574. m->tc = tc;
  575. m->virt_block = virt_block;
  576. m->data_block = data_dest;
  577. m->cell = cell;
  578. m->err = 0;
  579. m->bio = NULL;
  580. if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
  581. m->quiesced = 1;
  582. /*
  583. * IO to pool_dev remaps to the pool target's data_dev.
  584. *
  585. * If the whole block of data is being overwritten, we can issue the
  586. * bio immediately. Otherwise we use kcopyd to clone the data first.
  587. */
  588. if (io_overwrites_block(pool, bio)) {
  589. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  590. h->overwrite_mapping = m;
  591. m->bio = bio;
  592. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  593. inc_all_io_entry(pool, bio);
  594. remap_and_issue(tc, bio, data_dest);
  595. } else {
  596. struct dm_io_region from, to;
  597. from.bdev = origin->bdev;
  598. from.sector = data_origin * pool->sectors_per_block;
  599. from.count = pool->sectors_per_block;
  600. to.bdev = tc->pool_dev->bdev;
  601. to.sector = data_dest * pool->sectors_per_block;
  602. to.count = pool->sectors_per_block;
  603. r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
  604. 0, copy_complete, m);
  605. if (r < 0) {
  606. mempool_free(m, pool->mapping_pool);
  607. DMERR_LIMIT("dm_kcopyd_copy() failed");
  608. dm_cell_error(cell);
  609. }
  610. }
  611. }
  612. static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
  613. dm_block_t data_origin, dm_block_t data_dest,
  614. struct dm_bio_prison_cell *cell, struct bio *bio)
  615. {
  616. schedule_copy(tc, virt_block, tc->pool_dev,
  617. data_origin, data_dest, cell, bio);
  618. }
  619. static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
  620. dm_block_t data_dest,
  621. struct dm_bio_prison_cell *cell, struct bio *bio)
  622. {
  623. schedule_copy(tc, virt_block, tc->origin_dev,
  624. virt_block, data_dest, cell, bio);
  625. }
  626. static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
  627. dm_block_t data_block, struct dm_bio_prison_cell *cell,
  628. struct bio *bio)
  629. {
  630. struct pool *pool = tc->pool;
  631. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  632. INIT_LIST_HEAD(&m->list);
  633. m->quiesced = 1;
  634. m->prepared = 0;
  635. m->tc = tc;
  636. m->virt_block = virt_block;
  637. m->data_block = data_block;
  638. m->cell = cell;
  639. m->err = 0;
  640. m->bio = NULL;
  641. /*
  642. * If the whole block of data is being overwritten or we are not
  643. * zeroing pre-existing data, we can issue the bio immediately.
  644. * Otherwise we use kcopyd to zero the data first.
  645. */
  646. if (!pool->pf.zero_new_blocks)
  647. process_prepared_mapping(m);
  648. else if (io_overwrites_block(pool, bio)) {
  649. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  650. h->overwrite_mapping = m;
  651. m->bio = bio;
  652. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  653. inc_all_io_entry(pool, bio);
  654. remap_and_issue(tc, bio, data_block);
  655. } else {
  656. int r;
  657. struct dm_io_region to;
  658. to.bdev = tc->pool_dev->bdev;
  659. to.sector = data_block * pool->sectors_per_block;
  660. to.count = pool->sectors_per_block;
  661. r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
  662. if (r < 0) {
  663. mempool_free(m, pool->mapping_pool);
  664. DMERR_LIMIT("dm_kcopyd_zero() failed");
  665. dm_cell_error(cell);
  666. }
  667. }
  668. }
  669. static int commit(struct pool *pool)
  670. {
  671. int r;
  672. r = dm_pool_commit_metadata(pool->pmd);
  673. if (r)
  674. DMERR_LIMIT("commit failed: error = %d", r);
  675. return r;
  676. }
  677. /*
  678. * A non-zero return indicates read_only or fail_io mode.
  679. * Many callers don't care about the return value.
  680. */
  681. static int commit_or_fallback(struct pool *pool)
  682. {
  683. int r;
  684. if (get_pool_mode(pool) != PM_WRITE)
  685. return -EINVAL;
  686. r = commit(pool);
  687. if (r)
  688. set_pool_mode(pool, PM_READ_ONLY);
  689. return r;
  690. }
  691. static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
  692. {
  693. int r;
  694. dm_block_t free_blocks;
  695. unsigned long flags;
  696. struct pool *pool = tc->pool;
  697. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  698. if (r)
  699. return r;
  700. if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
  701. DMWARN("%s: reached low water mark, sending event.",
  702. dm_device_name(pool->pool_md));
  703. spin_lock_irqsave(&pool->lock, flags);
  704. pool->low_water_triggered = 1;
  705. spin_unlock_irqrestore(&pool->lock, flags);
  706. dm_table_event(pool->ti->table);
  707. }
  708. if (!free_blocks) {
  709. if (pool->no_free_space)
  710. return -ENOSPC;
  711. else {
  712. /*
  713. * Try to commit to see if that will free up some
  714. * more space.
  715. */
  716. (void) commit_or_fallback(pool);
  717. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  718. if (r)
  719. return r;
  720. /*
  721. * If we still have no space we set a flag to avoid
  722. * doing all this checking and return -ENOSPC.
  723. */
  724. if (!free_blocks) {
  725. DMWARN("%s: no free space available.",
  726. dm_device_name(pool->pool_md));
  727. spin_lock_irqsave(&pool->lock, flags);
  728. pool->no_free_space = 1;
  729. spin_unlock_irqrestore(&pool->lock, flags);
  730. return -ENOSPC;
  731. }
  732. }
  733. }
  734. r = dm_pool_alloc_data_block(pool->pmd, result);
  735. if (r)
  736. return r;
  737. return 0;
  738. }
  739. /*
  740. * If we have run out of space, queue bios until the device is
  741. * resumed, presumably after having been reloaded with more space.
  742. */
  743. static void retry_on_resume(struct bio *bio)
  744. {
  745. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  746. struct thin_c *tc = h->tc;
  747. struct pool *pool = tc->pool;
  748. unsigned long flags;
  749. spin_lock_irqsave(&pool->lock, flags);
  750. bio_list_add(&pool->retry_on_resume_list, bio);
  751. spin_unlock_irqrestore(&pool->lock, flags);
  752. }
  753. static void no_space(struct dm_bio_prison_cell *cell)
  754. {
  755. struct bio *bio;
  756. struct bio_list bios;
  757. bio_list_init(&bios);
  758. dm_cell_release(cell, &bios);
  759. while ((bio = bio_list_pop(&bios)))
  760. retry_on_resume(bio);
  761. }
  762. static void process_discard(struct thin_c *tc, struct bio *bio)
  763. {
  764. int r;
  765. unsigned long flags;
  766. struct pool *pool = tc->pool;
  767. struct dm_bio_prison_cell *cell, *cell2;
  768. struct dm_cell_key key, key2;
  769. dm_block_t block = get_bio_block(tc, bio);
  770. struct dm_thin_lookup_result lookup_result;
  771. struct dm_thin_new_mapping *m;
  772. build_virtual_key(tc->td, block, &key);
  773. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
  774. return;
  775. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  776. switch (r) {
  777. case 0:
  778. /*
  779. * Check nobody is fiddling with this pool block. This can
  780. * happen if someone's in the process of breaking sharing
  781. * on this block.
  782. */
  783. build_data_key(tc->td, lookup_result.block, &key2);
  784. if (dm_bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
  785. cell_defer_no_holder(tc, cell);
  786. break;
  787. }
  788. if (io_overlaps_block(pool, bio)) {
  789. /*
  790. * IO may still be going to the destination block. We must
  791. * quiesce before we can do the removal.
  792. */
  793. m = get_next_mapping(pool);
  794. m->tc = tc;
  795. m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
  796. m->virt_block = block;
  797. m->data_block = lookup_result.block;
  798. m->cell = cell;
  799. m->cell2 = cell2;
  800. m->err = 0;
  801. m->bio = bio;
  802. if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
  803. spin_lock_irqsave(&pool->lock, flags);
  804. list_add(&m->list, &pool->prepared_discards);
  805. spin_unlock_irqrestore(&pool->lock, flags);
  806. wake_worker(pool);
  807. }
  808. } else {
  809. inc_all_io_entry(pool, bio);
  810. cell_defer_no_holder(tc, cell);
  811. cell_defer_no_holder(tc, cell2);
  812. /*
  813. * The DM core makes sure that the discard doesn't span
  814. * a block boundary. So we submit the discard of a
  815. * partial block appropriately.
