dm-table.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672
  1. /*
  2. * Copyright (C) 2001 Sistina Software (UK) Limited.
  3. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include "dm.h"
  8. #include <linux/module.h>
  9. #include <linux/vmalloc.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/namei.h>
  12. #include <linux/ctype.h>
  13. #include <linux/string.h>
  14. #include <linux/slab.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/mutex.h>
  17. #include <linux/delay.h>
  18. #include <linux/atomic.h>
  19. #define DM_MSG_PREFIX "table"
  20. #define MAX_DEPTH 16
  21. #define NODE_SIZE L1_CACHE_BYTES
  22. #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  23. #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  24. /*
  25. * The table has always exactly one reference from either mapped_device->map
  26. * or hash_cell->new_map. This reference is not counted in table->holders.
  27. * A pair of dm_create_table/dm_destroy_table functions is used for table
  28. * creation/destruction.
  29. *
  30. * Temporary references from the other code increase table->holders. A pair
  31. * of dm_table_get/dm_table_put functions is used to manipulate it.
  32. *
  33. * When the table is about to be destroyed, we wait for table->holders to
  34. * drop to zero.
  35. */
  36. struct dm_table {
  37. struct mapped_device *md;
  38. atomic_t holders;
  39. unsigned type;
  40. /* btree table */
  41. unsigned int depth;
  42. unsigned int counts[MAX_DEPTH]; /* in nodes */
  43. sector_t *index[MAX_DEPTH];
  44. unsigned int num_targets;
  45. unsigned int num_allocated;
  46. sector_t *highs;
  47. struct dm_target *targets;
  48. struct target_type *immutable_target_type;
  49. unsigned integrity_supported:1;
  50. unsigned singleton:1;
  51. /*
  52. * Indicates the rw permissions for the new logical
  53. * device. This should be a combination of FMODE_READ
  54. * and FMODE_WRITE.
  55. */
  56. fmode_t mode;
  57. /* a list of devices used by this table */
  58. struct list_head devices;
  59. /* events get handed up using this callback */
  60. void (*event_fn)(void *);
  61. void *event_context;
  62. struct dm_md_mempools *mempools;
  63. struct list_head target_callbacks;
  64. };
  65. /*
  66. * Similar to ceiling(log_size(n))
  67. */
  68. static unsigned int int_log(unsigned int n, unsigned int base)
  69. {
  70. int result = 0;
  71. while (n > 1) {
  72. n = dm_div_up(n, base);
  73. result++;
  74. }
  75. return result;
  76. }
  77. /*
  78. * Calculate the index of the child node of the n'th node k'th key.
  79. */
  80. static inline unsigned int get_child(unsigned int n, unsigned int k)
  81. {
  82. return (n * CHILDREN_PER_NODE) + k;
  83. }
  84. /*
  85. * Return the n'th node of level l from table t.
  86. */
  87. static inline sector_t *get_node(struct dm_table *t,
  88. unsigned int l, unsigned int n)
  89. {
  90. return t->index[l] + (n * KEYS_PER_NODE);
  91. }
  92. /*
  93. * Return the highest key that you could lookup from the n'th
  94. * node on level l of the btree.
  95. */
  96. static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
  97. {
  98. for (; l < t->depth - 1; l++)
  99. n = get_child(n, CHILDREN_PER_NODE - 1);
  100. if (n >= t->counts[l])
  101. return (sector_t) - 1;
  102. return get_node(t, l, n)[KEYS_PER_NODE - 1];
  103. }
  104. /*
  105. * Fills in a level of the btree based on the highs of the level
  106. * below it.
  107. */
  108. static int setup_btree_index(unsigned int l, struct dm_table *t)
  109. {
  110. unsigned int n, k;
  111. sector_t *node;
  112. for (n = 0U; n < t->counts[l]; n++) {
  113. node = get_node(t, l, n);
  114. for (k = 0U; k < KEYS_PER_NODE; k++)
  115. node[k] = high(t, l + 1, get_child(n, k));
  116. }
  117. return 0;
  118. }
  119. void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
  120. {
  121. unsigned long size;
  122. void *addr;
  123. /*
  124. * Check that we're not going to overflow.
  125. */
  126. if (nmemb > (ULONG_MAX / elem_size))
  127. return NULL;
  128. size = nmemb * elem_size;
  129. addr = vzalloc(size);
  130. return addr;
  131. }
  132. EXPORT_SYMBOL(dm_vcalloc);
  133. /*
  134. * highs, and targets are managed as dynamic arrays during a
  135. * table load.
  136. */
  137. static int alloc_targets(struct dm_table *t, unsigned int num)
  138. {
  139. sector_t *n_highs;
  140. struct dm_target *n_targets;
  141. int n = t->num_targets;
  142. /*
  143. * Allocate both the target array and offset array at once.
  144. * Append an empty entry to catch sectors beyond the end of
  145. * the device.