  816. */
  817. if ((!lookup_result.shared) && pool->pf.discard_passdown)
  818. remap_and_issue(tc, bio, lookup_result.block);
  819. else
  820. bio_endio(bio, 0);
  821. }
  822. break;
  823. case -ENODATA:
  824. /*
  825. * It isn't provisioned, just forget it.
  826. */
  827. cell_defer_no_holder(tc, cell);
  828. bio_endio(bio, 0);
  829. break;
  830. default:
  831. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  832. __func__, r);
  833. cell_defer_no_holder(tc, cell);
  834. bio_io_error(bio);
  835. break;
  836. }
  837. }
  838. static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
  839. struct dm_cell_key *key,
  840. struct dm_thin_lookup_result *lookup_result,
  841. struct dm_bio_prison_cell *cell)
  842. {
  843. int r;
  844. dm_block_t data_block;
  845. r = alloc_data_block(tc, &data_block);
  846. switch (r) {
  847. case 0:
  848. schedule_internal_copy(tc, block, lookup_result->block,
  849. data_block, cell, bio);
  850. break;
  851. case -ENOSPC:
  852. no_space(cell);
  853. break;
  854. default:
  855. DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
  856. __func__, r);
  857. dm_cell_error(cell);
  858. break;
  859. }
  860. }
  861. static void process_shared_bio(struct thin_c *tc, struct bio *bio,
  862. dm_block_t block,
  863. struct dm_thin_lookup_result *lookup_result)
  864. {
  865. struct dm_bio_prison_cell *cell;
  866. struct pool *pool = tc->pool;
  867. struct dm_cell_key key;
  868. /*
  869. * If cell is already occupied, then sharing is already in the process
  870. * of being broken so we have nothing further to do here.
  871. */
  872. build_data_key(tc->td, lookup_result->block, &key);
  873. if (dm_bio_detain(pool->prison, &key, bio, &cell))
  874. return;
  875. if (bio_data_dir(bio) == WRITE && bio->bi_size)
  876. break_sharing(tc, bio, block, &key, lookup_result, cell);
  877. else {
  878. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  879. h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
  880. inc_all_io_entry(pool, bio);
  881. cell_defer_no_holder(tc, cell);
  882. remap_and_issue(tc, bio, lookup_result->block);
  883. }
  884. }
  885. static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
  886. struct dm_bio_prison_cell *cell)
  887. {
  888. int r;
  889. dm_block_t data_block;
  890. /*
  891. * Remap empty bios (flushes) immediately, without provisioning.
  892. */
  893. if (!bio->bi_size) {
  894. inc_all_io_entry(tc->pool, bio);
  895. cell_defer_no_holder(tc, cell);
  896. remap_and_issue(tc, bio, 0);
  897. return;
  898. }
  899. /*
  900. * Fill read bios with zeroes and complete them immediately.
  901. */
  902. if (bio_data_dir(bio) == READ) {
  903. zero_fill_bio(bio);
  904. cell_defer_no_holder(tc, cell);
  905. bio_endio(bio, 0);
  906. return;
  907. }
  908. r = alloc_data_block(tc, &data_block);
  909. switch (r) {
  910. case 0:
  911. if (tc->origin_dev)
  912. schedule_external_copy(tc, block, data_block, cell, bio);
  913. else
  914. schedule_zero(tc, block, data_block, cell, bio);
  915. break;
  916. case -ENOSPC:
  917. no_space(cell);
  918. break;
  919. default:
  920. DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
  921. __func__, r);
  922. set_pool_mode(tc->pool, PM_READ_ONLY);
  923. dm_cell_error(cell);
  924. break;
  925. }
  926. }
  927. static void process_bio(struct thin_c *tc, struct bio *bio)
  928. {
  929. int r;
  930. dm_block_t block = get_bio_block(tc, bio);
  931. struct dm_bio_prison_cell *cell;
  932. struct dm_cell_key key;
  933. struct dm_thin_lookup_result lookup_result;
  934. /*
  935. * If cell is already occupied, then the block is already
  936. * being provisioned so we have nothing further to do here.
  937. */
  938. build_virtual_key(tc->td, block, &key);
  939. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
  940. return;
  941. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  942. switch (r) {
  943. case 0:
  944. if (lookup_result.shared) {
  945. process_shared_bio(tc, bio, block, &lookup_result);
  946. cell_defer_no_holder(tc, cell);
  947. } else {
  948. inc_all_io_entry(tc->pool, bio);
  949. cell_defer_no_holder(tc, cell);
  950. remap_and_issue(tc, bio, lookup_result.block);
  951. }
  952. break;
  953. case -ENODATA:
  954. if (bio_data_dir(bio) == READ && tc->origin_dev) {
  955. inc_all_io_entry(tc->pool, bio);
  956. cell_defer_no_holder(tc, cell);
  957. remap_to_origin_and_issue(tc, bio);
  958. } else
  959. provision_block(tc, bio, block, cell);
  960. break;
  961. default:
  962. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  963. __func__, r);
  964. cell_defer_no_holder(tc, cell);
  965. bio_io_error(bio);
  966. break;
  967. }
  968. }
  969. static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
  970. {
  971. int r;
  972. int rw = bio_data_dir(bio);
  973. dm_block_t block = get_bio_block(tc, bio);
  974. struct dm_thin_lookup_result lookup_result;
  975. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  976. switch (r) {
  977. case 0:
  978. if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
  979. bio_io_error(bio);
  980. else {
  981. inc_all_io_entry(tc->pool, bio);
  982. remap_and_issue(tc, bio, lookup_result.block);
  983. }
  984. break;
  985. case -ENODATA:
  986. if (rw != READ) {
  987. bio_io_error(bio);
  988. break;
  989. }
  990. if (tc->origin_dev) {
  991. inc_all_io_entry(tc->pool, bio);
  992. remap_to_origin_and_issue(tc, bio);
  993. break;
  994. }
  995. zero_fill_bio(bio);
  996. bio_endio(bio, 0);
  997. break;
  998. default:
  999. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  1000. __func__, r);
  1001. bio_io_error(bio);
  1002. break;
  1003. }
  1004. }
  1005. static void process_bio_fail(struct thin_c *tc, struct bio *bio)
  1006. {
  1007. bio_io_error(bio);
  1008. }
  1009. static int need_commit_due_to_time(struct pool *pool)
  1010. {
  1011. return jiffies < pool->last_commit_jiffies ||
  1012. jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
  1013. }
  1014. static void process_deferred_bios(struct pool *pool)
  1015. {
  1016. unsigned long flags;
  1017. struct bio *bio;
  1018. struct bio_list bios;
  1019. bio_list_init(&bios);
  1020. spin_lock_irqsave(&pool->lock, flags);
  1021. bio_list_merge(&bios, &pool->deferred_bios);
  1022. bio_list_init(&pool->deferred_bios);
  1023. spin_unlock_irqrestore(&pool->lock, flags);
  1024. while ((bio = bio_list_pop(&bios))) {
  1025. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  1026. struct thin_c *tc = h->tc;
  1027. /*
  1028. * If we've got no free new_mapping structs, and processing
  1029. * this bio might require one, we pause until there are some
  1030. * prepared mappings to process.
  1031. */
  1032. if (ensure_next_mapping(pool)) {
  1033. spin_lock_irqsave(&pool->lock, flags);
  1034. bio_list_merge(&pool->deferred_bios, &bios);
  1035. spin_unlock_irqrestore(&pool->lock, flags);
  1036. break;
  1037. }
  1038. if (bio->bi_rw & REQ_DISCARD)
  1039. pool->process_discard(tc, bio);
  1040. else
  1041. pool->process_bio(tc, bio);
  1042. }
  1043. /*
  1044. * If there are any deferred flush bios, we must commit
  1045. * the metadata before issuing them.
  1046. */
  1047. bio_list_init(&bios);
  1048. spin_lock_irqsave(&pool->lock, flags);
  1049. bio_list_merge(&bios, &pool->deferred_flush_bios);
  1050. bio_list_init(&pool->deferred_flush_bios);
  1051. spin_unlock_irqrestore(&pool->lock, flags);
  1052. if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
  1053. return;
  1054. if (commit_or_fallback(pool)) {
  1055. while ((bio = bio_list_pop(&bios)))
  1056. bio_io_error(bio);
  1057. return;
  1058. }
  1059. pool->last_commit_jiffies = jiffies;
  1060. while ((bio = bio_list_pop(&bios)))
  1061. generic_make_request(bio);
  1062. }
  1063. static void do_worker(struct work_struct *ws)
  1064. {
  1065. struct pool *pool = container_of(ws, struct pool, worker);
  1066. process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
  1067. process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
  1068. process_deferred_bios(pool);
  1069. }
  1070. /*
  1071. * We want to commit periodically so that not too much
  1072. * unwritten data builds up.
  1073. */
  1074. static void do_waker(struct work_struct *ws)
  1075. {
  1076. struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
  1077. wake_worker(pool);
  1078. queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
  1079. }
  1080. /*----------------------------------------------------------------*/
  1081. static enum pool_mode get_pool_mode(struct pool *pool)
  1082. {
  1083. return pool->pf.mode;
  1084. }
  1085. static void set_pool_mode(struct pool *pool, enum pool_mode mode)
  1086. {
  1087. int r;
  1088. pool->pf.mode = mode;
  1089. switch (mode) {
  1090. case PM_FAIL:
  1091. DMERR("switching pool to failure mode");
  1092. pool->process_bio = process_bio_fail;
  1093. pool->process_discard = process_bio_fail;
  1094. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1095. pool->process_prepared_discard = process_prepared_discard_fail;
  1096. break;
  1097. case PM_READ_ONLY:
  1098. DMERR("switching pool to read-only mode");
  1099. r = dm_pool_abort_metadata(pool->pmd);
  1100. if (r) {
  1101. DMERR("aborting transaction failed");
  1102. set_pool_mode(pool, PM_FAIL);
  1103. } else {
  1104. dm_pool_metadata_read_only(pool->pmd);
  1105. pool->process_bio = process_bio_read_only;
  1106. pool->process_discard = process_discard;
  1107. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1108. pool->process_prepared_discard = process_prepared_discard_passdown;
  1109. }
  1110. break;
  1111. case PM_WRITE:
  1112. pool->process_bio = process_bio;
  1113. pool->process_discard = process_discard;
  1114. pool->process_prepared_mapping = process_prepared_mapping;
  1115. pool->process_prepared_discard = process_prepared_discard;
  1116. break;
  1117. }
  1118. }
  1119. /*----------------------------------------------------------------*/
  1120. /*
  1121. * Mapping functions.
  1122. */
  1123. /*
  1124. * Called only while mapping a thin bio to hand it over to the workqueue.
  1125. */
  1126. static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
  1127. {
  1128. unsigned long flags;
  1129. struct pool *pool = tc->pool;
  1130. spin_lock_irqsave(&pool->lock, flags);
  1131. bio_list_add(&pool->deferred_bios, bio);
  1132. spin_unlock_irqrestore(&pool->lock, flags);
  1133. wake_worker(pool);
  1134. }
  1135. static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
  1136. {
  1137. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  1138. h->tc = tc;
  1139. h->shared_read_entry = NULL;
  1140. h->all_io_entry = NULL;
  1141. h->overwrite_mapping = NULL;
  1142. }
  1143. /*
  1144. * Non-blocking function called from the thin target's map function.
  1145. */
  1146. static int thin_bio_map(struct dm_target *ti, struct bio *bio)
  1147. {
  1148. int r;
  1149. struct thin_c *tc = ti->private;
  1150. dm_block_t block = get_bio_block(tc, bio);
  1151. struct dm_thin_device *td = tc->td;
  1152. struct dm_thin_lookup_result result;
  1153. struct dm_bio_prison_cell *cell1, *cell2;
  1154. struct dm_cell_key key;
  1155. thin_hook_bio(tc, bio);
  1156. if (get_pool_mode(tc->pool) == PM_FAIL) {
  1157. bio_io_error(bio);
  1158. return DM_MAPIO_SUBMITTED;
  1159. }
  1160. if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
  1161. thin_defer_bio(tc, bio);
  1162. return DM_MAPIO_SUBMITTED;
  1163. }
  1164. r = dm_thin_find_block(td, block, 0, &result);
  1165. /*
  1166. * Note that we defer readahead too.
  1167. */
  1168. switch (r) {
  1169. case 0:
  1170. if (unlikely(result.shared)) {
  1171. /*
  1172. * We have a race condition here between the
  1173. * result.shared value returned by the lookup and
  1174. * snapshot creation, which may cause new
  1175. * sharing.
  1176. *
  1177. * To avoid this always quiesce the origin before
  1178. * taking the snap. You want to do this anyway to
  1179. * ensure a consistent application view
  1180. * (i.e. lockfs).
  1181. *
  1182. * More distant ancestors are irrelevant. The
  1183. * shared flag will be set in their case.
  1184. */
  1185. thin_defer_bio(tc, bio);
  1186. return DM_MAPIO_SUBMITTED;
  1187. }
  1188. build_virtual_key(tc->td, block, &key);
  1189. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1))
  1190. return DM_MAPIO_SUBMITTED;
  1191. build_data_key(tc->td, result.block, &key);
  1192. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2)) {
  1193. cell_defer_no_holder(tc, cell1);
  1194. return DM_MAPIO_SUBMITTED;
  1195. }
  1196. inc_all_io_entry(tc->pool, bio);
  1197. cell_defer_no_holder(tc, cell2);
  1198. cell_defer_no_holder(tc, cell1);
  1199. remap(tc, bio, result.block);
  1200. return DM_MAPIO_REMAPPED;
  1201. case -ENODATA:
  1202. if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
  1203. /*
  1204. * This block isn't provisioned, and we have no way
  1205. * of doing so. Just error it.
  1206. */
  1207. bio_io_error(bio);
  1208. return DM_MAPIO_SUBMITTED;
  1209. }
  1210. /* fall through */
  1211. case -EWOULDBLOCK:
  1212. /*
  1213. * In future, the failed dm_thin_find_block above could
  1214. * provide the hint to load the metadata into cache.
  1215. */
  1216. thin_defer_bio(tc, bio);
  1217. return DM_MAPIO_SUBMITTED;
  1218. default:
  1219. /*
  1220. * Must always call bio_io_error on failure.
  1221. * dm_thin_find_block can fail with -EINVAL if the
  1222. * pool is switched to fail-io mode.
  1223. */
  1224. bio_io_error(bio);
  1225. return DM_MAPIO_SUBMITTED;
  1226. }
  1227. }
  1228. static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
  1229. {
  1230. int r;
  1231. unsigned long flags;
  1232. struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
  1233. spin_lock_irqsave(&pt->pool->lock, flags);
  1234. r = !bio_list_empty(&pt->pool->retry_on_resume_list);
  1235. spin_unlock_irqrestore(&pt->pool->lock, flags);
  1236. if (!r) {
  1237. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1238. r = bdi_congested(&q->backing_dev_info, bdi_bits);
  1239. }
  1240. return r;
  1241. }
  1242. static void __requeue_bios(struct pool *pool)
  1243. {
  1244. bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
  1245. bio_list_init(&pool->retry_on_resume_list);
  1246. }
  1247. /*----------------------------------------------------------------
  1248. * Binding of control targets to a pool object
  1249. *--------------------------------------------------------------*/
  1250. static bool data_dev_supports_discard(struct pool_c *pt)
  1251. {
  1252. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1253. return q && blk_queue_discard(q);
  1254. }
  1255. /*
  1256. * If discard_passdown was enabled verify that the data device
  1257. * supports discards. Disable discard_passdown if not.