  146. */
  147. n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
  148. sizeof(sector_t));
  149. if (!n_highs)
  150. return -ENOMEM;
  151. n_targets = (struct dm_target *) (n_highs + num);
  152. if (n) {
  153. memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
  154. memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
  155. }
  156. memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
  157. vfree(t->highs);
  158. t->num_allocated = num;
  159. t->highs = n_highs;
  160. t->targets = n_targets;
  161. return 0;
  162. }
  163. int dm_table_create(struct dm_table **result, fmode_t mode,
  164. unsigned num_targets, struct mapped_device *md)
  165. {
  166. struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
  167. if (!t)
  168. return -ENOMEM;
  169. INIT_LIST_HEAD(&t->devices);
  170. INIT_LIST_HEAD(&t->target_callbacks);
  171. atomic_set(&t->holders, 0);
  172. if (!num_targets)
  173. num_targets = KEYS_PER_NODE;
  174. num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
  175. if (alloc_targets(t, num_targets)) {
  176. kfree(t);
  177. t = NULL;
  178. return -ENOMEM;
  179. }
  180. t->mode = mode;
  181. t->md = md;
  182. *result = t;
  183. return 0;
  184. }
  185. static void free_devices(struct list_head *devices)
  186. {
  187. struct list_head *tmp, *next;
  188. list_for_each_safe(tmp, next, devices) {
  189. struct dm_dev_internal *dd =
  190. list_entry(tmp, struct dm_dev_internal, list);
  191. DMWARN("dm_table_destroy: dm_put_device call missing for %s",
  192. dd->dm_dev.name);
  193. kfree(dd);
  194. }
  195. }
  196. void dm_table_destroy(struct dm_table *t)
  197. {
  198. unsigned int i;
  199. if (!t)
  200. return;
  201. while (atomic_read(&t->holders))
  202. msleep(1);
  203. smp_mb();
  204. /* free the indexes */
  205. if (t->depth >= 2)
  206. vfree(t->index[t->depth - 2]);
  207. /* free the targets */
  208. for (i = 0; i < t->num_targets; i++) {
  209. struct dm_target *tgt = t->targets + i;
  210. if (tgt->type->dtr)
  211. tgt->type->dtr(tgt);
  212. dm_put_target_type(tgt->type);
  213. }
  214. vfree(t->highs);
  215. /* free the device list */
  216. free_devices(&t->devices);
  217. dm_free_md_mempools(t->mempools);
  218. kfree(t);
  219. }
  220. void dm_table_get(struct dm_table *t)
  221. {
  222. atomic_inc(&t->holders);
  223. }
  224. EXPORT_SYMBOL(dm_table_get);
  225. void dm_table_put(struct dm_table *t)
  226. {
  227. if (!t)
  228. return;
  229. smp_mb__before_atomic_dec();
  230. atomic_dec(&t->holders);
  231. }
  232. EXPORT_SYMBOL(dm_table_put);
  233. /*
  234. * Checks to see if we need to extend highs or targets.
  235. */
  236. static inline int check_space(struct dm_table *t)
  237. {
  238. if (t->num_targets >= t->num_allocated)
  239. return alloc_targets(t, t->num_allocated * 2);
  240. return 0;
  241. }
  242. /*
  243. * See if we've already got a device in the list.
  244. */
  245. static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
  246. {
  247. struct dm_dev_internal *dd;
  248. list_for_each_entry (dd, l, list)
  249. if (dd->dm_dev.bdev->bd_dev == dev)
  250. return dd;
  251. return NULL;
  252. }
  253. /*
  254. * Open a device so we can use it as a map destination.
  255. */
  256. static int open_dev(struct dm_dev_internal *d, dev_t dev,
  257. struct mapped_device *md)
  258. {
  259. static char *_claim_ptr = "I belong to device-mapper";
  260. struct block_device *bdev;
  261. int r;
  262. BUG_ON(d->dm_dev.bdev);
  263. bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
  264. if (IS_ERR(bdev))
  265. return PTR_ERR(bdev);
  266. r = bd_link_disk_holder(bdev, dm_disk(md));
  267. if (r) {
  268. blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
  269. return r;
  270. }
  271. d->dm_dev.bdev = bdev;
  272. return 0;
  273. }
  274. /*
  275. * Close a device that we've been using.
  276. */
  277. static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
  278. {
  279. if (!d->dm_dev.bdev)
  280. return;
  281. bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
  282. blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
  283. d->dm_dev.bdev = NULL;
  284. }
  285. /*
  286. * If possible, this checks an area of a destination device is invalid.
  287. */
  288. static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
  289. sector_t start, sector_t len, void *data)
  290. {
  291. struct request_queue *q;
  292. struct queue_limits *limits = data;
  293. struct block_device *bdev = dev->bdev;
  294. sector_t dev_size =
  295. i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
  296. unsigned short logical_block_size_sectors =
  297. limits->logical_block_size >> SECTOR_SHIFT;
  298. char b[BDEVNAME_SIZE];
  299. /*
  300. * Some devices exist without request functions,
  301. * such as loop devices not yet bound to backing files.
  302. * Forbid the use of such devices.
  303. */
  304. q = bdev_get_queue(bdev);
  305. if (!q || !q->make_request_fn) {
  306. DMWARN("%s: %s is not yet initialised: "
  307. "start=%llu, len=%llu, dev_size=%llu",
  308. dm_device_name(ti->table->md), bdevname(bdev, b),
  309. (unsigned long long)start,
  310. (unsigned long long)len,
  311. (unsigned long long)dev_size);
  312. return 1;
  313. }
  314. if (!dev_size)
  315. return 0;
  316. if ((start >= dev_size) || (start + len > dev_size)) {
  317. DMWARN("%s: %s too small for target: "
  318. "start=%llu, len=%llu, dev_size=%llu",
  319. dm_device_name(ti->table->md), bdevname(bdev, b),
  320. (unsigned long long)start,
  321. (unsigned long long)len,
  322. (unsigned long long)dev_size);
  323. return 1;
  324. }
  325. if (logical_block_size_sectors <= 1)
  326. return 0;
  327. if (start & (logical_block_size_sectors - 1)) {
  328. DMWARN("%s: start=%llu not aligned to h/w "
  329. "logical block size %u of %s",
  330. dm_device_name(ti->table->md),
  331. (unsigned long long)start,
  332. limits->logical_block_size, bdevname(bdev, b));
  333. return 1;
  334. }
  335. if (len & (logical_block_size_sectors - 1)) {
  336. DMWARN("%s: len=%llu not aligned to h/w "
  337. "logical block size %u of %s",
  338. dm_device_name(ti->table->md),
  339. (unsigned long long)len,
  340. limits->logical_block_size, bdevname(bdev, b));
  341. return 1;
  342. }
  343. return 0;
  344. }
  345. /*
  346. * This upgrades the mode on an already open dm_dev, being
  347. * careful to leave things as they were if we fail to reopen the
  348. * device and not to touch the existing bdev field in case
  349. * it is accessed concurrently inside dm_table_any_congested().
  350. */
  351. static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
  352. struct mapped_device *md)
  353. {
  354. int r;
  355. struct dm_dev_internal dd_new, dd_old;
  356. dd_new = dd_old = *dd;
  357. dd_new.dm_dev.mode |= new_mode;
  358. dd_new.dm_dev.bdev = NULL;
  359. r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
  360. if (r)
  361. return r;
  362. dd->dm_dev.mode |= new_mode;
  363. close_dev(&dd_old, md);
  364. return 0;
  365. }
  366. /*
  367. * Add a device to the list, or just increment the usage count if
  368. * it's already present.