  1258. */
  1259. static void disable_passdown_if_not_supported(struct pool_c *pt)
  1260. {
  1261. struct pool *pool = pt->pool;
  1262. struct block_device *data_bdev = pt->data_dev->bdev;
  1263. struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
  1264. sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
  1265. const char *reason = NULL;
  1266. char buf[BDEVNAME_SIZE];
  1267. if (!pt->adjusted_pf.discard_passdown)
  1268. return;
  1269. if (!data_dev_supports_discard(pt))
  1270. reason = "discard unsupported";
  1271. else if (data_limits->max_discard_sectors < pool->sectors_per_block)
  1272. reason = "max discard sectors smaller than a block";
  1273. else if (data_limits->discard_granularity > block_size)
  1274. reason = "discard granularity larger than a block";
  1275. else if (block_size & (data_limits->discard_granularity - 1))
  1276. reason = "discard granularity not a factor of block size";
  1277. if (reason) {
  1278. DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
  1279. pt->adjusted_pf.discard_passdown = false;
  1280. }
  1281. }
  1282. static int bind_control_target(struct pool *pool, struct dm_target *ti)
  1283. {
  1284. struct pool_c *pt = ti->private;
  1285. /*
  1286. * We want to make sure that degraded pools are never upgraded.
  1287. */
  1288. enum pool_mode old_mode = pool->pf.mode;
  1289. enum pool_mode new_mode = pt->adjusted_pf.mode;
  1290. if (old_mode > new_mode)
  1291. new_mode = old_mode;
  1292. pool->ti = ti;
  1293. pool->low_water_blocks = pt->low_water_blocks;
  1294. pool->pf = pt->adjusted_pf;
  1295. set_pool_mode(pool, new_mode);
  1296. return 0;
  1297. }
  1298. static void unbind_control_target(struct pool *pool, struct dm_target *ti)
  1299. {
  1300. if (pool->ti == ti)
  1301. pool->ti = NULL;
  1302. }
  1303. /*----------------------------------------------------------------
  1304. * Pool creation
  1305. *--------------------------------------------------------------*/
  1306. /* Initialize pool features. */
  1307. static void pool_features_init(struct pool_features *pf)
  1308. {
  1309. pf->mode = PM_WRITE;
  1310. pf->zero_new_blocks = true;
  1311. pf->discard_enabled = true;
  1312. pf->discard_passdown = true;
  1313. }
  1314. static void __pool_destroy(struct pool *pool)
  1315. {
  1316. __pool_table_remove(pool);
  1317. if (dm_pool_metadata_close(pool->pmd) < 0)
  1318. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1319. dm_bio_prison_destroy(pool->prison);
  1320. dm_kcopyd_client_destroy(pool->copier);
  1321. if (pool->wq)
  1322. destroy_workqueue(pool->wq);
  1323. if (pool->next_mapping)
  1324. mempool_free(pool->next_mapping, pool->mapping_pool);
  1325. mempool_destroy(pool->mapping_pool);
  1326. dm_deferred_set_destroy(pool->shared_read_ds);
  1327. dm_deferred_set_destroy(pool->all_io_ds);
  1328. kfree(pool);
  1329. }
  1330. static struct kmem_cache *_new_mapping_cache;
  1331. static struct pool *pool_create(struct mapped_device *pool_md,
  1332. struct block_device *metadata_dev,
  1333. unsigned long block_size,
  1334. int read_only, char **error)
  1335. {
  1336. int r;
  1337. void *err_p;
  1338. struct pool *pool;
  1339. struct dm_pool_metadata *pmd;
  1340. bool format_device = read_only ? false : true;
  1341. pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
  1342. if (IS_ERR(pmd)) {
  1343. *error = "Error creating metadata object";
  1344. return (struct pool *)pmd;
  1345. }
  1346. pool = kmalloc(sizeof(*pool), GFP_KERNEL);
  1347. if (!pool) {
  1348. *error = "Error allocating memory for pool";
  1349. err_p = ERR_PTR(-ENOMEM);
  1350. goto bad_pool;
  1351. }
  1352. pool->pmd = pmd;
  1353. pool->sectors_per_block = block_size;
  1354. if (block_size & (block_size - 1))
  1355. pool->sectors_per_block_shift = -1;
  1356. else
  1357. pool->sectors_per_block_shift = __ffs(block_size);
  1358. pool->low_water_blocks = 0;
  1359. pool_features_init(&pool->pf);
  1360. pool->prison = dm_bio_prison_create(PRISON_CELLS);
  1361. if (!pool->prison) {
  1362. *error = "Error creating pool's bio prison";
  1363. err_p = ERR_PTR(-ENOMEM);
  1364. goto bad_prison;
  1365. }
  1366. pool->copier = dm_kcopyd_client_create();
  1367. if (IS_ERR(pool->copier)) {
  1368. r = PTR_ERR(pool->copier);
  1369. *error = "Error creating pool's kcopyd client";
  1370. err_p = ERR_PTR(r);
  1371. goto bad_kcopyd_client;
  1372. }
  1373. /*
  1374. * Create singlethreaded workqueue that will service all devices
  1375. * that use this metadata.
  1376. */
  1377. pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
  1378. if (!pool->wq) {
  1379. *error = "Error creating pool's workqueue";
  1380. err_p = ERR_PTR(-ENOMEM);
  1381. goto bad_wq;
  1382. }
  1383. INIT_WORK(&pool->worker, do_worker);
  1384. INIT_DELAYED_WORK(&pool->waker, do_waker);
  1385. spin_lock_init(&pool->lock);
  1386. bio_list_init(&pool->deferred_bios);
  1387. bio_list_init(&pool->deferred_flush_bios);
  1388. INIT_LIST_HEAD(&pool->prepared_mappings);
  1389. INIT_LIST_HEAD(&pool->prepared_discards);
  1390. pool->low_water_triggered = 0;
  1391. pool->no_free_space = 0;
  1392. bio_list_init(&pool->retry_on_resume_list);
  1393. pool->shared_read_ds = dm_deferred_set_create();
  1394. if (!pool->shared_read_ds) {
  1395. *error = "Error creating pool's shared read deferred set";
  1396. err_p = ERR_PTR(-ENOMEM);
  1397. goto bad_shared_read_ds;
  1398. }
  1399. pool->all_io_ds = dm_deferred_set_create();
  1400. if (!pool->all_io_ds) {
  1401. *error = "Error creating pool's all io deferred set";
  1402. err_p = ERR_PTR(-ENOMEM);
  1403. goto bad_all_io_ds;
  1404. }
  1405. pool->next_mapping = NULL;
  1406. pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
  1407. _new_mapping_cache);
  1408. if (!pool->mapping_pool) {
  1409. *error = "Error creating pool's mapping mempool";
  1410. err_p = ERR_PTR(-ENOMEM);
  1411. goto bad_mapping_pool;
  1412. }
  1413. pool->ref_count = 1;
  1414. pool->last_commit_jiffies = jiffies;
  1415. pool->pool_md = pool_md;
  1416. pool->md_dev = metadata_dev;
  1417. __pool_table_insert(pool);
  1418. return pool;
  1419. bad_mapping_pool:
  1420. dm_deferred_set_destroy(pool->all_io_ds);
  1421. bad_all_io_ds:
  1422. dm_deferred_set_destroy(pool->shared_read_ds);
  1423. bad_shared_read_ds:
  1424. destroy_workqueue(pool->wq);
  1425. bad_wq:
  1426. dm_kcopyd_client_destroy(pool->copier);
  1427. bad_kcopyd_client:
  1428. dm_bio_prison_destroy(pool->prison);
  1429. bad_prison:
  1430. kfree(pool);
  1431. bad_pool:
  1432. if (dm_pool_metadata_close(pmd))
  1433. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1434. return err_p;
  1435. }
  1436. static void __pool_inc(struct pool *pool)
  1437. {
  1438. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1439. pool->ref_count++;
  1440. }
  1441. static void __pool_dec(struct pool *pool)
  1442. {
  1443. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1444. BUG_ON(!pool->ref_count);
  1445. if (!--pool->ref_count)
  1446. __pool_destroy(pool);
  1447. }
  1448. static struct pool *__pool_find(struct mapped_device *pool_md,
  1449. struct block_device *metadata_dev,
  1450. unsigned long block_size, int read_only,
  1451. char **error, int *created)
  1452. {
  1453. struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
  1454. if (pool) {
  1455. if (pool->pool_md != pool_md) {
  1456. *error = "metadata device already in use by a pool";
  1457. return ERR_PTR(-EBUSY);
  1458. }
  1459. __pool_inc(pool);
  1460. } else {
  1461. pool = __pool_table_lookup(pool_md);
  1462. if (pool) {
  1463. if (pool->md_dev != metadata_dev) {
  1464. *error = "different pool cannot replace a pool";
  1465. return ERR_PTR(-EINVAL);
  1466. }
  1467. __pool_inc(pool);
  1468. } else {
  1469. pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
  1470. *created = 1;
  1471. }
  1472. }
  1473. return pool;
  1474. }
  1475. /*----------------------------------------------------------------
  1476. * Pool target methods
  1477. *--------------------------------------------------------------*/
  1478. static void pool_dtr(struct dm_target *ti)
  1479. {
  1480. struct pool_c *pt = ti->private;
  1481. mutex_lock(&dm_thin_pool_table.mutex);
  1482. unbind_control_target(pt->pool, ti);
  1483. __pool_dec(pt->pool);
  1484. dm_put_device(ti, pt->metadata_dev);
  1485. dm_put_device(ti, pt->data_dev);
  1486. kfree(pt);
  1487. mutex_unlock(&dm_thin_pool_table.mutex);
  1488. }
  1489. static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
  1490. struct dm_target *ti)
  1491. {
  1492. int r;
  1493. unsigned argc;
  1494. const char *arg_name;
  1495. static struct dm_arg _args[] = {
  1496. {0, 3, "Invalid number of pool feature arguments"},
  1497. };
  1498. /*
  1499. * No feature arguments supplied.
  1500. */
  1501. if (!as->argc)
  1502. return 0;
  1503. r = dm_read_arg_group(_args, as, &argc, &ti->error);
  1504. if (r)
  1505. return -EINVAL;
  1506. while (argc && !r) {
  1507. arg_name = dm_shift_arg(as);
  1508. argc--;
  1509. if (!strcasecmp(arg_name, "skip_block_zeroing"))
  1510. pf->zero_new_blocks = false;
  1511. else if (!strcasecmp(arg_name, "ignore_discard"))
  1512. pf->discard_enabled = false;
  1513. else if (!strcasecmp(arg_name, "no_discard_passdown"))
  1514. pf->discard_passdown = false;
  1515. else if (!strcasecmp(arg_name, "read_only"))
  1516. pf->mode = PM_READ_ONLY;
  1517. else {
  1518. ti->error = "Unrecognised pool feature requested";
  1519. r = -EINVAL;
  1520. break;
  1521. }
  1522. }
  1523. return r;
  1524. }
  1525. /*
  1526. * thin-pool <metadata dev> <data dev>
  1527. * <data block size (sectors)>
  1528. * <low water mark (blocks)>
  1529. * [<#feature args> [<arg>]*]
  1530. *
  1531. * Optional feature arguments are:
  1532. * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
  1533. * ignore_discard: disable discard
  1534. * no_discard_passdown: don't pass discards down to the data device
  1535. */
  1536. static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1537. {
  1538. int r, pool_created = 0;
  1539. struct pool_c *pt;
  1540. struct pool *pool;
  1541. struct pool_features pf;
  1542. struct dm_arg_set as;
  1543. struct dm_dev *data_dev;
  1544. unsigned long block_size;
  1545. dm_block_t low_water_blocks;
  1546. struct dm_dev *metadata_dev;
  1547. sector_t metadata_dev_size;
  1548. char b[BDEVNAME_SIZE];
  1549. /*
  1550. * FIXME Remove validation from scope of lock.
  1551. */
  1552. mutex_lock(&dm_thin_pool_table.mutex);
  1553. if (argc < 4) {
  1554. ti->error = "Invalid argument count";
  1555. r = -EINVAL;
  1556. goto out_unlock;
  1557. }
  1558. as.argc = argc;
  1559. as.argv = argv;
  1560. r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
  1561. if (r) {
  1562. ti->error = "Error opening metadata block device";
  1563. goto out_unlock;
  1564. }
  1565. metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
  1566. if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
  1567. DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
  1568. bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
  1569. r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
  1570. if (r) {
  1571. ti->error = "Error getting data device";
  1572. goto out_metadata;
  1573. }
  1574. if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
  1575. block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
  1576. block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
  1577. block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
  1578. ti->error = "Invalid block size";
  1579. r = -EINVAL;
  1580. goto out;
  1581. }
  1582. if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
  1583. ti->error = "Invalid low water mark";
  1584. r = -EINVAL;
  1585. goto out;
  1586. }
  1587. /*
  1588. * Set default pool features.
  1589. */
  1590. pool_features_init(&pf);
  1591. dm_consume_args(&as, 4);
  1592. r = parse_pool_features(&as, &pf, ti);
  1593. if (r)
  1594. goto out;
  1595. pt = kzalloc(sizeof(*pt), GFP_KERNEL);
  1596. if (!pt) {
  1597. r = -ENOMEM;
  1598. goto out;
  1599. }
  1600. pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
  1601. block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
  1602. if (IS_ERR(pool)) {
  1603. r = PTR_ERR(pool);
  1604. goto out_free_pt;
  1605. }
  1606. /*
  1607. * 'pool_created' reflects whether this is the first table load.
  1608. * Top level discard support is not allowed to be changed after
  1609. * initial load. This would require a pool reload to trigger thin
  1610. * device changes.
  1611. */
  1612. if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
  1613. ti->error = "Discard support cannot be disabled once enabled";
  1614. r = -EINVAL;
  1615. goto out_flags_changed;
  1616. }
  1617. pt->pool = pool;
  1618. pt->ti = ti;
  1619. pt->metadata_dev = metadata_dev;
  1620. pt->data_dev = data_dev;
  1621. pt->low_water_blocks = low_water_blocks;
  1622. pt->adjusted_pf = pt->requested_pf = pf;
  1623. ti->num_flush_requests = 1;
  1624. /*
  1625. * Only need to enable discards if the pool should pass
  1626. * them down to the data device. The thin device's discard
  1627. * processing will cause mappings to be removed from the btree.
  1628. */
  1629. if (pf.discard_enabled && pf.discard_passdown) {
  1630. ti->num_discard_requests = 1;
  1631. /*
  1632. * Setting 'discards_supported' circumvents the normal
  1633. * stacking of discard limits (this keeps the pool and
  1634. * thin devices' discard limits consistent).
  1635. */
  1636. ti->discards_supported = true;
  1637. ti->discard_zeroes_data_unsupported = true;
  1638. }
  1639. ti->private = pt;
  1640. pt->callbacks.congested_fn = pool_is_congested;
  1641. dm_table_add_target_callbacks(ti->table, &pt->callbacks);
  1642. mutex_unlock(&dm_thin_pool_table.mutex);
  1643. return 0;
  1644. out_flags_changed:
  1645. __pool_dec(pool);
  1646. out_free_pt:
  1647. kfree(pt);
  1648. out:
  1649. dm_put_device(ti, data_dev);
  1650. out_metadata:
  1651. dm_put_device(ti, metadata_dev);
  1652. out_unlock:
  1653. mutex_unlock(&dm_thin_pool_table.mutex);
  1654. return r;
  1655. }
  1656. static int pool_map(struct dm_target *ti, struct bio *bio)
  1657. {
  1658. int r;
  1659. struct pool_c *pt = ti->private;
  1660. struct pool *pool = pt->pool;
  1661. unsigned long flags;
  1662. /*
  1663. * As this is a singleton target, ti->begin is always zero.
  1664. */
  1665. spin_lock_irqsave(&pool->lock, flags);
  1666. bio->bi_bdev = pt->data_dev->bdev;
  1667. r = DM_MAPIO_REMAPPED;
  1668. spin_unlock_irqrestore(&pool->lock, flags);
  1669. return r;
  1670. }
  1671. /*
  1672. * Retrieves the number of blocks of the data device from
  1673. * the superblock and compares it to the actual device size,
  1674. * thus resizing the data device in case it has grown.