  369. */
  370. int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
  371. struct dm_dev **result)
  372. {
  373. int r;
  374. dev_t uninitialized_var(dev);
  375. struct dm_dev_internal *dd;
  376. unsigned int major, minor;
  377. struct dm_table *t = ti->table;
  378. char dummy;
  379. BUG_ON(!t);
  380. if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
  381. /* Extract the major/minor numbers */
  382. dev = MKDEV(major, minor);
  383. if (MAJOR(dev) != major || MINOR(dev) != minor)
  384. return -EOVERFLOW;
  385. } else {
  386. /* convert the path to a device */
  387. struct block_device *bdev = lookup_bdev(path);
  388. if (IS_ERR(bdev))
  389. return PTR_ERR(bdev);
  390. dev = bdev->bd_dev;
  391. bdput(bdev);
  392. }
  393. dd = find_device(&t->devices, dev);
  394. if (!dd) {
  395. dd = kmalloc(sizeof(*dd), GFP_KERNEL);
  396. if (!dd)
  397. return -ENOMEM;
  398. dd->dm_dev.mode = mode;
  399. dd->dm_dev.bdev = NULL;
  400. if ((r = open_dev(dd, dev, t->md))) {
  401. kfree(dd);
  402. return r;
  403. }
  404. format_dev_t(dd->dm_dev.name, dev);
  405. atomic_set(&dd->count, 0);
  406. list_add(&dd->list, &t->devices);
  407. } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
  408. r = upgrade_mode(dd, mode, t->md);
  409. if (r)
  410. return r;
  411. }
  412. atomic_inc(&dd->count);
  413. *result = &dd->dm_dev;
  414. return 0;
  415. }
  416. EXPORT_SYMBOL(dm_get_device);
  417. int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
  418. sector_t start, sector_t len, void *data)
  419. {
  420. struct queue_limits *limits = data;
  421. struct block_device *bdev = dev->bdev;
  422. struct request_queue *q = bdev_get_queue(bdev);
  423. char b[BDEVNAME_SIZE];
  424. if (unlikely(!q)) {
  425. DMWARN("%s: Cannot set limits for nonexistent device %s",
  426. dm_device_name(ti->table->md), bdevname(bdev, b));
  427. return 0;
  428. }
  429. if (bdev_stack_limits(limits, bdev, start) < 0)
  430. DMWARN("%s: adding target device %s caused an alignment inconsistency: "
  431. "physical_block_size=%u, logical_block_size=%u, "
  432. "alignment_offset=%u, start=%llu",
  433. dm_device_name(ti->table->md), bdevname(bdev, b),
  434. q->limits.physical_block_size,
  435. q->limits.logical_block_size,
  436. q->limits.alignment_offset,
  437. (unsigned long long) start << SECTOR_SHIFT);
  438. /*
  439. * Check if merge fn is supported.
  440. * If not we'll force DM to use PAGE_SIZE or
  441. * smaller I/O, just to be safe.
  442. */
  443. if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
  444. blk_limits_max_hw_sectors(limits,
  445. (unsigned int) (PAGE_SIZE >> 9));
  446. return 0;
  447. }
  448. EXPORT_SYMBOL_GPL(dm_set_device_limits);
  449. /*
  450. * Decrement a device's use count and remove it if necessary.
  451. */
  452. void dm_put_device(struct dm_target *ti, struct dm_dev *d)
  453. {
  454. struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
  455. dm_dev);
  456. if (atomic_dec_and_test(&dd->count)) {
  457. close_dev(dd, ti->table->md);
  458. list_del(&dd->list);
  459. kfree(dd);
  460. }
  461. }
  462. EXPORT_SYMBOL(dm_put_device);
  463. /*
  464. * Checks to see if the target joins onto the end of the table.
  465. */
  466. static int adjoin(struct dm_table *table, struct dm_target *ti)
  467. {
  468. struct dm_target *prev;
  469. if (!table->num_targets)
  470. return !ti->begin;
  471. prev = &table->targets[table->num_targets - 1];
  472. return (ti->begin == (prev->begin + prev->len));
  473. }
  474. /*
  475. * Used to dynamically allocate the arg array.
  476. */
  477. static char **realloc_argv(unsigned *array_size, char **old_argv)
  478. {
  479. char **argv;
  480. unsigned new_size;
  481. new_size = *array_size ? *array_size * 2 : 64;
  482. argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
  483. if (argv) {
  484. memcpy(argv, old_argv, *array_size * sizeof(*argv));
  485. *array_size = new_size;
  486. }
  487. kfree(old_argv);
  488. return argv;
  489. }
  490. /*
  491. * Destructively splits up the argument list to pass to ctr.
  492. */
  493. int dm_split_args(int *argc, char ***argvp, char *input)
  494. {
  495. char *start, *end = input, *out, **argv = NULL;
  496. unsigned array_size = 0;
  497. *argc = 0;
  498. if (!input) {
  499. *argvp = NULL;
  500. return 0;
  501. }
  502. argv = realloc_argv(&array_size, argv);
  503. if (!argv)
  504. return -ENOMEM;
  505. while (1) {
  506. /* Skip whitespace */
  507. start = skip_spaces(end);
  508. if (!*start)
  509. break; /* success, we hit the end */
  510. /* 'out' is used to remove any back-quotes */
  511. end = out = start;
  512. while (*end) {
  513. /* Everything apart from '\0' can be quoted */
  514. if (*end == '\\' && *(end + 1)) {
  515. *out++ = *(end + 1);
  516. end += 2;
  517. continue;
  518. }
  519. if (isspace(*end))
  520. break; /* end of token */
  521. *out++ = *end++;
  522. }
  523. /* have we already filled the array ? */
  524. if ((*argc + 1) > array_size) {
  525. argv = realloc_argv(&array_size, argv);
  526. if (!argv)
  527. return -ENOMEM;
  528. }
  529. /* we know this is whitespace */
  530. if (*end)
  531. end++;
  532. /* terminate the string and put it in the array */
  533. *out = '\0';
  534. argv[*argc] = start;
  535. (*argc)++;
  536. }
  537. *argvp = argv;
  538. return 0;
  539. }
  540. /*
  541. * Impose necessary and sufficient conditions on a devices's table such
  542. * that any incoming bio which respects its logical_block_size can be
  543. * processed successfully. If it falls across the boundary between
  544. * two or more targets, the size of each piece it gets split into must
  545. * be compatible with the logical_block_size of the target processing it.
  546. */
  547. static int validate_hardware_logical_block_alignment(struct dm_table *table,
  548. struct queue_limits *limits)
  549. {
  550. /*
  551. * This function uses arithmetic modulo the logical_block_size
  552. * (in units of 512-byte sectors).
  553. */
  554. unsigned short device_logical_block_size_sects =
  555. limits->logical_block_size >> SECTOR_SHIFT;
  556. /*
  557. * Offset of the start of the next table entry, mod logical_block_size.
  558. */
  559. unsigned short next_target_start = 0;
  560. /*
  561. * Given an aligned bio that extends beyond the end of a
  562. * target, how many sectors must the next target handle?
  563. */
  564. unsigned short remaining = 0;
  565. struct dm_target *uninitialized_var(ti);
  566. struct queue_limits ti_limits;
  567. unsigned i = 0;
  568. /*
  569. * Check each entry in the table in turn.
  570. */
  571. while (i < dm_table_get_num_targets(table)) {
  572. ti = dm_table_get_target(table, i++);
  573. blk_set_stacking_limits(&ti_limits);
  574. /* combine all target devices' limits */
  575. if (ti->type->iterate_devices)
  576. ti->type->iterate_devices(ti, dm_set_device_limits,
  577. &ti_limits);
  578. /*
  579. * If the remaining sectors fall entirely within this
  580. * table entry are they compatible with its logical_block_size?
  581. */
  582. if (remaining < ti->len &&
  583. remaining & ((ti_limits.logical_block_size >>
  584. SECTOR_SHIFT) - 1))
  585. break; /* Error */
  586. next_target_start =
  587. (unsigned short) ((next_target_start + ti->len) &
  588. (device_logical_block_size_sects - 1));
  589. remaining = next_target_start ?
  590. device_logical_block_size_sects - next_target_start : 0;
  591. }
  592. if (remaining) {
  593. DMWARN("%s: table line %u (start sect %llu len %llu) "
  594. "not aligned to h/w logical block size %u",
  595. dm_device_name(table->md), i,
  596. (unsigned long long) ti->begin,
  597. (unsigned long long) ti->len,
  598. limits->logical_block_size);
  599. return -EINVAL;
  600. }
  601. return 0;
  602. }
  603. int dm_table_add_target(struct dm_table *t, const char *type,
  604. sector_t start, sector_t len, char *params)
  605. {
  606. int r = -EINVAL, argc;
  607. char **argv;
  608. struct dm_target *tgt;
  609. if (t->singleton) {
  610. DMERR("%s: target type %s must appear alone in table",
  611. dm_device_name(t->md), t->targets->type->name);
  612. return -EINVAL;
  613. }
  614. if ((r = check_space(t)))
  615. return r;
  616. tgt = t->targets + t->num_targets;
  617. memset(tgt, 0, sizeof(*tgt));
  618. if (!len) {
  619. DMERR("%s: zero-length target", dm_device_name(t->md));
  620. return -EINVAL;
  621. }
  622. tgt->type = dm_get_target_type(type);
  623. if (!tgt->type) {
  624. DMERR("%s: %s: unknown target type", dm_device_name(t->md),
  625. type);
  626. return -EINVAL;
  627. }
  628. if (dm_target_needs_singleton(tgt->type)) {
  629. if (t->num_targets) {
  630. DMERR("%s: target type %s must appear alone in table",
  631. dm_device_name(t->md), type);
  632. return -EINVAL;
  633. }
  634. t->singleton = 1;
  635. }
  636. if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
  637. DMERR("%s: target type %s may not be included in read-only tables",
  638. dm_device_name(t->md), type);
  639. return -EINVAL;
  640. }
  641. if (t->immutable_target_type) {
  642. if (t->immutable_target_type != tgt->type) {
  643. DMERR("%s: immutable target type %s cannot be mixed with other target types",
  644. dm_device_name(t->md), t->immutable_target_type->name);
  645. return -EINVAL;
  646. }
  647. } else if (dm_target_is_immutable(tgt->type)) {
  648. if (t->num_targets) {
  649. DMERR("%s: immutable target type %s cannot be mixed with other target types",
  650. dm_device_name(t->md), tgt->type->name);
  651. return -EINVAL;
  652. }
  653. t->immutable_target_type = tgt->type;
  654. }
  655. tgt->table = t;
  656. tgt->begin = start;
  657. tgt->len = len;
  658. tgt->error = "Unknown error";
  659. /*
  660. * Does this target adjoin the previous one ?
  661. */
  662. if (!adjoin(t, tgt)) {
  663. tgt->error = "Gap in table";
  664. r = -EINVAL;
  665. goto bad;
  666. }
  667. r = dm_split_args(&argc, &argv, params);
  668. if (r) {
  669. tgt->error = "couldn't split parameters (insufficient memory)";
  670. goto bad;
  671. }
  672. r = tgt->type->ctr(tgt, argc, argv);
  673. kfree(argv);
  674. if (r)
  675. goto bad;
  676. t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
  677. if (!tgt->num_discard_requests && tgt->discards_supported)
  678. DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
  679. dm_device_name(t->md), type);
  680. return 0;
  681. bad:
  682. DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
  683. dm_put_target_type(tgt->type);
  684. return r;
  685. }
  686. /*
  687. * Target argument parsing helpers.