  1675. *
  1676. * This both copes with opening preallocated data devices in the ctr
  1677. * being followed by a resume
  1678. * -and-
  1679. * calling the resume method individually after userspace has
  1680. * grown the data device in reaction to a table event.
  1681. */
  1682. static int pool_preresume(struct dm_target *ti)
  1683. {
  1684. int r;
  1685. struct pool_c *pt = ti->private;
  1686. struct pool *pool = pt->pool;
  1687. sector_t data_size = ti->len;
  1688. dm_block_t sb_data_size;
  1689. /*
  1690. * Take control of the pool object.
  1691. */
  1692. r = bind_control_target(pool, ti);
  1693. if (r)
  1694. return r;
  1695. (void) sector_div(data_size, pool->sectors_per_block);
  1696. r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
  1697. if (r) {
  1698. DMERR("failed to retrieve data device size");
  1699. return r;
  1700. }
  1701. if (data_size < sb_data_size) {
  1702. DMERR("pool target too small, is %llu blocks (expected %llu)",
  1703. (unsigned long long)data_size, sb_data_size);
  1704. return -EINVAL;
  1705. } else if (data_size > sb_data_size) {
  1706. r = dm_pool_resize_data_dev(pool->pmd, data_size);
  1707. if (r) {
  1708. DMERR("failed to resize data device");
  1709. /* FIXME Stricter than necessary: Rollback transaction instead here */
  1710. set_pool_mode(pool, PM_READ_ONLY);
  1711. return r;
  1712. }
  1713. (void) commit_or_fallback(pool);
  1714. }
  1715. return 0;
  1716. }
  1717. static void pool_resume(struct dm_target *ti)
  1718. {
  1719. struct pool_c *pt = ti->private;
  1720. struct pool *pool = pt->pool;
  1721. unsigned long flags;
  1722. spin_lock_irqsave(&pool->lock, flags);
  1723. pool->low_water_triggered = 0;
  1724. pool->no_free_space = 0;
  1725. __requeue_bios(pool);
  1726. spin_unlock_irqrestore(&pool->lock, flags);
  1727. do_waker(&pool->waker.work);
  1728. }
  1729. static void pool_postsuspend(struct dm_target *ti)
  1730. {
  1731. struct pool_c *pt = ti->private;
  1732. struct pool *pool = pt->pool;
  1733. cancel_delayed_work(&pool->waker);
  1734. flush_workqueue(pool->wq);
  1735. (void) commit_or_fallback(pool);
  1736. }
  1737. static int check_arg_count(unsigned argc, unsigned args_required)
  1738. {
  1739. if (argc != args_required) {
  1740. DMWARN("Message received with %u arguments instead of %u.",
  1741. argc, args_required);
  1742. return -EINVAL;
  1743. }
  1744. return 0;
  1745. }
  1746. static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
  1747. {
  1748. if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
  1749. *dev_id <= MAX_DEV_ID)
  1750. return 0;
  1751. if (warning)
  1752. DMWARN("Message received with invalid device id: %s", arg);
  1753. return -EINVAL;
  1754. }
  1755. static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
  1756. {
  1757. dm_thin_id dev_id;
  1758. int r;
  1759. r = check_arg_count(argc, 2);
  1760. if (r)
  1761. return r;
  1762. r = read_dev_id(argv[1], &dev_id, 1);
  1763. if (r)
  1764. return r;
  1765. r = dm_pool_create_thin(pool->pmd, dev_id);
  1766. if (r) {
  1767. DMWARN("Creation of new thinly-provisioned device with id %s failed.",
  1768. argv[1]);
  1769. return r;
  1770. }
  1771. return 0;
  1772. }
  1773. static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1774. {
  1775. dm_thin_id dev_id;
  1776. dm_thin_id origin_dev_id;
  1777. int r;
  1778. r = check_arg_count(argc, 3);
  1779. if (r)
  1780. return r;
  1781. r = read_dev_id(argv[1], &dev_id, 1);
  1782. if (r)
  1783. return r;
  1784. r = read_dev_id(argv[2], &origin_dev_id, 1);
  1785. if (r)
  1786. return r;
  1787. r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
  1788. if (r) {
  1789. DMWARN("Creation of new snapshot %s of device %s failed.",
  1790. argv[1], argv[2]);
  1791. return r;
  1792. }
  1793. return 0;
  1794. }
  1795. static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
  1796. {
  1797. dm_thin_id dev_id;
  1798. int r;
  1799. r = check_arg_count(argc, 2);
  1800. if (r)
  1801. return r;
  1802. r = read_dev_id(argv[1], &dev_id, 1);
  1803. if (r)
  1804. return r;
  1805. r = dm_pool_delete_thin_device(pool->pmd, dev_id);
  1806. if (r)
  1807. DMWARN("Deletion of thin device %s failed.", argv[1]);
  1808. return r;
  1809. }
  1810. static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
  1811. {
  1812. dm_thin_id old_id, new_id;
  1813. int r;
  1814. r = check_arg_count(argc, 3);
  1815. if (r)
  1816. return r;
  1817. if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
  1818. DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
  1819. return -EINVAL;
  1820. }
  1821. if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
  1822. DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
  1823. return -EINVAL;
  1824. }
  1825. r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
  1826. if (r) {
  1827. DMWARN("Failed to change transaction id from %s to %s.",
  1828. argv[1], argv[2]);
  1829. return r;
  1830. }
  1831. return 0;
  1832. }
  1833. static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1834. {
  1835. int r;
  1836. r = check_arg_count(argc, 1);
  1837. if (r)
  1838. return r;
  1839. (void) commit_or_fallback(pool);
  1840. r = dm_pool_reserve_metadata_snap(pool->pmd);
  1841. if (r)
  1842. DMWARN("reserve_metadata_snap message failed.");
  1843. return r;
  1844. }
  1845. static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1846. {
  1847. int r;
  1848. r = check_arg_count(argc, 1);
  1849. if (r)
  1850. return r;
  1851. r = dm_pool_release_metadata_snap(pool->pmd);
  1852. if (r)
  1853. DMWARN("release_metadata_snap message failed.");
  1854. return r;
  1855. }
  1856. /*
  1857. * Messages supported:
  1858. * create_thin <dev_id>
  1859. * create_snap <dev_id> <origin_id>
  1860. * delete <dev_id>
  1861. * trim <dev_id> <new_size_in_sectors>
  1862. * set_transaction_id <current_trans_id> <new_trans_id>
  1863. * reserve_metadata_snap
  1864. * release_metadata_snap
  1865. */
  1866. static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
  1867. {
  1868. int r = -EINVAL;
  1869. struct pool_c *pt = ti->private;
  1870. struct pool *pool = pt->pool;
  1871. if (!strcasecmp(argv[0], "create_thin"))
  1872. r = process_create_thin_mesg(argc, argv, pool);
  1873. else if (!strcasecmp(argv[0], "create_snap"))
  1874. r = process_create_snap_mesg(argc, argv, pool);
  1875. else if (!strcasecmp(argv[0], "delete"))
  1876. r = process_delete_mesg(argc, argv, pool);
  1877. else if (!strcasecmp(argv[0], "set_transaction_id"))
  1878. r = process_set_transaction_id_mesg(argc, argv, pool);
  1879. else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
  1880. r = process_reserve_metadata_snap_mesg(argc, argv, pool);
  1881. else if (!strcasecmp(argv[0], "release_metadata_snap"))
  1882. r = process_release_metadata_snap_mesg(argc, argv, pool);
  1883. else
  1884. DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
  1885. if (!r)
  1886. (void) commit_or_fallback(pool);
  1887. return r;
  1888. }
  1889. static void emit_flags(struct pool_features *pf, char *result,
  1890. unsigned sz, unsigned maxlen)
  1891. {