  688. */
  689. static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
  690. unsigned *value, char **error, unsigned grouped)
  691. {
  692. const char *arg_str = dm_shift_arg(arg_set);
  693. char dummy;
  694. if (!arg_str ||
  695. (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
  696. (*value < arg->min) ||
  697. (*value > arg->max) ||
  698. (grouped && arg_set->argc < *value)) {
  699. *error = arg->error;
  700. return -EINVAL;
  701. }
  702. return 0;
  703. }
  704. int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
  705. unsigned *value, char **error)
  706. {
  707. return validate_next_arg(arg, arg_set, value, error, 0);
  708. }
  709. EXPORT_SYMBOL(dm_read_arg);
  710. int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
  711. unsigned *value, char **error)
  712. {
  713. return validate_next_arg(arg, arg_set, value, error, 1);
  714. }
  715. EXPORT_SYMBOL(dm_read_arg_group);
  716. const char *dm_shift_arg(struct dm_arg_set *as)
  717. {
  718. char *r;
  719. if (as->argc) {
  720. as->argc--;
  721. r = *as->argv;
  722. as->argv++;
  723. return r;
  724. }
  725. return NULL;
  726. }
  727. EXPORT_SYMBOL(dm_shift_arg);
  728. void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
  729. {
  730. BUG_ON(as->argc < num_args);
  731. as->argc -= num_args;
  732. as->argv += num_args;
  733. }
  734. EXPORT_SYMBOL(dm_consume_args);
  735. static int dm_table_set_type(struct dm_table *t)
  736. {
  737. unsigned i;
  738. unsigned bio_based = 0, request_based = 0;
  739. struct dm_target *tgt;
  740. struct dm_dev_internal *dd;
  741. struct list_head *devices;
  742. for (i = 0; i < t->num_targets; i++) {
  743. tgt = t->targets + i;
  744. if (dm_target_request_based(tgt))
  745. request_based = 1;
  746. else
  747. bio_based = 1;
  748. if (bio_based && request_based) {
  749. DMWARN("Inconsistent table: different target types"
  750. " can't be mixed up");
  751. return -EINVAL;
  752. }
  753. }
  754. if (bio_based) {
  755. /* We must use this table as bio-based */
  756. t->type = DM_TYPE_BIO_BASED;
  757. return 0;
  758. }
  759. BUG_ON(!request_based); /* No targets in this table */
  760. /* Non-request-stackable devices can't be used for request-based dm */
  761. devices = dm_table_get_devices(t);
  762. list_for_each_entry(dd, devices, list) {
  763. if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
  764. DMWARN("table load rejected: including"
  765. " non-request-stackable devices");
  766. return -EINVAL;
  767. }
  768. }
  769. /*
  770. * Request-based dm supports only tables that have a single target now.
  771. * To support multiple targets, request splitting support is needed,
  772. * and that needs lots of changes in the block-layer.
  773. * (e.g. request completion process for partial completion.)
  774. */
  775. if (t->num_targets > 1) {
  776. DMWARN("Request-based dm doesn't support multiple targets yet");
  777. return -EINVAL;
  778. }
  779. t->type = DM_TYPE_REQUEST_BASED;
  780. return 0;
  781. }
  782. unsigned dm_table_get_type(struct dm_table *t)
  783. {
  784. return t->type;
  785. }
  786. struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
  787. {
  788. return t->immutable_target_type;
  789. }
  790. bool dm_table_request_based(struct dm_table *t)
  791. {
  792. return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
  793. }
  794. int dm_table_alloc_md_mempools(struct dm_table *t)
  795. {
  796. unsigned type = dm_table_get_type(t);
  797. unsigned per_bio_data_size = 0;
  798. struct dm_target *tgt;
  799. unsigned i;
  800. if (unlikely(type == DM_TYPE_NONE)) {
  801. DMWARN("no table type is set, can't allocate mempools");
  802. return -EINVAL;
  803. }
  804. if (type == DM_TYPE_BIO_BASED)
  805. for (i = 0; i < t->num_targets; i++) {
  806. tgt = t->targets + i;
  807. per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
  808. }
  809. t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
  810. if (!t->mempools)
  811. return -ENOMEM;
  812. return 0;
  813. }
  814. void dm_table_free_md_mempools(struct dm_table *t)
  815. {
  816. dm_free_md_mempools(t->mempools);
  817. t->mempools = NULL;
  818. }
  819. struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
  820. {
  821. return t->mempools;
  822. }
  823. static int setup_indexes(struct dm_table *t)
  824. {
  825. int i;
  826. unsigned int total = 0;
  827. sector_t *indexes;
  828. /* allocate the space for *all* the indexes */
  829. for (i = t->depth - 2; i >= 0; i--) {
  830. t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
  831. total += t->counts[i];
  832. }
  833. indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
  834. if (!indexes)
  835. return -ENOMEM;
  836. /* set up internal nodes, bottom-up */
  837. for (i = t->depth - 2; i >= 0; i--) {
  838. t->index[i] = indexes;
  839. indexes += (KEYS_PER_NODE * t->counts[i]);
  840. setup_btree_index(i, t);
  841. }
  842. return 0;
  843. }
  844. /*
  845. * Builds the btree to index the map.
  846. */
  847. static int dm_table_build_index(struct dm_table *t)
  848. {
  849. int r = 0;
  850. unsigned int leaf_nodes;
  851. /* how many indexes will the btree have ? */
  852. leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
  853. t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
  854. /* leaf layer has already been set up */
  855. t->counts[t->depth - 1] = leaf_nodes;
  856. t->index[t->depth - 1] = t->highs;
  857. if (t->depth >= 2)
  858. r = setup_indexes(t);
  859. return r;
  860. }
  861. /*
  862. * Get a disk whose integrity profile reflects the table's profile.
  863. * If %match_all is true, all devices' profiles must match.
  864. * If %match_all is false, all devices must at least have an
  865. * allocated integrity profile; but uninitialized is ok.
  866. * Returns NULL if integrity support was inconsistent or unavailable.
  867. */
  868. static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
  869. bool match_all)
  870. {
  871. struct list_head *devices = dm_table_get_devices(t);
  872. struct dm_dev_internal *dd = NULL;
  873. struct gendisk *prev_disk = NULL, *template_disk = NULL;
  874. list_for_each_entry(dd, devices, list) {
  875. template_disk = dd->dm_dev.bdev->bd_disk;
  876. if (!blk_get_integrity(template_disk))
  877. goto no_integrity;
  878. if (!match_all && !blk_integrity_is_initialized(template_disk))
  879. continue; /* skip uninitialized profiles */
  880. else if (prev_disk &&
  881. blk_integrity_compare(prev_disk, template_disk) < 0)
  882. goto no_integrity;
  883. prev_disk = template_disk;
  884. }
  885. return template_disk;
  886. no_integrity:
  887. if (prev_disk)
  888. DMWARN("%s: integrity not set: %s and %s profile mismatch",
  889. dm_device_name(t->md),
  890. prev_disk->disk_name,
  891. template_disk->disk_name);
  892. return NULL;
  893. }
  894. /*
  895. * Register the mapped device for blk_integrity support if
  896. * the underlying devices have an integrity profile. But all devices
  897. * may not have matching profiles (checking all devices isn't reliable
  898. * during table load because this table may use other DM device(s) which
  899. * must be resumed before they will have an initialized integity profile).
  900. * Stacked DM devices force a 2 stage integrity profile validation:
  901. * 1 - during load, validate all initialized integrity profiles match
  902. * 2 - during resume, validate all integrity profiles match
  903. */
  904. static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
  905. {
  906. struct gendisk *template_disk = NULL;
  907. template_disk = dm_table_get_integrity_disk(t, false);
  908. if (!template_disk)
  909. return 0;
  910. if (!blk_integrity_is_initialized(dm_disk(md))) {
  911. t->integrity_supported = 1;
  912. return blk_integrity_register(dm_disk(md), NULL);
  913. }
  914. /*
  915. * If DM device already has an initalized integrity
  916. * profile the new profile should not conflict.
  917. */
  918. if (blk_integrity_is_initialized(template_disk) &&
  919. blk_integrity_compare(dm_disk(md), template_disk) < 0) {
  920. DMWARN("%s: conflict with existing integrity profile: "
  921. "%s profile mismatch",
  922. dm_device_name(t->md),
  923. template_disk->disk_name);
  924. return 1;
  925. }
  926. /* Preserve existing initialized integrity profile */
  927. t->integrity_supported = 1;
  928. return 0;
  929. }
  930. /*
  931. * Prepares the table for use by building the indices,
  932. * setting the type, and allocating mempools.
  933. */
  934. int dm_table_complete(struct dm_table *t)
  935. {
  936. int r;
  937. r = dm_table_set_type(t);
  938. if (r) {
  939. DMERR("unable to set table type");
  940. return r;
  941. }
  942. r = dm_table_build_index(t);
  943. if (r) {
  944. DMERR("unable to build btrees");
  945. return r;
  946. }
  947. r = dm_table_prealloc_integrity(t, t->md);
  948. if (r) {
  949. DMERR("could not register integrity profile.");
  950. return r;
  951. }
  952. r = dm_table_alloc_md_mempools(t);
  953. if (r)
  954. DMERR("unable to allocate mempools");
  955. return r;
  956. }
  957. static DEFINE_MUTEX(_event_lock);
  958. void dm_table_event_callback(struct dm_table *t,
  959. void (*fn)(void *), void *context)
  960. {
  961. mutex_lock(&_event_lock);
  962. t->event_fn = fn;
  963. t->event_context = context;
  964. mutex_unlock(&_event_lock);
  965. }
  966. void dm_table_event(struct dm_table *t)
  967. {
  968. /*
  969. * You can no longer call dm_table_event() from interrupt
  970. * context, use a bottom half instead.
  971. */
  972. BUG_ON(in_interrupt());
  973. mutex_lock(&_event_lock);
  974. if (t->event_fn)
  975. t->event_fn(t->event_context);
  976. mutex_unlock(&_event_lock);
  977. }
  978. EXPORT_SYMBOL(dm_table_event);
  979. sector_t dm_table_get_size(struct dm_table *t)
  980. {
  981. return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
  982. }
  983. EXPORT_SYMBOL(dm_table_get_size);
  984. struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
  985. {
  986. if (index >= t->num_targets)
  987. return NULL;
  988. return t->targets + index;
  989. }
  990. /*
  991. * Search the btree for the correct target.
  992. *
  993. * Caller should check returned pointer with dm_target_is_valid()
  994. * to trap I/O beyond end of device.
  995. */
  996. struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
  997. {
  998. unsigned int l, n = 0, k = 0;
  999. sector_t *node;
  1000. for (l = 0; l < t->depth; l++) {
  1001. n = get_child(n, k);
  1002. node = get_node(t, l, n);
  1003. for (k = 0; k < KEYS_PER_NODE; k++)
  1004. if (node[k] >= sector)
  1005. break;
  1006. }
  1007. return &t->targets[(KEYS_PER_NODE * n) + k];
  1008. }
  1009. static int count_device(struct dm_target *ti, struct dm_dev *dev,
  1010. sector_t start, sector_t len, void *data)
  1011. {
  1012. unsigned *num_devices = data;
  1013. (*num_devices)++;
  1014. return 0;
  1015. }
  1016. /*
  1017. * Check whether a table has no data devices attached using each
  1018. * target's iterate_devices method.
  1019. * Returns false if the result is unknown because a target doesn't
  1020. * support iterate_devices.
  1021. */
  1022. bool dm_table_has_no_data_devices(struct dm_table *table)
  1023. {
  1024. struct dm_target *uninitialized_var(ti);
  1025. unsigned i = 0, num_devices = 0;
  1026. while (i < dm_table_get_num_targets(table)) {
  1027. ti = dm_table_get_target(table, i++);
  1028. if (!ti->type->iterate_devices)
  1029. return false;
  1030. ti->type->iterate_devices(ti, count_device, &num_devices);
  1031. if (num_devices)
  1032. return false;
  1033. }
  1034. return true;
  1035. }
  1036. /*
  1037. * Establish the new table's queue_limits and validate them.
  1038. */
  1039. int dm_calculate_queue_limits(struct dm_table *table,
  1040. struct queue_limits *limits)
  1041. {
  1042. struct dm_target *uninitialized_var(ti);
  1043. struct queue_limits ti_limits;
  1044. unsigned i = 0;
  1045. blk_set_stacking_limits(limits);
  1046. while (i < dm_table_get_num_targets(table)) {
  1047. blk_set_stacking_limits(&ti_limits);
  1048. ti = dm_table_get_target(table, i++);
  1049. if (!ti->type->iterate_devices)
  1050. goto combine_limits;
  1051. /*
  1052. * Combine queue limits of all the devices this target uses.