  1892. unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
  1893. !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
  1894. DMEMIT("%u ", count);
  1895. if (!pf->zero_new_blocks)
  1896. DMEMIT("skip_block_zeroing ");
  1897. if (!pf->discard_enabled)
  1898. DMEMIT("ignore_discard ");
  1899. if (!pf->discard_passdown)
  1900. DMEMIT("no_discard_passdown ");
  1901. if (pf->mode == PM_READ_ONLY)
  1902. DMEMIT("read_only ");
  1903. }
  1904. /*
  1905. * Status line is:
  1906. * <transaction id> <used metadata sectors>/<total metadata sectors>
  1907. * <used data sectors>/<total data sectors> <held metadata root>
  1908. */
  1909. static int pool_status(struct dm_target *ti, status_type_t type,
  1910. unsigned status_flags, char *result, unsigned maxlen)
  1911. {
  1912. int r;
  1913. unsigned sz = 0;
  1914. uint64_t transaction_id;
  1915. dm_block_t nr_free_blocks_data;
  1916. dm_block_t nr_free_blocks_metadata;
  1917. dm_block_t nr_blocks_data;
  1918. dm_block_t nr_blocks_metadata;
  1919. dm_block_t held_root;
  1920. char buf[BDEVNAME_SIZE];
  1921. char buf2[BDEVNAME_SIZE];
  1922. struct pool_c *pt = ti->private;
  1923. struct pool *pool = pt->pool;
  1924. switch (type) {
  1925. case STATUSTYPE_INFO:
  1926. if (get_pool_mode(pool) == PM_FAIL) {
  1927. DMEMIT("Fail");
  1928. break;
  1929. }
  1930. /* Commit to ensure statistics aren't out-of-date */
  1931. if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
  1932. (void) commit_or_fallback(pool);
  1933. r = dm_pool_get_metadata_transaction_id(pool->pmd,
  1934. &transaction_id);
  1935. if (r)
  1936. return r;
  1937. r = dm_pool_get_free_metadata_block_count(pool->pmd,
  1938. &nr_free_blocks_metadata);
  1939. if (r)
  1940. return r;
  1941. r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
  1942. if (r)
  1943. return r;
  1944. r = dm_pool_get_free_block_count(pool->pmd,
  1945. &nr_free_blocks_data);
  1946. if (r)
  1947. return r;
  1948. r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
  1949. if (r)
  1950. return r;
  1951. r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
  1952. if (r)
  1953. return r;
  1954. DMEMIT("%llu %llu/%llu %llu/%llu ",
  1955. (unsigned long long)transaction_id,
  1956. (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
  1957. (unsigned long long)nr_blocks_metadata,
  1958. (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
  1959. (unsigned long long)nr_blocks_data);
  1960. if (held_root)
  1961. DMEMIT("%llu ", held_root);
  1962. else
  1963. DMEMIT("- ");
  1964. if (pool->pf.mode == PM_READ_ONLY)
  1965. DMEMIT("ro ");
  1966. else
  1967. DMEMIT("rw ");
  1968. if (!pool->pf.discard_enabled)
  1969. DMEMIT("ignore_discard");
  1970. else if (pool->pf.discard_passdown)
  1971. DMEMIT("discard_passdown");
  1972. else
  1973. DMEMIT("no_discard_passdown");
  1974. break;
  1975. case STATUSTYPE_TABLE:
  1976. DMEMIT("%s %s %lu %llu ",
  1977. format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
  1978. format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
  1979. (unsigned long)pool->sectors_per_block,
  1980. (unsigned long long)pt->low_water_blocks);
  1981. emit_flags(&pt->requested_pf, result, sz, maxlen);
  1982. break;
  1983. }
  1984. return 0;
  1985. }
  1986. static int pool_iterate_devices(struct dm_target *ti,
  1987. iterate_devices_callout_fn fn, void *data)
  1988. {
  1989. struct pool_c *pt = ti->private;
  1990. return fn(ti, pt->data_dev, 0, ti->len, data);
  1991. }
  1992. static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
  1993. struct bio_vec *biovec, int max_size)
  1994. {
  1995. struct pool_c *pt = ti->private;
  1996. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1997. if (!q->merge_bvec_fn)
  1998. return max_size;
  1999. bvm->bi_bdev = pt->data_dev->bdev;
  2000. return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
  2001. }
  2002. static bool block_size_is_power_of_two(struct pool *pool)
  2003. {
  2004. return pool->sectors_per_block_shift >= 0;
  2005. }
  2006. static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
  2007. {
  2008. struct pool *pool = pt->pool;
  2009. struct queue_limits *data_limits;
  2010. limits->max_discard_sectors = pool->sectors_per_block;
  2011. /*
  2012. * discard_granularity is just a hint, and not enforced.
  2013. */
  2014. if (pt->adjusted_pf.discard_passdown) {
  2015. data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
  2016. limits->discard_granularity = data_limits->discard_granularity;
  2017. } else if (block_size_is_power_of_two(pool))
  2018. limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
  2019. else
  2020. /*
  2021. * Use largest power of 2 that is a factor of sectors_per_block
  2022. * but at least DATA_DEV_BLOCK_SIZE_MIN_SECTORS.
  2023. */
  2024. limits->discard_granularity = max(1 << (ffs(pool->sectors_per_block) - 1),
  2025. DATA_DEV_BLOCK_SIZE_MIN_SECTORS) << SECTOR_SHIFT;
  2026. }
  2027. static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2028. {
  2029. struct pool_c *pt = ti->private;
  2030. struct pool *pool = pt->pool;
  2031. blk_limits_io_min(limits, 0);
  2032. blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
  2033. /*
  2034. * pt->adjusted_pf is a staging area for the actual features to use.
  2035. * They get transferred to the live pool in bind_control_target()
  2036. * called from pool_preresume().
  2037. */
  2038. if (!pt->adjusted_pf.discard_enabled)
  2039. return;
  2040. disable_passdown_if_not_supported(pt);
  2041. set_discard_limits(pt, limits);
  2042. }
  2043. static struct target_type pool_target = {
  2044. .name = "thin-pool",
  2045. .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
  2046. DM_TARGET_IMMUTABLE,
  2047. .version = {1, 6, 0},
  2048. .module = THIS_MODULE,
  2049. .ctr = pool_ctr,
  2050. .dtr = pool_dtr,
  2051. .map = pool_map,
  2052. .postsuspend = pool_postsuspend,
  2053. .preresume = pool_preresume,
  2054. .resume = pool_resume,
  2055. .message = pool_message,
  2056. .status = pool_status,
  2057. .merge = pool_merge,
  2058. .iterate_devices = pool_iterate_devices,
  2059. .io_hints = pool_io_hints,
  2060. };
  2061. /*----------------------------------------------------------------
  2062. * Thin target methods
  2063. *--------------------------------------------------------------*/
  2064. static void thin_dtr(struct dm_target *ti)
  2065. {
  2066. struct thin_c *tc = ti->private;
  2067. mutex_lock(&dm_thin_pool_table.mutex);
  2068. __pool_dec(tc->pool);
  2069. dm_pool_close_thin_device(tc->td);
  2070. dm_put_device(ti, tc->pool_dev);
  2071. if (tc->origin_dev)
  2072. dm_put_device(ti, tc->origin_dev);
  2073. kfree(tc);
  2074. mutex_unlock(&dm_thin_pool_table.mutex);
  2075. }
  2076. /*
  2077. * Thin target parameters:
  2078. *
  2079. * <pool_dev> <dev_id> [origin_dev]
  2080. *
  2081. * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
  2082. * dev_id: the internal device identifier
  2083. * origin_dev: a device external to the pool that should act as the origin
  2084. *
  2085. * If the pool device has discards disabled, they get disabled for the thin
  2086. * device as well.