  1053. */
  1054. ti->type->iterate_devices(ti, dm_set_device_limits,
  1055. &ti_limits);
  1056. /* Set I/O hints portion of queue limits */
  1057. if (ti->type->io_hints)
  1058. ti->type->io_hints(ti, &ti_limits);
  1059. /*
  1060. * Check each device area is consistent with the target's
  1061. * overall queue limits.
  1062. */
  1063. if (ti->type->iterate_devices(ti, device_area_is_invalid,
  1064. &ti_limits))
  1065. return -EINVAL;
  1066. combine_limits:
  1067. /*
  1068. * Merge this target's queue limits into the overall limits
  1069. * for the table.
  1070. */
  1071. if (blk_stack_limits(limits, &ti_limits, 0) < 0)
  1072. DMWARN("%s: adding target device "
  1073. "(start sect %llu len %llu) "
  1074. "caused an alignment inconsistency",
  1075. dm_device_name(table->md),
  1076. (unsigned long long) ti->begin,
  1077. (unsigned long long) ti->len);
  1078. }
  1079. return validate_hardware_logical_block_alignment(table, limits);
  1080. }
  1081. /*
  1082. * Set the integrity profile for this device if all devices used have
  1083. * matching profiles. We're quite deep in the resume path but still
  1084. * don't know if all devices (particularly DM devices this device
  1085. * may be stacked on) have matching profiles. Even if the profiles
  1086. * don't match we have no way to fail (to resume) at this point.
  1087. */
  1088. static void dm_table_set_integrity(struct dm_table *t)
  1089. {
  1090. struct gendisk *template_disk = NULL;
  1091. if (!blk_get_integrity(dm_disk(t->md)))
  1092. return;
  1093. template_disk = dm_table_get_integrity_disk(t, true);
  1094. if (template_disk)
  1095. blk_integrity_register(dm_disk(t->md),
  1096. blk_get_integrity(template_disk));
  1097. else if (blk_integrity_is_initialized(dm_disk(t->md)))
  1098. DMWARN("%s: device no longer has a valid integrity profile",
  1099. dm_device_name(t->md));
  1100. else
  1101. DMWARN("%s: unable to establish an integrity profile",
  1102. dm_device_name(t->md));
  1103. }
  1104. static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
  1105. sector_t start, sector_t len, void *data)
  1106. {
  1107. unsigned flush = (*(unsigned *)data);
  1108. struct request_queue *q = bdev_get_queue(dev->bdev);
  1109. return q && (q->flush_flags & flush);
  1110. }
  1111. static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
  1112. {
  1113. struct dm_target *ti;
  1114. unsigned i = 0;
  1115. /*
  1116. * Require at least one underlying device to support flushes.
  1117. * t->devices includes internal dm devices such as mirror logs
  1118. * so we need to use iterate_devices here, which targets
  1119. * supporting flushes must provide.
  1120. */
  1121. while (i < dm_table_get_num_targets(t)) {
  1122. ti = dm_table_get_target(t, i++);
  1123. if (!ti->num_flush_requests)
  1124. continue;
  1125. if (ti->flush_supported)
  1126. return 1;
  1127. if (ti->type->iterate_devices &&
  1128. ti->type->iterate_devices(ti, device_flush_capable, &flush))
  1129. return 1;
  1130. }
  1131. return 0;
  1132. }
  1133. static bool dm_table_discard_zeroes_data(struct dm_table *t)
  1134. {
  1135. struct dm_target *ti;
  1136. unsigned i = 0;
  1137. /* Ensure that all targets supports discard_zeroes_data. */
  1138. while (i < dm_table_get_num_targets(t)) {
  1139. ti = dm_table_get_target(t, i++);
  1140. if (ti->discard_zeroes_data_unsupported)
  1141. return 0;
  1142. }
  1143. return 1;
  1144. }
  1145. static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
  1146. sector_t start, sector_t len, void *data)
  1147. {
  1148. struct request_queue *q = bdev_get_queue(dev->bdev);
  1149. return q && blk_queue_nonrot(q);
  1150. }
  1151. static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
  1152. sector_t start, sector_t len, void *data)
  1153. {
  1154. struct request_queue *q = bdev_get_queue(dev->bdev);
  1155. return q && !blk_queue_add_random(q);
  1156. }
  1157. static bool dm_table_all_devices_attribute(struct dm_table *t,
  1158. iterate_devices_callout_fn func)
  1159. {
  1160. struct dm_target *ti;
  1161. unsigned i = 0;
  1162. while (i < dm_table_get_num_targets(t)) {
  1163. ti = dm_table_get_target(t, i++);
  1164. if (!ti->type->iterate_devices ||
  1165. !ti->type->iterate_devices(ti, func, NULL))
  1166. return 0;
  1167. }
  1168. return 1;
  1169. }
  1170. static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
  1171. sector_t start, sector_t len, void *data)
  1172. {
  1173. struct request_queue *q = bdev_get_queue(dev->bdev);
  1174. return q && !q->limits.max_write_same_sectors;
  1175. }
  1176. static bool dm_table_supports_write_same(struct dm_table *t)
  1177. {
  1178. struct dm_target *ti;
  1179. unsigned i = 0;
  1180. while (i < dm_table_get_num_targets(t)) {
  1181. ti = dm_table_get_target(t, i++);
  1182. if (!ti->num_write_same_requests)
  1183. return false;
  1184. if (!ti->type->iterate_devices ||
  1185. !ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
  1186. return false;
  1187. }
  1188. return true;
  1189. }
  1190. void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
  1191. struct queue_limits *limits)
  1192. {
  1193. unsigned flush = 0;
  1194. /*
  1195. * Copy table's limits to the DM device's request_queue
  1196. */
  1197. q->limits = *limits;
  1198. if (!dm_table_supports_discards(t))
  1199. queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
  1200. else
  1201. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
  1202. if (dm_table_supports_flush(t, REQ_FLUSH)) {
  1203. flush |= REQ_FLUSH;
  1204. if (dm_table_supports_flush(t, REQ_FUA))
  1205. flush |= REQ_FUA;
  1206. }
  1207. blk_queue_flush(q, flush);
  1208. if (!dm_table_discard_zeroes_data(t))
  1209. q->limits.discard_zeroes_data = 0;
  1210. /* Ensure that all underlying devices are non-rotational. */
  1211. if (dm_table_all_devices_attribute(t, device_is_nonrot))
  1212. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
  1213. else
  1214. queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
  1215. if (!dm_table_supports_write_same(t))
  1216. q->limits.max_write_same_sectors = 0;
  1217. dm_table_set_integrity(t);
  1218. /*
  1219. * Determine whether or not this queue's I/O timings contribute
  1220. * to the entropy pool, Only request-based targets use this.
  1221. * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
  1222. * have it set.
  1223. */
  1224. if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
  1225. queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
  1226. /*
  1227. * QUEUE_FLAG_STACKABLE must be set after all queue settings are
  1228. * visible to other CPUs because, once the flag is set, incoming bios
  1229. * are processed by request-based dm, which refers to the queue
  1230. * settings.
  1231. * Until the flag set, bios are passed to bio-based dm and queued to
  1232. * md->deferred where queue settings are not needed yet.
  1233. * Those bios are passed to request-based dm at the resume time.
  1234. */
  1235. smp_mb();
  1236. if (dm_table_request_based(t))
  1237. queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
  1238. }
  1239. unsigned int dm_table_get_num_targets(struct dm_table *t)
  1240. {
  1241. return t->num_targets;
  1242. }
  1243. struct list_head *dm_table_get_devices(struct dm_table *t)
  1244. {
  1245. return &t->devices;
  1246. }
  1247. fmode_t dm_table_get_mode(struct dm_table *t)
  1248. {
  1249. return t->mode;
  1250. }
  1251. EXPORT_SYMBOL(dm_table_get_mode);
  1252. static void suspend_targets(struct dm_table *t, unsigned postsuspend)
  1253. {
  1254. int i = t->num_targets;
  1255. struct dm_target *ti = t->targets;
  1256. while (i--) {
  1257. if (postsuspend) {
  1258. if (ti->type->postsuspend)
  1259. ti->type->postsuspend(ti);
  1260. } else if (ti->type->presuspend)
  1261. ti->type->presuspend(ti);
  1262. ti++;
  1263. }
  1264. }
  1265. void dm_table_presuspend_targets(struct dm_table *t)
  1266. {
  1267. if (!t)
  1268. return;
  1269. suspend_targets(t, 0);
  1270. }
  1271. void dm_table_postsuspend_targets(struct dm_table *t)
  1272. {
  1273. if (!t)
  1274. return;
  1275. suspend_targets(t, 1);
  1276. }
  1277. int dm_table_resume_targets(struct dm_table *t)
  1278. {
  1279. int i, r = 0;
  1280. for (i = 0; i < t->num_targets; i++) {
  1281. struct dm_target *ti = t->targets + i;
  1282. if (!ti->type->preresume)
  1283. continue;
  1284. r = ti->type->preresume(ti);
  1285. if (r)
  1286. return r;
  1287. }
  1288. for (i = 0; i < t->num_targets; i++) {
  1289. struct dm_target *ti = t->targets + i;
  1290. if (ti->type->resume)
  1291. ti->type->resume(ti);
  1292. }
  1293. return 0;
  1294. }
  1295. void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
  1296. {
  1297. list_add(&cb->list, &t->target_callbacks);
  1298. }
  1299. EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
  1300. int dm_table_any_congested(struct dm_table *t, int bdi_bits)
  1301. {
  1302. struct dm_dev_internal *dd;
  1303. struct list_head *devices = dm_table_get_devices(t);
  1304. struct dm_target_callbacks *cb;
  1305. int r = 0;
  1306. list_for_each_entry(dd, devices, list) {
  1307. struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
  1308. char b[BDEVNAME_SIZE];
  1309. if (likely(q))
  1310. r |= bdi_congested(&q->backing_dev_info, bdi_bits);
  1311. else
  1312. DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
  1313. dm_device_name(t->md),
  1314. bdevname(dd->dm_dev.bdev, b));
  1315. }
  1316. list_for_each_entry(cb, &t->target_callbacks, list)
  1317. if (cb->congested_fn)
  1318. r |= cb->congested_fn(cb, bdi_bits);
  1319. return r;
  1320. }
  1321. int dm_table_any_busy_target(struct dm_table *t)
  1322. {
  1323. unsigned i;
  1324. struct dm_target *ti;
  1325. for (i = 0; i < t->num_targets; i++) {
  1326. ti = t->targets + i;
  1327. if (ti->type->busy && ti->type->busy(ti))
  1328. return 1;
  1329. }
  1330. return 0;
  1331. }
  1332. struct mapped_device *dm_table_get_md(struct dm_table *t)
  1333. {
  1334. return t->md;
  1335. }
  1336. EXPORT_SYMBOL(dm_table_get_md);
  1337. static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
  1338. sector_t start, sector_t len, void *data)
  1339. {
  1340. struct request_queue *q = bdev_get_queue(dev->bdev);
  1341. return q && blk_queue_discard(q);
  1342. }
  1343. bool dm_table_supports_discards(struct dm_table *t)
  1344. {
  1345. struct dm_target *ti;
  1346. unsigned i = 0;
  1347. /*
  1348. * Unless any target used by the table set discards_supported,
  1349. * require at least one underlying device to support discards.
  1350. * t->devices includes internal dm devices such as mirror logs
  1351. * so we need to use iterate_devices here, which targets
  1352. * supporting discard selectively must provide.
  1353. */
  1354. while (i < dm_table_get_num_targets(t)) {
  1355. ti = dm_table_get_target(t, i++);
  1356. if (!ti->num_discard_requests)
  1357. continue;
  1358. if (ti->discards_supported)
  1359. return 1;
  1360. if (ti->type->iterate_devices &&
  1361. ti->type->iterate_devices(ti, device_discard_capable, NULL))
  1362. return 1;
  1363. }
  1364. return 0;
  1365. }