  2087. */
  2088. static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
  2089. {
  2090. int r;
  2091. struct thin_c *tc;
  2092. struct dm_dev *pool_dev, *origin_dev;
  2093. struct mapped_device *pool_md;
  2094. mutex_lock(&dm_thin_pool_table.mutex);
  2095. if (argc != 2 && argc != 3) {
  2096. ti->error = "Invalid argument count";
  2097. r = -EINVAL;
  2098. goto out_unlock;
  2099. }
  2100. tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
  2101. if (!tc) {
  2102. ti->error = "Out of memory";
  2103. r = -ENOMEM;
  2104. goto out_unlock;
  2105. }
  2106. if (argc == 3) {
  2107. r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
  2108. if (r) {
  2109. ti->error = "Error opening origin device";
  2110. goto bad_origin_dev;
  2111. }
  2112. tc->origin_dev = origin_dev;
  2113. }
  2114. r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
  2115. if (r) {
  2116. ti->error = "Error opening pool device";
  2117. goto bad_pool_dev;
  2118. }
  2119. tc->pool_dev = pool_dev;
  2120. if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
  2121. ti->error = "Invalid device id";
  2122. r = -EINVAL;
  2123. goto bad_common;
  2124. }
  2125. pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
  2126. if (!pool_md) {
  2127. ti->error = "Couldn't get pool mapped device";
  2128. r = -EINVAL;
  2129. goto bad_common;
  2130. }
  2131. tc->pool = __pool_table_lookup(pool_md);
  2132. if (!tc->pool) {
  2133. ti->error = "Couldn't find pool object";
  2134. r = -EINVAL;
  2135. goto bad_pool_lookup;
  2136. }
  2137. __pool_inc(tc->pool);
  2138. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2139. ti->error = "Couldn't open thin device, Pool is in fail mode";
  2140. goto bad_thin_open;
  2141. }
  2142. r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
  2143. if (r) {
  2144. ti->error = "Couldn't open thin internal device";
  2145. goto bad_thin_open;
  2146. }
  2147. r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
  2148. if (r)
  2149. goto bad_thin_open;
  2150. ti->num_flush_requests = 1;
  2151. ti->flush_supported = true;
  2152. ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
  2153. /* In case the pool supports discards, pass them on. */
  2154. if (tc->pool->pf.discard_enabled) {
  2155. ti->discards_supported = true;
  2156. ti->num_discard_requests = 1;
  2157. ti->discard_zeroes_data_unsupported = true;
  2158. /* Discard requests must be split on a block boundary */
  2159. ti->split_discard_requests = true;
  2160. }
  2161. dm_put(pool_md);
  2162. mutex_unlock(&dm_thin_pool_table.mutex);
  2163. return 0;
  2164. bad_thin_open:
  2165. __pool_dec(tc->pool);
  2166. bad_pool_lookup:
  2167. dm_put(pool_md);
  2168. bad_common:
  2169. dm_put_device(ti, tc->pool_dev);
  2170. bad_pool_dev:
  2171. if (tc->origin_dev)
  2172. dm_put_device(ti, tc->origin_dev);
  2173. bad_origin_dev:
  2174. kfree(tc);
  2175. out_unlock:
  2176. mutex_unlock(&dm_thin_pool_table.mutex);
  2177. return r;
  2178. }
  2179. static int thin_map(struct dm_target *ti, struct bio *bio)
  2180. {
  2181. bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
  2182. return thin_bio_map(ti, bio);
  2183. }
  2184. static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
  2185. {
  2186. unsigned long flags;
  2187. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  2188. struct list_head work;
  2189. struct dm_thin_new_mapping *m, *tmp;
  2190. struct pool *pool = h->tc->pool;
  2191. if (h->shared_read_entry) {
  2192. INIT_LIST_HEAD(&work);
  2193. dm_deferred_entry_dec(h->shared_read_entry, &work);
  2194. spin_lock_irqsave(&pool->lock, flags);
  2195. list_for_each_entry_safe(m, tmp, &work, list) {
  2196. list_del(&m->list);
  2197. m->quiesced = 1;
  2198. __maybe_add_mapping(m);
  2199. }
  2200. spin_unlock_irqrestore(&pool->lock, flags);
  2201. }
  2202. if (h->all_io_entry) {
  2203. INIT_LIST_HEAD(&work);
  2204. dm_deferred_entry_dec(h->all_io_entry, &work);
  2205. if (!list_empty(&work)) {
  2206. spin_lock_irqsave(&pool->lock, flags);
  2207. list_for_each_entry_safe(m, tmp, &work, list)
  2208. list_add(&m->list, &pool->prepared_discards);
  2209. spin_unlock_irqrestore(&pool->lock, flags);
  2210. wake_worker(pool);
  2211. }
  2212. }
  2213. return 0;
  2214. }
  2215. static void thin_postsuspend(struct dm_target *ti)
  2216. {
  2217. if (dm_noflush_suspending(ti))
  2218. requeue_io((struct thin_c *)ti->private);
  2219. }
  2220. /*
  2221. * <nr mapped sectors> <highest mapped sector>
  2222. */
  2223. static int thin_status(struct dm_target *ti, status_type_t type,
  2224. unsigned status_flags, char *result, unsigned maxlen)
  2225. {
  2226. int r;
  2227. ssize_t sz = 0;
  2228. dm_block_t mapped, highest;
  2229. char buf[BDEVNAME_SIZE];
  2230. struct thin_c *tc = ti->private;
  2231. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2232. DMEMIT("Fail");
  2233. return 0;
  2234. }
  2235. if (!tc->td)
  2236. DMEMIT("-");
  2237. else {
  2238. switch (type) {
  2239. case STATUSTYPE_INFO:
  2240. r = dm_thin_get_mapped_count(tc->td, &mapped);
  2241. if (r)
  2242. return r;
  2243. r = dm_thin_get_highest_mapped_block(tc->td, &highest);
  2244. if (r < 0)
  2245. return r;
  2246. DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
  2247. if (r)
  2248. DMEMIT("%llu", ((highest + 1) *
  2249. tc->pool->sectors_per_block) - 1);
  2250. else
  2251. DMEMIT("-");
  2252. break;
  2253. case STATUSTYPE_TABLE:
  2254. DMEMIT("%s %lu",
  2255. format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
  2256. (unsigned long) tc->dev_id);
  2257. if (tc->origin_dev)
  2258. DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
  2259. break;
  2260. }
  2261. }
  2262. return 0;
  2263. }
  2264. static int thin_iterate_devices(struct dm_target *ti,
  2265. iterate_devices_callout_fn fn, void *data)
  2266. {
  2267. sector_t blocks;
  2268. struct thin_c *tc = ti->private;
  2269. struct pool *pool = tc->pool;
  2270. /*
  2271. * We can't call dm_pool_get_data_dev_size() since that blocks. So
  2272. * we follow a more convoluted path through to the pool's target.
  2273. */
  2274. if (!pool->ti)
  2275. return 0; /* nothing is bound */
  2276. blocks = pool->ti->len;
  2277. (void) sector_div(blocks, pool->sectors_per_block);
  2278. if (blocks)
  2279. return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
  2280. return 0;
  2281. }
  2282. /*
  2283. * A thin device always inherits its queue limits from its pool.
  2284. */
  2285. static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2286. {
  2287. struct thin_c *tc = ti->private;
  2288. *limits = bdev_get_queue(tc->pool_dev->bdev)->limits;
  2289. }
  2290. static struct target_type thin_target = {
  2291. .name = "thin",
  2292. .version = {1, 6, 0},
  2293. .module = THIS_MODULE,
  2294. .ctr = thin_ctr,
  2295. .dtr = thin_dtr,
  2296. .map = thin_map,
  2297. .end_io = thin_endio,
  2298. .postsuspend = thin_postsuspend,
  2299. .status = thin_status,
  2300. .iterate_devices = thin_iterate_devices,
  2301. .io_hints = thin_io_hints,
  2302. };
  2303. /*----------------------------------------------------------------*/
  2304. static int __init dm_thin_init(void)
  2305. {
  2306. int r;
  2307. pool_table_init();
  2308. r = dm_register_target(&thin_target);
  2309. if (r)
  2310. return r;
  2311. r = dm_register_target(&pool_target);
  2312. if (r)
  2313. goto bad_pool_target;
  2314. r = -ENOMEM;
  2315. _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
  2316. if (!_new_mapping_cache)
  2317. goto bad_new_mapping_cache;
  2318. return 0;
  2319. bad_new_mapping_cache:
  2320. dm_unregister_target(&pool_target);
  2321. bad_pool_target:
  2322. dm_unregister_target(&thin_target);
  2323. return r;
  2324. }
  2325. static void dm_thin_exit(void)
  2326. {
  2327. dm_unregister_target(&thin_target);
  2328. dm_unregister_target(&pool_target);
  2329. kmem_cache_destroy(_new_mapping_cache);
  2330. }
  2331. module_init(dm_thin_init);
  2332. module_exit(dm_thin_exit);
  2333. MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
  2334. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2335. MODULE_LICENSE("GPL");